llama.h 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-cpu.h"
  5. #include "ggml-backend.h"
  6. #include <stddef.h>
  7. #include <stdint.h>
  8. #include <stdio.h>
  9. #include <stdbool.h>
  10. #ifdef LLAMA_SHARED
  11. # if defined(_WIN32) && !defined(__MINGW32__)
  12. # ifdef LLAMA_BUILD
  13. # define LLAMA_API __declspec(dllexport)
  14. # else
  15. # define LLAMA_API __declspec(dllimport)
  16. # endif
  17. # else
  18. # define LLAMA_API __attribute__ ((visibility ("default")))
  19. # endif
  20. #else
  21. # define LLAMA_API
  22. #endif
  23. #ifdef __GNUC__
  24. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  25. #elif defined(_MSC_VER)
  26. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  27. #else
  28. # define DEPRECATED(func, hint) func
  29. #endif
  30. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  31. // TODO: use everywhere in the implementation
  32. #define LLAMA_TOKEN_NULL -1
  33. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  34. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  35. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  36. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  37. #define LLAMA_SESSION_VERSION 9
  38. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  39. #define LLAMA_STATE_SEQ_VERSION 2
  40. #ifdef __cplusplus
  41. extern "C" {
  42. #endif
  43. //
  44. // C interface
  45. //
  46. // TODO: show sample usage
  47. //
  48. // struct llama_vocab; // TODO: add in the future
  49. struct llama_model;
  50. struct llama_context;
  51. struct llama_sampler;
  52. typedef int32_t llama_pos;
  53. typedef int32_t llama_token;
  54. typedef int32_t llama_seq_id;
  55. enum llama_vocab_type {
  56. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  57. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  58. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  59. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  60. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  61. LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
  62. };
  63. // pre-tokenization types
  64. enum llama_vocab_pre_type {
  65. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  66. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  67. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  68. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  69. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  70. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  71. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  72. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  73. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  74. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  75. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  76. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  77. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  78. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  79. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  80. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  81. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  82. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  83. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  84. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  85. LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
  86. LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
  87. LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
  88. LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
  89. LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
  90. LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
  91. LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
  92. LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
  93. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
  94. };
  95. enum llama_rope_type {
  96. LLAMA_ROPE_TYPE_NONE = -1,
  97. LLAMA_ROPE_TYPE_NORM = 0,
  98. LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
  99. LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE,
  100. LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION,
  101. };
  102. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  103. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  104. LLAMA_TOKEN_TYPE_NORMAL = 1,
  105. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  106. LLAMA_TOKEN_TYPE_CONTROL = 3,
  107. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  108. LLAMA_TOKEN_TYPE_UNUSED = 5,
  109. LLAMA_TOKEN_TYPE_BYTE = 6,
  110. };
  111. enum llama_token_attr {
  112. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  113. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  114. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  115. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  116. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  117. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  118. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  119. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  120. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  121. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  122. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  123. };
  124. // model file types
  125. enum llama_ftype {
  126. LLAMA_FTYPE_ALL_F32 = 0,
  127. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  128. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  129. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  130. // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  131. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  132. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  133. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  134. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  135. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  136. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  137. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  138. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  139. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  140. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  141. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  142. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  143. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  144. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  145. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  146. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  147. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  148. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  149. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  150. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  151. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  152. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  153. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  154. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  155. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  156. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  157. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  158. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  159. //LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // removed from gguf files, use Q4_0 and runtime repack
