12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733 |
- /**
- * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "llama-sampling.h"
- #include "llama-vocab.h"
- #include "llama-grammar.h"
- #include <algorithm>
- #include <cassert>
- #include <cfloat>
- #include <chrono>
- #include <cmath>
- #include <cstdlib>
- #include <cstring>
- #include <ctime>
- #include <numeric>
- #include <random>
- #include <unordered_map>
- static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
- // iterator for the probabilities
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
- #endif
- struct probs_iterator {
- typedef std::input_iterator_tag iterator_category;
- typedef float value_type;
- typedef float * pointer;
- typedef float & reference;
- typedef ptrdiff_t difference_type;
- const llama_token_data * data;
- bool operator==(const probs_iterator & other) const { return data == other.data; }
- bool operator!=(const probs_iterator & other) const { return data != other.data; }
- const float & operator*() const { return data->p; }
- probs_iterator & operator++() { ++data; return *this; }
- probs_iterator operator++(int) { probs_iterator tmp = *this; ++data; return tmp; }
- };
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
- std::discrete_distribution<int> dist(probs_iterator{cur_p->data}, probs_iterator{cur_p->data + cur_p->size});
- return dist(rng);
- }
- /*
- static void llama_log_softmax(float * array, size_t size) {
- float max_l = *std::max_element(array, array + size);
- float sum = 0.f;
- for (size_t i = 0; i < size; ++i) {
- float p = expf(array[i] - max_l);
- sum += p;
- array[i] = p;
- }
- for (size_t i = 0; i < size; ++i) {
- array[i] = logf(array[i] / sum);
- }
- }
- */
- static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) {
- GGML_ASSERT(cur_p->size > 0);
- // Sort the logits in descending order
- if (!cur_p->sorted) {
- std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- cur_p->sorted = true;
- }
- float max_l = cur_p->data[0].logit;
- float cum_sum = 0.0f;
- for (size_t i = 0; i < cur_p->size; ++i) {
- float p = expf(cur_p->data[i].logit - max_l);
- cur_p->data[i].p = p;
- cum_sum += p;
- }
- for (size_t i = 0; i < cur_p->size; ++i) {
- cur_p->data[i].p /= cum_sum;
- }
- }
- static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) {
- // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
- // if (k >= (int32_t)cur_p->size) {
- // return;
- // }
- if (k <= 0) {
- k = cur_p->size;
- }
- k = std::min(k, (int) cur_p->size);
- // Sort scores in descending order
- if (!cur_p->sorted) {
- auto comp = [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- };
- if (k <= 128) {
- std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp);
- } else {
- constexpr int nbuckets = 128;
- constexpr float bucket_low = -10.0f;
- constexpr float bucket_high = 10.0f;
- constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
- constexpr float bucket_inter = -bucket_low * bucket_scale;
- std::vector<int> bucket_idx(cur_p->size);
- std::vector<int> histo(nbuckets, 0);
- for (int i = 0; i < (int)cur_p->size; ++i) {
- const float val = cur_p->data[i].logit;
- int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
- ib = std::max(0, std::min(nbuckets-1, ib));
- bucket_idx[i] = ib;
- ++histo[ib];
- }
- int nhave = 0;
- int ib = nbuckets - 1;
- for ( ; ib >= 0; --ib) {
- nhave += histo[ib];
- if (nhave >= k) {
- break;
- }
- }
- std::vector<llama_token_data> tmp_tokens(nhave);
- auto * ptr = tmp_tokens.data();
- std::vector<llama_token_data*> bucket_ptrs;
- bucket_ptrs.reserve(nbuckets - ib);
- for (int j = nbuckets - 1; j >= ib; --j) {
- bucket_ptrs.push_back(ptr);
- ptr += histo[j];
- }
- for (int i = 0; i < (int)cur_p->size; ++i) {
- int j = bucket_idx[i];
- if (j >= ib) {
- *bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i];
- }
- }
- ptr = tmp_tokens.data();
- int ndone = 0;
- for (int j = nbuckets-1; j > ib; --j) {
- std::sort(ptr, ptr + histo[j], comp);
- ptr += histo[j];
- ndone += histo[j];
- }
- std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
- std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data));
- }
- cur_p->sorted = true;
- }
- cur_p->size = k;
- }
- static uint32_t get_rng_seed(uint32_t seed) {
- if (seed == LLAMA_DEFAULT_SEED) {
- // use system clock if std::random_device is not a true RNG
- static bool is_rd_prng = std::random_device().entropy() == 0;
- if (is_rd_prng) {
- return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count();
- }
- std::random_device rd;
- return rd();
- }
- return seed;
- }
- // llama_sampler API
- const char * llama_sampler_name(const struct llama_sampler * smpl) {
- if (!smpl->iface) {
- return "(null)";
- }
- return smpl->iface->name(smpl);
- }
- void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) {
- if (smpl->iface->accept) {
- smpl->iface->accept(smpl, token);
- }
- }
- void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) {
- GGML_ASSERT(smpl->iface->apply);
- smpl->iface->apply(smpl, cur_p);
- }
- void llama_sampler_reset(struct llama_sampler * smpl) {
- if (smpl->iface->reset) {
- smpl->iface->reset(smpl);
- }
- }
- struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) {
- if (smpl->iface->clone) {
- return smpl->iface->clone(smpl);
- }
- if (smpl->ctx == nullptr) {
- return new llama_sampler {
- /* .iface = */ smpl->iface,
- /* .ctx = */ nullptr,
- };
- }
- GGML_ABORT("the sampler does not support cloning");
