common.h 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. /**
  2. * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. // Various helper functions and utilities
  27. #pragma once
  28. #include "llama.h"
  29. #include <string>
  30. #include <vector>
  31. #include <sstream>
  32. #ifdef _WIN32
  33. #define DIRECTORY_SEPARATOR '\\'
  34. #else
  35. #define DIRECTORY_SEPARATOR '/'
  36. #endif // _WIN32
  37. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  38. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  39. #define print_build_info() do { \
  40. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  41. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  42. } while(0)
  43. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  44. struct llama_lora_adapter_info {
  45. std::string path;
  46. float scale;
  47. };
  48. struct llama_lora_adapter_container : llama_lora_adapter_info {
  49. struct llama_lora_adapter * adapter;
  50. };
  51. // build info
  52. extern int LLAMA_BUILD_NUMBER;
  53. extern char const * LLAMA_COMMIT;
  54. extern char const * LLAMA_COMPILER;
  55. extern char const * LLAMA_BUILD_TARGET;
  56. struct llama_control_vector_load_info;
  57. //
  58. // CPU utils
  59. //
  60. struct cpu_params {
  61. int n_threads = -1;
  62. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  63. bool mask_valid = false; // Default: any CPU
  64. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  65. bool strict_cpu = false; // Use strict CPU placement
  66. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  67. };
  68. int32_t cpu_get_num_physical_cores();
  69. int32_t cpu_get_num_math();
  70. //
  71. // Common params
  72. //
  73. enum llama_example {
  74. LLAMA_EXAMPLE_COMMON,
  75. LLAMA_EXAMPLE_SPECULATIVE,
  76. LLAMA_EXAMPLE_MAIN,
  77. LLAMA_EXAMPLE_INFILL,
  78. LLAMA_EXAMPLE_EMBEDDING,
  79. LLAMA_EXAMPLE_PERPLEXITY,
  80. LLAMA_EXAMPLE_RETRIEVAL,
  81. LLAMA_EXAMPLE_PASSKEY,
  82. LLAMA_EXAMPLE_IMATRIX,
  83. LLAMA_EXAMPLE_BENCH,
  84. LLAMA_EXAMPLE_SERVER,
  85. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  86. LLAMA_EXAMPLE_EXPORT_LORA,
  87. LLAMA_EXAMPLE_LLAVA,
  88. LLAMA_EXAMPLE_LOOKUP,
  89. LLAMA_EXAMPLE_PARALLEL,
  90. LLAMA_EXAMPLE_COUNT,
  91. };
  92. enum gpt_sampler_type {
  93. GPT_SAMPLER_TYPE_NONE = 0,
  94. GPT_SAMPLER_TYPE_TOP_K = 1,
  95. GPT_SAMPLER_TYPE_TOP_P = 2,
  96. GPT_SAMPLER_TYPE_MIN_P = 3,
  97. GPT_SAMPLER_TYPE_TFS_Z = 4,
  98. GPT_SAMPLER_TYPE_TYPICAL_P = 5,
  99. GPT_SAMPLER_TYPE_TEMPERATURE = 6,
  100. };
  101. // dimensionality reduction methods, used by cvector-generator
  102. enum dimre_method {
  103. DIMRE_METHOD_PCA,
  104. DIMRE_METHOD_MEAN,
  105. };
  106. // sampler parameters
  107. struct gpt_sampler_params {
  108. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  109. int32_t n_prev = 64; // number of previous tokens to remember
  110. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  111. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  112. int32_t top_k = 40; // <= 0 to use vocab size
  113. float top_p = 0.95f; // 1.0 = disabled
  114. float min_p = 0.05f; // 0.0 = disabled
  115. float tfs_z = 1.00f; // 1.0 = disabled
  116. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  117. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  118. float dynatemp_range = 0.00f; // 0.0 = disabled
  119. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  120. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  121. float penalty_repeat = 1.00f; // 1.0 = disabled
  122. float penalty_freq = 0.00f; // 0.0 = disabled
  123. float penalty_present = 0.00f; // 0.0 = disabled
  124. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  125. float mirostat_tau = 5.00f; // target entropy
  126. float mirostat_eta = 0.10f; // learning rate
  127. bool penalize_nl = false; // consider newlines as a repeatable token
  128. bool ignore_eos = false;
  129. bool no_perf = false; // disable performance metrics
  130. std::vector<enum gpt_sampler_type> samplers = {
  131. GPT_SAMPLER_TYPE_TOP_K,
  132. GPT_SAMPLER_TYPE_TFS_Z,
  133. GPT_SAMPLER_TYPE_TYPICAL_P,
  134. GPT_SAMPLER_TYPE_TOP_P,
  135. GPT_SAMPLER_TYPE_MIN_P,
  136. GPT_SAMPLER_TYPE_TEMPERATURE
  137. };
  138. std::string grammar; // optional BNF-like grammar to constrain sampling
  139. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  140. // print the parameters into a string
  141. std::string print() const;
  142. };
  143. struct gpt_params {
  144. int32_t n_predict = -1; // new tokens to predict
  145. int32_t n_ctx = 0; // context size
  146. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  147. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  148. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  149. int32_t n_draft = 5; // number of tokens to draft during speculative decoding
  150. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  151. int32_t n_parallel = 1; // number of parallel sequences to decode
  152. int32_t n_sequences = 1; // number of sequences to decode