  160. //LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // removed from gguf files, use Q4_0 and runtime repack
  161. //LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // removed from gguf files, use Q4_0 and runtime repack
  162. LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
  163. LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
  164. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  165. };
  166. enum llama_rope_scaling_type {
  167. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  168. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  169. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  170. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  171. LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3,
  172. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE,
  173. };
  174. enum llama_pooling_type {
  175. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  176. LLAMA_POOLING_TYPE_NONE = 0,
  177. LLAMA_POOLING_TYPE_MEAN = 1,
  178. LLAMA_POOLING_TYPE_CLS = 2,
  179. LLAMA_POOLING_TYPE_LAST = 3,
  180. LLAMA_POOLING_TYPE_RANK = 4, // used by reranking models to attach the classification head to the graph
  181. };
  182. enum llama_attention_type {
  183. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  184. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  185. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  186. };
  187. enum llama_split_mode {
  188. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  189. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  190. LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported
  191. };
  192. // TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
  193. typedef struct llama_token_data {
  194. llama_token id; // token id
  195. float logit; // log-odds of the token
  196. float p; // probability of the token
  197. } llama_token_data;
  198. typedef struct llama_token_data_array {
  199. // TODO: consider SoA
  200. // NOTE: this pointer can be modified by the samplers
  201. llama_token_data * data;
  202. size_t size;
  203. int64_t selected; // this is the index in the data array (i.e. not the token id)
  204. bool sorted;
  205. } llama_token_data_array;
  206. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  207. // Input data for llama_decode
  208. // A llama_batch object can contain input about one or many sequences
  209. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  210. //
  211. // - token : the token ids of the input (used when embd is NULL)
  212. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  213. // - pos : the positions of the respective token in the sequence
  214. // (if set to NULL, the token position will be tracked automatically by llama_decode)
  215. // - seq_id : the sequence to which the respective token belongs
  216. // (if set to NULL, the sequence ID will be assumed to be 0)
  217. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  218. // (if set to NULL, only the logits for last token will be returned)
  219. //
  220. typedef struct llama_batch {
  221. int32_t n_tokens;
  222. llama_token * token;
  223. float * embd;
  224. int32_t n_embd;
  225. llama_pos * pos;
  226. int32_t * n_seq_id;
  227. llama_seq_id ** seq_id;
  228. int8_t * logits; // TODO: rename this to "output"
  229. } llama_batch;
  230. enum llama_model_kv_override_type {
  231. LLAMA_KV_OVERRIDE_TYPE_INT,
  232. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  233. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  234. LLAMA_KV_OVERRIDE_TYPE_STR,
  235. };
  236. struct llama_model_kv_override {
  237. enum llama_model_kv_override_type tag;
  238. char key[128];
  239. union {
  240. int64_t val_i64;
  241. double val_f64;
  242. bool val_bool;
  243. char val_str[128];
  244. };
  245. };
  246. struct llama_model_params {
  247. // NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
  248. ggml_backend_dev_t * devices;
  249. int32_t n_gpu_layers; // number of layers to store in VRAM
  250. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  251. // the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE
  252. int32_t main_gpu;
  253. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  254. const float * tensor_split;
  255. // comma separated list of RPC servers to use for offloading
  256. const char * rpc_servers;
  257. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  258. // If the provided progress_callback returns true, model loading continues.
  259. // If it returns false, model loading is immediately aborted.
  260. llama_progress_callback progress_callback;
  261. // context pointer passed to the progress callback
  262. void * progress_callback_user_data;
  263. // override key-value pairs of the model meta data
  264. const struct llama_model_kv_override * kv_overrides;
  265. // Keep the booleans together to avoid misalignment during copy-by-value.
  266. bool vocab_only; // only load the vocabulary, no weights
  267. bool use_mmap; // use mmap if possible
  268. bool use_mlock; // force system to keep model in RAM
  269. bool check_tensors; // validate model tensor data
  270. };
  271. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  272. // https://github.com/ggerganov/llama.cpp/pull/7544
  273. struct llama_context_params {
  274. uint32_t n_ctx; // text context, 0 = from model
  275. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  276. uint32_t n_ubatch; // physical maximum batch size
  277. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  278. int32_t n_threads; // number of threads to use for generation
  279. int32_t n_threads_batch; // number of threads to use for batch processing
  280. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  281. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  282. enum llama_attention_type attention_type; // attention type to use for embeddings
  283. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  284. float rope_freq_base; // RoPE base frequency, 0 = from model
  285. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  286. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  287. float yarn_attn_factor; // YaRN magnitude scaling factor
  288. float yarn_beta_fast; // YaRN low correction dim
  289. float yarn_beta_slow; // YaRN high correction dim
  290. uint32_t yarn_orig_ctx; // YaRN original context size
  291. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  292. ggml_backend_sched_eval_callback cb_eval;
  293. void * cb_eval_user_data;
