No Description

Bruce MacDonald c2b11611a8 Update new_runner_benchmark_test.go 3 months ago
.github 144f63e2fb next build 3 months ago
api 84a2314463 examples: remove codified examples (#8267) 3 months ago
app cf4d7c52c4 win: builtin arm runner (#8039) 4 months ago
auth b732beba6a lint 9 months ago
benchmark c2b11611a8 Update new_runner_benchmark_test.go 3 months ago
cache 4b4a5a28bf new runner 3 months ago
cmd 4b4a5a28bf new runner 3 months ago
convert 8ab13e4d3e next 3 months ago
discover 8ab13e4d3e next 3 months ago
docs 294b6f5a22 docs: remove tfs_z option from documentation (#8515) 3 months ago
envconfig 4b4a5a28bf new runner 3 months ago
format b732beba6a lint 9 months ago
fs 8ab13e4d3e next 3 months ago
integration abfdc4710f all: fix typos in documentation, code, and comments (#7021) 4 months ago
llama 4b4a5a28bf new runner 3 months ago
llm 4b4a5a28bf new runner 3 months ago
macapp 74ea4fb604 remove .prettierrc.json (#8413) 3 months ago
ml 4b4a5a28bf new runner 3 months ago
model 4b4a5a28bf new runner 3 months ago
openai e28f2d4900 openai: return usage as final chunk for streams (#6784) 4 months ago
parser 8ab13e4d3e next 3 months ago
progress f7e3b9190f cmd: spinner progress for transfer model data (#6100) 8 months ago
readline cb40d60469 chore: upgrade to gods v2 4 months ago
runner 4b4a5a28bf new runner 3 months ago
runners 8ab13e4d3e next 3 months ago
sample 8ab13e4d3e next 3 months ago
scripts 144f63e2fb next build 3 months ago
server 4b4a5a28bf new runner 3 months ago
template 8ab13e4d3e next 3 months ago
types b1fd7fef86 server: more support for mixed-case model names (#8017) 4 months ago
version 2c7f956b38 add version 1 year ago
.dockerignore b754f5a6a3 Remove submodule and shift to Go server - 0.4.0 (#7157) 6 months ago
.gitattributes 144f63e2fb next build 3 months ago
.gitignore 4879a234c4 build: Make target improvements (#7499) 4 months ago
.golangci.yaml 87f0a49fe6 llm: do not silently fail for supplied, but invalid formats (#8130) 4 months ago
CMakeLists.txt 144f63e2fb next build 3 months ago
CMakePresets.json 144f63e2fb next build 3 months ago
CONTRIBUTING.md 369479cc30 docs: fix spelling error (#6391) 8 months ago
Dockerfile 144f63e2fb next build 3 months ago
LICENSE df5fdd6647 `proto` -> `ollama` 1 year ago
Makefile2 144f63e2fb next build 3 months ago
README.md 021817e59a readme: add link to Langfuse (#8455) 3 months ago
SECURITY.md 463a8aa273 Create SECURITY.md 9 months ago
go.mod 144f63e2fb next build 3 months ago
go.sum 144f63e2fb next build 3 months ago
main.go b732beba6a lint 9 months ago

README.md

  ollama

Ollama

Get up and running with large language models.

macOS

Download

Windows

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Community

Quickstart

To run and chat with Llama 3.2:

ollama run llama3.2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3.3 70B 43GB ollama run llama3.3
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.2 Vision 11B 7.9GB ollama run llama3.2-vision
Llama 3.2 Vision 90B 55GB ollama run llama3.2-vision:90b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 4 14B 9.1GB ollama run phi4
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Gemma 2 2B 1.6GB ollama run gemma2:2b
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.2 model:

ollama pull llama3.2

Create a Modelfile:

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.2

Copy a model

ollama cp llama3.2 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.2

List models on your computer

ollama list

List which models are currently loaded

ollama ps

Stop a model which is currently running

ollama stop llama3.2

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Cloud

Terminal

Apple Vision Pro

Database

  • pgai - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
  • MindsDB (Connects Ollama models with nearly 200 data platforms and apps)
  • chromem-go with example
  • Kangaroo (AI-powered SQL client and admin tool for popular databases)

Package managers

Libraries

Mobile

  • Enchanted
  • Maid
  • Ollama App (Modern and easy-to-use multi-platform client for Ollama)
  • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.

Observability

  • OpenLIT is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
  • HoneyHive is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
  • Langfuse is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.