  153. float p_split = 0.1f; // speculative decoding split probability
  154. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  155. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  156. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  157. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  158. int32_t grp_attn_n = 1; // group-attention factor
  159. int32_t grp_attn_w = 512; // group-attention width
  160. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  161. float rope_freq_base = 0.0f; // RoPE base frequency
  162. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  163. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  164. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  165. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  166. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  167. int32_t yarn_orig_ctx = 0; // YaRN original context length
  168. float defrag_thold = -1.0f; // KV cache defragmentation threshold
  169. struct cpu_params cpuparams;
  170. struct cpu_params cpuparams_batch;
  171. struct cpu_params draft_cpuparams;
  172. struct cpu_params draft_cpuparams_batch;
  173. ggml_backend_sched_eval_callback cb_eval = nullptr;
  174. void * cb_eval_user_data = nullptr;
  175. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  176. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  177. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  178. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  179. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  180. struct gpt_sampler_params sparams;
  181. std::string model = ""; // model path // NOLINT
  182. std::string model_draft = ""; // draft model for speculative decoding // NOLINT
  183. std::string model_alias = "unknown"; // model alias // NOLINT
  184. std::string model_url = ""; // model url to download // NOLINT
  185. std::string hf_token = ""; // HF token // NOLINT
  186. std::string hf_repo = ""; // HF repo // NOLINT
  187. std::string hf_file = ""; // HF file // NOLINT
  188. std::string prompt = ""; // NOLINT
  189. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  190. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  191. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  192. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  193. std::string logdir = ""; // directory in which to save YAML log files // NOLINT
  194. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  195. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  196. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  197. std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
  198. std::vector<std::string> in_files; // all input files
  199. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  200. std::vector<llama_model_kv_override> kv_overrides;
  201. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
  202. std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
  203. std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
  204. int32_t verbosity = 0;
  205. int32_t control_vector_layer_start = -1; // layer range for control vector
  206. int32_t control_vector_layer_end = -1; // layer range for control vector
  207. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  208. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  209. // (which is more convenient to use for plotting)
  210. //
  211. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  212. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  213. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  214. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  215. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  216. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  217. bool kl_divergence = false; // compute KL divergence
  218. bool usage = false; // print usage
  219. bool use_color = false; // use color to distinguish generations and inputs
  220. bool special = false; // enable special token output
  221. bool interactive = false; // interactive mode
  222. bool interactive_first = false; // wait for user input immediately
  223. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  224. bool prompt_cache_all = false; // save user input and generations to prompt cache
  225. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  226. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  227. bool multiline_input = false; // reverse the usage of `\`
  228. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  229. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  230. bool flash_attn = false; // flash attention
  231. bool no_perf = false; // disable performance metrics
  232. bool ctx_shift = true; // context shift on inifinite text generation
  233. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  234. bool logits_all = false; // return logits for all tokens in the batch
  235. bool use_mmap = true; // use mmap for faster loads
  236. bool use_mlock = false; // use mlock to keep model in memory
  237. bool verbose_prompt = false; // print prompt tokens before generation