  294. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  295. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  296. // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
  297. // TODO: move at the end of the struct
  298. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  299. bool embeddings; // if true, extract embeddings (together with logits)
  300. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  301. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  302. bool no_perf; // whether to measure performance timings
  303. bool cross_attn; // whether to use cross attention
  304. // Abort callback
  305. // if it returns true, execution of llama_decode() will be aborted
  306. // currently works only with CPU execution
  307. ggml_abort_callback abort_callback;
  308. void * abort_callback_data;
  309. };
  310. // model quantization parameters
  311. typedef struct llama_model_quantize_params {
  312. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  313. enum llama_ftype ftype; // quantize to this llama_ftype
  314. enum ggml_type output_tensor_type; // output tensor type
  315. enum ggml_type token_embedding_type; // token embeddings tensor type
  316. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  317. bool quantize_output_tensor; // quantize output.weight
  318. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  319. bool pure; // quantize all tensors to the default type
  320. bool keep_split; // quantize to the same number of shards
  321. void * imatrix; // pointer to importance matrix data
  322. void * kv_overrides; // pointer to vector containing overrides
  323. } llama_model_quantize_params;
  324. typedef struct llama_logit_bias {
  325. llama_token token;
  326. float bias;
  327. } llama_logit_bias;
  328. typedef struct llama_sampler_chain_params {
  329. bool no_perf; // whether to measure performance timings
  330. } llama_sampler_chain_params;
  331. // used in chat template
  332. typedef struct llama_chat_message {
  333. const char * role;
  334. const char * content;
  335. } llama_chat_message;
  336. // lora adapter
  337. // TODO: rename to llama_adapter_lora
  338. struct llama_lora_adapter;
  339. // Helpers for getting default parameters
  340. // TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
  341. LLAMA_API struct llama_model_params llama_model_default_params(void);
  342. LLAMA_API struct llama_context_params llama_context_default_params(void);
  343. LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
  344. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  345. // Initialize the llama + ggml backend
  346. // If numa is true, use NUMA optimizations
  347. // Call once at the start of the program
  348. LLAMA_API void llama_backend_init(void);
  349. //optional:
  350. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  351. // Optional: an auto threadpool gets created in ggml if not passed explicitly
  352. LLAMA_API void llama_attach_threadpool(
  353. struct llama_context * ctx,
  354. ggml_threadpool_t threadpool,
  355. ggml_threadpool_t threadpool_batch);
  356. LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
  357. // Call once at the end of the program - currently only used for MPI
  358. LLAMA_API void llama_backend_free(void);
  359. LLAMA_API struct llama_model * llama_load_model_from_file(
  360. const char * path_model,
  361. struct llama_model_params params);
  362. // TODO: rename to llama_model_free
  363. LLAMA_API void llama_free_model(struct llama_model * model);
  364. // TODO: rename to llama_init_from_model
  365. LLAMA_API struct llama_context * llama_new_context_with_model(
  366. struct llama_model * model,
  367. struct llama_context_params params);
  368. // TODO (jmorganca): this should most likely be passed in as part of a batch
  369. // and not set on the context for all batches.
  370. LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
  371. // Frees all allocated memory
  372. LLAMA_API void llama_free(struct llama_context * ctx);
  373. LLAMA_API int64_t llama_time_us(void);
  374. LLAMA_API size_t llama_max_devices(void);
  375. LLAMA_API bool llama_supports_mmap (void);
  376. LLAMA_API bool llama_supports_mlock (void);
  377. LLAMA_API bool llama_supports_gpu_offload(void);
  378. LLAMA_API bool llama_supports_rpc (void);
  379. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  380. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  381. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  382. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  383. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  384. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  385. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  386. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  387. LLAMA_API int32_t llama_n_head (const struct llama_model * model);
  388. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  389. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  390. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  391. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  392. // Get the model's RoPE frequency scaling factor
  393. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  394. // Functions to access the model's GGUF metadata scalar values
  395. // - The functions return the length of the string on success, or -1 on failure
  396. // - The output string is always null-terminated and cleared on failure
  397. // - When retrieving a string, an extra byte must be allocated to account for the null terminator
  398. // - GGUF array values are not supported by these functions
  399. // Get metadata value as a string by key name
  400. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  401. // Get the number of metadata key/value pairs
  402. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  403. // Get metadata key name by index
  404. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  405. // Get metadata value as a string by index
  406. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  407. // Get a string describing the model type
  408. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  409. // Returns the total size of all the tensors in the model in bytes
  410. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  411. // Returns the total number of parameters in the model
  412. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  413. // Returns true if the model contains an encoder that requires llama_encode() call
  414. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  415. // Returns true if the model contains a decoder that requires llama_decode() call
  416. LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
  417. // For encoder-decoder models, this function returns id of the token that must be provided
  418. // to the decoder to start generating output sequence. For other models, it returns -1.