- }
- void llama_sampler_free(struct llama_sampler * smpl) {
- if (smpl == nullptr) {
- return;
- }
- if (smpl->iface->free) {
- smpl->iface->free(smpl);
- }
- delete smpl;
- }
- llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
- const auto * logits = llama_get_logits_ith(ctx, idx);
- const int n_vocab = llama_n_vocab(llama_get_model(ctx));
- // TODO: do not allocate each time
- std::vector<llama_token_data> cur;
- cur.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array cur_p = {
- /* .data = */ cur.data(),
- /* .size = */ cur.size(),
- /* .selected = */ -1,
- /* .sorted = */ false,
- };
- llama_sampler_apply(smpl, &cur_p);
- GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size);
- auto token = cur_p.data[cur_p.selected].id;
- llama_sampler_accept(smpl, token);
- return token;
- }
- // sampler chain
- static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) {
- return "chain";
- }
- static void llama_sampler_chain_accept(struct llama_sampler * smpl, llama_token token) {
- auto * chain = (llama_sampler_chain *) smpl->ctx;
- time_meas tm(chain->t_sample_us, chain->params.no_perf);
- for (auto * smpl : chain->samplers) {
- llama_sampler_accept(smpl, token);
- }
- chain->n_sample++;
- }
- static void llama_sampler_chain_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * chain = (llama_sampler_chain *) smpl->ctx;
- time_meas tm(chain->t_sample_us, chain->params.no_perf);
- for (auto * smpl : chain->samplers) {
- llama_sampler_apply(smpl, cur_p);
- }
- }
- static void llama_sampler_chain_reset(struct llama_sampler * smpl) {
- auto * chain = (llama_sampler_chain *) smpl->ctx;
- for (auto * smpl : chain->samplers) {
- llama_sampler_reset(smpl);
- }
- chain->t_sample_us = 0;
- chain->n_sample = 0;
- }
- static struct llama_sampler * llama_sampler_chain_clone(const struct llama_sampler * smpl) {
- const auto * chain_src = (const llama_sampler_chain *) smpl->ctx;
- auto * result = llama_sampler_chain_init(chain_src->params);
- for (auto * smpl : chain_src->samplers) {
- llama_sampler_chain_add(result, llama_sampler_clone(smpl));
- }
- return result;
- }
- static void llama_sampler_chain_free(struct llama_sampler * smpl) {
- auto * chain = (llama_sampler_chain *) smpl->ctx;
- for (auto * smpl : chain->samplers) {
- llama_sampler_free(smpl);
- }
- delete chain;
- }
- static struct llama_sampler_i llama_sampler_chain_i = {
- /* .name = */ llama_sampler_chain_name,
- /* .accept = */ llama_sampler_chain_accept,
- /* .apply = */ llama_sampler_chain_apply,
- /* .reset = */ llama_sampler_chain_reset,
- /* .clone = */ llama_sampler_chain_clone,
- /* .free = */ llama_sampler_chain_free,
- };
- struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_chain_i,
- /* .ctx = */ new llama_sampler_chain {
- /* .params = */ params,
- /* .samplers = */ {},
- /* .t_sample_us = */ 0,
- /* .n_sample = */ 0,
- },
- };
- }
- void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) {
- auto * p = (llama_sampler_chain *) chain->ctx;
- p->samplers.push_back(smpl);
- }
- struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) {
- const auto * p = (const llama_sampler_chain *) chain->ctx;
- if (i < 0 || (size_t) i >= p->samplers.size()) {
- return nullptr;
- }
- return p->samplers[i];
- }
- struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) {
- auto * p = (llama_sampler_chain *) chain->ctx;
- if (i < 0 || (size_t) i >= p->samplers.size()) {
- return nullptr;
- }
- auto * result = p->samplers[i];
- p->samplers.erase(p->samplers.begin() + i);
- return result;
- }
- int llama_sampler_chain_n(const struct llama_sampler * chain) {
- const auto * p = (const llama_sampler_chain *) chain->ctx;
- return p->samplers.size();
- }
- //
- // samplers
- //
- // greedy
- static const char * llama_sampler_greedy_name(const struct llama_sampler * /*smpl*/) {
- return "greedy";
- }
- static void llama_sampler_greedy_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
- cur_p->selected = 0;
- for (size_t i = 1; i < cur_p->size; ++i) {
- if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) {
- cur_p->selected = i;
- }
- }
- }
- static struct llama_sampler_i llama_sampler_greedy_i = {
- /* .name = */ llama_sampler_greedy_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_greedy_apply,
- /* .reset = */ nullptr,
- /* .clone = */ nullptr,
- /* .free = */ nullptr,
- };
- struct llama_sampler * llama_sampler_init_greedy() {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_greedy_i,
- /* .ctx = */ nullptr,
- };
- }
- // dist
- struct llama_sampler_dist {
- const uint32_t seed;
- uint32_t seed_cur;
- std::mt19937 rng;
- };
- static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*/) {
- return "dist";
- }
- static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_dist *) smpl->ctx;
- cur_p->selected = llama_sample_dist(cur_p, ctx->rng);
- }
- static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_dist *) smpl->ctx;
- auto * result = llama_sampler_init_dist(ctx->seed);
- // copy the state
- {
- auto * result_ctx = (llama_sampler_dist *) result->ctx;
- result_ctx->rng = ctx->rng;
- }
- return result;
- }
- static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_dist *) smpl->ctx;
- ctx->seed_cur = get_rng_seed(ctx->seed);
- ctx->rng.seed(ctx->seed_cur);
- }
- static void llama_sampler_dist_free(struct llama_sampler * smpl) {
- delete (llama_sampler_dist *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_dist_i = {
