ggml.c 592 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476
  1. /**
  2. * llama.cpp - git 8183159cf3def112f6d1fe94815fce70e1bffa12
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023 Georgi Gerganov
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  27. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  28. #include "ggml.h"
  29. #ifdef GGML_USE_K_QUANTS
  30. #include "k_quants.h"
  31. #endif
  32. #if defined(_MSC_VER) || defined(__MINGW32__)
  33. #include <malloc.h> // using malloc.h with MSC/MINGW
  34. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  35. #include <alloca.h>
  36. #endif
  37. #include <assert.h>
  38. #include <errno.h>
  39. #include <time.h>
  40. #include <math.h>
  41. #include <stdlib.h>
  42. #include <string.h>
  43. #include <stdint.h>
  44. #include <inttypes.h>
  45. #include <stdio.h>
  46. #include <float.h>
  47. #include <limits.h>
  48. #include <stdarg.h>
  49. #include <signal.h>
  50. #ifdef GGML_USE_METAL
  51. #include <unistd.h>
  52. #endif
  53. // static_assert should be a #define, but if it's not,
  54. // fall back to the _Static_assert C11 keyword.
  55. // if C99 - static_assert is noop
  56. // ref: https://stackoverflow.com/a/53923785/4039976
  57. #ifndef static_assert
  58. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  59. #define static_assert(cond, msg) _Static_assert(cond, msg)
  60. #else
  61. #define static_assert(cond, msg) struct global_scope_noop_trick
  62. #endif
  63. #endif
  64. #if defined(_MSC_VER)
  65. // disable "possible loss of data" to avoid hundreds of casts
  66. // we should just be careful :)
  67. #pragma warning(disable: 4244 4267)
  68. #endif
  69. #if defined(_WIN32)
  70. #include <windows.h>
  71. typedef volatile LONG atomic_int;
  72. typedef atomic_int atomic_bool;
  73. static void atomic_store(atomic_int * ptr, LONG val) {
  74. InterlockedExchange(ptr, val);
  75. }
  76. static LONG atomic_load(atomic_int * ptr) {
  77. return InterlockedCompareExchange(ptr, 0, 0);
  78. }
  79. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  80. return InterlockedExchangeAdd(ptr, inc);
  81. }
  82. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  83. return atomic_fetch_add(ptr, -(dec));
  84. }
  85. typedef HANDLE pthread_t;
  86. typedef DWORD thread_ret_t;
  87. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  88. (void) unused;
  89. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  90. if (handle == NULL)
  91. {
  92. return EAGAIN;
  93. }
  94. *out = handle;
  95. return 0;
  96. }
  97. static int pthread_join(pthread_t thread, void * unused) {
  98. (void) unused;
  99. return (int) WaitForSingleObject(thread, INFINITE);
  100. }
  101. static int sched_yield (void) {
  102. Sleep (0);
  103. return 0;
  104. }
  105. #else
  106. #include <pthread.h>
  107. #include <stdatomic.h>
  108. typedef void * thread_ret_t;
  109. #include <sys/types.h>
  110. #include <sys/stat.h>
  111. #include <unistd.h>
  112. #endif
  113. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  114. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  115. #ifndef __FMA__
  116. #define __FMA__
  117. #endif
  118. #ifndef __F16C__
  119. #define __F16C__
  120. #endif
  121. #ifndef __SSE3__
  122. #define __SSE3__
  123. #endif
  124. #endif
  125. /*#define GGML_PERF*/
  126. #define GGML_DEBUG 0
  127. #define GGML_GELU_FP16
  128. #define GGML_GELU_QUICK_FP16
  129. #define GGML_SILU_FP16
  130. #define GGML_SOFT_MAX_UNROLL 4
  131. #define GGML_VEC_DOT_UNROLL 2
  132. //
  133. // logging
  134. //
  135. #if (GGML_DEBUG >= 1)
  136. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  137. #else
  138. #define GGML_PRINT_DEBUG(...)
  139. #endif
  140. #if (GGML_DEBUG >= 5)
  141. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  142. #else
  143. #define GGML_PRINT_DEBUG_5(...)
  144. #endif
  145. #if (GGML_DEBUG >= 10)
  146. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  147. #else
  148. #define GGML_PRINT_DEBUG_10(...)
  149. #endif
  150. #define GGML_PRINT(...) printf(__VA_ARGS__)
  151. #ifdef GGML_USE_ACCELERATE
  152. // uncomment to use vDSP for soft max computation
  153. // note: not sure if it is actually faster
  154. //#define GGML_SOFT_MAX_ACCELERATE
  155. #endif
  156. #if UINTPTR_MAX == 0xFFFFFFFF
  157. #define GGML_MEM_ALIGN 4
  158. #else
  159. #define GGML_MEM_ALIGN 16
  160. #endif
  161. //
  162. // logging
  163. //
  164. #if (GGML_DEBUG >= 1)
  165. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  166. #else
  167. #define GGML_PRINT_DEBUG(...)
  168. #endif
  169. #if (GGML_DEBUG >= 5)
  170. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  171. #else
  172. #define GGML_PRINT_DEBUG_5(...)
  173. #endif
  174. #if (GGML_DEBUG >= 10)
  175. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  176. #else
  177. #define GGML_PRINT_DEBUG_10(...)
  178. #endif
  179. #define GGML_PRINT(...) printf(__VA_ARGS__)
  180. //
  181. // end of logging block
  182. //
  183. #if defined(_MSC_VER) || defined(__MINGW32__)
  184. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  185. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  186. #else
  187. inline static void* ggml_aligned_malloc(size_t size) {
  188. void* aligned_memory = NULL;
  189. #ifdef GGML_USE_METAL
  190. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  191. #else
  192. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  193. #endif
  194. if (result != 0) {
  195. // Handle allocation failure
  196. const char *error_desc = "unknown allocation error";
  197. switch (result) {
  198. case EINVAL:
  199. error_desc = "invalid alignment value";
  200. break;
  201. case ENOMEM:
  202. error_desc = "insufficient memory";
  203. break;
  204. }
  205. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  206. __func__, error_desc, size/(1024.0*1024.0));
  207. return NULL;
  208. }
  209. return aligned_memory;
  210. }
  211. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  212. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  213. #endif
  214. #define UNUSED GGML_UNUSED
  215. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  216. //
  217. // tensor access macros
  218. //
  219. #define GGML_TENSOR_UNARY_OP_LOCALS \
  220. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  221. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  222. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  223. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  224. #define GGML_TENSOR_BINARY_OP_LOCALS \
  225. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  226. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  227. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  228. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  229. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  230. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  231. #if defined(GGML_USE_ACCELERATE)
  232. #include <Accelerate/Accelerate.h>
  233. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  234. #include "ggml-opencl.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #endif
  247. #undef MIN
  248. #undef MAX
  249. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  250. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. // 16-bit float
  254. // on Arm, we use __fp16
  255. // on x86, we use uint16_t
  256. #ifdef __ARM_NEON
  257. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  258. //
  259. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  260. //
  261. #include <arm_neon.h>
  262. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  263. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  264. #define GGML_FP16_TO_FP32(x) ((float) (x))
  265. #define GGML_FP32_TO_FP16(x) (x)
  266. #else
  267. #ifdef __wasm_simd128__
  268. #include <wasm_simd128.h>
  269. #else
  270. #ifdef __POWER9_VECTOR__
  271. #include <altivec.h>
  272. #undef bool
  273. #define bool _Bool
  274. #else
  275. #if defined(_MSC_VER) || defined(__MINGW32__)
  276. #include <intrin.h>
  277. #else
  278. #if !defined(__riscv)
  279. #include <immintrin.h>
  280. #endif
  281. #endif
  282. #endif
  283. #endif
  284. #ifdef __F16C__
  285. #ifdef _MSC_VER
  286. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  287. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  288. #else
  289. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  290. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  291. #endif
  292. #elif defined(__POWER9_VECTOR__)
  293. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  294. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  295. /* the inline asm below is about 12% faster than the lookup method */
  296. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  297. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  298. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  299. register float f;
  300. register double d;
  301. __asm__(
  302. "mtfprd %0,%2\n"
  303. "xscvhpdp %0,%0\n"
  304. "frsp %1,%0\n" :
  305. /* temp */ "=d"(d),
  306. /* out */ "=f"(f):
  307. /* in */ "r"(h));
  308. return f;
  309. }
  310. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  311. register double d;
  312. register ggml_fp16_t r;
  313. __asm__( /* xscvdphp can work on double or single precision */
  314. "xscvdphp %0,%2\n"
  315. "mffprd %1,%0\n" :
  316. /* temp */ "=d"(d),
  317. /* out */ "=r"(r):
  318. /* in */ "f"(f));
  319. return r;
  320. }
  321. #else
  322. // FP16 <-> FP32
  323. // ref: https://github.com/Maratyszcza/FP16
  324. static inline float fp32_from_bits(uint32_t w) {
  325. union {
  326. uint32_t as_bits;
  327. float as_value;
  328. } fp32;
  329. fp32.as_bits = w;
  330. return fp32.as_value;
  331. }
  332. static inline uint32_t fp32_to_bits(float f) {
  333. union {
  334. float as_value;
  335. uint32_t as_bits;
  336. } fp32;
  337. fp32.as_value = f;
  338. return fp32.as_bits;
  339. }
  340. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  341. const uint32_t w = (uint32_t) h << 16;
  342. const uint32_t sign = w & UINT32_C(0x80000000);
  343. const uint32_t two_w = w + w;
  344. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  345. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  346. const float exp_scale = 0x1.0p-112f;
  347. #else
  348. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  349. #endif
  350. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  351. const uint32_t magic_mask = UINT32_C(126) << 23;
  352. const float magic_bias = 0.5f;
  353. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  354. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  355. const uint32_t result = sign |
  356. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  357. return fp32_from_bits(result);
  358. }
  359. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  360. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  361. const float scale_to_inf = 0x1.0p+112f;
  362. const float scale_to_zero = 0x1.0p-110f;
  363. #else
  364. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  365. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  366. #endif
  367. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  368. const uint32_t w = fp32_to_bits(f);
  369. const uint32_t shl1_w = w + w;
  370. const uint32_t sign = w & UINT32_C(0x80000000);
  371. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  372. if (bias < UINT32_C(0x71000000)) {
  373. bias = UINT32_C(0x71000000);
  374. }
  375. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  376. const uint32_t bits = fp32_to_bits(base);
  377. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  378. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  379. const uint32_t nonsign = exp_bits + mantissa_bits;
  380. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  381. }
  382. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  383. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  384. #endif // __F16C__
  385. #endif // __ARM_NEON
  386. //
  387. // global data
  388. //
  389. // precomputed gelu table for f16 (128 KB)
  390. static ggml_fp16_t table_gelu_f16[1 << 16];
  391. // precomputed quick gelu table for f16 (128 KB)
  392. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  393. // precomputed silu table for f16 (128 KB)
  394. static ggml_fp16_t table_silu_f16[1 << 16];
  395. // precomputed exp table for f16 (128 KB)
  396. static ggml_fp16_t table_exp_f16[1 << 16];
  397. // precomputed f32 table for f16 (256 KB)
  398. static float table_f32_f16[1 << 16];
  399. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  400. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  401. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  402. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  403. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  404. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  405. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  406. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  407. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  408. // precomputed tables for expanding 8bits to 8 bytes:
  409. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  410. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  411. #endif
  412. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  413. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  414. // This is also true for POWER9.
  415. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  416. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  417. uint16_t s;
  418. memcpy(&s, &f, sizeof(uint16_t));
  419. return table_f32_f16[s];
  420. }
  421. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  422. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  423. #endif
  424. // note: do not use these inside ggml.c
  425. // these are meant to be used via the ggml.h API
  426. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  427. return (float) GGML_FP16_TO_FP32(x);
  428. }
  429. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  430. return GGML_FP32_TO_FP16(x);
  431. }
  432. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  433. for (int i = 0; i < n; i++) {
  434. y[i] = GGML_FP16_TO_FP32(x[i]);
  435. }
  436. }
  437. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  438. int i = 0;
  439. #if defined(__F16C__)
  440. for (; i + 7 < n; i += 8) {
  441. __m256 x_vec = _mm256_loadu_ps(x + i);
  442. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  443. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  444. }
  445. for(; i + 3 < n; i += 4) {
  446. __m128 x_vec = _mm_loadu_ps(x + i);
  447. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  448. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  449. }
  450. #endif
  451. for (; i < n; i++) {
  452. y[i] = GGML_FP32_TO_FP16(x[i]);
  453. }
  454. }
  455. //
  456. // timing
  457. //
  458. #if defined(_MSC_VER) || defined(__MINGW32__)
  459. static int64_t timer_freq, timer_start;
  460. void ggml_time_init(void) {
  461. LARGE_INTEGER t;
  462. QueryPerformanceFrequency(&t);
  463. timer_freq = t.QuadPart;
  464. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  465. // and the uptime is high enough.
  466. // We subtract the program start time to reduce the likelihood of that happening.