  419. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  420. // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
  421. LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
  422. // Returns 0 on success
  423. LLAMA_API uint32_t llama_model_quantize(
  424. const char * fname_inp,
  425. const char * fname_out,
  426. const llama_model_quantize_params * params);
  427. //
  428. // Adapters
  429. //
  430. // Load a LoRA adapter from file
  431. // TODO: rename to llama_adapter_lora_init
  432. LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
  433. struct llama_model * model,
  434. const char * path_lora);
  435. // Add a loaded LoRA adapter to given context
  436. // This will not modify model's weight
  437. // TODO: rename to llama_set_adapter_lora
  438. LLAMA_API int32_t llama_lora_adapter_set(
  439. struct llama_context * ctx,
  440. struct llama_lora_adapter * adapter,
  441. float scale);
  442. // Remove a specific LoRA adapter from given context
  443. // Return -1 if the adapter is not present in the context
  444. // TODO: rename to llama_rm_adapter_lora
  445. LLAMA_API int32_t llama_lora_adapter_remove(
  446. struct llama_context * ctx,
  447. struct llama_lora_adapter * adapter);
  448. // Remove all LoRA adapters from given context
  449. // TODO: rename to llama_clear_adapter_lora
  450. LLAMA_API void llama_lora_adapter_clear(struct llama_context * ctx);
  451. // Manually free a LoRA adapter
  452. // Note: loaded adapters will be free when the associated model is deleted
  453. // TODO: rename to llama_adapter_lora_free
  454. LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
  455. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  456. // the currently loaded vector.
  457. // n_embd should be the size of a single layer's control, and data should point
  458. // to an n_embd x n_layers buffer starting from layer 1.
  459. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  460. // See llama_control_vector_load in common to load a control vector.
  461. // TODO: rename to llama_adapter_cvec_apply
  462. LLAMA_API int32_t llama_control_vector_apply(
  463. struct llama_context * lctx,
  464. const float * data,
  465. size_t len,
  466. int32_t n_embd,
  467. int32_t il_start,
  468. int32_t il_end);
  469. //
  470. // KV cache
  471. //
  472. // TODO: remove llama_kv_cache_view_* API
  473. // Information associated with an individual cell in the KV cache view.
  474. struct llama_kv_cache_view_cell {
  475. // The position for this cell. Takes KV cache shifts into account.
  476. // May be negative if the cell is not populated.
  477. llama_pos pos;
  478. };
  479. // An updateable view of the KV cache.
  480. struct llama_kv_cache_view {
  481. // Number of KV cache cells. This will be the same as the context size.
  482. int32_t n_cells;
  483. // Maximum number of sequences that can exist in a cell. It's not an error
  484. // if there are more sequences in a cell than this value, however they will
  485. // not be visible in the view cells_sequences.
  486. int32_t n_seq_max;
  487. // Number of tokens in the cache. For example, if there are two populated
  488. // cells, the first with 1 sequence id in it and the second with 2 sequence
  489. // ids then you'll have 3 tokens.
  490. int32_t token_count;
  491. // Number of populated cache cells.
  492. int32_t used_cells;
  493. // Maximum contiguous empty slots in the cache.
  494. int32_t max_contiguous;
  495. // Index to the start of the max_contiguous slot range. Can be negative
  496. // when cache is full.
  497. int32_t max_contiguous_idx;
  498. // Information for an individual cell.
  499. struct llama_kv_cache_view_cell * cells;
  500. // The sequences for each cell. There will be n_seq_max items per cell.
  501. llama_seq_id * cells_sequences;
  502. };
  503. // Create an empty KV cache view. (use only for debugging purposes)
  504. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  505. // Free a KV cache view. (use only for debugging purposes)
  506. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  507. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  508. // TODO: change signature to llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_context * ctx)
  509. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  510. ///
  511. // Returns the number of tokens in the KV cache (slow, use only for debug)
  512. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  513. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  514. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  515. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  516. // Clear the KV cache - both cell info is erased and KV data is zeroed
  517. LLAMA_API void llama_kv_cache_clear(
  518. struct llama_context * ctx);
  519. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  520. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  521. // seq_id < 0 : match any sequence
  522. // p0 < 0 : [0, p1]
  523. // p1 < 0 : [p0, inf)
  524. LLAMA_API bool llama_kv_cache_seq_rm(
  525. struct llama_context * ctx,
  526. llama_seq_id seq_id,
  527. llama_pos p0,
  528. llama_pos p1);
  529. // Copy all tokens that belong to the specified sequence to another sequence
  530. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  531. // p0 < 0 : [0, p1]
  532. // p1 < 0 : [p0, inf)
  533. LLAMA_API void llama_kv_cache_seq_cp(
  534. struct llama_context * ctx,
  535. llama_seq_id seq_id_src,
  536. llama_seq_id seq_id_dst,
  537. llama_pos p0,
  538. llama_pos p1);
  539. // Removes all tokens that do not belong to the specified sequence
  540. LLAMA_API void llama_kv_cache_seq_keep(
  541. struct llama_context * ctx,
  542. llama_seq_id seq_id);
  543. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  544. // If the KV cache is RoPEd, the KV data is updated accordingly:
  545. // - lazily on next llama_decode()
  546. // - explicitly with llama_kv_cache_update()
  547. // p0 < 0 : [0, p1]
  548. // p1 < 0 : [p0, inf)
  549. LLAMA_API void llama_kv_cache_seq_add(
  550. struct llama_context * ctx,
  551. llama_seq_id seq_id,
  552. llama_pos p0,
  553. llama_pos p1,
  554. llama_pos delta);
  555. // Integer division of the positions by factor of `d > 1`
  556. // If the KV cache is RoPEd, the KV data is updated accordingly:
  557. // - lazily on next llama_decode()
  558. // - explicitly with llama_kv_cache_update()
  559. // p0 < 0 : [0, p1]
  560. // p1 < 0 : [p0, inf)
  561. LLAMA_API void llama_kv_cache_seq_div(
  562. struct llama_context * ctx,
  563. llama_seq_id seq_id,
  564. llama_pos p0,
  565. llama_pos p1,
  566. int d);
  567. // Returns the largest position present in the KV cache for the specified sequence
  568. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  569. struct llama_context * ctx,
  570. llama_seq_id seq_id);
  571. // TODO: the llama_kv_cache_defrag and llama_kv_cache_update API tightly couples llama_context with llama_kv_cache
  572. // how to avoid this?