- /* .name = */ llama_sampler_dist_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_dist_apply,
- /* .reset = */ llama_sampler_dist_reset,
- /* .clone = */ llama_sampler_dist_clone,
- /* .free = */ llama_sampler_dist_free,
- };
- struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
- auto seed_cur = get_rng_seed(seed);
- return new llama_sampler {
- /* .iface = */ &llama_sampler_dist_i,
- /* .ctx = */ new llama_sampler_dist {
- /* .seed = */ seed,
- /* .seed_cur = */ seed_cur,
- /* .rng = */ std::mt19937(seed_cur),
- },
- };
- }
- // softmax
- static const char * llama_sampler_softmax_name(const struct llama_sampler * /*smpl*/) {
- return "softmax";
- }
- static void llama_sampler_softmax_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
- llama_sampler_softmax_impl(cur_p);
- }
- static struct llama_sampler_i llama_sampler_softmax_i = {
- /* .name = */ llama_sampler_softmax_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_softmax_apply,
- /* .reset = */ nullptr,
- /* .clone = */ nullptr,
- /* .free = */ nullptr,
- };
- struct llama_sampler * llama_sampler_init_softmax() {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_softmax_i,
- /* .ctx = */ nullptr,
- };
- }
- // top-k
- struct llama_sampler_top_k {
- const int32_t k;
- };
- static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl*/) {
- return "top-k";
- }
- static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_top_k *) smpl->ctx;
- llama_sampler_top_k_impl(cur_p, ctx->k);
- }
- static struct llama_sampler * llama_sampler_top_k_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_top_k *) smpl->ctx;
- return llama_sampler_init_top_k(ctx->k);
- }
- static void llama_sampler_top_k_free(struct llama_sampler * smpl) {
- delete (llama_sampler_top_k *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_top_k_i = {
- /* .name = */ llama_sampler_top_k_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_top_k_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_top_k_clone,
- /* .free = */ llama_sampler_top_k_free,
- };
- struct llama_sampler * llama_sampler_init_top_k(int32_t k) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_top_k_i,
- /* .ctx = */ new llama_sampler_top_k {
- /* .k = */ k,
- },
- };
- }
- // top-p
- struct llama_sampler_top_p {
- const float p;
- const size_t min_keep;
- };
- static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) {
- return "top-p";
- }
- static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_top_p *) smpl->ctx;
- if (ctx->p >= 1.0f) {
- return;
- }
- llama_sampler_softmax_impl(cur_p);
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = cur_p->size;
- for (size_t i = 0; i < cur_p->size; ++i) {
- cum_sum += cur_p->data[i].p;
- // Check if the running sum is at least p or if we have kept at least min_keep tokens
- // we set the last index to i+1 to indicate that the current iterate should be included in the set
- if (cum_sum >= ctx->p && i + 1 >= ctx->min_keep) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the top-p tokens
- cur_p->size = last_idx;
- }
- static struct llama_sampler * llama_sampler_top_p_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_top_p *) smpl->ctx;
- return llama_sampler_init_top_p(ctx->p, ctx->min_keep);
- }
- static void llama_sampler_top_p_free(struct llama_sampler * smpl) {
- delete (llama_sampler_top_p *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_top_p_i = {
- /* .name = */ llama_sampler_top_p_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_top_p_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_top_p_clone,
- /* .free = */ llama_sampler_top_p_free,
- };
- struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_top_p_i,
- /* .ctx = */ new llama_sampler_top_p {
- /* .p = */ p,
- /* .min_keep = */ min_keep,
- },
- };
- }
- // min-p
- struct llama_sampler_min_p {
- const float p;
- const size_t min_keep;
- };
- static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl*/) {
- return "min-p";
- }
- static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_min_p *) smpl->ctx;
- if (ctx->p <= 0.0f || !cur_p->size) {
- return;
- }
- bool min_p_applied = false;
- // if the cur_p aren't sorted, try the unsorted implementation first
- if (!cur_p->sorted) {
- std::vector<llama_token_data> filtered_tokens;
- float max_logit = -FLT_MAX;
- for (size_t i = 0; i < cur_p->size; ++i) {
- max_logit = std::max(max_logit, cur_p->data[i].logit);
- }
- const float min_logit = max_logit + logf(ctx->p); // min logit for p_i >= p * p_max
- for (size_t i = 0; i < cur_p->size; ++i) {
- if (cur_p->data[i].logit >= min_logit) {
- filtered_tokens.push_back(cur_p->data[i]);
- }
- }
- // if we have enough values the operation was a success
- if (filtered_tokens.size() >= ctx->min_keep) {
- memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
- cur_p->size = filtered_tokens.size();
- min_p_applied = true;
- }
- }
- // if the cur_p are sorted or the unsorted implementation failed, use this implementation
- if (!min_p_applied) {
- // Sort the logits in descending order
- if (!cur_p->sorted) {
- std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- cur_p->sorted = true;
- }
- const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max
- size_t i = 1; // first token always matches
- for (; i < cur_p->size; ++i) {
- if (cur_p->data[i].logit < min_logit && i >= ctx->min_keep) {
- break; // prob too small
- }
- }