  467. QueryPerformanceCounter(&t);
  468. timer_start = t.QuadPart;
  469. }
  470. int64_t ggml_time_ms(void) {
  471. LARGE_INTEGER t;
  472. QueryPerformanceCounter(&t);
  473. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  474. }
  475. int64_t ggml_time_us(void) {
  476. LARGE_INTEGER t;
  477. QueryPerformanceCounter(&t);
  478. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  479. }
  480. #else
  481. void ggml_time_init(void) {}
  482. int64_t ggml_time_ms(void) {
  483. struct timespec ts;
  484. clock_gettime(CLOCK_MONOTONIC, &ts);
  485. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  486. }
  487. int64_t ggml_time_us(void) {
  488. struct timespec ts;
  489. clock_gettime(CLOCK_MONOTONIC, &ts);
  490. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  491. }
  492. #endif
  493. int64_t ggml_cycles(void) {
  494. return clock();
  495. }
  496. int64_t ggml_cycles_per_ms(void) {
  497. return CLOCKS_PER_SEC/1000;
  498. }
  499. #ifdef GGML_PERF
  500. #define ggml_perf_time_ms() ggml_time_ms()
  501. #define ggml_perf_time_us() ggml_time_us()
  502. #define ggml_perf_cycles() ggml_cycles()
  503. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  504. #else
  505. #define ggml_perf_time_ms() 0
  506. #define ggml_perf_time_us() 0
  507. #define ggml_perf_cycles() 0
  508. #define ggml_perf_cycles_per_ms() 0
  509. #endif
  510. //
  511. // cache line
  512. //
  513. #if defined(__cpp_lib_hardware_interference_size)
  514. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  515. #else
  516. #if defined(__POWER9_VECTOR__)
  517. #define CACHE_LINE_SIZE 128
  518. #else
  519. #define CACHE_LINE_SIZE 64
  520. #endif
  521. #endif
  522. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  523. //
  524. // quantization
  525. //
  526. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  527. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  528. // multiply int8_t, add results pairwise twice
  529. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  530. // Get absolute values of x vectors
  531. const __m128i ax = _mm_sign_epi8(x, x);
  532. // Sign the values of the y vectors
  533. const __m128i sy = _mm_sign_epi8(y, x);
  534. // Perform multiplication and create 16-bit values
  535. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  536. const __m128i ones = _mm_set1_epi16(1);
  537. return _mm_madd_epi16(ones, dot);
  538. }
  539. #if __AVX__ || __AVX2__ || __AVX512F__
  540. // horizontally add 8 floats
  541. static inline float hsum_float_8(const __m256 x) {
  542. __m128 res = _mm256_extractf128_ps(x, 1);
  543. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  544. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  545. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  546. return _mm_cvtss_f32(res);
  547. }
  548. // horizontally add 8 int32_t
  549. static inline int hsum_i32_8(const __m256i a) {
  550. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  551. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  552. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  553. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  554. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  555. }
  556. // horizontally add 4 int32_t
  557. static inline int hsum_i32_4(const __m128i a) {
  558. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  559. const __m128i sum64 = _mm_add_epi32(hi64, a);
  560. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  561. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  562. }
  563. #if defined(__AVX2__) || defined(__AVX512F__)
  564. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  565. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  566. uint32_t x32;
  567. memcpy(&x32, x, sizeof(uint32_t));
  568. const __m256i shuf_mask = _mm256_set_epi64x(
  569. 0x0303030303030303, 0x0202020202020202,
  570. 0x0101010101010101, 0x0000000000000000);
  571. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  572. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  573. bytes = _mm256_or_si256(bytes, bit_mask);
  574. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  575. }
  576. // Unpack 32 4-bit fields into 32 bytes
  577. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  578. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  579. {
  580. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  581. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  582. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  583. return _mm256_and_si256(lowMask, bytes);
  584. }
  585. // add int16_t pairwise and return as float vector
  586. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  587. const __m256i ones = _mm256_set1_epi16(1);
  588. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  589. return _mm256_cvtepi32_ps(summed_pairs);
  590. }
  591. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  592. #if __AVXVNNI__
  593. const __m256i zero = _mm256_setzero_si256();
  594. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  595. return _mm256_cvtepi32_ps(summed_pairs);
  596. #else
  597. // Perform multiplication and create 16-bit values
  598. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  599. return sum_i16_pairs_float(dot);
  600. #endif
  601. }
  602. // multiply int8_t, add results pairwise twice and return as float vector
  603. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  604. #if __AVXVNNIINT8__
  605. const __m256i zero = _mm256_setzero_si256();
  606. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  607. return _mm256_cvtepi32_ps(summed_pairs);
  608. #else
  609. // Get absolute values of x vectors
  610. const __m256i ax = _mm256_sign_epi8(x, x);
  611. // Sign the values of the y vectors
  612. const __m256i sy = _mm256_sign_epi8(y, x);
  613. return mul_sum_us8_pairs_float(ax, sy);
  614. #endif
  615. }
  616. static inline __m128i packNibbles( __m256i bytes )
  617. {
  618. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  619. #if __AVX512F__
  620. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  621. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  622. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  623. #else
  624. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  625. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  626. __m256i low = _mm256_and_si256( lowByte, bytes );
  627. high = _mm256_srli_epi16( high, 4 );
  628. bytes = _mm256_or_si256( low, high );
  629. // Compress uint16_t lanes into bytes
  630. __m128i r0 = _mm256_castsi256_si128( bytes );
  631. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  632. return _mm_packus_epi16( r0, r1 );
  633. #endif
  634. }
  635. #elif defined(__AVX__)
  636. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  637. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  638. uint32_t x32;
  639. memcpy(&x32, x, sizeof(uint32_t));
  640. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  641. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  642. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  643. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  644. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  645. bytesl = _mm_or_si128(bytesl, bit_mask);
  646. bytesh = _mm_or_si128(bytesh, bit_mask);
  647. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  648. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  649. return MM256_SET_M128I(bytesh, bytesl);
  650. }
  651. // Unpack 32 4-bit fields into 32 bytes
  652. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  653. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  654. {
  655. // Load 16 bytes from memory
  656. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  657. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  658. const __m128i lowMask = _mm_set1_epi8(0xF);
  659. tmpl = _mm_and_si128(lowMask, tmpl);
  660. tmph = _mm_and_si128(lowMask, tmph);
  661. return MM256_SET_M128I(tmph, tmpl);
  662. }
  663. // add int16_t pairwise and return as float vector
  664. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  665. const __m128i ones = _mm_set1_epi16(1);
  666. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  667. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  668. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  669. return _mm256_cvtepi32_ps(summed_pairs);
  670. }
  671. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  672. const __m128i axl = _mm256_castsi256_si128(ax);
  673. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  674. const __m128i syl = _mm256_castsi256_si128(sy);
  675. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  676. // Perform multiplication and create 16-bit values
  677. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  678. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  679. return sum_i16_pairs_float(doth, dotl);
  680. }
  681. // multiply int8_t, add results pairwise twice and return as float vector
  682. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  683. const __m128i xl = _mm256_castsi256_si128(x);
  684. const __m128i xh = _mm256_extractf128_si256(x, 1);
  685. const __m128i yl = _mm256_castsi256_si128(y);
  686. const __m128i yh = _mm256_extractf128_si256(y, 1);
  687. // Get absolute values of x vectors
  688. const __m128i axl = _mm_sign_epi8(xl, xl);
  689. const __m128i axh = _mm_sign_epi8(xh, xh);
  690. // Sign the values of the y vectors
  691. const __m128i syl = _mm_sign_epi8(yl, xl);
  692. const __m128i syh = _mm_sign_epi8(yh, xh);
  693. // Perform multiplication and create 16-bit values
  694. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  695. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  696. return sum_i16_pairs_float(doth, dotl);
  697. }
  698. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  699. {
  700. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  701. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  702. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  703. __m128i low = _mm_and_si128( lowByte, bytes1 );
  704. high = _mm_srli_epi16( high, 4 );
  705. bytes1 = _mm_or_si128( low, high );
  706. high = _mm_andnot_si128( lowByte, bytes2 );
  707. low = _mm_and_si128( lowByte, bytes2 );
  708. high = _mm_srli_epi16( high, 4 );
  709. bytes2 = _mm_or_si128( low, high );
  710. return _mm_packus_epi16( bytes1, bytes2);
  711. }
  712. #endif
  713. #elif defined(__SSSE3__)
  714. // horizontally add 4x4 floats
  715. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  716. __m128 res_0 =_mm_hadd_ps(a, b);
  717. __m128 res_1 =_mm_hadd_ps(c, d);
  718. __m128 res =_mm_hadd_ps(res_0, res_1);
  719. res =_mm_hadd_ps(res, res);
  720. res =_mm_hadd_ps(res, res);
  721. return _mm_cvtss_f32(res);
  722. }
  723. #endif // __AVX__ || __AVX2__ || __AVX512F__
  724. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  725. #if defined(__ARM_NEON)
  726. #if !defined(__aarch64__)
  727. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  728. return
  729. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  730. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  731. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  732. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  733. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  734. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  735. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  736. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  737. }
  738. inline static int16_t vaddvq_s8(int8x16_t v) {
  739. return
  740. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  741. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  742. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  743. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  744. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  745. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  746. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  747. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  748. }
  749. inline static int32_t vaddvq_s16(int16x8_t v) {
  750. return
  751. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  752. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  753. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  754. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  755. }
  756. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  757. return
  758. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  759. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  760. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  761. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  762. }
  763. inline static int32_t vaddvq_s32(int32x4_t v) {
  764. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  765. }
  766. inline static float vaddvq_f32(float32x4_t v) {
  767. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  768. }
  769. inline static float vminvq_f32(float32x4_t v) {
  770. return
  771. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  772. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  773. }
  774. inline static float vmaxvq_f32(float32x4_t v) {
  775. return
  776. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  777. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  778. }
  779. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  780. int32x4_t res;
  781. res[0] = roundf(vgetq_lane_f32(v, 0));
  782. res[1] = roundf(vgetq_lane_f32(v, 1));
  783. res[2] = roundf(vgetq_lane_f32(v, 2));
  784. res[3] = roundf(vgetq_lane_f32(v, 3));
  785. return res;
  786. }
  787. #endif
  788. #endif
  789. #define QK4_0 32
  790. typedef struct {
  791. ggml_fp16_t d; // delta
  792. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  793. } block_q4_0;
  794. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  795. #define QK4_1 32
  796. typedef struct {
  797. ggml_fp16_t d; // delta
  798. ggml_fp16_t m; // min
  799. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  800. } block_q4_1;
  801. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  802. #define QK5_0 32
  803. typedef struct {
  804. ggml_fp16_t d; // delta
  805. uint8_t qh[4]; // 5-th bit of quants
  806. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  807. } block_q5_0;
  808. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  809. #define QK5_1 32
  810. typedef struct {
  811. ggml_fp16_t d; // delta
  812. ggml_fp16_t m; // min
  813. uint8_t qh[4]; // 5-th bit of quants
  814. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  815. } block_q5_1;
  816. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  817. #define QK8_0 32
  818. typedef struct {
  819. ggml_fp16_t d; // delta
  820. int8_t qs[QK8_0]; // quants
  821. } block_q8_0;
  822. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  823. #define QK8_1 32
  824. typedef struct {
  825. float d; // delta
  826. float s; // d * sum(qs[i])
  827. int8_t qs[QK8_1]; // quants
  828. } block_q8_1;
  829. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  830. // reference implementation for deterministic creation of model files
  831. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  832. static const int qk = QK4_0;
  833. assert(k % qk == 0);
  834. const int nb = k / qk;
  835. for (int i = 0; i < nb; i++) {
  836. float amax = 0.0f; // absolute max
  837. float max = 0.0f;
  838. for (int j = 0; j < qk; j++) {
  839. const float v = x[i*qk + j];
  840. if (amax < fabsf(v)) {
  841. amax = fabsf(v);
  842. max = v;
  843. }
  844. }
  845. const float d = max / -8;
  846. const float id = d ? 1.0f/d : 0.0f;
  847. y[i].d = GGML_FP32_TO_FP16(d);
  848. for (int j = 0; j < qk/2; ++j) {
  849. const float x0 = x[i*qk + 0 + j]*id;
  850. const float x1 = x[i*qk + qk/2 + j]*id;
  851. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  852. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  853. y[i].qs[j] = xi0;
  854. y[i].qs[j] |= xi1 << 4;
  855. }
  856. }
  857. }
  858. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  859. quantize_row_q4_0_reference(x, y, k);
  860. }
  861. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  862. const int qk = QK4_1;
  863. assert(k % qk == 0);
  864. const int nb = k / qk;
  865. for (int i = 0; i < nb; i++) {
  866. float min = FLT_MAX;
  867. float max = -FLT_MAX;
  868. for (int j = 0; j < qk; j++) {
  869. const float v = x[i*qk + j];
  870. if (v < min) min = v;
  871. if (v > max) max = v;
  872. }
  873. const float d = (max - min) / ((1 << 4) - 1);
  874. const float id = d ? 1.0f/d : 0.0f;
  875. y[i].d = GGML_FP32_TO_FP16(d);
  876. y[i].m = GGML_FP32_TO_FP16(min);
  877. for (int j = 0; j < qk/2; ++j) {
  878. const float x0 = (x[i*qk + 0 + j] - min)*id;
  879. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  880. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  881. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  882. y[i].qs[j] = xi0;
  883. y[i].qs[j] |= xi1 << 4;
  884. }
  885. }
  886. }
  887. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  888. quantize_row_q4_1_reference(x, y, k);
  889. }
  890. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  891. static const int qk = QK5_0;
  892. assert(k % qk == 0);
  893. const int nb = k / qk;
  894. for (int i = 0; i < nb; i++) {
  895. float amax = 0.0f; // absolute max
  896. float max = 0.0f;
  897. for (int j = 0; j < qk; j++) {
  898. const float v = x[i*qk + j];
  899. if (amax < fabsf(v)) {
  900. amax = fabsf(v);
  901. max = v;
  902. }
  903. }
  904. const float d = max / -16;
  905. const float id = d ? 1.0f/d : 0.0f;
  906. y[i].d = GGML_FP32_TO_FP16(d);
  907. uint32_t qh = 0;
  908. for (int j = 0; j < qk/2; ++j) {
  909. const float x0 = x[i*qk + 0 + j]*id;
  910. const float x1 = x[i*qk + qk/2 + j]*id;
  911. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  912. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  913. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  914. // get the 5-th bit and store it in qh at the right position
  915. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  916. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  917. }
  918. memcpy(&y[i].qh, &qh, sizeof(qh));
  919. }
  920. }
  921. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  922. quantize_row_q5_0_reference(x, y, k);
  923. }
  924. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  925. const int qk = QK5_1;
  926. assert(k % qk == 0);
  927. const int nb = k / qk;
  928. for (int i = 0; i < nb; i++) {
  929. float min = FLT_MAX;
  930. float max = -FLT_MAX;
  931. for (int j = 0; j < qk; j++) {
  932. const float v = x[i*qk + j];
  933. if (v < min) min = v;
  934. if (v > max) max = v;
  935. }
  936. const float d = (max - min) / ((1 << 5) - 1);
  937. const float id = d ? 1.0f/d : 0.0f;
  938. y[i].d = GGML_FP32_TO_FP16(d);
  939. y[i].m = GGML_FP32_TO_FP16(min);
  940. uint32_t qh = 0;
  941. for (int j = 0; j < qk/2; ++j) {
  942. const float x0 = (x[i*qk + 0 + j] - min)*id;