  573. // Defragment the KV cache
  574. // This will be applied:
  575. // - lazily on next llama_decode()
  576. // - explicitly with llama_kv_cache_update()
  577. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  578. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  579. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  580. // Check if the context supports KV cache shifting
  581. LLAMA_API bool llama_kv_cache_can_shift(struct llama_context * ctx);
  582. //
  583. // State / sessions
  584. //
  585. // Returns the *actual* size in bytes of the state
  586. // (logits, embedding and kv_cache)
  587. // Only use when saving the state, not when restoring it, otherwise the size may be too small.
  588. LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
  589. LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
  590. "use llama_state_get_size instead");
  591. // Copies the state to the specified destination address.
  592. // Destination needs to have allocated enough memory.
  593. // Returns the number of bytes copied
  594. LLAMA_API size_t llama_state_get_data(
  595. struct llama_context * ctx,
  596. uint8_t * dst,
  597. size_t size);
  598. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  599. struct llama_context * ctx,
  600. uint8_t * dst),
  601. "use llama_state_get_data instead");
  602. // Set the state reading from the specified address
  603. // Returns the number of bytes read
  604. LLAMA_API size_t llama_state_set_data(
  605. struct llama_context * ctx,
  606. const uint8_t * src,
  607. size_t size);
  608. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  609. struct llama_context * ctx,
  610. const uint8_t * src),
  611. "use llama_state_set_data instead");
  612. // Save/load session file
  613. LLAMA_API bool llama_state_load_file(
  614. struct llama_context * ctx,
  615. const char * path_session,
  616. llama_token * tokens_out,
  617. size_t n_token_capacity,
  618. size_t * n_token_count_out);
  619. LLAMA_API DEPRECATED(bool llama_load_session_file(
  620. struct llama_context * ctx,
  621. const char * path_session,
  622. llama_token * tokens_out,
  623. size_t n_token_capacity,
  624. size_t * n_token_count_out),
  625. "use llama_state_load_file instead");
  626. LLAMA_API bool llama_state_save_file(
  627. struct llama_context * ctx,
  628. const char * path_session,
  629. const llama_token * tokens,
  630. size_t n_token_count);
  631. LLAMA_API DEPRECATED(bool llama_save_session_file(
  632. struct llama_context * ctx,
  633. const char * path_session,
  634. const llama_token * tokens,
  635. size_t n_token_count),
  636. "use llama_state_save_file instead");
  637. // Get the exact size needed to copy the KV cache of a single sequence
  638. LLAMA_API size_t llama_state_seq_get_size(
  639. struct llama_context * ctx,
  640. llama_seq_id seq_id);
  641. // Copy the KV cache of a single sequence into the specified buffer
  642. LLAMA_API size_t llama_state_seq_get_data(
  643. struct llama_context * ctx,
  644. uint8_t * dst,
  645. size_t size,
  646. llama_seq_id seq_id);
  647. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  648. // Returns:
  649. // - Positive: Ok
  650. // - Zero: Failed to load
  651. LLAMA_API size_t llama_state_seq_set_data(
  652. struct llama_context * ctx,
  653. const uint8_t * src,
  654. size_t size,
  655. llama_seq_id dest_seq_id);
  656. LLAMA_API size_t llama_state_seq_save_file(
  657. struct llama_context * ctx,
  658. const char * filepath,
  659. llama_seq_id seq_id,
  660. const llama_token * tokens,
  661. size_t n_token_count);
  662. LLAMA_API size_t llama_state_seq_load_file(
  663. struct llama_context * ctx,
  664. const char * filepath,
  665. llama_seq_id dest_seq_id,
  666. llama_token * tokens_out,
  667. size_t n_token_capacity,
  668. size_t * n_token_count_out);
  669. //
  670. // Decoding
  671. //
  672. // Return batch for single sequence of tokens
  673. // The sequence ID will be fixed to 0
  674. // The position of the tokens will be tracked automatically by llama_decode
  675. //
  676. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  677. //
  678. LLAMA_API struct llama_batch llama_batch_get_one(
  679. llama_token * tokens,
  680. int32_t n_tokens);
  681. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  682. // Each token can be assigned up to n_seq_max sequence ids
  683. // The batch has to be freed with llama_batch_free()
  684. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  685. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  686. // The rest of the llama_batch members are allocated with size n_tokens
  687. // All members are left uninitialized
  688. LLAMA_API struct llama_batch llama_batch_init(
  689. int32_t n_tokens,
  690. int32_t embd,
  691. int32_t n_seq_max);
  692. // Frees a batch of tokens allocated with llama_batch_init()
  693. LLAMA_API void llama_batch_free(struct llama_batch batch);
  694. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  695. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  696. // 0 - success
  697. // < 0 - error. the KV cache state is restored to the state before this call
  698. LLAMA_API int32_t llama_encode(
  699. struct llama_context * ctx,
  700. struct llama_batch batch);
