بدون توضیح

Bruce MacDonald 8f8aac9cd3 macapp: add error handling for symlink operations 4 ماه پیش
.github 636a743c2b CI: give windows lint more time (#7635) 5 ماه پیش
api 5f8051180e Enable index tracking for tools - openai api support (#7888) 5 ماه پیش
app 597072ef1b readme: update google/uuid module (#7310) 5 ماه پیش
auth b732beba6a lint 9 ماه پیش
build cd5c8f6471 Optimize container images for startup (#6547) 7 ماه پیش
cmd ff6c2d6dc8 cmd: don't rely on reading repo file for test (#7898) 5 ماه پیش
convert c7cb0f0602 image processing for llama3.2 (#6963) 6 ماه پیش
discover df011054fa Jetpack support for Go server (#7217) 5 ماه پیش
docs 2b82c5a8a1 docs: correct default num_predict value in modelfile.md (#7693) 4 ماه پیش
envconfig d7c94e0ca6 Better support for AMD multi-GPU on linux (#7212) 6 ماه پیش
examples cfb1ddd6fc examples: update langchain-python-simple (#3591) 5 ماه پیش
format b732beba6a lint 9 ماه پیش
integration f0a351810c tests: fix max queue integration test (#7782) 5 ماه پیش
llama 39e29ae5dd llama: fix typo and formatting in readme (#7876) 5 ماه پیش
llm e3936d4fb3 Support Multiple LoRa Adapters (#7667) 5 ماه پیش
macapp 8f8aac9cd3 macapp: add error handling for symlink operations 4 ماه پیش
openai 5f8051180e Enable index tracking for tools - openai api support (#7888) 5 ماه پیش
parser 4efb98cb4f add line numbers for parser errors (#7326) 5 ماه پیش
progress f7e3b9190f cmd: spinner progress for transfer model data (#6100) 8 ماه پیش
readline 2697d7f5aa lint 8 ماه پیش
runners 05cd82ef94 Rename gpu package discover (#7143) 6 ماه پیش
scripts b7bddeebc1 env.sh: cleanup unused RELEASE_IMAGE_REPO (#6855) 5 ماه پیش
server d543b282a7 server: add warning message for deprecated context field (#7878) 5 ماه پیش
template c7cb0f0602 image processing for llama3.2 (#6963) 6 ماه پیش
types 4b8a2e341a server: allow mixed-case model names on push, pull, cp, and create (#7676) 5 ماه پیش
util cb42e607c5 llm: speed up gguf decoding by a lot (#5246) 10 ماه پیش
version 2c7f956b38 add version 1 سال پیش
.dockerignore b754f5a6a3 Remove submodule and shift to Go server - 0.4.0 (#7157) 6 ماه پیش
.gitattributes b754f5a6a3 Remove submodule and shift to Go server - 0.4.0 (#7157) 6 ماه پیش
.gitignore bf4018b9ec llama: Decouple patching script from submodule (#7139) 6 ماه پیش
.golangci.yaml 8e6da3cbc5 update deprecated warnings 8 ماه پیش
.prettierrc.json 8685a5ad18 move .prettierrc.json to root 1 سال پیش
CONTRIBUTING.md 369479cc30 docs: fix spelling error (#6391) 7 ماه پیش
Dockerfile a0ea067b63 build: fix arm container image (#7674) 5 ماه پیش
LICENSE df5fdd6647 `proto` -> `ollama` 1 سال پیش
Makefile b754f5a6a3 Remove submodule and shift to Go server - 0.4.0 (#7157) 6 ماه پیش
README.md 1aedffad93 readme: add minima to community integrations (#7906) 5 ماه پیش
SECURITY.md 463a8aa273 Create SECURITY.md 9 ماه پیش
go.mod 2ebdb54fb3 all: update math32 go mod to v1.11.0 (#6627) 5 ماه پیش
go.sum 2ebdb54fb3 all: update math32 go mod to v1.11.0 (#6627) 5 ماه پیش
main.go b732beba6a lint 9 ماه پیش

README.md

 ollama

Ollama

Discord

Get up and running with large language models.

macOS

Download

Windows

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3.2:

ollama run llama3.2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.2 Vision 11B 7.9GB ollama run llama3.2-vision
Llama 3.2 Vision 90B 55GB ollama run llama3.2-vision:90b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 70B 40GB ollama run llama3.1:70b
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2 2B 1.6GB ollama run gemma2:2b
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.2 model:

ollama pull llama3.2

Create a Modelfile:

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.2

Copy a model

ollama cp llama3.2 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.2

List models on your computer

ollama list

List which models are currently loaded

ollama ps

Stop a model which is currently running

ollama stop llama3.2

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Cloud

Terminal

Apple Vision Pro

Database

Package managers

Libraries

Mobile

  • Enchanted
  • Maid
  • Ollama App (Modern and easy-to-use multi-platform client for Ollama)
  • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.

Observability

  • OpenLIT is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
  • HoneyHive is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.