- // Resize the output vector to keep only the matching tokens
- cur_p->size = i;
- }
- }
- static struct llama_sampler * llama_sampler_min_p_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_min_p *) smpl->ctx;
- return llama_sampler_init_min_p(ctx->p, ctx->min_keep);
- }
- static void llama_sampler_min_p_free(struct llama_sampler * smpl) {
- delete (llama_sampler_min_p *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_min_p_i = {
- /* .name = */ llama_sampler_min_p_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_min_p_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_min_p_clone,
- /* .free = */ llama_sampler_min_p_free,
- };
- struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_min_p_i,
- /* .ctx = */ new llama_sampler_min_p {
- /* .p = */ p,
- /* .min_keep = */ min_keep,
- },
- };
- }
- // tail-free
- struct llama_sampler_tail_free {
- const float z;
- const size_t min_keep;
- };
- static const char * llama_sampler_tail_free_name(const struct llama_sampler * /*smpl*/) {
- return "tail-free";
- }
- static void llama_sampler_tail_free_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_tail_free *) smpl->ctx;
- if (ctx->z >= 1.0f || cur_p->size <= 2) {
- return;
- }
- llama_sampler_softmax_impl(cur_p);
- // Compute the first and second derivatives
- std::vector<float> first_derivatives(cur_p->size - 1);
- std::vector<float> second_derivatives(cur_p->size - 2);
- for (size_t i = 0; i < first_derivatives.size(); ++i) {
- first_derivatives[i] = cur_p->data[i].p - cur_p->data[i + 1].p;
- }
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
- }
- // Calculate absolute value of second derivatives
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = std::abs(second_derivatives[i]);
- }
- // Normalize the second derivatives
- {
- const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
- if (second_derivatives_sum > 1e-6f) {
- for (float & value : second_derivatives) {
- value /= second_derivatives_sum;
- }
- } else {
- for (float & value : second_derivatives) {
- value = 1.0f / second_derivatives.size();
- }
- }
- }
- float cum_sum = 0.0f;
- size_t last_idx = cur_p->size;
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- cum_sum += second_derivatives[i];
- // Check if the running sum is greater than z or if we have kept at least min_keep tokens
- if (cum_sum > ctx->z && i >= ctx->min_keep) {
- last_idx = i;
- break;
- }
- }
- // Resize the output vector to keep only the tokens above the tail location
- cur_p->size = last_idx;
- }
- static struct llama_sampler * llama_sampler_tail_free_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_tail_free *) smpl->ctx;
- return llama_sampler_init_tail_free(ctx->z, ctx->min_keep);
- }
- static void llama_sampler_tail_free_free(struct llama_sampler * smpl) {
- delete (llama_sampler_tail_free *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_tail_free_i = {
- /* .name = */ llama_sampler_tail_free_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_tail_free_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_tail_free_clone,
- /* .free = */ llama_sampler_tail_free_free,
- };
- struct llama_sampler * llama_sampler_init_tail_free(float z, size_t min_keep) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_tail_free_i,
- /* .ctx = */ new llama_sampler_tail_free {
- /* .z = */ z,
- /*. min_keep = */ min_keep,
- },
- };
- }
- // typical
- struct llama_sampler_typical {
- const float p;
- const size_t min_keep;
- };
- static const char * llama_sampler_typical_name(const struct llama_sampler * /*smpl*/) {
- return "typical";
- }
- static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_typical *) smpl->ctx;
- // Reference implementation:
- // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
- if (ctx->p >= 1.0f) {
- return;
- }
- // Compute the softmax of logits and calculate entropy
- llama_sampler_softmax_impl(cur_p);
- float entropy = 0.0f;
- for (size_t i = 0; i < cur_p->size; ++i) {
- entropy += -cur_p->data[i].p * logf(cur_p->data[i].p);
- }
- // Compute the absolute difference between negative log probability and entropy for each candidate
- std::vector<float> shifted_scores;
- for (size_t i = 0; i < cur_p->size; ++i) {
- float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy);
- shifted_scores.push_back(shifted_score);
- }
- // Sort tokens based on the shifted_scores and their corresponding indices
- std::vector<size_t> indices(cur_p->size);
- std::iota(indices.begin(), indices.end(), 0);
- std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
- return shifted_scores[a] < shifted_scores[b];
- });
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = indices.size();
- for (size_t i = 0; i < indices.size(); ++i) {
- size_t idx = indices[i];
- cum_sum += cur_p->data[idx].p;
- // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
- if (cum_sum > ctx->p && i >= ctx->min_keep - 1) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the locally typical tokens
- std::vector<llama_token_data> cur_p_new;
- for (size_t i = 0; i < last_idx; ++i) {
- size_t idx = indices[i];
- cur_p_new.push_back(cur_p->data[idx]);
- }
- // Replace the data in cur_p with the cur_p_new data
- std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data);
- cur_p->size = cur_p_new.size();
- cur_p->sorted = false;
- }
- static struct llama_sampler * llama_sampler_typical_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_typical *) smpl->ctx;