  701. // Positive return values does not mean a fatal error, but rather a warning.
  702. // 0 - success
  703. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  704. // < 0 - error. the KV cache state is restored to the state before this call
  705. LLAMA_API int32_t llama_decode(
  706. struct llama_context * ctx,
  707. struct llama_batch batch);
  708. // Set the number of threads used for decoding
  709. // n_threads is the number of threads used for generation (single token)
  710. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  711. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);
  712. // Get the number of threads used for generation of a single token.
  713. LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);
  714. // Get the number of threads used for prompt and batch processing (multiple token).
  715. LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
  716. // Set whether the model is in embeddings mode or not
  717. // If true, embeddings will be returned but logits will not
  718. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  719. // Set whether to use causal attention or not
  720. // If set to true, the model will only attend to the past tokens
  721. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  722. // Set abort callback
  723. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  724. // Wait until all computations are finished
  725. // This is automatically done when using one of the functions below to obtain the computation results
  726. // and is not necessary to call it explicitly in most cases
  727. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  728. // Token logits obtained from the last call to llama_decode()
  729. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  730. // in the order they have appeared in the batch.
  731. // Rows: number of tokens for which llama_batch.logits[i] != 0
  732. // Cols: n_vocab
  733. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  734. // Logits for the ith token. For positive indices, Equivalent to:
  735. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  736. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  737. // returns NULL for invalid ids.
  738. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  739. // Get all output token embeddings.
  740. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  741. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  742. // in the order they have appeared in the batch.
  743. // shape: [n_outputs*n_embd]
  744. // Otherwise, returns NULL.
  745. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  746. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  747. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  748. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  749. // shape: [n_embd] (1-dimensional)
  750. // returns NULL for invalid ids.
  751. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  752. // Get the embeddings for a sequence id
  753. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  754. // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[1] with the rank of the sequence
  755. // otherwise: float[n_embd] (1-dimensional)
  756. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  757. //
  758. // Vocab
  759. //
  760. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  761. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  762. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  763. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  764. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  765. // Identify if Token Id is a control token or a render-able token
  766. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  767. // Special tokens
  768. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  769. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  770. LLAMA_API llama_token llama_token_eot(const struct llama_model * model); // end-of-turn
  771. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  772. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  773. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  774. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  775. LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
  776. LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
  777. // infill tokens
  778. DEPRECATED(LLAMA_API llama_token llama_token_prefix(const struct llama_model * model), "use llama_token_fim_pre instead");
  779. DEPRECATED(LLAMA_API llama_token llama_token_middle(const struct llama_model * model), "use llama_token_fim_mid instead");
  780. DEPRECATED(LLAMA_API llama_token llama_token_suffix(const struct llama_model * model), "use llama_token_fim_suf instead");
  781. LLAMA_API llama_token llama_token_fim_pre(const struct llama_model * model);
  782. LLAMA_API llama_token llama_token_fim_suf(const struct llama_model * model);
  783. LLAMA_API llama_token llama_token_fim_mid(const struct llama_model * model);
  784. LLAMA_API llama_token llama_token_fim_pad(const struct llama_model * model);
  785. LLAMA_API llama_token llama_token_fim_rep(const struct llama_model * model);
  786. LLAMA_API llama_token llama_token_fim_sep(const struct llama_model * model);
  787. //
  788. // Tokenization
  789. //
  790. // The API is thread-safe.