  943. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  944. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  945. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  946. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  947. // get the 5-th bit and store it in qh at the right position
  948. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  949. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  950. }
  951. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  952. }
  953. }
  954. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  955. quantize_row_q5_1_reference(x, y, k);
  956. }
  957. // reference implementation for deterministic creation of model files
  958. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  959. assert(k % QK8_0 == 0);
  960. const int nb = k / QK8_0;
  961. for (int i = 0; i < nb; i++) {
  962. float amax = 0.0f; // absolute max
  963. for (int j = 0; j < QK8_0; j++) {
  964. const float v = x[i*QK8_0 + j];
  965. amax = MAX(amax, fabsf(v));
  966. }
  967. const float d = amax / ((1 << 7) - 1);
  968. const float id = d ? 1.0f/d : 0.0f;
  969. y[i].d = GGML_FP32_TO_FP16(d);
  970. for (int j = 0; j < QK8_0; ++j) {
  971. const float x0 = x[i*QK8_0 + j]*id;
  972. y[i].qs[j] = roundf(x0);
  973. }
  974. }
  975. }
  976. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  977. assert(QK8_0 == 32);
  978. assert(k % QK8_0 == 0);
  979. const int nb = k / QK8_0;
  980. block_q8_0 * restrict y = vy;
  981. #if defined(__ARM_NEON)
  982. for (int i = 0; i < nb; i++) {
  983. float32x4_t srcv [8];
  984. float32x4_t asrcv[8];
  985. float32x4_t amaxv[8];
  986. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  987. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  988. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  989. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  990. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  991. const float amax = vmaxvq_f32(amaxv[0]);
  992. const float d = amax / ((1 << 7) - 1);
  993. const float id = d ? 1.0f/d : 0.0f;
  994. y[i].d = GGML_FP32_TO_FP16(d);
  995. for (int j = 0; j < 8; j++) {
  996. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  997. const int32x4_t vi = vcvtnq_s32_f32(v);
  998. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  999. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1000. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1001. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1002. }
  1003. }
  1004. #elif defined(__wasm_simd128__)
  1005. for (int i = 0; i < nb; i++) {
  1006. v128_t srcv [8];
  1007. v128_t asrcv[8];
  1008. v128_t amaxv[8];
  1009. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1010. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1011. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1012. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1013. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1014. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1015. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1016. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1017. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1018. const float d = amax / ((1 << 7) - 1);
  1019. const float id = d ? 1.0f/d : 0.0f;
  1020. y[i].d = GGML_FP32_TO_FP16(d);
  1021. for (int j = 0; j < 8; j++) {
  1022. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1023. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1024. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1025. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1026. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1027. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1028. }
  1029. }
  1030. #elif defined(__AVX2__) || defined(__AVX__)
  1031. for (int i = 0; i < nb; i++) {
  1032. // Load elements into 4 AVX vectors
  1033. __m256 v0 = _mm256_loadu_ps( x );
  1034. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1035. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1036. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1037. x += 32;
  1038. // Compute max(abs(e)) for the block
  1039. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1040. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1041. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1042. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1043. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1044. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1045. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1046. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1047. const float maxScalar = _mm_cvtss_f32( max4 );
  1048. // Quantize these floats
  1049. const float d = maxScalar / 127.f;
  1050. y[i].d = GGML_FP32_TO_FP16(d);
  1051. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1052. const __m256 mul = _mm256_set1_ps( id );
  1053. // Apply the multiplier
  1054. v0 = _mm256_mul_ps( v0, mul );
  1055. v1 = _mm256_mul_ps( v1, mul );
  1056. v2 = _mm256_mul_ps( v2, mul );
  1057. v3 = _mm256_mul_ps( v3, mul );
  1058. // Round to nearest integer
  1059. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1060. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1061. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1062. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1063. // Convert floats to integers
  1064. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1065. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1066. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1067. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1068. #if defined(__AVX2__)
  1069. // Convert int32 to int16
  1070. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1071. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1072. // Convert int16 to int8
  1073. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1074. // We got our precious signed bytes, but the order is now wrong
  1075. // These AVX2 pack instructions process 16-byte pieces independently
  1076. // The following instruction is fixing the order
  1077. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1078. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1079. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1080. #else
  1081. // Since we don't have in AVX some necessary functions,
  1082. // we split the registers in half and call AVX2 analogs from SSE
  1083. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1084. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1085. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1086. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1087. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1088. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1089. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1090. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1091. // Convert int32 to int16
  1092. ni0 = _mm_packs_epi32( ni0, ni1 );
  1093. ni2 = _mm_packs_epi32( ni2, ni3 );
  1094. ni4 = _mm_packs_epi32( ni4, ni5 );
  1095. ni6 = _mm_packs_epi32( ni6, ni7 );
  1096. // Convert int16 to int8
  1097. ni0 = _mm_packs_epi16( ni0, ni2 );
  1098. ni4 = _mm_packs_epi16( ni4, ni6 );
  1099. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1100. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1101. #endif
  1102. }
  1103. #else
  1104. // scalar
  1105. quantize_row_q8_0_reference(x, y, k);
  1106. #endif
  1107. }
  1108. // reference implementation for deterministic creation of model files
  1109. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1110. assert(QK8_1 == 32);
  1111. assert(k % QK8_1 == 0);
  1112. const int nb = k / QK8_1;
  1113. for (int i = 0; i < nb; i++) {
  1114. float amax = 0.0f; // absolute max
  1115. for (int j = 0; j < QK8_1; j++) {
  1116. const float v = x[i*QK8_1 + j];
  1117. amax = MAX(amax, fabsf(v));
  1118. }
  1119. const float d = amax / ((1 << 7) - 1);
  1120. const float id = d ? 1.0f/d : 0.0f;
  1121. y[i].d = d;
  1122. int sum = 0;
  1123. for (int j = 0; j < QK8_1/2; ++j) {
  1124. const float v0 = x[i*QK8_1 + j]*id;
  1125. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1126. y[i].qs[ j] = roundf(v0);
  1127. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1128. sum += y[i].qs[ j];
  1129. sum += y[i].qs[QK8_1/2 + j];
  1130. }
  1131. y[i].s = sum*d;
  1132. }
  1133. }
  1134. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1135. assert(k % QK8_1 == 0);
  1136. const int nb = k / QK8_1;
  1137. block_q8_1 * restrict y = vy;
  1138. #if defined(__ARM_NEON)
  1139. for (int i = 0; i < nb; i++) {
  1140. float32x4_t srcv [8];
  1141. float32x4_t asrcv[8];
  1142. float32x4_t amaxv[8];
  1143. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1144. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1145. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1146. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1147. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1148. const float amax = vmaxvq_f32(amaxv[0]);
  1149. const float d = amax / ((1 << 7) - 1);
  1150. const float id = d ? 1.0f/d : 0.0f;
  1151. y[i].d = d;
  1152. int32x4_t accv = vdupq_n_s32(0);
  1153. for (int j = 0; j < 8; j++) {
  1154. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1155. const int32x4_t vi = vcvtnq_s32_f32(v);
  1156. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1157. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1158. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1159. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1160. accv = vaddq_s32(accv, vi);
  1161. }
  1162. y[i].s = d * vaddvq_s32(accv);
  1163. }
  1164. #elif defined(__wasm_simd128__)
  1165. for (int i = 0; i < nb; i++) {
  1166. v128_t srcv [8];
  1167. v128_t asrcv[8];
  1168. v128_t amaxv[8];
  1169. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1170. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1171. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1172. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1173. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1174. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1175. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1176. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1177. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1178. const float d = amax / ((1 << 7) - 1);
  1179. const float id = d ? 1.0f/d : 0.0f;
  1180. y[i].d = d;
  1181. v128_t accv = wasm_i32x4_splat(0);
  1182. for (int j = 0; j < 8; j++) {
  1183. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1184. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1185. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1186. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1187. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1188. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1189. accv = wasm_i32x4_add(accv, vi);
  1190. }
  1191. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1192. wasm_i32x4_extract_lane(accv, 1) +
  1193. wasm_i32x4_extract_lane(accv, 2) +
  1194. wasm_i32x4_extract_lane(accv, 3));
  1195. }
  1196. #elif defined(__AVX2__) || defined(__AVX__)
  1197. for (int i = 0; i < nb; i++) {
  1198. // Load elements into 4 AVX vectors
  1199. __m256 v0 = _mm256_loadu_ps( x );
  1200. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1201. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1202. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1203. x += 32;
  1204. // Compute max(abs(e)) for the block
  1205. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1206. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1207. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1208. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1209. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1210. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1211. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1212. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1213. const float maxScalar = _mm_cvtss_f32( max4 );
  1214. // Quantize these floats
  1215. const float d = maxScalar / 127.f;
  1216. y[i].d = d;
  1217. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1218. const __m256 mul = _mm256_set1_ps( id );
  1219. // Apply the multiplier
  1220. v0 = _mm256_mul_ps( v0, mul );
  1221. v1 = _mm256_mul_ps( v1, mul );
  1222. v2 = _mm256_mul_ps( v2, mul );
  1223. v3 = _mm256_mul_ps( v3, mul );
  1224. // Round to nearest integer
  1225. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1226. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1227. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1228. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1229. // Convert floats to integers
  1230. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1231. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1232. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1233. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1234. #if defined(__AVX2__)
  1235. // Compute the sum of the quants and set y[i].s
  1236. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1237. // Convert int32 to int16
  1238. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1239. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1240. // Convert int16 to int8
  1241. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1242. // We got our precious signed bytes, but the order is now wrong
  1243. // These AVX2 pack instructions process 16-byte pieces independently
  1244. // The following instruction is fixing the order
  1245. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1246. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1247. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1248. #else
  1249. // Since we don't have in AVX some necessary functions,
  1250. // we split the registers in half and call AVX2 analogs from SSE
  1251. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1252. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1253. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1254. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1255. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1256. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1257. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1258. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1259. // Compute the sum of the quants and set y[i].s
  1260. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1261. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1262. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1263. // Convert int32 to int16
  1264. ni0 = _mm_packs_epi32( ni0, ni1 );
  1265. ni2 = _mm_packs_epi32( ni2, ni3 );
  1266. ni4 = _mm_packs_epi32( ni4, ni5 );
  1267. ni6 = _mm_packs_epi32( ni6, ni7 );
  1268. // Convert int16 to int8
  1269. ni0 = _mm_packs_epi16( ni0, ni2 );
  1270. ni4 = _mm_packs_epi16( ni4, ni6 );
  1271. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1272. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1273. #endif
  1274. }
  1275. #else
  1276. // scalar
  1277. quantize_row_q8_1_reference(x, y, k);
  1278. #endif
  1279. }
  1280. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1281. static const int qk = QK4_0;
  1282. assert(k % qk == 0);
  1283. const int nb = k / qk;
  1284. for (int i = 0; i < nb; i++) {
  1285. const float d = GGML_FP16_TO_FP32(x[i].d);
  1286. for (int j = 0; j < qk/2; ++j) {
  1287. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1288. const int x1 = (x[i].qs[j] >> 4) - 8;
  1289. y[i*qk + j + 0 ] = x0*d;
  1290. y[i*qk + j + qk/2] = x1*d;
  1291. }
  1292. }
  1293. }
  1294. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1295. static const int qk = QK4_1;
  1296. assert(k % qk == 0);
  1297. const int nb = k / qk;
  1298. for (int i = 0; i < nb; i++) {
  1299. const float d = GGML_FP16_TO_FP32(x[i].d);
  1300. const float m = GGML_FP16_TO_FP32(x[i].m);
  1301. for (int j = 0; j < qk/2; ++j) {
  1302. const int x0 = (x[i].qs[j] & 0x0F);
  1303. const int x1 = (x[i].qs[j] >> 4);
  1304. y[i*qk + j + 0 ] = x0*d + m;
  1305. y[i*qk + j + qk/2] = x1*d + m;
  1306. }
  1307. }
  1308. }
  1309. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1310. static const int qk = QK5_0;
  1311. assert(k % qk == 0);
  1312. const int nb = k / qk;
  1313. for (int i = 0; i < nb; i++) {
  1314. const float d = GGML_FP16_TO_FP32(x[i].d);
  1315. uint32_t qh;
  1316. memcpy(&qh, x[i].qh, sizeof(qh));
  1317. for (int j = 0; j < qk/2; ++j) {
  1318. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1319. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1320. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1321. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1322. y[i*qk + j + 0 ] = x0*d;
  1323. y[i*qk + j + qk/2] = x1*d;
  1324. }
  1325. }
  1326. }
  1327. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1328. static const int qk = QK5_1;
  1329. assert(k % qk == 0);
  1330. const int nb = k / qk;
  1331. for (int i = 0; i < nb; i++) {
  1332. const float d = GGML_FP16_TO_FP32(x[i].d);
  1333. const float m = GGML_FP16_TO_FP32(x[i].m);
  1334. uint32_t qh;
  1335. memcpy(&qh, x[i].qh, sizeof(qh));
  1336. for (int j = 0; j < qk/2; ++j) {
  1337. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1338. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1339. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1340. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1341. y[i*qk + j + 0 ] = x0*d + m;
  1342. y[i*qk + j + qk/2] = x1*d + m;
  1343. }
  1344. }
  1345. }
  1346. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1347. static const int qk = QK8_0;
  1348. assert(k % qk == 0);
  1349. const int nb = k / qk;
  1350. const block_q8_0 * restrict x = vx;
  1351. for (int i = 0; i < nb; i++) {
  1352. const float d = GGML_FP16_TO_FP32(x[i].d);
  1353. for (int j = 0; j < qk; ++j) {
  1354. y[i*qk + j] = x[i].qs[j]*d;
  1355. }
  1356. }
  1357. }
  1358. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1359. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1360. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1361. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1362. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1363. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1364. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1365. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1366. [GGML_TYPE_F32] = {
  1367. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1368. .vec_dot_type = GGML_TYPE_F32,
  1369. },
  1370. [GGML_TYPE_F16] = {
  1371. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1372. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1373. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1374. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1375. .vec_dot_type = GGML_TYPE_F16,
  1376. },
  1377. [GGML_TYPE_Q4_0] = {
  1378. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1379. .from_float = quantize_row_q4_0,
  1380. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1381. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1382. .vec_dot_type = GGML_TYPE_Q8_0,