- return llama_sampler_init_typical(ctx->p, ctx->min_keep);
- }
- static void llama_sampler_typical_free(struct llama_sampler * smpl) {
- delete (llama_sampler_typical *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_typical_i = {
- /* .name = */ llama_sampler_typical_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_typical_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_typical_clone,
- /* .free = */ llama_sampler_typical_free,
- };
- struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_typical_i,
- /* .ctx = */ new llama_sampler_typical {
- /* .p = */ p,
- /* .min_keep = */ min_keep,
- },
- };
- }
- // temp
- struct llama_sampler_temp {
- const float temp;
- };
- static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*/) {
- return "temp";
- }
- static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_temp *) smpl->ctx;
- for (size_t i = 0; i < cur_p->size; ++i) {
- cur_p->data[i].logit /= ctx->temp;
- }
- }
- static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_temp *) smpl->ctx;
- return llama_sampler_init_temp(ctx->temp);
- }
- static void llama_sampler_temp_free(struct llama_sampler * smpl) {
- delete (llama_sampler_temp *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_temp_i = {
- /* .name = */ llama_sampler_temp_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_temp_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_temp_clone,
- /* .free = */ llama_sampler_temp_free,
- };
- struct llama_sampler * llama_sampler_init_temp(float temp) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_temp_i,
- /* .ctx = */ new llama_sampler_temp {
- /*.temp = */ temp,
- },
- };
- }
- // temp-ext
- struct llama_sampler_temp_ext {
- const float temp;
- const float delta;
- const float exponent;
- };
- static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*smpl*/) {
- return "temp-ext";
- }
- static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx;
- if (ctx->delta > 0) {
- const float min_temp = std::max(0.0f, ctx->temp - ctx->delta);
- const float max_temp = ctx->temp + ctx->delta;
- float exponent_val = ctx->exponent;
- // no need to do anything if there is only one (or zero) candidates
- if (cur_p->size <= 1) {
- return;
- }
- // Calculate maximum possible entropy
- float max_entropy = -logf(1.0f / cur_p->size);
- llama_sampler_softmax_impl(cur_p);
- // Calculate entropy of the softmax probabilities
- float entropy = 0.0f;
- for (size_t i = 0; i < cur_p->size; ++i) {
- float prob = cur_p->data[i].p;
- if (prob > 0.0f) { // Ensure no log(0)
- entropy -= prob * logf(prob);
- }
- }
- // Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above)
- float normalized_entropy = entropy / max_entropy;
- // Map the normalized entropy to the desired temperature range using the power function
- float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
- #ifdef DEBUG
- LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
- LLAMA_LOG_INFO("Entropy: %f\n", entropy);
- LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
- LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
- LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
- LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
- #endif
- // Apply the dynamically calculated temperature scaling
- for (size_t i = 0; i < cur_p->size; ++i) {
- cur_p->data[i].logit /= dyn_temp;
- }
- // Re-compute softmax probabilities after scaling logits with dynamic temperature
- const double max_l_double = cur_p->data[0].logit;
- double cum_sum_double = 0.0;
- for (size_t i = 0; i < cur_p->size; ++i) {
- double p = exp(cur_p->data[i].logit - max_l_double);
- cur_p->data[i].p = p; // Store the scaled probability
- cum_sum_double += p;
- }
- for (size_t i = 0; i < cur_p->size; ++i) {
- cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
- }
- #ifdef DEBUG
- // Print the updated top 25 probabilities after temperature scaling
- LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
- for (size_t i = 0; i < 25 && i < cur_p->size; ++i) {
- LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f);
- }
- #endif
- } else {
- for (size_t i = 0; i < cur_p->size; ++i) {
- cur_p->data[i].logit /= ctx->temp;
- }
- }
- }
- static struct llama_sampler * llama_sampler_temp_ext_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx;
- return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent);
- }
- static void llama_sampler_temp_ext_free(struct llama_sampler * smpl) {
- delete (llama_sampler_temp_ext *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_temp_ext_i = {
- /* .name = */ llama_sampler_temp_ext_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_temp_ext_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_temp_ext_clone,
- /* .free = */ llama_sampler_temp_ext_free,
- };
- struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_temp_ext_i,
- /* .ctx = */ new llama_sampler_temp_ext {
- /* .temp = */ temp,
- /* .delta = */ delta,
- /* .exponent = */ exponent,
- },
- };
- }
- // mirostat
- struct llama_sampler_mirostat {
- const int32_t n_vocab;
- const uint32_t seed;
- uint32_t seed_cur;
- const float tau;
- const float eta;
- const int32_t m;
- float mu;
- std::mt19937 rng;
- };
- static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) {
- return "mirostat";
- }
- static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
- llama_sampler_softmax_impl(cur_p);
- // Estimate s_hat using the most probable m tokens
