llava.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523
  1. /**
  2. * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "clip.h"
  27. #include "llava.h"
  28. #include "llama.h"
  29. #include <algorithm>
  30. #include <cerrno>
  31. #include <cstdio>
  32. #include <cstdlib>
  33. #include <cstring>
  34. #include <limits>
  35. #include <vector>
  36. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  37. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  38. #define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  39. #define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  40. #define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  41. #define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  42. // RGB uint8 image
  43. struct clip_image_u8 {
  44. int nx;
  45. int ny;
  46. std::vector<uint8_t> buf;
  47. };
  48. // RGB float32 image (NHWC)
  49. // Memory layout: RGBRGBRGB...
  50. struct clip_image_f32 {
  51. int nx;
  52. int ny;
  53. std::vector<float> buf;
  54. };
  55. struct clip_image_grid_shape {
  56. int first;
  57. int second;
  58. };
  59. /**
  60. * Selects the best resolution from a list of possible resolutions based on the original size.
  61. *
  62. * @param original_size The original size of the image in the format (width, height).
  63. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  64. * @return The best fit resolution in the format (width, height).
  65. */
  66. static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
  67. int original_width = original_size.first;
  68. int original_height = original_size.second;
  69. std::pair<int, int> best_fit;
  70. int max_effective_resolution = 0;
  71. int min_wasted_resolution = std::numeric_limits<int>::max();
  72. for (const auto& resolution : possible_resolutions) {
  73. int width = resolution.first;
  74. int height = resolution.second;
  75. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  76. int downscaled_width = static_cast<int>(original_width * scale);
  77. int downscaled_height = static_cast<int>(original_height * scale);
  78. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  79. int wasted_resolution = (width * height) - effective_resolution;
  80. // LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  81. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  82. max_effective_resolution = effective_resolution;
  83. min_wasted_resolution = wasted_resolution;
  84. best_fit = resolution;
  85. }
  86. }
  87. return best_fit;
  88. }
  89. /**
  90. * @brief Get the anyres image grid shape object
  91. *
  92. * @param image_size
  93. * @param grid_pinpoints
  94. * @param image_patch_size
  95. * @return <int, int>
  96. */
  97. static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
  98. /**
  99. Conversion from gguf flat array to vector:
  100. std::vector<std::pair<int, int>> possible_resolutions;
  101. for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
  102. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  103. }
  104. */
  105. auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
  106. return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
  107. }
  108. // Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
  109. static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
  110. struct {
  111. struct ggml_context * ctx;
  112. } model;
  113. const int32_t image_size = clip_image_size(ctx_clip);
  114. const int32_t patch_size = clip_patch_size(ctx_clip);
  115. int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
  116. int num_patches_width = grid_shape.first; // grid 1-4
  117. int num_patches_height = grid_shape.second; // grid 1-4
  118. const size_t num_images = num_patches_width * num_patches_height + 1;
  119. // TODO: size calculation is not calculated - it's only tens of MB
  120. size_t ctx_size = 0;
  121. {
  122. ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
  123. ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
  124. }
  125. struct ggml_init_params params {
  126. /*.mem_size =*/ ctx_size,
  127. /*.mem_buffer =*/ NULL,
  128. /*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API
  129. };
  130. // Python reference code for full unpad:
  131. /*
  132. base_image_feature = image_feature[0]
  133. image_feature = image_feature[1:]
  134. image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
  135. image_feature = image_feature.flatten(1, 2).flatten(2, 3)
  136. image_feature = unpad_image(image_feature, image_sizes[image_idx])
  137. image_feature = torch.cat((
  138. image_feature,
  139. self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
  140. ), dim=-1)
  141. image_feature = image_feature.flatten(1, 2).transpose(0, 1)
  142. image_feature = torch.cat((base_image_feature, image_feature), dim=0)
  143. */
  144. // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
  145. // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
  146. // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
  147. // Once all images are processed to prepended the base_image_features without any changes.