  1383. },
  1384. [GGML_TYPE_Q4_1] = {
  1385. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1386. .from_float = quantize_row_q4_1,
  1387. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1388. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1389. .vec_dot_type = GGML_TYPE_Q8_1,
  1390. },
  1391. [GGML_TYPE_Q5_0] = {
  1392. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1393. .from_float = quantize_row_q5_0,
  1394. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1395. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1396. .vec_dot_type = GGML_TYPE_Q8_0,
  1397. },
  1398. [GGML_TYPE_Q5_1] = {
  1399. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1400. .from_float = quantize_row_q5_1,
  1401. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1402. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1403. .vec_dot_type = GGML_TYPE_Q8_1,
  1404. },
  1405. [GGML_TYPE_Q8_0] = {
  1406. .to_float = dequantize_row_q8_0,
  1407. .from_float = quantize_row_q8_0,
  1408. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1409. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1410. .vec_dot_type = GGML_TYPE_Q8_0,
  1411. },
  1412. [GGML_TYPE_Q8_1] = {
  1413. .from_float = quantize_row_q8_1,
  1414. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1415. .vec_dot_type = GGML_TYPE_Q8_1,
  1416. },
  1417. #ifdef GGML_USE_K_QUANTS
  1418. [GGML_TYPE_Q2_K] = {
  1419. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1420. .from_float = quantize_row_q2_K,
  1421. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1422. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1423. .vec_dot_type = GGML_TYPE_Q8_K,
  1424. },
  1425. [GGML_TYPE_Q3_K] = {
  1426. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1427. .from_float = quantize_row_q3_K,
  1428. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1429. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1430. .vec_dot_type = GGML_TYPE_Q8_K,
  1431. },
  1432. [GGML_TYPE_Q4_K] = {
  1433. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1434. .from_float = quantize_row_q4_K,
  1435. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1436. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1437. .vec_dot_type = GGML_TYPE_Q8_K,
  1438. },
  1439. [GGML_TYPE_Q5_K] = {
  1440. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1441. .from_float = quantize_row_q5_K,
  1442. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1443. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1444. .vec_dot_type = GGML_TYPE_Q8_K,
  1445. },
  1446. [GGML_TYPE_Q6_K] = {
  1447. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1448. .from_float = quantize_row_q6_K,
  1449. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1450. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1451. .vec_dot_type = GGML_TYPE_Q8_K,
  1452. },
  1453. [GGML_TYPE_Q8_K] = {
  1454. .from_float = quantize_row_q8_K,
  1455. }
  1456. #endif
  1457. };
  1458. // For internal test use
  1459. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1460. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1461. return type_traits[i];
  1462. }
  1463. //
  1464. // simd mappings
  1465. //
  1466. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1467. // we then implement the fundamental computation operations below using only these macros
  1468. // adding support for new architectures requires to define the corresponding SIMD macros
  1469. //
  1470. // GGML_F32_STEP / GGML_F16_STEP
  1471. // number of elements to process in a single step
  1472. //
  1473. // GGML_F32_EPR / GGML_F16_EPR
  1474. // number of elements to fit in a single register
  1475. //
  1476. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1477. #define GGML_SIMD
  1478. // F32 NEON
  1479. #define GGML_F32_STEP 16
  1480. #define GGML_F32_EPR 4
  1481. #define GGML_F32x4 float32x4_t
  1482. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1483. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1484. #define GGML_F32x4_LOAD vld1q_f32
  1485. #define GGML_F32x4_STORE vst1q_f32
  1486. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1487. #define GGML_F32x4_ADD vaddq_f32
  1488. #define GGML_F32x4_MUL vmulq_f32
  1489. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1490. #define GGML_F32x4_REDUCE(res, x) \
  1491. { \
  1492. int offset = GGML_F32_ARR >> 1; \
  1493. for (int i = 0; i < offset; ++i) { \
  1494. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1495. } \
  1496. offset >>= 1; \
  1497. for (int i = 0; i < offset; ++i) { \
  1498. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1499. } \
  1500. offset >>= 1; \
  1501. for (int i = 0; i < offset; ++i) { \
  1502. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1503. } \
  1504. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1505. }
  1506. #define GGML_F32_VEC GGML_F32x4
  1507. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1508. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1509. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1510. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1511. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1512. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1513. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1514. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1515. // F16 NEON
  1516. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1517. #define GGML_F16_STEP 32
  1518. #define GGML_F16_EPR 8
  1519. #define GGML_F16x8 float16x8_t
  1520. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1521. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1522. #define GGML_F16x8_LOAD vld1q_f16
  1523. #define GGML_F16x8_STORE vst1q_f16
  1524. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1525. #define GGML_F16x8_ADD vaddq_f16
  1526. #define GGML_F16x8_MUL vmulq_f16
  1527. #define GGML_F16x8_REDUCE(res, x) \
  1528. { \
  1529. int offset = GGML_F16_ARR >> 1; \
  1530. for (int i = 0; i < offset; ++i) { \
  1531. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1532. } \
  1533. offset >>= 1; \
  1534. for (int i = 0; i < offset; ++i) { \
  1535. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1536. } \
  1537. offset >>= 1; \
  1538. for (int i = 0; i < offset; ++i) { \
  1539. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1540. } \
  1541. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1542. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1543. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1544. }
  1545. #define GGML_F16_VEC GGML_F16x8
  1546. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1547. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1548. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1549. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1550. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1551. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1552. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1553. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1554. #else
  1555. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1556. // and take advantage of the vcvt_ functions to convert to/from FP16
  1557. #define GGML_F16_STEP 16
  1558. #define GGML_F16_EPR 4
  1559. #define GGML_F32Cx4 float32x4_t
  1560. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1561. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1562. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1563. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1564. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1565. #define GGML_F32Cx4_ADD vaddq_f32
  1566. #define GGML_F32Cx4_MUL vmulq_f32
  1567. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1568. #define GGML_F16_VEC GGML_F32Cx4
  1569. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1570. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1571. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1572. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1573. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1574. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1575. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1576. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1577. #endif
  1578. #elif defined(__AVX__)
  1579. #define GGML_SIMD
  1580. // F32 AVX
  1581. #define GGML_F32_STEP 32
  1582. #define GGML_F32_EPR 8
  1583. #define GGML_F32x8 __m256
  1584. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1585. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1586. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1587. #define GGML_F32x8_STORE _mm256_storeu_ps
  1588. #if defined(__FMA__)
  1589. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1590. #else
  1591. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1592. #endif
  1593. #define GGML_F32x8_ADD _mm256_add_ps
  1594. #define GGML_F32x8_MUL _mm256_mul_ps
  1595. #define GGML_F32x8_REDUCE(res, x) \
  1596. { \
  1597. int offset = GGML_F32_ARR >> 1; \
  1598. for (int i = 0; i < offset; ++i) { \
  1599. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1600. } \
  1601. offset >>= 1; \
  1602. for (int i = 0; i < offset; ++i) { \
  1603. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1604. } \
  1605. offset >>= 1; \
  1606. for (int i = 0; i < offset; ++i) { \
  1607. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1608. } \
  1609. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1610. _mm256_extractf128_ps(x[0], 1)); \
  1611. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1612. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1613. }
  1614. // TODO: is this optimal ?
  1615. #define GGML_F32_VEC GGML_F32x8
  1616. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1617. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1618. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1619. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1620. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1621. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1622. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1623. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1624. // F16 AVX
  1625. #define GGML_F16_STEP 32
  1626. #define GGML_F16_EPR 8
  1627. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1628. #define GGML_F32Cx8 __m256
  1629. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1630. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1631. #if defined(__F16C__)
  1632. // the _mm256_cvt intrinsics require F16C
  1633. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1634. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1635. #else
  1636. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1637. float tmp[8];
  1638. for (int i = 0; i < 8; i++) {
  1639. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1640. }
  1641. return _mm256_loadu_ps(tmp);
  1642. }
  1643. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1644. float arr[8];
  1645. _mm256_storeu_ps(arr, y);
  1646. for (int i = 0; i < 8; i++)
  1647. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1648. }
  1649. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1650. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1651. #endif
  1652. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1653. #define GGML_F32Cx8_ADD _mm256_add_ps
  1654. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1655. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1656. #define GGML_F16_VEC GGML_F32Cx8
  1657. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1658. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1659. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1660. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1661. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1662. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1663. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1664. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1665. #elif defined(__POWER9_VECTOR__)
  1666. #define GGML_SIMD
  1667. // F32 POWER9
  1668. #define GGML_F32_STEP 32
  1669. #define GGML_F32_EPR 4
  1670. #define GGML_F32x4 vector float
  1671. #define GGML_F32x4_ZERO 0.0f
  1672. #define GGML_F32x4_SET1 vec_splats
  1673. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1674. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1675. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1676. #define GGML_F32x4_ADD vec_add
  1677. #define GGML_F32x4_MUL vec_mul
  1678. #define GGML_F32x4_REDUCE(res, x) \
  1679. { \
  1680. int offset = GGML_F32_ARR >> 1; \
  1681. for (int i = 0; i < offset; ++i) { \
  1682. x[i] = vec_add(x[i], x[offset+i]); \
  1683. } \
  1684. offset >>= 1; \
  1685. for (int i = 0; i < offset; ++i) { \
  1686. x[i] = vec_add(x[i], x[offset+i]); \
  1687. } \
  1688. offset >>= 1; \
  1689. for (int i = 0; i < offset; ++i) { \
  1690. x[i] = vec_add(x[i], x[offset+i]); \
  1691. } \
  1692. res = vec_extract(x[0], 0) + \
  1693. vec_extract(x[0], 1) + \
  1694. vec_extract(x[0], 2) + \
  1695. vec_extract(x[0], 3); \
  1696. }
  1697. #define GGML_F32_VEC GGML_F32x4
  1698. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1699. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1700. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1701. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1702. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1703. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1704. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1705. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1706. // F16 POWER9
  1707. #define GGML_F16_STEP GGML_F32_STEP
  1708. #define GGML_F16_EPR GGML_F32_EPR
  1709. #define GGML_F16_VEC GGML_F32x4
  1710. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1711. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1712. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1713. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1714. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1715. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1716. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1717. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1718. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1719. #define GGML_F16_VEC_STORE(p, r, i) \
  1720. if (i & 0x1) \
  1721. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1722. r[i - GGML_ENDIAN_BYTE(0)]), \
  1723. 0, p - GGML_F16_EPR)
  1724. #elif defined(__wasm_simd128__)
  1725. #define GGML_SIMD
  1726. // F32 WASM
  1727. #define GGML_F32_STEP 16
  1728. #define GGML_F32_EPR 4
  1729. #define GGML_F32x4 v128_t
  1730. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1731. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1732. #define GGML_F32x4_LOAD wasm_v128_load
  1733. #define GGML_F32x4_STORE wasm_v128_store
  1734. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1735. #define GGML_F32x4_ADD wasm_f32x4_add
  1736. #define GGML_F32x4_MUL wasm_f32x4_mul
  1737. #define GGML_F32x4_REDUCE(res, x) \
  1738. { \
  1739. int offset = GGML_F32_ARR >> 1; \
  1740. for (int i = 0; i < offset; ++i) { \
  1741. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1742. } \
  1743. offset >>= 1; \
  1744. for (int i = 0; i < offset; ++i) { \
  1745. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1746. } \
  1747. offset >>= 1; \
  1748. for (int i = 0; i < offset; ++i) { \
  1749. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1750. } \
  1751. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1752. wasm_f32x4_extract_lane(x[0], 1) + \
  1753. wasm_f32x4_extract_lane(x[0], 2) + \
  1754. wasm_f32x4_extract_lane(x[0], 3); \
  1755. }
  1756. #define GGML_F32_VEC GGML_F32x4
  1757. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1758. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1759. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1760. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1761. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1762. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1763. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1764. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1765. // F16 WASM
  1766. #define GGML_F16_STEP 16
  1767. #define GGML_F16_EPR 4
  1768. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1769. float tmp[4];
  1770. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1771. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1772. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1773. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1774. return wasm_v128_load(tmp);
  1775. }
  1776. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1777. float tmp[4];
  1778. wasm_v128_store(tmp, x);
  1779. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1780. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1781. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1782. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1783. }
  1784. #define GGML_F16x4 v128_t
  1785. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1786. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1787. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1788. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1789. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1790. #define GGML_F16x4_ADD wasm_f32x4_add
  1791. #define GGML_F16x4_MUL wasm_f32x4_mul
  1792. #define GGML_F16x4_REDUCE(res, x) \
  1793. { \
  1794. int offset = GGML_F16_ARR >> 1; \
  1795. for (int i = 0; i < offset; ++i) { \
  1796. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1797. } \
  1798. offset >>= 1; \
  1799. for (int i = 0; i < offset; ++i) { \
  1800. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1801. } \
  1802. offset >>= 1; \
  1803. for (int i = 0; i < offset; ++i) { \
  1804. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1805. } \
  1806. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1807. wasm_f32x4_extract_lane(x[0], 1) + \
  1808. wasm_f32x4_extract_lane(x[0], 2) + \
  1809. wasm_f32x4_extract_lane(x[0], 3); \
  1810. }
  1811. #define GGML_F16_VEC GGML_F16x4
  1812. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1813. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1814. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1815. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1816. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1817. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1818. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1819. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1820. #elif defined(__SSE3__)
  1821. #define GGML_SIMD
  1822. // F32 SSE
  1823. #define GGML_F32_STEP 32
  1824. #define GGML_F32_EPR 4
  1825. #define GGML_F32x4 __m128
  1826. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1827. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1828. #define GGML_F32x4_LOAD _mm_loadu_ps
  1829. #define GGML_F32x4_STORE _mm_storeu_ps
  1830. #if defined(__FMA__)
  1831. // TODO: Does this work?