  238. bool display_prompt = true; // print prompt before generation
  239. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  240. bool no_kv_offload = false; // disable KV offloading
  241. bool warmup = true; // warmup run
  242. bool check_tensors = false; // validate tensor data
  243. std::string cache_type_k = "f16"; // KV cache data type for the K
  244. std::string cache_type_v = "f16"; // KV cache data type for the V
  245. // multimodal models (see examples/llava)
  246. std::string mmproj = ""; // path to multimodal projector // NOLINT
  247. std::vector<std::string> image; // path to image file(s)
  248. // embedding
  249. bool embedding = false; // get only sentence embedding
  250. int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  251. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  252. std::string embd_sep = "\n"; // separator of embendings
  253. bool reranking = false; // enable reranking support on server
  254. // server params
  255. int32_t port = 8080; // server listens on this network port
  256. int32_t timeout_read = 600; // http read timeout in seconds
  257. int32_t timeout_write = timeout_read; // http write timeout in seconds
  258. int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  259. std::string hostname = "127.0.0.1";
  260. std::string public_path = ""; // NOLINT
  261. std::string chat_template = ""; // NOLINT
  262. std::string system_prompt = ""; // NOLINT
  263. bool enable_chat_template = true;
  264. std::vector<std::string> api_keys;
  265. std::string ssl_file_key = ""; // NOLINT
  266. std::string ssl_file_cert = ""; // NOLINT
  267. bool endpoint_slots = true;
  268. bool endpoint_metrics = false;
  269. bool log_json = false;
  270. std::string slot_save_path;
  271. float slot_prompt_similarity = 0.5f;
  272. // batched-bench params
  273. bool is_pp_shared = false;
  274. std::vector<int32_t> n_pp;
  275. std::vector<int32_t> n_tg;
  276. std::vector<int32_t> n_pl;
  277. // retrieval params
  278. std::vector<std::string> context_files; // context files to embed
  279. int32_t chunk_size = 64; // chunk size for context embedding
  280. std::string chunk_separator = "\n"; // chunk separator for context embedding
  281. // passkey params
  282. int32_t n_junk = 250; // number of times to repeat the junk text
  283. int32_t i_pos = -1; // position of the passkey in the junk text
  284. // imatrix params
  285. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  286. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  287. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  288. int32_t i_chunk = 0; // start processing from this chunk
  289. bool process_output = false; // collect data for the output tensor
  290. bool compute_ppl = true; // whether to compute perplexity
  291. // cvector-generator params
  292. int n_pca_batch = 100;
  293. int n_pca_iterations = 1000;
  294. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  295. std::string cvector_outfile = "control_vector.gguf";
  296. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  297. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  298. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  299. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  300. // batched-bench params
  301. bool batched_bench_output_jsonl = false;
  302. };
  303. // call once at the start of a program if it uses libcommon
  304. // initializes the logging system and prints info about the build
  305. void gpt_init();
  306. std::string gpt_params_get_system_info(const gpt_params & params);
  307. bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  308. bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  309. void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
  310. bool set_process_priority(enum ggml_sched_priority prio);
  311. //
  312. // String utils
  313. //
  314. std::vector<std::string> string_split(std::string input, char separator);
  315. std::string string_strip(const std::string & str);
  316. std::string string_get_sortable_timestamp();
  317. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  318. template<class T>
  319. static std::vector<T> string_split(const std::string & str, char delim) {
  320. std::vector<T> values;
  321. std::istringstream str_stream(str);
  322. std::string token;
  323. while (std::getline(str_stream, token, delim)) {
  324. T value;
  325. std::istringstream token_stream(token);
  326. token_stream >> value;
  327. values.push_back(value);
  328. }
  329. return values;
  330. }
  331. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  332. void string_process_escapes(std::string & input);
  333. std::string string_from(bool value);
  334. std::string string_from(const std::vector<int> & values);
  335. std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
  336. std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
  337. //
  338. // Filesystem utils
  339. //
  340. bool fs_validate_filename(const std::string & filename);
  341. bool fs_create_directory_with_parents(const std::string & path);
