123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- package convert
- import (
- "encoding/binary"
- "fmt"
- "io"
- "log/slog"
- "regexp"
- "strings"
- "github.com/nlpodyssey/gopickle/pytorch"
- "github.com/pdevine/tensor"
- "github.com/pdevine/tensor/native"
- "github.com/x448/float16"
- "github.com/ollama/ollama/llm"
- )
- type LlamaModel struct {
- ModelData
- }
- func llamaLayerHandler(w io.Writer, r torchWriterTo) error {
- slog.Debug(fmt.Sprintf("repacking layer '%s'", r.t.Name))
- data := r.storage.(*pytorch.HalfStorage).Data
- tData := make([]uint16, len(data))
- for cnt, v := range data {
- tData[cnt] = uint16(float16.Fromfloat32(v))
- }
- var err error
- var heads uint32
- if strings.Contains(r.t.Name, "attn_q") {
- heads = uint32(r.params.AttentionHeads)
- } else if strings.Contains(r.t.Name, "attn_k") {
- heads = uint32(r.params.KeyValHeads)
- if heads == 0 {
- heads = uint32(r.params.AttentionHeads)
- }
- } else {
- return fmt.Errorf("unknown layer type")
- }
- slog.Debug(fmt.Sprintf("heads = %d", heads))
- tData, err = llamaRepack(tData, int(heads), r.t.Shape)
- if err != nil {
- return err
- }
- if err = binary.Write(w, r.bo, tData); err != nil {
- return err
- }
- return nil
- }
- func llamaRepack(data []uint16, heads int, shape []uint64) ([]uint16, error) {
- n := tensor.New(tensor.WithShape(int(shape[0]), int(shape[1])), tensor.WithBacking(data))
- origShape := n.Shape().Clone()
- // reshape the tensor and swap axes 1 and 2 to unpack the layer for gguf
- if err := n.Reshape(heads, 2, origShape[0]/heads/2, origShape[1]); err != nil {
- return nil, err
- }
- if err := n.T(0, 2, 1, 3); err != nil {
- return nil, err
- }
- if err := n.Reshape(origShape...); err != nil {
- return nil, err
- }
- if err := n.Transpose(); err != nil {
- return nil, err
- }
- newN, err := native.SelectU16(n, 1)
- if err != nil {
- return nil, err
- }
- var fullTensor []uint16
- for _, v := range newN {
- fullTensor = append(fullTensor, v...)
- }
- return fullTensor, nil
- }
- func (m *LlamaModel) GetTensors() error {
- t, err := m.Format.GetTensors(m.Path, m.Params)
- if err != nil {
- return err
- }
- m.Tensors = []llm.Tensor{}
- pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
- re, err := regexp.Compile(pattern)
- if err != nil {
- return err
- }
- for _, l := range t {
- matches := re.FindAllStringSubmatch(l.Name, -1)
- if len(matches) > 0 {
- slog.Debug(fmt.Sprintf("setting handler for: %s", l.Name))
- wt := l.WriterTo.(torchWriterTo)
- wt.handler = llamaLayerHandler
- l.WriterTo = wt
- }
- m.Tensors = append(m.Tensors, l)
- }
- return nil
- }
- func (m *LlamaModel) LoadVocab() error {
- var v *Vocab
- var err error
- slog.Debug("loading vocab")
- v, err = LoadSentencePieceTokens(m.Path, m.Params)
- if err != nil {
- return err
- }
- slog.Debug("vocab loaded")
- m.Vocab = v
- return nil
- }
- func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
- kv := llm.KV{
- "general.architecture": "llama",
- "general.name": m.Name,
- "llama.vocab_size": uint32(len(m.Vocab.Tokens)),
- "llama.context_length": uint32(m.Params.ContextSize),
- "llama.embedding_length": uint32(m.Params.HiddenSize),
- "llama.block_count": uint32(m.Params.HiddenLayers),
- "llama.feed_forward_length": uint32(m.Params.IntermediateSize),
- "llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
- "llama.attention.head_count": uint32(m.Params.AttentionHeads),
- "llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
- "llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
- "general.file_type": uint32(1),
- "tokenizer.ggml.model": "llama",
- "tokenizer.ggml.tokens": m.Vocab.Tokens,
- "tokenizer.ggml.scores": m.Vocab.Scores,
- "tokenizer.ggml.token_type": m.Vocab.Types,
- "tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
- "tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
- "tokenizer.ggml.unknown_token_id": uint32(0),
- "tokenizer.ggml.add_bos_token": true,
- "tokenizer.ggml.add_eos_token": false,
- }
- return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
- }
|