  1832. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1833. #else
  1834. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1835. #endif
  1836. #define GGML_F32x4_ADD _mm_add_ps
  1837. #define GGML_F32x4_MUL _mm_mul_ps
  1838. #define GGML_F32x4_REDUCE(res, x) \
  1839. { \
  1840. int offset = GGML_F32_ARR >> 1; \
  1841. for (int i = 0; i < offset; ++i) { \
  1842. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1843. } \
  1844. offset >>= 1; \
  1845. for (int i = 0; i < offset; ++i) { \
  1846. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1847. } \
  1848. offset >>= 1; \
  1849. for (int i = 0; i < offset; ++i) { \
  1850. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1851. } \
  1852. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1853. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1854. }
  1855. // TODO: is this optimal ?
  1856. #define GGML_F32_VEC GGML_F32x4
  1857. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1858. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1859. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1860. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1861. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1862. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1863. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1864. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1865. // F16 SSE
  1866. #define GGML_F16_STEP 32
  1867. #define GGML_F16_EPR 4
  1868. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1869. float tmp[4];
  1870. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1871. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1872. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1873. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1874. return _mm_loadu_ps(tmp);
  1875. }
  1876. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1877. float arr[4];
  1878. _mm_storeu_ps(arr, y);
  1879. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1880. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1881. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1882. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1883. }
  1884. #define GGML_F32Cx4 __m128
  1885. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1886. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1887. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1888. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1889. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1890. #define GGML_F32Cx4_ADD _mm_add_ps
  1891. #define GGML_F32Cx4_MUL _mm_mul_ps
  1892. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1893. #define GGML_F16_VEC GGML_F32Cx4
  1894. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1895. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1896. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1897. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1898. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1899. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1900. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1901. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1902. #endif
  1903. // GGML_F32_ARR / GGML_F16_ARR
  1904. // number of registers to use per step
  1905. #ifdef GGML_SIMD
  1906. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1907. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1908. #endif
  1909. //
  1910. // fundamental operations
  1911. //
  1912. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1913. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1914. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1915. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1916. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1917. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1918. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1919. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1920. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1921. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1922. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1923. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1924. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1925. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1926. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1927. #ifdef GGML_SIMD
  1928. float sumf = 0.0f;
  1929. const int np = (n & ~(GGML_F32_STEP - 1));
  1930. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1931. GGML_F32_VEC ax[GGML_F32_ARR];
  1932. GGML_F32_VEC ay[GGML_F32_ARR];
  1933. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1934. for (int j = 0; j < GGML_F32_ARR; j++) {
  1935. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1936. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1937. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1938. }
  1939. }
  1940. // reduce sum0..sum3 to sum0
  1941. GGML_F32_VEC_REDUCE(sumf, sum);
  1942. // leftovers
  1943. for (int i = np; i < n; ++i) {
  1944. sumf += x[i]*y[i];
  1945. }
  1946. #else
  1947. // scalar
  1948. ggml_float sumf = 0.0;
  1949. for (int i = 0; i < n; ++i) {
  1950. sumf += (ggml_float)(x[i]*y[i]);
  1951. }
  1952. #endif
  1953. *s = sumf;
  1954. }
  1955. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1956. ggml_float sumf = 0.0;
  1957. #if defined(GGML_SIMD)
  1958. const int np = (n & ~(GGML_F16_STEP - 1));
  1959. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1960. GGML_F16_VEC ax[GGML_F16_ARR];
  1961. GGML_F16_VEC ay[GGML_F16_ARR];
  1962. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1963. for (int j = 0; j < GGML_F16_ARR; j++) {
  1964. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1965. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1966. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1967. }
  1968. }
  1969. // reduce sum0..sum3 to sum0
  1970. GGML_F16_VEC_REDUCE(sumf, sum);
  1971. // leftovers
  1972. for (int i = np; i < n; ++i) {
  1973. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1974. }
  1975. #else
  1976. for (int i = 0; i < n; ++i) {
  1977. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1978. }
  1979. #endif
  1980. *s = sumf;
  1981. }
  1982. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1983. const int qk = QK8_0;
  1984. const int nb = n / qk;
  1985. assert(n % qk == 0);
  1986. assert(nb % 2 == 0);
  1987. const block_q4_0 * restrict x = vx;
  1988. const block_q8_0 * restrict y = vy;
  1989. #if defined(__ARM_NEON)
  1990. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1991. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1992. for (int i = 0; i < nb; i += 2) {
  1993. const block_q4_0 * restrict x0 = &x[i + 0];
  1994. const block_q4_0 * restrict x1 = &x[i + 1];
  1995. const block_q8_0 * restrict y0 = &y[i + 0];
  1996. const block_q8_0 * restrict y1 = &y[i + 1];
  1997. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1998. const int8x16_t s8b = vdupq_n_s8(0x8);
  1999. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2000. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2001. // 4-bit -> 8-bit
  2002. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2003. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2004. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2005. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2006. // sub 8
  2007. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2008. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2009. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2010. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2011. // load y
  2012. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2013. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2014. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2015. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2016. #if defined(__ARM_FEATURE_DOTPROD)
  2017. // dot product into int32x4_t
  2018. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2019. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2020. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2021. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2022. #else
  2023. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2024. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2025. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2026. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2027. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2028. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2029. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2030. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2031. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2032. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2033. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2034. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2035. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2036. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2037. #endif
  2038. }
  2039. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2040. #elif defined(__AVX2__)
  2041. // Initialize accumulator with zeros
  2042. __m256 acc = _mm256_setzero_ps();
  2043. // Main loop
  2044. for (int i = 0; i < nb; ++i) {
  2045. /* Compute combined scale for the block */
  2046. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2047. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2048. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2049. const __m256i off = _mm256_set1_epi8( 8 );
  2050. bx = _mm256_sub_epi8( bx, off );
  2051. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2052. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2053. /* Multiply q with scale and accumulate */
  2054. acc = _mm256_fmadd_ps( d, q, acc );
  2055. }
  2056. *s = hsum_float_8(acc);
  2057. #elif defined(__AVX__)
  2058. // Initialize accumulator with zeros
  2059. __m256 acc = _mm256_setzero_ps();
  2060. // Main loop
  2061. for (int i = 0; i < nb; ++i) {
  2062. // Compute combined scale for the block
  2063. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2064. const __m128i lowMask = _mm_set1_epi8(0xF);
  2065. const __m128i off = _mm_set1_epi8(8);
  2066. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2067. __m128i bx = _mm_and_si128(lowMask, tmp);
  2068. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2069. bx = _mm_sub_epi8(bx, off);
  2070. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2071. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2072. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2073. bx = _mm_sub_epi8(bx, off);
  2074. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2075. // Convert int32_t to float
  2076. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2077. // Apply the scale, and accumulate
  2078. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2079. }
  2080. *s = hsum_float_8(acc);
  2081. #elif defined(__SSSE3__)
  2082. // set constants
  2083. const __m128i lowMask = _mm_set1_epi8(0xF);
  2084. const __m128i off = _mm_set1_epi8(8);
  2085. // Initialize accumulator with zeros
  2086. __m128 acc_0 = _mm_setzero_ps();
  2087. __m128 acc_1 = _mm_setzero_ps();
  2088. __m128 acc_2 = _mm_setzero_ps();
  2089. __m128 acc_3 = _mm_setzero_ps();
  2090. // First round without accumulation
  2091. {
  2092. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2093. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2094. // Compute combined scale for the block 0 and 1
  2095. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2096. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2097. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2098. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2099. bx_0 = _mm_sub_epi8(bx_0, off);
  2100. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2101. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2102. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2103. bx_1 = _mm_sub_epi8(bx_1, off);
  2104. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2105. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2106. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2107. // Compute combined scale for the block 2 and 3
  2108. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2109. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2110. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2111. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2112. bx_2 = _mm_sub_epi8(bx_2, off);
  2113. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2114. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2115. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2116. bx_3 = _mm_sub_epi8(bx_3, off);
  2117. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2118. // Convert int32_t to float
  2119. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2120. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2121. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2122. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2123. // Apply the scale
  2124. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2125. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2126. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2127. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2128. }
  2129. // Main loop
  2130. for (int i = 2; i < nb; i+=2) {
  2131. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2132. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2133. // Compute combined scale for the block 0 and 1
  2134. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2135. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2136. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2137. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2138. bx_0 = _mm_sub_epi8(bx_0, off);
  2139. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2140. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2141. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2142. bx_1 = _mm_sub_epi8(bx_1, off);
  2143. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2144. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2145. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2146. // Compute combined scale for the block 2 and 3
  2147. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2148. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2149. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2150. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2151. bx_2 = _mm_sub_epi8(bx_2, off);
  2152. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2153. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2154. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2155. bx_3 = _mm_sub_epi8(bx_3, off);
  2156. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2157. // Convert int32_t to float
  2158. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2159. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2160. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2161. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2162. // Apply the scale
  2163. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2164. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2165. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2166. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2167. // Acummulate
  2168. acc_0 = _mm_add_ps(p0_d, acc_0);
  2169. acc_1 = _mm_add_ps(p1_d, acc_1);
  2170. acc_2 = _mm_add_ps(p2_d, acc_2);
  2171. acc_3 = _mm_add_ps(p3_d, acc_3);
  2172. }
  2173. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2174. #else
  2175. // scalar
  2176. float sumf = 0.0;
  2177. for (int i = 0; i < nb; i++) {
  2178. int sumi = 0;
  2179. for (int j = 0; j < qk/2; ++j) {
  2180. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2181. const int v1 = (x[i].qs[j] >> 4) - 8;
  2182. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2183. }
  2184. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2185. }
  2186. *s = sumf;
  2187. #endif
  2188. }
  2189. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2190. const int qk = QK8_1;
  2191. const int nb = n / qk;
  2192. assert(n % qk == 0);
  2193. assert(nb % 2 == 0);
  2194. const block_q4_1 * restrict x = vx;
  2195. const block_q8_1 * restrict y = vy;
  2196. // TODO: add WASM SIMD
  2197. #if defined(__ARM_NEON)
  2198. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2199. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2200. float summs = 0;
  2201. for (int i = 0; i < nb; i += 2) {
  2202. const block_q4_1 * restrict x0 = &x[i + 0];
  2203. const block_q4_1 * restrict x1 = &x[i + 1];
  2204. const block_q8_1 * restrict y0 = &y[i + 0];
  2205. const block_q8_1 * restrict y1 = &y[i + 1];
  2206. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2207. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2208. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2209. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2210. // 4-bit -> 8-bit
  2211. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2212. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2213. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2214. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2215. // load y
  2216. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2217. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2218. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2219. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2220. #if defined(__ARM_FEATURE_DOTPROD)
  2221. // dot product into int32x4_t
  2222. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2223. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2224. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2225. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2226. #else
  2227. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2228. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2229. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2230. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2231. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2232. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2233. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2234. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2235. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2236. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2237. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2238. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2239. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2240. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2241. #endif
  2242. }
  2243. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2244. #elif defined(__AVX2__) || defined(__AVX__)
  2245. // Initialize accumulator with zeros
  2246. __m256 acc = _mm256_setzero_ps();