  148. // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
  149. /*
  150. image_feature = image_feature.view(2, 2, 24, 24, 4096)
  151. image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
  152. image_feature = image_feature.view(2, 24, 2, 24, 4096)
  153. image_feature = image_feature.flatten(0, 3)
  154. // Reshape to 4D tensor by merging the last two dimensions
  155. image_feature = image_feature.view(2, 2, 24, 24*4096)
  156. image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
  157. image_feature = image_feature.view(-1, 4096)
  158. */
  159. model.ctx = ggml_init(params);
  160. struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
  161. // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
  162. // fill it with the image embeddings, ignoring the base
  163. for (size_t i = 1; i < num_images; i++) {
  164. size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
  165. memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
  166. }
  167. struct ggml_cgraph * gf = ggml_new_graph(model.ctx);
  168. size_t size_ele = ggml_type_size(GGML_TYPE_F32);
  169. struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
  170. num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
  171. num_patches_per_side,
  172. num_patches_width,
  173. num_patches_height,
  174. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
  175. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
  176. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
  177. // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
  178. struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
  179. /**
  180. At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
  181. image_feature = torch.cat((
  182. image_feature,
  183. self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
  184. ), dim=-1)
  185. *
  186. */
  187. // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
  188. struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
  189. // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
  190. ggml_build_forward_expand(gf, flatten);
  191. ggml_graph_compute_with_ctx(model.ctx, gf, 1);
  192. struct ggml_tensor* result = ggml_graph_node(gf, -1);
  193. memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
  194. // append without newline tokens (default behavior in llava_arch when not using unpad ):
  195. memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
  196. *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
  197. // Debug: Test single segments
  198. // Current findings: sending base image, sending a segment embedding all works similar to python
  199. // However, permuted embeddings do not work yet (stride issue?)
  200. // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
  201. // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
  202. // *n_img_pos_out=576;
  203. ggml_free(model.ctx);
  204. return true;
  205. }
  206. static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
  207. int width = image->nx;
  208. int height = image->ny;
  209. int num_patches = (height / patch_size) * (width / patch_size);
  210. clip_image_f32 * patch = clip_image_f32_init();
  211. patch->nx = patch_size * num_patches;
  212. patch->ny = patch_size;
  213. patch->buf.resize(3 * patch->nx * patch->ny);
  214. int patch_index = 0;
  215. for (int i = 0; i < height; i += patch_size) {
  216. for (int j = 0; j < width; j += patch_size) {
  217. for (int pi = 0; pi < patch_size; ++pi) {
  218. for (int pj = 0; pj < patch_size; ++pj) {
  219. int input_index = ((i + pi) * width + (j + pj)) * 3;
  220. int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
  221. patch->buf[output_index] = image->buf[input_index];
  222. patch->buf[output_index+1] = image->buf[input_index+1];
  223. patch->buf[output_index+2] = image->buf[input_index+2];
  224. }
  225. }
  226. patch_index++;
  227. }
  228. }
  229. return patch;
  230. }
  231. static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
  232. // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
  233. clip_image_f32_batch img_res_v;
  234. img_res_v.size = 0;
  235. img_res_v.data = nullptr;
  236. if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
  237. LOG_ERR("%s: unable to preprocess image\n", __func__);
  238. delete[] img_res_v.data;
  239. return false;
  240. }
  241. const int64_t t_img_enc_start_us = ggml_time_us();
  242. const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
  243. if (clip_is_minicpmv(ctx_clip)) {
  244. std::vector<float *> image_embd_v;
  245. image_embd_v.resize(img_res_v.size);
  246. struct clip_image_size * load_image_size = clip_image_size_init();
  247. for (size_t i = 0; i < img_res_v.size; i++) {
  248. const int64_t t_img_enc_step_start_us = ggml_time_us();
  249. image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
  250. int patch_size=14;
  251. load_image_size->width = img_res_v.data[i].nx;
  252. load_image_size->height = img_res_v.data[i].ny;
  253. clip_add_load_image_size(ctx_clip, load_image_size);
  254. bool encoded = false;
  255. int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
  256. if (has_minicpmv_projector == 2) {
  257. encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
  258. }
  259. else if (has_minicpmv_projector == 3) {
  260. encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
  261. }
  262. if (!encoded) {
  263. LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
  264. return false;
  265. }
  266. const int64_t t_img_enc_steop_batch_us = ggml_time_us();
  267. LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
  268. }
  269. const int64_t t_img_enc_batch_us = ggml_time_us();
  270. LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
  271. int n_img_pos_out = 0;
  272. for (size_t i = 0; i < image_embd_v.size(); i++) {
  273. std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
  274. n_img_pos_out += clip_n_patches(ctx_clip);
  275. }
  276. *n_img_pos = n_img_pos_out;
  277. for (size_t i = 0; i < image_embd_v.size(); i++) {
  278. free(image_embd_v[i]);
  279. }
  280. image_embd_v.clear();
  281. load_image_size->width = img->nx;
  282. load_image_size->height = img->ny;
  283. clip_add_load_image_size(ctx_clip, load_image_size);
  284. LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