- float s_hat = 0.0;
- float sum_ti_bi = 0.0;
- float sum_ti_sq = 0.0;
- for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) {
- float t_i = logf(float(i + 2) / float(i + 1));
- float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p);
- sum_ti_bi += t_i * b_i;
- sum_ti_sq += t_i * t_i;
- }
- s_hat = sum_ti_bi / sum_ti_sq;
- // Compute k from the estimated s_hat and target surprise value
- float epsilon_hat = s_hat - 1;
- float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat);
- llama_sampler_top_k_impl(cur_p, std::max(int(k), 1));
- llama_sampler_softmax_impl(cur_p);
- const int idx = llama_sample_dist(cur_p, ctx->rng);
- cur_p->selected = idx;
- float observed_surprise = -log2f(cur_p->data[idx].p);
- float e = observed_surprise - ctx->tau;
- // Update mu using the learning rate and error
- ctx->mu = ctx->mu - ctx->eta * e;
- }
- static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx;
- auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m);
- // copy the state
- {
- auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx;
- result_ctx->mu = ctx->mu;
- result_ctx->rng = ctx->rng;
- }
- return result;
- }
- static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
- ctx->mu = 2.0f*ctx->tau;
- ctx->seed_cur = get_rng_seed(ctx->seed);
- ctx->rng.seed(ctx->seed_cur);
- }
- static void llama_sampler_mirostat_free(struct llama_sampler * smpl) {
- delete (llama_sampler_mirostat *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_mirostat_i = {
- /* .name = */ llama_sampler_mirostat_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_mirostat_apply,
- /* .reset = */ llama_sampler_mirostat_reset,
- /* .clone = */ llama_sampler_mirostat_clone,
- /* .free = */ llama_sampler_mirostat_free,
- };
- struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
- auto seed_cur = get_rng_seed(seed);
- return new llama_sampler {
- /* .iface = */ &llama_sampler_mirostat_i,
- /* .ctx = */ new llama_sampler_mirostat {
- /* .n_vocab = */ n_vocab,
- /* .seed = */ seed,
- /* .seed_cur = */ seed_cur,
- /* .tau = */ tau,
- /* .eta = */ eta,
- /* .m = */ m,
- /* .mu = */ 2.0f*tau,
- /* .rng = */ std::mt19937(seed_cur),
- },
- };
- }
- // mirostat v2
- struct llama_sampler_mirostat_v2 {
- const uint32_t seed;
- uint32_t seed_cur;
- const float tau;
- const float eta;
- float mu;
- std::mt19937 rng;
- };
- static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * /*smpl*/) {
- return "mirostat-v2";
- }
- static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
- llama_sampler_softmax_impl(cur_p);
- // Truncate the words with surprise values greater than mu
- cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) {
- return -log2f(candidate.p) > ctx->mu;
- }));
- if (cur_p->size == 0) {
- cur_p->size = 1;
- }
- // Normalize the probabilities of the remaining words
- llama_sampler_softmax_impl(cur_p);
- const int idx = llama_sample_dist(cur_p, ctx->rng);
- cur_p->selected = idx;
- float observed_surprise = -log2f(cur_p->data[idx].p);
- float e = observed_surprise - ctx->tau;
- // Update mu using the learning rate and error
- ctx->mu = ctx->mu - ctx->eta * e;
- }
- static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
- ctx->mu = 2.0f*ctx->tau;
- ctx->seed_cur = get_rng_seed(ctx->seed);
- ctx->rng.seed(ctx->seed_cur);
- }
- static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx;
- auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta);
- // copy the state
- {
- auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx;
- result_ctx->mu = ctx->mu;
- result_ctx->rng = ctx->rng;
- }
- return result;
- }
- static void llama_sampler_mirostat_v2_free(struct llama_sampler * smpl) {
- delete (llama_sampler_mirostat_v2 *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
- /* .name = */ llama_sampler_mirostat_v2_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_mirostat_v2_apply,
- /* .reset = */ llama_sampler_mirostat_v2_reset,
- /* .clone = */ llama_sampler_mirostat_v2_clone,
- /* .free = */ llama_sampler_mirostat_v2_free,
- };
- struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
- auto seed_cur = get_rng_seed(seed);
- return new llama_sampler {
- /* .iface = */ &llama_sampler_mirostat_v2_i,
- /* .ctx = */ new llama_sampler_mirostat_v2 {
- /* .seed = */ seed,
- /* .seed_cur = */ seed_cur,
- /* .tau = */ tau,
- /* .eta = */ eta,
- /* .mu = */ 2.0f*tau,
- /* .rng = */ std::mt19937(seed_cur),
- },
- };
- }
- // grammar
- struct llama_sampler_grammar {
- const struct llama_vocab * vocab;
- std::string grammar_str;
- std::string grammar_root;
- struct llama_grammar * grammar;
- };
- static const char * llama_sampler_grammar_name(const struct llama_sampler * /*smpl*/) {
- return "grammar";
- }
- static void llama_sampler_grammar_accept_impl(struct llama_sampler * smpl, llama_token token) {
- auto * ctx = (llama_sampler_grammar *) smpl->ctx;
- if (ctx->grammar) {
- llama_grammar_accept_impl(*ctx->grammar, token);
- }
- }
- static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_grammar *) smpl->ctx;
- if (ctx->grammar) {
- llama_grammar_apply_impl(*ctx->grammar, cur_p);
- }
- }
- static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_grammar *) smpl->ctx;
- if (!ctx->grammar) {
- return;
- }
- auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str());
- llama_grammar_free_impl(ctx->grammar);
- ctx->grammar = grammar_new;
- }
- static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_grammar *) smpl->ctx;