  2247. float summs = 0;
  2248. // Main loop
  2249. for (int i = 0; i < nb; ++i) {
  2250. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2251. const float d1 = y[i].d;
  2252. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2253. const __m256 d0v = _mm256_set1_ps( d0 );
  2254. const __m256 d1v = _mm256_set1_ps( d1 );
  2255. // Compute combined scales
  2256. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2257. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2258. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2259. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2260. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2261. // Accumulate d0*d1*x*y
  2262. #if defined(__AVX2__)
  2263. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2264. #else
  2265. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2266. #endif
  2267. }
  2268. *s = hsum_float_8(acc) + summs;
  2269. #else
  2270. // scalar
  2271. float sumf = 0.0;
  2272. for (int i = 0; i < nb; i++) {
  2273. int sumi = 0;
  2274. for (int j = 0; j < qk/2; ++j) {
  2275. const int v0 = (x[i].qs[j] & 0x0F);
  2276. const int v1 = (x[i].qs[j] >> 4);
  2277. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2278. }
  2279. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2280. }
  2281. *s = sumf;
  2282. #endif
  2283. }
  2284. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2285. const int qk = QK8_0;
  2286. const int nb = n / qk;
  2287. assert(n % qk == 0);
  2288. assert(nb % 2 == 0);
  2289. assert(qk == QK5_0);
  2290. const block_q5_0 * restrict x = vx;
  2291. const block_q8_0 * restrict y = vy;
  2292. #if defined(__ARM_NEON)
  2293. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2294. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2295. uint32_t qh0;
  2296. uint32_t qh1;
  2297. uint64_t tmp0[4];
  2298. uint64_t tmp1[4];
  2299. for (int i = 0; i < nb; i += 2) {
  2300. const block_q5_0 * restrict x0 = &x[i];
  2301. const block_q5_0 * restrict x1 = &x[i + 1];
  2302. const block_q8_0 * restrict y0 = &y[i];
  2303. const block_q8_0 * restrict y1 = &y[i + 1];
  2304. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2305. // extract the 5th bit via lookup table ((!b) << 4)
  2306. memcpy(&qh0, x0->qh, sizeof(qh0));
  2307. memcpy(&qh1, x1->qh, sizeof(qh1));
  2308. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2309. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2310. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2311. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2312. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2313. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2314. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2315. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2316. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2317. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2318. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2319. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2320. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2321. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2322. // 4-bit -> 8-bit
  2323. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2324. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2325. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2326. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2327. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2328. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2329. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2330. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2331. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2332. // load y
  2333. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2334. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2335. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2336. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2337. #if defined(__ARM_FEATURE_DOTPROD)
  2338. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2339. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2340. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2341. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2342. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2343. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2344. #else
  2345. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2346. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2347. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2348. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2349. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2350. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2351. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2352. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2353. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2354. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2355. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2356. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2357. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2358. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2359. #endif
  2360. }
  2361. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2362. #elif defined(__wasm_simd128__)
  2363. v128_t sumv = wasm_f32x4_splat(0.0f);
  2364. uint32_t qh;
  2365. uint64_t tmp[4];
  2366. // TODO: check if unrolling this is better
  2367. for (int i = 0; i < nb; ++i) {
  2368. const block_q5_0 * restrict x0 = &x[i];
  2369. const block_q8_0 * restrict y0 = &y[i];
  2370. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2371. // extract the 5th bit
  2372. memcpy(&qh, x0->qh, sizeof(qh));
  2373. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2374. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2375. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2376. tmp[3] = table_b2b_1[(qh >> 24) ];
  2377. const v128_t qhl = wasm_v128_load(tmp + 0);
  2378. const v128_t qhh = wasm_v128_load(tmp + 2);
  2379. const v128_t v0 = wasm_v128_load(x0->qs);
  2380. // 4-bit -> 8-bit
  2381. const v128_t v0l = wasm_v128_and (v0, m4b);
  2382. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2383. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2384. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2385. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2386. // load y
  2387. const v128_t v1l = wasm_v128_load(y0->qs);
  2388. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2389. // int8x16 -> int16x8
  2390. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2391. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2392. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2393. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2394. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2395. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2396. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2397. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2398. // dot product
  2399. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2400. wasm_i32x4_add(
  2401. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2402. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2403. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2404. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2405. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2406. }
  2407. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2408. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2409. #elif defined(__AVX2__)
  2410. // Initialize accumulator with zeros
  2411. __m256 acc = _mm256_setzero_ps();
  2412. // Main loop
  2413. for (int i = 0; i < nb; i++) {
  2414. /* Compute combined scale for the block */
  2415. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2416. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2417. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2418. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2419. bx = _mm256_or_si256(bx, bxhi);
  2420. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2421. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2422. /* Multiply q with scale and accumulate */
  2423. acc = _mm256_fmadd_ps(d, q, acc);
  2424. }
  2425. *s = hsum_float_8(acc);
  2426. #elif defined(__AVX__)
  2427. // Initialize accumulator with zeros
  2428. __m256 acc = _mm256_setzero_ps();
  2429. __m128i mask = _mm_set1_epi8((char)0xF0);
  2430. // Main loop
  2431. for (int i = 0; i < nb; i++) {
  2432. /* Compute combined scale for the block */
  2433. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2434. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2435. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2436. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2437. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2438. bxhil = _mm_andnot_si128(bxhil, mask);
  2439. bxhih = _mm_andnot_si128(bxhih, mask);
  2440. __m128i bxl = _mm256_castsi256_si128(bx);
  2441. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2442. bxl = _mm_or_si128(bxl, bxhil);
  2443. bxh = _mm_or_si128(bxh, bxhih);
  2444. bx = MM256_SET_M128I(bxh, bxl);
  2445. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2446. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2447. /* Multiply q with scale and accumulate */
  2448. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2449. }
  2450. *s = hsum_float_8(acc);
  2451. #else
  2452. // scalar
  2453. float sumf = 0.0;
  2454. for (int i = 0; i < nb; i++) {
  2455. uint32_t qh;
  2456. memcpy(&qh, x[i].qh, sizeof(qh));
  2457. int sumi = 0;
  2458. for (int j = 0; j < qk/2; ++j) {
  2459. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2460. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2461. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2462. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2463. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2464. }
  2465. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2466. }
  2467. *s = sumf;
  2468. #endif
  2469. }
  2470. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2471. const int qk = QK8_1;
  2472. const int nb = n / qk;
  2473. assert(n % qk == 0);
  2474. assert(nb % 2 == 0);
  2475. assert(qk == QK5_1);
  2476. const block_q5_1 * restrict x = vx;
  2477. const block_q8_1 * restrict y = vy;
  2478. #if defined(__ARM_NEON)
  2479. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2480. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2481. float summs0 = 0.0f;
  2482. float summs1 = 0.0f;
  2483. uint32_t qh0;
  2484. uint32_t qh1;
  2485. uint64_t tmp0[4];
  2486. uint64_t tmp1[4];
  2487. for (int i = 0; i < nb; i += 2) {
  2488. const block_q5_1 * restrict x0 = &x[i];
  2489. const block_q5_1 * restrict x1 = &x[i + 1];
  2490. const block_q8_1 * restrict y0 = &y[i];
  2491. const block_q8_1 * restrict y1 = &y[i + 1];
  2492. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2493. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2494. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2495. // extract the 5th bit via lookup table ((b) << 4)
  2496. memcpy(&qh0, x0->qh, sizeof(qh0));
  2497. memcpy(&qh1, x1->qh, sizeof(qh1));
  2498. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2499. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2500. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2501. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2502. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2503. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2504. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2505. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2506. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2507. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2508. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2509. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2510. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2511. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2512. // 4-bit -> 8-bit
  2513. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2514. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2515. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2516. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2517. // add high bit
  2518. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2519. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2520. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2521. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2522. // load y
  2523. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2524. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2525. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2526. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2527. #if defined(__ARM_FEATURE_DOTPROD)
  2528. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2529. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2530. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2531. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2532. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2533. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2534. #else
  2535. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2536. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2537. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2538. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2539. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2540. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2541. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2542. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2543. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2544. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2545. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2546. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2547. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2548. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2549. #endif
  2550. }
  2551. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2552. #elif defined(__wasm_simd128__)
  2553. v128_t sumv = wasm_f32x4_splat(0.0f);
  2554. float summs = 0.0f;
  2555. uint32_t qh;
  2556. uint64_t tmp[4];
  2557. // TODO: check if unrolling this is better
  2558. for (int i = 0; i < nb; ++i) {
  2559. const block_q5_1 * restrict x0 = &x[i];
  2560. const block_q8_1 * restrict y0 = &y[i];
  2561. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2562. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2563. // extract the 5th bit
  2564. memcpy(&qh, x0->qh, sizeof(qh));
  2565. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2566. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2567. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2568. tmp[3] = table_b2b_0[(qh >> 24) ];
  2569. const v128_t qhl = wasm_v128_load(tmp + 0);
  2570. const v128_t qhh = wasm_v128_load(tmp + 2);
  2571. const v128_t v0 = wasm_v128_load(x0->qs);
  2572. // 4-bit -> 8-bit
  2573. const v128_t v0l = wasm_v128_and (v0, m4b);
  2574. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2575. // add high bit
  2576. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2577. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2578. // load y
  2579. const v128_t v1l = wasm_v128_load(y0->qs);
  2580. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2581. // int8x16 -> int16x8
  2582. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2583. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2584. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2585. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2586. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2587. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2588. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2589. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2590. // dot product
  2591. sumv = wasm_f32x4_add(sumv,
  2592. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2593. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2594. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2595. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2596. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2597. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2598. }
  2599. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2600. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2601. #elif defined(__AVX2__)
  2602. // Initialize accumulator with zeros
  2603. __m256 acc = _mm256_setzero_ps();
  2604. float summs = 0.0f;
  2605. // Main loop
  2606. for (int i = 0; i < nb; i++) {
  2607. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2608. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2609. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2610. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2611. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2612. bx = _mm256_or_si256(bx, bxhi);
  2613. const __m256 dy = _mm256_set1_ps(y[i].d);
  2614. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2615. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2616. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2617. }
  2618. *s = hsum_float_8(acc) + summs;
  2619. #elif defined(__AVX__)
  2620. // Initialize accumulator with zeros
  2621. __m256 acc = _mm256_setzero_ps();
  2622. __m128i mask = _mm_set1_epi8(0x10);
  2623. float summs = 0.0f;
  2624. // Main loop
  2625. for (int i = 0; i < nb; i++) {
  2626. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2627. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2628. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2629. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2630. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2631. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2632. bxhil = _mm_and_si128(bxhil, mask);
  2633. bxhih = _mm_and_si128(bxhih, mask);
  2634. __m128i bxl = _mm256_castsi256_si128(bx);
  2635. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2636. bxl = _mm_or_si128(bxl, bxhil);
  2637. bxh = _mm_or_si128(bxh, bxhih);
  2638. bx = MM256_SET_M128I(bxh, bxl);
  2639. const __m256 dy = _mm256_set1_ps(y[i].d);
  2640. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2641. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2642. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2643. }
  2644. *s = hsum_float_8(acc) + summs;
  2645. #else
  2646. // scalar
  2647. float sumf = 0.0;
  2648. for (int i = 0; i < nb; i++) {
  2649. uint32_t qh;
  2650. memcpy(&qh, x[i].qh, sizeof(qh));
  2651. int sumi = 0;
  2652. for (int j = 0; j < qk/2; ++j) {
  2653. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2654. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2655. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2656. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2657. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2658. }