  791. //
  792. /// @details Convert the provided text into tokens.
  793. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  794. /// @return Returns the number of tokens on success, no more than n_tokens_max
  795. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  796. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  797. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  798. /// as plaintext. Does not insert a leading space.
  799. LLAMA_API int32_t llama_tokenize(
  800. const struct llama_model * model,
  801. const char * text,
  802. int32_t text_len,
  803. llama_token * tokens,
  804. int32_t n_tokens_max,
  805. bool add_special,
  806. bool parse_special);
  807. // Token Id -> Piece.
  808. // Uses the vocabulary in the provided context.
  809. // Does not write null terminator to the buffer.
  810. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  811. // @param special If true, special tokens are rendered in the output.
  812. LLAMA_API int32_t llama_token_to_piece(
  813. const struct llama_model * model,
  814. llama_token token,
  815. char * buf,
  816. int32_t length,
  817. int32_t lstrip,
  818. bool special);
  819. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  820. /// @param text The char pointer must be large enough to hold the resulting text.
  821. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  822. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  823. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  824. /// @param unparse_special If true, special tokens are rendered in the output.
  825. LLAMA_API int32_t llama_detokenize(
  826. const struct llama_model * model,
  827. const llama_token * tokens,
  828. int32_t n_tokens,
  829. char * text,
  830. int32_t text_len_max,
  831. bool remove_special,
  832. bool unparse_special);
  833. //
  834. // Chat templates
  835. //
  836. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  837. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  838. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  839. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  840. /// @param chat Pointer to a list of multiple llama_chat_message
  841. /// @param n_msg Number of llama_chat_message in this chat
  842. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  843. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  844. /// @param length The size of the allocated buffer
  845. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  846. LLAMA_API int32_t llama_chat_apply_template(
  847. const struct llama_model * model,
  848. const char * tmpl,
  849. const struct llama_chat_message * chat,
  850. size_t n_msg,
  851. bool add_ass,
  852. char * buf,
  853. int32_t length);
  854. // Get list of built-in chat templates
  855. LLAMA_API int32_t llama_chat_builtin_templates(const char ** output, size_t len);
  856. //
  857. // Sampling API
  858. //
  859. // Sample usage:
  860. //
  861. // // prepare the sampling chain at the start
  862. // auto sparams = llama_sampler_chain_default_params();
  863. //
  864. // llama_sampler * smpl = llama_sampler_chain_init(sparams);
  865. //
  866. // llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50));
  867. // llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
  868. // llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8));
  869. //
  870. // // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat"
  871. // // this sampler will be responsible to select the actual token
  872. // llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed));
  873. //
  874. // ...
  875. //
  876. // // decoding loop:
  877. // while (...) {
  878. // ...
  879. //
  880. // llama_decode(ctx, batch);
  881. //
  882. // // sample from the logits of the last token in the batch
  883. // const llama_token id = llama_sampler_sample(smpl, ctx, -1);
  884. //
  885. // // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
  886. // llama_sampler_accept(smpl, id);
  887. // ...
  888. // }
  889. //
  890. // llama_sampler_free(smpl);
  891. //
  892. // TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
  893. // TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
  894. //
  895. typedef void * llama_sampler_context_t;
  896. // user code can implement the interface below in order to create custom llama_sampler
  897. struct llama_sampler_i {
  898. const char * (*name) (const struct llama_sampler * smpl); // can be NULL
  899. void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL
  900. void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
  901. void (*reset) ( struct llama_sampler * smpl); // can be NULL
  902. struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
  903. void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
  904. // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
  905. //void (*apply_ggml) (struct llama_sampler * smpl, ...);
  906. };
  907. struct llama_sampler {
  908. struct llama_sampler_i * iface;
  909. llama_sampler_context_t ctx;
  910. };
  911. // mirror of llama_sampler_i:
  912. LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
  913. LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
  914. LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
  915. LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl);
  916. LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
  917. // important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
  918. LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl);
  919. // llama_sampler_chain
  920. // a type of llama_sampler that can chain multiple samplers one after another
  921. LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);
  922. // important: takes ownership of the sampler object and will free it when llama_sampler_free is called
  923. LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
  924. LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
  925. LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
  926. // after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
  927. LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i);
  928. // available samplers:
  929. LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
  930. LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
  931. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  932. /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
  933. DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void),
  934. "will be removed in the future (see https://github.com/ggerganov/llama.cpp/pull/9896#discussion_r1800920915)");
  935. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  936. LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
  937. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  938. LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
  939. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  940. LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
  941. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  942. LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
  943. /// #details Updates the logits l_i` = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original value, the rest are set to -inf
  944. LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
  945. /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
  946. LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
  947. /// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
  948. LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed);
  949. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  950. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  951. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  952. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  953. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  954. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  955. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
  956. int32_t n_vocab,
  957. uint32_t seed,
  958. float tau,
  959. float eta,
  960. int32_t m);
  961. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  962. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  963. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  964. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  965. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  966. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
  967. uint32_t seed,
  968. float tau,
  969. float eta);
  970. LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
  971. const struct llama_model * model,
  972. const char * grammar_str,
  973. const char * grammar_root);
  974. /// NOTE: Avoid using on the full vocabulary as searching for repeated tokens can become slow. For example, apply top-k or top-p sampling first.