- auto * result = llama_sampler_init_grammar_impl(*ctx->vocab, nullptr, nullptr);
- // copy the state
- {
- auto * result_ctx = (llama_sampler_grammar *) result->ctx;
- if (ctx->grammar) {
- result_ctx->grammar_str = ctx->grammar_str;
- result_ctx->grammar_root = ctx->grammar_root;
- result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar);
- }
- }
- return result;
- }
- static void llama_sampler_grammar_free(struct llama_sampler * smpl) {
- const auto * ctx = (llama_sampler_grammar *) smpl->ctx;
- if (ctx->grammar) {
- llama_grammar_free_impl(ctx->grammar);
- }
- delete ctx;
- }
- static struct llama_sampler_i llama_sampler_grammar_i = {
- /* .name = */ llama_sampler_grammar_name,
- /* .accept = */ llama_sampler_grammar_accept_impl,
- /* .apply = */ llama_sampler_grammar_apply,
- /* .reset = */ llama_sampler_grammar_reset,
- /* .clone = */ llama_sampler_grammar_clone,
- /* .free = */ llama_sampler_grammar_free,
- };
- struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab & vocab, const char * grammar_str, const char * grammar_root) {
- auto * ctx = new llama_sampler_grammar;
- if (grammar_str != nullptr && grammar_str[0] != '\0') {
- *ctx = {
- /* .vocab = */ &vocab,
- /* .grammar_str = */ grammar_str,
- /* .grammar_root = */ grammar_root,
- /* .grammar = */ llama_grammar_init_impl(&vocab, grammar_str, grammar_root),
- };
- } else {
- *ctx = {
- /* .vocab = */ &vocab,
- /* .grammar_str = */ {},
- /* .grammar_root = */ {},
- /* .grammar = */ nullptr,
- };
- }
- return new llama_sampler {
- /* .iface = */ &llama_sampler_grammar_i,
- /* .ctx = */ ctx,
- };
- }
- // penalties
- struct llama_sampler_penalties {
- const int32_t n_vocab;
- const llama_token special_eos_id;
- const llama_token linefeed_id;
- const int32_t penalty_last_n;
- const float penalty_repeat;
- const float penalty_freq;
- const float penalty_present;
- const bool penalize_nl;
- const bool ignore_eos;
- ring_buffer<llama_token> prev;
- };
- static const char * llama_sampler_penalties_name(const struct llama_sampler * /*smpl*/) {
- return "penalties";
- }
- static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_token token) {
- auto * ctx = (llama_sampler_penalties *) smpl->ctx;
- if (ctx->penalty_last_n == 0) {
- return;
- }
- ctx->prev.push_back(token);
- }
- static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_penalties *) smpl->ctx;
- if (ctx->ignore_eos) {
- assert(ctx->special_eos_id >= 0);
- // optimistically check if the candidates are not yet sorted/shuffled/truncated
- if (cur_p->size > (size_t) ctx->special_eos_id && cur_p->data[ctx->special_eos_id].id == ctx->special_eos_id) {
- cur_p->data[ctx->special_eos_id].logit = -INFINITY;
- } else {
- // else, search for the special EOS token
- for (size_t i = 0; i < cur_p->size; ++i) {
- if (cur_p->data[i].id == ctx->special_eos_id) {
- cur_p->data[i].logit = -INFINITY;
- break;
- }
- }
- }
- }
- if ((ctx->penalty_last_n == 0) ||
- (ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) {
- return;
- }
- bool nl_found = false;
- size_t nl_idx = 0;
- float nl_logit = -INFINITY;
- if (!ctx->penalize_nl) {
- assert(ctx->linefeed_id >= 0);
- // optimistically check if the candidates are not yet sorted/shuffled/truncated
- if (cur_p->size > (size_t) ctx->linefeed_id && cur_p->data[ctx->linefeed_id].id == ctx->linefeed_id) {
- nl_found = true;
- nl_idx = ctx->linefeed_id;
- nl_logit = cur_p->data[ctx->linefeed_id].logit;
- } else {
- // else, search for the linefeed token
- for (size_t i = 0; i < cur_p->size; ++i) {
- if (cur_p->data[i].id == ctx->linefeed_id) {
- nl_found = true;
- nl_idx = i;
- nl_logit = cur_p->data[i].logit;
- break;
- }
- }
- }
- }
- // Create a frequency map to count occurrences of each token in last_tokens
- // TODO: optimize this by maintaining the token count in the sampler context
- using llama_token_cnt = std::unordered_map<llama_token, int>;
- llama_token_cnt token_count;
- for (int i = 0; i < std::min<int>(ctx->penalty_last_n, ctx->prev.size()); ++i) {
- token_count[ctx->prev.rat(i)]++;
- }
- // Apply frequency and presence penalties to the cur_p
- for (size_t i = 0; i < cur_p->size; ++i) {
- const auto token_iter = token_count.find(cur_p->data[i].id);
- if (token_iter == token_count.end()) {
- continue;
- }
- const int count = token_iter->second;
- // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
- // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
- if (cur_p->data[i].logit <= 0) {
- cur_p->data[i].logit *= ctx->penalty_repeat;
- } else {
- cur_p->data[i].logit /= ctx->penalty_repeat;
- }
- cur_p->data[i].logit -= float(count) * ctx->penalty_freq + float(count > 0) * ctx->penalty_present;
- }
- cur_p->sorted = false;
- if (!ctx->penalize_nl && nl_found) {
- // restore the logit of the newline token if it was penalized
- cur_p->data[nl_idx].logit = nl_logit;
- }
- }
- static void llama_sampler_penalties_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_penalties *) smpl->ctx;
- ctx->prev.clear();
- }
- static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_penalties *) smpl->ctx;
- auto * result = llama_sampler_init_penalties(
- ctx->n_vocab,
- ctx->special_eos_id,
- ctx->linefeed_id,
- ctx->penalty_last_n,
- ctx->penalty_repeat,
- ctx->penalty_freq,
- ctx->penalty_present,
- ctx->penalize_nl,
- ctx->ignore_eos);
- // copy the state
- {
- auto * result_ctx = (llama_sampler_penalties *) result->ctx;