  342. std::string fs_get_cache_directory();
  343. std::string fs_get_cache_file(const std::string & filename);
  344. //
  345. // Model utils
  346. //
  347. struct llama_init_result {
  348. struct llama_model * model = nullptr;
  349. struct llama_context * context = nullptr;
  350. std::vector<llama_lora_adapter_container> lora_adapters;
  351. };
  352. struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
  353. struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
  354. struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
  355. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  356. struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  357. struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  358. // clear LoRA adapters from context, then apply new list of adapters
  359. void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
  360. // Batch utils
  361. void llama_batch_clear(struct llama_batch & batch);
  362. void llama_batch_add(
  363. struct llama_batch & batch,
  364. llama_token id,
  365. llama_pos pos,
  366. const std::vector<llama_seq_id> & seq_ids,
  367. bool logits);
  368. //
  369. // Vocab utils
  370. //
  371. // tokenizes a string into a vector of tokens
  372. // should work similar to Python's `tokenizer.encode`
  373. std::vector<llama_token> llama_tokenize(
  374. const struct llama_context * ctx,
  375. const std::string & text,
  376. bool add_special,
  377. bool parse_special = false);
  378. std::vector<llama_token> llama_tokenize(
  379. const struct llama_model * model,
  380. const std::string & text,
  381. bool add_special,
  382. bool parse_special = false);
  383. // tokenizes a token into a piece, optionally renders special/control tokens
  384. // should work similar to Python's `tokenizer.id_to_piece`
  385. std::string llama_token_to_piece(
  386. const struct llama_context * ctx,
  387. llama_token token,
  388. bool special = true);
  389. // detokenizes a vector of tokens into a string
  390. // should work similar to Python's `tokenizer.decode`
  391. // optionally renders special/control tokens
  392. std::string llama_detokenize(
  393. llama_context * ctx,
  394. const std::vector<llama_token> & tokens,
  395. bool special = true);
  396. //
  397. // Chat template utils
  398. //
  399. // same with llama_chat_message, but uses std::string
  400. struct llama_chat_msg {
  401. std::string role;
  402. std::string content;
  403. };
  404. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  405. bool llama_chat_verify_template(const std::string & tmpl);
  406. // CPP wrapper for llama_chat_apply_template
  407. // If the built-in template is not supported, we default to chatml
  408. // If the custom "tmpl" is not supported, we throw an error
  409. std::string llama_chat_apply_template(const struct llama_model * model,
  410. const std::string & tmpl,
  411. const std::vector<llama_chat_msg> & chat,
  412. bool add_ass);
  413. // Format single message, while taking into account the position of that message in chat history
  414. std::string llama_chat_format_single(const struct llama_model * model,
  415. const std::string & tmpl,
  416. const std::vector<llama_chat_msg> & past_msg,
  417. const llama_chat_msg & new_msg,
  418. bool add_ass);
  419. // Returns an example of formatted chat
  420. std::string llama_chat_format_example(const struct llama_model * model,
  421. const std::string & tmpl);
  422. //
  423. // KV cache utils
  424. //
  425. // Dump the KV cache view with the number of sequences per cell.
  426. void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  427. // Dump the KV cache view showing individual sequences in each cell (long output).
  428. void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  429. //
  430. // Embedding utils
  431. //
  432. void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
  433. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  434. //
  435. // Control vector utils
  436. //
  437. struct llama_control_vector_data {
  438. int n_embd;
  439. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  440. std::vector<float> data;
  441. };
  442. struct llama_control_vector_load_info {
  443. float strength;
  444. std::string fname;
  445. };
  446. // Load control vectors, scale each by strength, and add them together.
  447. // On error, returns {-1, empty}
  448. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
  449. //
  450. // Split utils
  451. //
  452. static const char * const LLM_KV_SPLIT_NO = "split.no";
  453. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  454. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  455. //
  456. // YAML utils
  457. //
  458. void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
  459. void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
  460. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
  461. void yaml_dump_non_result_info(
  462. FILE * stream, const gpt_params & params, const llama_context * lctx,
  463. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);