  285. }
  286. else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
  287. // flat / default llava-1.5 type embedding
  288. *n_img_pos = clip_n_patches(ctx_clip);
  289. bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
  290. delete[] img_res_v.data;
  291. if (!encoded) {
  292. LOG_ERR("Unable to encode image\n");
  293. return false;
  294. }
  295. }
  296. else {
  297. // spatial_unpad llava-1.6 type embedding
  298. // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
  299. std::vector<float *> image_embd_v;
  300. image_embd_v.resize(img_res_v.size);
  301. for (size_t i = 0; i < img_res_v.size; i++) {
  302. image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
  303. const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
  304. if (!encoded) {
  305. LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
  306. return false;
  307. }
  308. }
  309. const int64_t t_img_enc_batch_us = ggml_time_us();
  310. LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
  311. const int32_t * image_grid = clip_image_grid(ctx_clip);
  312. std::vector<std::pair<int, int>> grid_pinpoints;
  313. for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
  314. grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
  315. }
  316. // free all img_res_v - not needed anymore
  317. delete[] img_res_v.data;
  318. img_res_v.size = 0;
  319. img_res_v.data = nullptr;
  320. const int32_t image_size = clip_image_size(ctx_clip);
  321. struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
  322. int n_img_pos_out;
  323. clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
  324. *n_img_pos = n_img_pos_out;
  325. for (size_t i = 0; i < image_embd_v.size(); i++) {
  326. free(image_embd_v[i]);
  327. }
  328. image_embd_v.clear();
  329. // debug image/segment/normalization content:
  330. // clip_image_u8 * tmp = clip_image_u8_init();
  331. // clip_image_convert_f32_to_u8(*image_feature, *tmp);
  332. // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
  333. }
  334. LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
  335. const int64_t t_img_enc_end_us = ggml_time_us();
  336. float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
  337. LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
  338. return true;
  339. }
  340. bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
  341. // make sure that the correct mmproj was used, i.e., compare apples to apples
  342. int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
  343. auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
  344. if (n_image_embd != n_llama_embd) {
  345. LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
  346. return false;
  347. }
  348. return true;
  349. }
  350. bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
  351. int num_max_patches = 6;
  352. if (clip_is_minicpmv(ctx_clip)) {
  353. num_max_patches = 10;
  354. }
  355. float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
  356. if (!image_embd) {
  357. LOG_ERR("Unable to allocate memory for image embeddings\n");
  358. return false;
  359. }
  360. int n_img_pos;
  361. if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
  362. LOG_ERR("%s: cannot encode image, aborting\n", __func__);
  363. free(image_embd);
  364. return false;
  365. }
  366. *image_embd_out = image_embd;
  367. *n_img_pos_out = n_img_pos;
  368. return true;
  369. }
  370. bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
  371. int n_embd = llama_n_embd(llama_get_model(ctx_llama));
  372. for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
  373. int n_eval = image_embed->n_image_pos - i;
  374. if (n_eval > n_batch) {
  375. n_eval = n_batch;
  376. }
  377. llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), n_embd, nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
  378. if (llama_decode(ctx_llama, batch)) {
  379. LOG_ERR("%s : failed to eval\n", __func__);
  380. return false;
  381. }
  382. *n_past += n_eval;
  383. }
  384. return true;
  385. }
  386. struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
  387. clip_image_u8 * img = clip_image_u8_init();
  388. if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
  389. clip_image_u8_free(img);
  390. LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
  391. return NULL;
  392. }
  393. float* image_embed = NULL;
  394. int n_image_pos = 0;
  395. bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
  396. if (!image_embed_result) {
  397. clip_image_u8_free(img);
  398. LOG_ERR("%s: coulnd't embed the image\n", __func__);
  399. return NULL;
  400. }
  401. clip_image_u8_free(img);
  402. auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
  403. result->embed = image_embed;
  404. result->n_image_pos = n_image_pos;
  405. return result;
  406. }
  407. static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
  408. auto file = fopen(path, "rb");
  409. if (file == NULL) {
  410. LOG_ERR("%s: can't read file %s\n", __func__, path);
  411. return false;
  412. }
  413. fseek(file, 0, SEEK_END);
  414. auto fileSize = ftell(file);
  415. fseek(file, 0, SEEK_SET);
  416. auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
  417. if (buffer == NULL) {
  418. LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
  419. perror("Memory allocation error");
  420. fclose(file);
  421. return false;
  422. }
  423. errno = 0;
  424. size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
  425. if (ferror(file)) {
  426. die_fmt("read error: %s", strerror(errno));
  427. }
  428. if (ret != (size_t) fileSize) {
  429. die("unexpectedly reached end of file");
  430. }
  431. fclose(file); // Close the file
  432. *bytesOut = buffer;
  433. *sizeOut = fileSize;
  434. return true;
  435. }
  436. struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
  437. unsigned char* image_bytes;
  438. long image_bytes_length;
  439. auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
  440. if (!loaded) {
  441. LOG_ERR("%s: failed to load %s\n", __func__, image_path);
  442. return NULL;
  443. }
  444. llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
  445. free(image_bytes);
  446. return embed;
  447. }
  448. void llava_image_embed_free(struct llava_image_embed * embed) {
  449. free(embed->embed);
  450. free(embed);
  451. }