- result_ctx->prev = ctx->prev;
- }
- return result;
- }
- static void llama_sampler_penalties_free(struct llama_sampler * smpl) {
- delete (llama_sampler_penalties *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_penalties_i = {
- /* .name = */ llama_sampler_penalties_name,
- /* .accept = */ llama_sampler_penalties_accept,
- /* .apply = */ llama_sampler_penalties_apply,
- /* .reset = */ llama_sampler_penalties_reset,
- /* .clone = */ llama_sampler_penalties_clone,
- /* .free = */ llama_sampler_penalties_free,
- };
- struct llama_sampler * llama_sampler_init_penalties(
- int32_t n_vocab,
- llama_token special_eos_id,
- llama_token linefeed_id,
- int32_t penalty_last_n,
- float penalty_repeat,
- float penalty_freq,
- float penalty_present,
- bool penalize_nl,
- bool ignore_eos) {
- if (linefeed_id == LLAMA_TOKEN_NULL) {
- penalize_nl = true;
- }
- if (special_eos_id == LLAMA_TOKEN_NULL) {
- ignore_eos = false;
- }
- penalty_last_n = std::max(penalty_last_n, 0);
- return new llama_sampler {
- /* .iface = */ &llama_sampler_penalties_i,
- /* .ctx = */ new llama_sampler_penalties {
- /* .n_vocab = */ n_vocab,
- /* .special_eos_id = */ special_eos_id,
- /* .linefeed_id = */ linefeed_id,
- /* .penalty_last_n = */ penalty_last_n,
- /* .penalty_repeat = */ penalty_repeat,
- /* .penalty_freq = */ penalty_freq,
- /* .penalty_present = */ penalty_present,
- /* .penalize_nl = */ penalize_nl,
- /* .ignore_eos = */ ignore_eos,
- /* .prev = */ ring_buffer<llama_token>(penalty_last_n),
- },
- };
- }
- // logit-bias
- struct llama_sampler_logit_bias {
- const int32_t n_vocab;
- const std::vector<llama_logit_bias> logit_bias;
- std::vector<llama_logit_bias> to_search;
- };
- static const char * llama_sampler_logit_bias_name(const struct llama_sampler * /*smpl*/) {
- return "logit-bias";
- }
- static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
- auto * ctx = (llama_sampler_logit_bias *) smpl->ctx;
- if (ctx->logit_bias.empty()) {
- return;
- }
- ctx->to_search.clear();
- // update the candidates that have not been shuffled in the vocabulary (i.e. idx == id)
- for (const auto & lb : ctx->logit_bias) {
- if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) {
- cur_p->data[lb.token].logit += lb.bias;
- } else {
- ctx->to_search.push_back(lb);
- }
- }
- if (ctx->to_search.empty()) {
- return;
- }
- // search for the remaining candidates that were not found in the previous step
- for (size_t i = 0; i < cur_p->size; ++i) {
- for (const auto & lb : ctx->to_search) {
- if (cur_p->data[i].id == lb.token) {
- cur_p->data[i].logit += lb.bias;
- break;
- }
- }
- }
- }
- static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) {
- const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx;
- return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data());
- }
- static void llama_sampler_logit_bias_free(struct llama_sampler * smpl) {
- delete (llama_sampler_logit_bias *) smpl->ctx;
- }
- static struct llama_sampler_i llama_sampler_logit_bias_i = {
- /* .name = */ llama_sampler_logit_bias_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_logit_bias_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_logit_bias_clone,
- /* .free = */ llama_sampler_logit_bias_free,
- };
- struct llama_sampler * llama_sampler_init_logit_bias(
- int32_t n_vocab,
- int32_t n_logit_bias,
- const llama_logit_bias * logit_bias) {
- return new llama_sampler {
- /* .iface = */ &llama_sampler_logit_bias_i,
- /* .ctx = */ new llama_sampler_logit_bias {
- /* .n_vocab = */ n_vocab,
- /* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias),
- /* .to_search = */ {},
- },
- };
- }
- // utils
- uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) {
- if (smpl->iface == &llama_sampler_dist_i) {
- return ((const llama_sampler_dist *) smpl->ctx)->seed_cur;
- }
- if (smpl->iface == &llama_sampler_mirostat_i) {
- return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur;
- }
- if (smpl->iface == &llama_sampler_mirostat_v2_i) {
- return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur;
- }
- if (smpl->iface == &llama_sampler_chain_i) {
- const auto * ctx = (const llama_sampler_chain *) smpl->ctx;
- for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) {
- const uint32_t seed = llama_sampler_get_seed(*it);
- if (seed != LLAMA_DEFAULT_SEED) {
- return seed;
- }
- }
- }
- return LLAMA_DEFAULT_SEED;
- }
- // perf
- struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) {
- struct llama_perf_sampler_data data = {};
- if (chain == nullptr || chain->iface != &llama_sampler_chain_i) {
- GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__);
- }
- const auto * ctx = (const struct llama_sampler_chain *) chain->ctx;
- data.t_sample_ms = 1e-3 * ctx->t_sample_us;
- data.n_sample = std::max(0, ctx->n_sample);
- return data;
- }
- void llama_perf_sampler_print(const struct llama_sampler * chain) {
- const auto data = llama_perf_sampler(chain);
- LLAMA_LOG_INFO("%s: sampling time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, data.t_sample_ms, data.n_sample, data.t_sample_ms / data.n_sample, 1e3 / data.t_sample_ms * data.n_sample);
- }
- void llama_perf_sampler_reset(struct llama_sampler * chain) {
- if (chain == nullptr || chain->iface != &llama_sampler_chain_i) {
- GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__);
- }
- auto * ctx = (struct llama_sampler_chain *) chain->ctx;
- ctx->t_sample_us = ctx->n_sample = 0;
- }
|