  975. LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
  976. int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
  977. float penalty_repeat, // 1.0 = disabled
  978. float penalty_freq, // 0.0 = disabled
  979. float penalty_present); // 0.0 = disabled
  980. /// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
  981. LLAMA_API struct llama_sampler * llama_sampler_init_dry(
  982. const struct llama_model * model,
  983. float dry_multiplier,
  984. float dry_base,
  985. int32_t dry_allowed_length,
  986. int32_t dry_penalty_last_n,
  987. const char ** seq_breakers,
  988. size_t num_breakers);
  989. LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
  990. int32_t n_vocab,
  991. int32_t n_logit_bias,
  992. const llama_logit_bias * logit_bias);
  993. // this sampler is meant to be used for fill-in-the-middle infilling
  994. // it's supposed to be used after top_k + top_p sampling
  995. //
  996. // 1. if the sum of the EOG probs times the number of candidates is higher than the sum of the other probs -> pick EOG
  997. // 2. combine probs of tokens that have the same prefix
  998. //
  999. // example:
  1000. //
  1001. // - before:
  1002. // "hel": 0.5
  1003. // "hell": 0.2
  1004. // "hello": 0.1
  1005. // "dummy": 0.1
  1006. //
  1007. // - after:
  1008. // "hel": 0.8
  1009. // "dummy": 0.1
  1010. //
  1011. // 3. discard non-EOG tokens with low prob
  1012. // 4. if no tokens are left -> pick EOT
  1013. //
  1014. LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model);
  1015. // Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
  1016. LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
  1017. /// @details Sample and accept a token from the idx-th output of the last evaluation
  1018. //
  1019. // Shorthand for:
  1020. // const auto * logits = llama_get_logits_ith(ctx, idx);
  1021. // llama_token_data_array cur_p = { ... init from logits ... };
  1022. // llama_sampler_apply(smpl, &cur_p);
  1023. // auto token = cur_p.data[cur_p.selected].id;
  1024. // llama_sampler_accept(smpl, token);
  1025. // return token;
  1026. // Returns the sampled token
  1027. LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);
  1028. // TODO: extend in the future
  1029. //LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...);
  1030. //
  1031. // Model split
  1032. //
  1033. /// @details Build a split GGUF final path for this chunk.
  1034. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  1035. // Returns the split_path length.
  1036. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  1037. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  1038. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  1039. // Returns the split_prefix length.
  1040. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  1041. // Print system information
  1042. LLAMA_API const char * llama_print_system_info(void);
  1043. // Set callback for all future logging events.
  1044. // If this is not called, or NULL is supplied, everything is output on stderr.
  1045. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  1046. //
  1047. // Performance utils
  1048. //
  1049. // NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
  1050. //
  1051. struct llama_perf_context_data {
  1052. double t_start_ms;
  1053. double t_load_ms;
  1054. double t_p_eval_ms;
  1055. double t_eval_ms;
  1056. int32_t n_p_eval;
  1057. int32_t n_eval;
  1058. };
  1059. struct llama_perf_sampler_data {
  1060. double t_sample_ms;
  1061. int32_t n_sample;
  1062. };
  1063. LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
  1064. LLAMA_API void llama_perf_context_print(const struct llama_context * ctx);
  1065. LLAMA_API void llama_perf_context_reset( struct llama_context * ctx);
  1066. // NOTE: the following work only with samplers constructed via llama_sampler_chain_init
  1067. LLAMA_API struct llama_perf_sampler_data llama_perf_sampler (const struct llama_sampler * chain);
  1068. LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
  1069. LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
  1070. #ifdef __cplusplus
  1071. }
  1072. #endif
  1073. #endif // LLAMA_H