  2659. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2660. }
  2661. *s = sumf;
  2662. #endif
  2663. }
  2664. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2665. const int qk = QK8_0;
  2666. const int nb = n / qk;
  2667. assert(n % qk == 0);
  2668. assert(nb % 2 == 0);
  2669. const block_q8_0 * restrict x = vx;
  2670. const block_q8_0 * restrict y = vy;
  2671. #if defined(__ARM_NEON)
  2672. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2673. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2674. for (int i = 0; i < nb; i += 2) {
  2675. const block_q8_0 * restrict x0 = &x[i + 0];
  2676. const block_q8_0 * restrict x1 = &x[i + 1];
  2677. const block_q8_0 * restrict y0 = &y[i + 0];
  2678. const block_q8_0 * restrict y1 = &y[i + 1];
  2679. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2680. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2681. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2682. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2683. // load y
  2684. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2685. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2686. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2687. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2688. #if defined(__ARM_FEATURE_DOTPROD)
  2689. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2690. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2691. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2692. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2693. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2694. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2695. #else
  2696. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2697. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2698. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2699. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2700. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2701. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2702. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2703. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2704. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2705. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2706. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2707. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2708. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2709. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2710. #endif
  2711. }
  2712. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2713. #elif defined(__AVX2__) || defined(__AVX__)
  2714. // Initialize accumulator with zeros
  2715. __m256 acc = _mm256_setzero_ps();
  2716. // Main loop
  2717. for (int i = 0; i < nb; ++i) {
  2718. // Compute combined scale for the block
  2719. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2720. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2721. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2722. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2723. // Multiply q with scale and accumulate
  2724. #if defined(__AVX2__)
  2725. acc = _mm256_fmadd_ps( d, q, acc );
  2726. #else
  2727. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2728. #endif
  2729. }
  2730. *s = hsum_float_8(acc);
  2731. #else
  2732. // scalar
  2733. float sumf = 0.0;
  2734. for (int i = 0; i < nb; i++) {
  2735. int sumi = 0;
  2736. for (int j = 0; j < qk; j++) {
  2737. sumi += x[i].qs[j]*y[i].qs[j];
  2738. }
  2739. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2740. }
  2741. *s = sumf;
  2742. #endif
  2743. }
  2744. // compute GGML_VEC_DOT_UNROLL dot products at once
  2745. // xs - x row stride in bytes
  2746. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2747. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2748. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2749. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2750. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2751. }
  2752. #if defined(GGML_SIMD)
  2753. const int np = (n & ~(GGML_F16_STEP - 1));
  2754. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2755. GGML_F16_VEC ax[GGML_F16_ARR];
  2756. GGML_F16_VEC ay[GGML_F16_ARR];
  2757. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2758. for (int j = 0; j < GGML_F16_ARR; j++) {
  2759. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2760. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2761. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2762. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2763. }
  2764. }
  2765. }
  2766. // reduce sum0..sum3 to sum0
  2767. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2768. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2769. }
  2770. // leftovers
  2771. for (int i = np; i < n; ++i) {
  2772. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2773. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2774. }
  2775. }
  2776. #else
  2777. for (int i = 0; i < n; ++i) {
  2778. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2779. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2780. }
  2781. }
  2782. #endif
  2783. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2784. s[i] = sumf[i];
  2785. }
  2786. }
  2787. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2788. #if defined(GGML_SIMD)
  2789. const int np = (n & ~(GGML_F32_STEP - 1));
  2790. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2791. GGML_F32_VEC ax[GGML_F32_ARR];
  2792. GGML_F32_VEC ay[GGML_F32_ARR];
  2793. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2794. for (int j = 0; j < GGML_F32_ARR; j++) {
  2795. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2796. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2797. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2798. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2799. }
  2800. }
  2801. // leftovers
  2802. for (int i = np; i < n; ++i) {
  2803. y[i] += x[i]*v;
  2804. }
  2805. #else
  2806. // scalar
  2807. for (int i = 0; i < n; ++i) {
  2808. y[i] += x[i]*v;
  2809. }
  2810. #endif
  2811. }
  2812. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2813. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2814. #if defined(GGML_USE_ACCELERATE)
  2815. vDSP_vsmul(y, 1, &v, y, 1, n);
  2816. #elif defined(GGML_SIMD)
  2817. const int np = (n & ~(GGML_F32_STEP - 1));
  2818. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2819. GGML_F32_VEC ay[GGML_F32_ARR];
  2820. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2821. for (int j = 0; j < GGML_F32_ARR; j++) {
  2822. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2823. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2824. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2825. }
  2826. }
  2827. // leftovers
  2828. for (int i = np; i < n; ++i) {
  2829. y[i] *= v;
  2830. }
  2831. #else
  2832. // scalar
  2833. for (int i = 0; i < n; ++i) {
  2834. y[i] *= v;
  2835. }
  2836. #endif
  2837. }
  2838. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2839. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2840. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2841. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2842. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2843. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2844. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2845. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2846. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2847. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2848. static const float GELU_COEF_A = 0.044715f;
  2849. static const float GELU_QUICK_COEF = -1.702f;
  2850. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2851. inline static float ggml_gelu_f32(float x) {
  2852. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2853. }
  2854. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2855. const uint16_t * i16 = (const uint16_t *) x;
  2856. for (int i = 0; i < n; ++i) {
  2857. y[i] = table_gelu_f16[i16[i]];
  2858. }
  2859. }
  2860. #ifdef GGML_GELU_FP16
  2861. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2862. uint16_t t;
  2863. for (int i = 0; i < n; ++i) {
  2864. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2865. memcpy(&t, &fp16, sizeof(uint16_t));
  2866. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2867. }
  2868. }
  2869. #else
  2870. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2871. for (int i = 0; i < n; ++i) {
  2872. y[i] = ggml_gelu_f32(x[i]);
  2873. }
  2874. }
  2875. #endif
  2876. inline static float ggml_gelu_quick_f32(float x) {
  2877. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2878. }
  2879. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2880. // const uint16_t * i16 = (const uint16_t *) x;
  2881. // for (int i = 0; i < n; ++i) {
  2882. // y[i] = table_gelu_quick_f16[i16[i]];
  2883. // }
  2884. //}
  2885. #ifdef GGML_GELU_QUICK_FP16
  2886. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2887. uint16_t t;
  2888. for (int i = 0; i < n; ++i) {
  2889. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2890. memcpy(&t, &fp16, sizeof(uint16_t));
  2891. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2892. }
  2893. }
  2894. #else
  2895. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2896. for (int i = 0; i < n; ++i) {
  2897. y[i] = ggml_gelu_quick_f32(x[i]);
  2898. }
  2899. }
  2900. #endif
  2901. // Sigmoid Linear Unit (SiLU) function
  2902. inline static float ggml_silu_f32(float x) {
  2903. return x/(1.0f + expf(-x));
  2904. }
  2905. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2906. // const uint16_t * i16 = (const uint16_t *) x;
  2907. // for (int i = 0; i < n; ++i) {
  2908. // y[i] = table_silu_f16[i16[i]];
  2909. // }
  2910. //}
  2911. #ifdef GGML_SILU_FP16
  2912. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2913. uint16_t t;
  2914. for (int i = 0; i < n; ++i) {
  2915. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2916. memcpy(&t, &fp16, sizeof(uint16_t));
  2917. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2918. }
  2919. }
  2920. #else
  2921. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2922. for (int i = 0; i < n; ++i) {
  2923. y[i] = ggml_silu_f32(x[i]);
  2924. }
  2925. }
  2926. #endif
  2927. inline static float ggml_silu_backward_f32(float x, float dy) {
  2928. const float s = 1.0f/(1.0f + expf(-x));
  2929. return dy*s*(1.0f + x*(1.0f - s));
  2930. }
  2931. #ifdef GGML_SILU_FP16
  2932. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2933. for (int i = 0; i < n; ++i) {
  2934. // we did not use x[i] to compute forward silu but its f16 equivalent
  2935. // take derivative at f16 of x[i]:
  2936. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2937. float usedx = GGML_FP16_TO_FP32(fp16);
  2938. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2939. }
  2940. }
  2941. #else
  2942. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2943. for (int i = 0; i < n; ++i) {
  2944. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2945. }
  2946. }
  2947. #endif
  2948. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2949. #ifndef GGML_USE_ACCELERATE
  2950. ggml_float sum = 0.0;
  2951. for (int i = 0; i < n; ++i) {
  2952. sum += (ggml_float)x[i];
  2953. }
  2954. *s = sum;
  2955. #else
  2956. vDSP_sve(x, 1, s, n);
  2957. #endif
  2958. }
  2959. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2960. ggml_float sum = 0.0;
  2961. for (int i = 0; i < n; ++i) {
  2962. sum += (ggml_float)x[i];
  2963. }
  2964. *s = sum;
  2965. }
  2966. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2967. float sum = 0.0f;
  2968. for (int i = 0; i < n; ++i) {
  2969. sum += GGML_FP16_TO_FP32(x[i]);
  2970. }
  2971. *s = sum;
  2972. }
  2973. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2974. #ifndef GGML_USE_ACCELERATE
  2975. float max = -INFINITY;
  2976. for (int i = 0; i < n; ++i) {
  2977. max = MAX(max, x[i]);
  2978. }
  2979. *s = max;
  2980. #else
  2981. vDSP_maxv(x, 1, s, n);
  2982. #endif
  2983. }
  2984. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2985. ggml_vec_norm_f32(n, s, x);
  2986. *s = 1.f/(*s);
  2987. }
  2988. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2989. float max = -INFINITY;
  2990. int idx = 0;
  2991. for (int i = 0; i < n; ++i) {
  2992. max = MAX(max, x[i]);
  2993. if (max == x[i]) { idx = i; }
  2994. }
  2995. *s = idx;
  2996. }
  2997. //
  2998. // data types
  2999. //
  3000. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3001. [GGML_TYPE_F32] = 1,
  3002. [GGML_TYPE_F16] = 1,
  3003. [GGML_TYPE_Q4_0] = QK4_0,
  3004. [GGML_TYPE_Q4_1] = QK4_1,
  3005. [GGML_TYPE_Q5_0] = QK5_0,
  3006. [GGML_TYPE_Q5_1] = QK5_1,
  3007. [GGML_TYPE_Q8_0] = QK8_0,
  3008. [GGML_TYPE_Q8_1] = QK8_1,
  3009. #ifdef GGML_USE_K_QUANTS
  3010. [GGML_TYPE_Q2_K] = QK_K,
  3011. [GGML_TYPE_Q3_K] = QK_K,
  3012. [GGML_TYPE_Q4_K] = QK_K,
  3013. [GGML_TYPE_Q5_K] = QK_K,
  3014. [GGML_TYPE_Q6_K] = QK_K,
  3015. [GGML_TYPE_Q8_K] = QK_K,
  3016. #endif
  3017. [GGML_TYPE_I8] = 1,
  3018. [GGML_TYPE_I16] = 1,
  3019. [GGML_TYPE_I32] = 1,
  3020. };
  3021. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  3022. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3023. [GGML_TYPE_F32] = sizeof(float),
  3024. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3025. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3026. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3027. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3028. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3029. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3030. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3031. #ifdef GGML_USE_K_QUANTS
  3032. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  3033. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  3034. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  3035. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  3036. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  3037. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3038. #endif
  3039. [GGML_TYPE_I8] = sizeof(int8_t),
  3040. [GGML_TYPE_I16] = sizeof(int16_t),
  3041. [GGML_TYPE_I32] = sizeof(int32_t),
  3042. };
  3043. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3044. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3045. [GGML_TYPE_F32] = "f32",
  3046. [GGML_TYPE_F16] = "f16",
  3047. [GGML_TYPE_Q4_0] = "q4_0",
  3048. [GGML_TYPE_Q4_1] = "q4_1",
  3049. [GGML_TYPE_Q5_0] = "q5_0",
  3050. [GGML_TYPE_Q5_1] = "q5_1",
  3051. [GGML_TYPE_Q8_0] = "q8_0",
  3052. [GGML_TYPE_Q8_1] = "q8_1",
  3053. [GGML_TYPE_Q2_K] = "q2_K",
  3054. [GGML_TYPE_Q3_K] = "q3_K",
  3055. [GGML_TYPE_Q4_K] = "q4_K",
  3056. [GGML_TYPE_Q5_K] = "q5_K",
  3057. [GGML_TYPE_Q6_K] = "q6_K",
  3058. [GGML_TYPE_Q8_K] = "q8_K",
  3059. [GGML_TYPE_I8] = "i8",
  3060. [GGML_TYPE_I16] = "i16",
  3061. [GGML_TYPE_I32] = "i32",
  3062. };
  3063. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3064. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3065. [GGML_TYPE_F32] = false,
  3066. [GGML_TYPE_F16] = false,
  3067. [GGML_TYPE_Q4_0] = true,
  3068. [GGML_TYPE_Q4_1] = true,
  3069. [GGML_TYPE_Q5_0] = true,
  3070. [GGML_TYPE_Q5_1] = true,
  3071. [GGML_TYPE_Q8_0] = true,
  3072. [GGML_TYPE_Q8_1] = true,
  3073. [GGML_TYPE_Q2_K] = true,
  3074. [GGML_TYPE_Q3_K] = true,
  3075. [GGML_TYPE_Q4_K] = true,
  3076. [GGML_TYPE_Q5_K] = true,
  3077. [GGML_TYPE_Q6_K] = true,
  3078. [GGML_TYPE_Q8_K] = true,
  3079. [GGML_TYPE_I8] = false,
  3080. [GGML_TYPE_I16] = false,
  3081. [GGML_TYPE_I32] = false,
  3082. };
  3083. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3084. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3085. "NONE",
  3086. "DUP",
  3087. "ADD",
  3088. "ADD1",
  3089. "ACC",
  3090. "SUB",
  3091. "MUL",
  3092. "DIV",
  3093. "SQR",
  3094. "SQRT",
  3095. "LOG",
  3096. "SUM",
  3097. "SUM_ROWS",
  3098. "MEAN",
  3099. "ARGMAX",
  3100. "REPEAT",
  3101. "REPEAT_BACK",
  3102. "SILU_BACK",
  3103. "NORM",
  3104. "RMS_NORM",
  3105. "RMS_NORM_BACK",
  3106. "MUL_MAT",
  3107. "OUT_PROD",
  3108. "SCALE",
  3109. "SET",
  3110. "CPY",
  3111. "CONT",
  3112. "RESHAPE",
  3113. "VIEW",
  3114. "PERMUTE",
  3115. "TRANSPOSE",
  3116. "GET_ROWS",
  3117. "GET_ROWS_BACK",
  3118. "DIAG",
  3119. "DIAG_MASK_INF",
  3120. "DIAG_MASK_ZERO",
  3121. "SOFT_MAX",
  3122. "SOFT_MAX_BACK",
  3123. "ROPE",
  3124. "ROPE_BACK",
  3125. "ALIBI",
  3126. "CLAMP",
  3127. "CONV_1D",
  3128. "CONV_2D",
  3129. "POOL_1D",
  3130. "POOL_2D",
  3131. "FLASH_ATTN",
  3132. "FLASH_FF",
  3133. "FLASH_ATTN_BACK",
  3134. "WIN_PART",
  3135. "WIN_UNPART",
  3136. "UNARY",
  3137. "MAP_UNARY",
  3138. "MAP_BINARY",
  3139. "MAP_CUSTOM1",
  3140. "MAP_CUSTOM2",
  3141. "MAP_CUSTOM3",
  3142. "CROSS_ENTROPY_LOSS",
  3143. "CROSS_ENTROPY_LOSS_BACK",
  3144. };
  3145. static_assert(GGML_OP_COUNT == 59, "GGML_OP_COUNT != 59");
  3146. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3147. "none",
  3148. "x",
  3149. "x+y",
  3150. "x+y",
  3151. "view(x,nb,offset)+=y->x",
  3152. "x-y",
  3153. "x*y",
  3154. "x/y",
  3155. "x^2",
  3156. "√x",
  3157. "log(x)",
  3158. "Σx",
  3159. "Σx_k",
  3160. "Σx/n",
  3161. "argmax(x)",
  3162. "repeat(x)",
  3163. "repeat_back(x)",
  3164. "silu_back(x)",
  3165. "norm(x)",
  3166. "rms_norm(x)",
  3167. "rms_norm_back(x)",
  3168. "X*Y",
  3169. "X*Y",
  3170. "x*v",
  3171. "y-\\>view(x)",
  3172. "x-\\>y",
  3173. "cont(x)",
  3174. "reshape(x)",
  3175. "view(x)",
  3176. "permute(x)",
  3177. "transpose(x)",
  3178. "get_rows(x)",
  3179. "get_rows_back(x)",
  3180. "diag(x)",
  3181. "diag_mask_inf(x)",
  3182. "diag_mask_zero(x)",
  3183. "soft_max(x)",
  3184. "soft_max_back(x)",
  3185. "rope(x)",
  3186. "rope_back(x)",
  3187. "alibi(x)",
  3188. "clamp(x)",
  3189. "conv_1d(x)",
  3190. "conv_2d(x)",
  3191. "pool_1d(x)",
  3192. "pool_2d(x)",
  3193. "flash_attn(x)",
  3194. "flash_ff(x)",
  3195. "flash_attn_back(x)",
  3196. "win_part(x)",
  3197. "win_unpart(x)",
  3198. "unary(x)",
  3199. "f(x)",
  3200. "f(x,y)",
  3201. "custom(x)",
  3202. "custom(x,y)",
  3203. "custom(x,y,z)",
  3204. "cross_entropy_loss(x,y)",
  3205. "cross_entropy_loss_back(x,y)",
  3206. };
  3207. static_assert(GGML_OP_COUNT == 59, "GGML_OP_COUNT != 59");
  3208. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3209. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3210. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3211. // WARN:
  3212. // Mis-confguration can lead to problem that's hard to reason about:
  3213. // * At best it crash or talks nosense.
  3214. // * At worst it talks slightly difference but hard to perceive.
  3215. //
  3216. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3217. // Take care about compile options (e.g., GGML_USE_xxx).
  3218. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3219. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3220. static void ggml_setup_op_has_task_pass(void) {
  3221. { // INIT
  3222. bool * p = GGML_OP_HAS_INIT;
  3223. p[GGML_OP_ACC ] = true;
  3224. p[GGML_OP_MUL_MAT ] = true;
  3225. p[GGML_OP_OUT_PROD ] = true;
  3226. p[GGML_OP_SET ] = true;
  3227. p[GGML_OP_GET_ROWS_BACK ] = true;
  3228. p[GGML_OP_DIAG_MASK_INF ] = true;
  3229. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3230. p[GGML_OP_CONV_1D ] = true;
  3231. p[GGML_OP_CONV_2D ] = true;
  3232. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3233. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3234. }
  3235. { // FINALIZE
  3236. bool * p = GGML_OP_HAS_FINALIZE;
  3237. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3238. }
  3239. }
  3240. //
  3241. // ggml context
  3242. //
  3243. struct ggml_context {
  3244. size_t mem_size;
  3245. void * mem_buffer;
  3246. bool mem_buffer_owned;
  3247. bool no_alloc;
  3248. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3249. int n_objects;
  3250. struct ggml_object * objects_begin;
  3251. struct ggml_object * objects_end;
  3252. struct ggml_scratch scratch;
  3253. struct ggml_scratch scratch_save;
  3254. };
  3255. struct ggml_context_container {
  3256. bool used;
  3257. struct ggml_context context;
  3258. };
  3259. //
  3260. // NUMA support
  3261. //
  3262. #define GGML_NUMA_MAX_NODES 8
  3263. #define GGML_NUMA_MAX_CPUS 512
  3264. struct ggml_numa_node {
  3265. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3266. uint32_t n_cpus;
  3267. };
  3268. struct ggml_numa_nodes {
  3269. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3270. uint32_t n_nodes;
  3271. uint32_t total_cpus; // hardware threads on system
  3272. };
  3273. //
  3274. // ggml state
  3275. //
  3276. struct ggml_state {
  3277. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3278. struct ggml_numa_nodes numa;
  3279. };
  3280. // global state
  3281. static struct ggml_state g_state;
  3282. static atomic_int g_state_barrier = 0;
  3283. // barrier via spin lock
  3284. inline static void ggml_critical_section_start(void) {
  3285. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3286. while (processing > 0) {
  3287. // wait for other threads to finish
  3288. atomic_fetch_sub(&g_state_barrier, 1);
  3289. sched_yield(); // TODO: reconsider this
  3290. processing = atomic_fetch_add(&g_state_barrier, 1);
  3291. }
  3292. }
  3293. // TODO: make this somehow automatically executed
  3294. // some sort of "sentry" mechanism
  3295. inline static void ggml_critical_section_end(void) {
  3296. atomic_fetch_sub(&g_state_barrier, 1);
  3297. }
  3298. void ggml_numa_init(void) {
  3299. if (g_state.numa.n_nodes > 0) {
  3300. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3301. return;
  3302. }
  3303. #ifdef __linux__
  3304. struct stat st;
  3305. char path[256];
  3306. int rv;
  3307. // enumerate nodes
  3308. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3309. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3310. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3311. if (stat(path, &st) != 0) { break; }
  3312. ++g_state.numa.n_nodes;
  3313. }
  3314. // enumerate CPUs
  3315. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3316. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3317. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3318. if (stat(path, &st) != 0) { break; }
  3319. ++g_state.numa.total_cpus;
  3320. }
  3321. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3322. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3323. g_state.numa.n_nodes = 0;
  3324. return;
  3325. }
  3326. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3327. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3328. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3329. node->n_cpus = 0;
  3330. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3331. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3332. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3333. if (stat(path, &st) == 0) {
  3334. node->cpus[node->n_cpus++] = c;
  3335. GGML_PRINT_DEBUG(" %u", c);
  3336. }
  3337. }
  3338. GGML_PRINT_DEBUG("\n");
  3339. }
  3340. if (ggml_is_numa()) {
  3341. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3342. if (fptr != NULL) {
  3343. char buf[42];
  3344. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3345. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3346. }
  3347. fclose(fptr);
  3348. }
  3349. }
  3350. #else
  3351. // TODO
  3352. #endif
  3353. }
  3354. bool ggml_is_numa(void) {
  3355. return g_state.numa.n_nodes > 1;
  3356. }
  3357. ////////////////////////////////////////////////////////////////////////////////
  3358. void ggml_print_object(const struct ggml_object * obj) {
  3359. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3360. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3361. }
  3362. void ggml_print_objects(const struct ggml_context * ctx) {
  3363. struct ggml_object * obj = ctx->objects_begin;
  3364. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3365. while (obj != NULL) {
  3366. ggml_print_object(obj);
  3367. obj = obj->next;
  3368. }
  3369. GGML_PRINT("%s: --- end ---\n", __func__);
  3370. }
  3371. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3372. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3373. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3374. }
  3375. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3376. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3377. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3378. }
  3379. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3380. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3381. // this should handle cases where the tensor is not contiguous in memory
  3382. // probaby just:
  3383. //
  3384. // return tensor->ne[3]*tensor->nb[3]
  3385. //
  3386. // is enough, but just in case, adding the second part
  3387. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3388. }
  3389. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3390. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3391. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3392. }
  3393. int ggml_blck_size(enum ggml_type type) {
  3394. return GGML_BLCK_SIZE[type];
  3395. }
  3396. size_t ggml_type_size(enum ggml_type type) {
  3397. return GGML_TYPE_SIZE[type];
  3398. }
  3399. float ggml_type_sizef(enum ggml_type type) {
  3400. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3401. }
  3402. const char * ggml_type_name(enum ggml_type type) {
  3403. return GGML_TYPE_NAME[type];
  3404. }
  3405. const char * ggml_op_name(enum ggml_op op) {
  3406. return GGML_OP_NAME[op];
  3407. }
  3408. const char * ggml_op_symbol(enum ggml_op op) {
  3409. return GGML_OP_SYMBOL[op];
  3410. }
  3411. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3412. return GGML_TYPE_SIZE[tensor->type];
  3413. }
  3414. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3415. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3416. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3417. }
  3418. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3419. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3420. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3421. }
  3422. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3423. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3424. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3425. }
  3426. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3427. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3428. return (t0->ne[0] == t1->ne[0]) &&
  3429. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3430. (t1->ne[3]%t0->ne[3] == 0);
  3431. }
  3432. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3433. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3434. return
  3435. (t0->ne[1] == t1->ne[1]) &&
  3436. (t0->ne[2] == t1->ne[2]) &&
  3437. (t0->ne[3] == t1->ne[3]);
  3438. }
  3439. bool ggml_is_quantized(enum ggml_type type) {
  3440. return GGML_IS_QUANTIZED[type];
  3441. }
  3442. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3443. enum ggml_type wtype = GGML_TYPE_COUNT;
  3444. switch (ftype) {
  3445. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3446. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3447. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3448. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3449. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3450. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3451. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3452. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3453. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3454. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3455. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3456. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3457. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3458. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3459. }
  3460. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3461. return wtype;
  3462. }
  3463. size_t ggml_tensor_overhead(void) {
  3464. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3465. }
  3466. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3467. return tensor->nb[0] > tensor->nb[1];
  3468. }
  3469. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3470. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3471. return
  3472. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3473. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3474. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3475. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3476. }
  3477. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3478. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3479. return
  3480. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3481. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3482. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3483. }
  3484. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3485. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3486. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3487. }
  3488. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3489. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3490. return
  3491. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3492. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3493. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3494. }
  3495. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3496. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3497. return
  3498. (t0->ne[0] == t1->ne[0] ) &&
  3499. (t0->ne[1] == t1->ne[1] ) &&
  3500. (t0->ne[2] == t1->ne[2] ) &&
  3501. (t0->ne[3] == t1->ne[3] );
  3502. }
  3503. // check if t1 can be represented as a repeatition of t0
  3504. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3505. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3506. return
  3507. (t1->ne[0]%t0->ne[0] == 0) &&
  3508. (t1->ne[1]%t0->ne[1] == 0) &&
  3509. (t1->ne[2]%t0->ne[2] == 0) &&
  3510. (t1->ne[3]%t0->ne[3] == 0);
  3511. }
  3512. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3513. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3514. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3515. }
  3516. static inline int ggml_up32(int n) {
  3517. return (n + 31) & ~31;
  3518. }
  3519. //static inline int ggml_up64(int n) {
  3520. // return (n + 63) & ~63;
  3521. //}
  3522. static inline int ggml_up(int n, int m) {
  3523. // assert m is a power of 2
  3524. GGML_ASSERT((m & (m - 1)) == 0);
  3525. return (n + m - 1) & ~(m - 1);
  3526. }
  3527. // assert that pointer is aligned to GGML_MEM_ALIGN
  3528. #define ggml_assert_aligned(ptr) \
  3529. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3530. ////////////////////////////////////////////////////////////////////////////////
  3531. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3532. // make this function thread safe
  3533. ggml_critical_section_start();
  3534. static bool is_first_call = true;
  3535. if (is_first_call) {
  3536. // initialize time system (required on Windows)
  3537. ggml_time_init();
  3538. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3539. {
  3540. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3541. ggml_fp16_t ii;
  3542. for (int i = 0; i < (1 << 16); ++i) {
  3543. uint16_t ui = i;
  3544. memcpy(&ii, &ui, sizeof(ii));
  3545. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3546. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3547. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3548. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3549. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3550. }
  3551. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3552. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3553. }
  3554. // initialize g_state
  3555. {
  3556. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3557. g_state = (struct ggml_state) {
  3558. /*.contexts =*/ { { 0 } },
  3559. /*.numa =*/ {
  3560. .n_nodes = 0,
  3561. .total_cpus = 0,
  3562. },
  3563. };
  3564. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3565. g_state.contexts[i].used = false;
  3566. }
  3567. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3568. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3569. }
  3570. #if defined(GGML_USE_CUBLAS)
  3571. ggml_init_cublas();
  3572. #elif defined(GGML_USE_CLBLAST)
  3573. ggml_cl_init();
  3574. #endif
  3575. ggml_setup_op_has_task_pass();
  3576. is_first_call = false;
  3577. }
  3578. // find non-used context in g_state
  3579. struct ggml_context * ctx = NULL;
  3580. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3581. if (!g_state.contexts[i].used) {
  3582. g_state.contexts[i].used = true;
  3583. ctx = &g_state.contexts[i].context;
  3584. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3585. break;
  3586. }
  3587. }
  3588. if (ctx == NULL) {
  3589. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3590. ggml_critical_section_end();
  3591. return NULL;
  3592. }
  3593. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3594. *ctx = (struct ggml_context) {
  3595. /*.mem_size =*/ mem_size,
  3596. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3597. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3598. /*.no_alloc =*/ params.no_alloc,
  3599. /*.no_alloc_save =*/ params.no_alloc,
  3600. /*.n_objects =*/ 0,
  3601. /*.objects_begin =*/ NULL,
  3602. /*.objects_end =*/ NULL,
  3603. /*.scratch =*/ { 0, 0, NULL, },
  3604. /*.scratch_save =*/ { 0, 0, NULL, },
  3605. };
  3606. GGML_ASSERT(ctx->mem_buffer != NULL);
  3607. ggml_assert_aligned(ctx->mem_buffer);
  3608. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3609. ggml_critical_section_end();
  3610. return ctx;
  3611. }
  3612. void ggml_free(struct ggml_context * ctx) {
  3613. // make this function thread safe
  3614. ggml_critical_section_start();
  3615. bool found = false;
  3616. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3617. if (&g_state.contexts[i].context == ctx) {
  3618. g_state.contexts[i].used = false;
  3619. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3620. __func__, i, ggml_used_mem(ctx));
  3621. if (ctx->mem_buffer_owned) {
  3622. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3623. }
  3624. found = true;
  3625. break;
  3626. }
  3627. }
  3628. if (!found) {
  3629. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3630. }
  3631. ggml_critical_section_end();
  3632. }
  3633. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3634. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3635. }
  3636. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3637. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3638. ctx->scratch = scratch;
  3639. return result;
  3640. }
  3641. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3642. return ctx->no_alloc;
  3643. }
  3644. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3645. ctx->no_alloc = no_alloc;
  3646. }
  3647. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3648. return ctx->mem_buffer;
  3649. }
  3650. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3651. return ctx->mem_size;
  3652. }
  3653. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3654. size_t max_size = 0;
  3655. struct ggml_object * obj = ctx->objects_begin;
  3656. while (obj != NULL) {
  3657. if (obj->type == GGML_OBJECT_TENSOR) {
  3658. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3659. const size_t size = ggml_nbytes(tensor);
  3660. if (max_size < size) {
  3661. max_size = size;
  3662. }
  3663. }
  3664. obj = obj->next;
  3665. }
  3666. return max_size;
  3667. }
  3668. // IMPORTANT:
  3669. // when creating "opt" tensors, always save and load the scratch buffer
  3670. // this is an error prone process, but it is necessary to support inplace
  3671. // operators when using scratch buffers
  3672. // TODO: implement a better way
  3673. static void ggml_scratch_save(struct ggml_context * ctx) {
  3674. // this is needed to allow opt tensors to store their data
  3675. // TODO: again, need to find a better way
  3676. ctx->no_alloc_save = ctx->no_alloc;
  3677. ctx->no_alloc = false;
  3678. ctx->scratch_save = ctx->scratch;
  3679. ctx->scratch.data = NULL;
  3680. }
  3681. static void ggml_scratch_load(struct ggml_context * ctx) {
  3682. ctx->no_alloc = ctx->no_alloc_save;
  3683. ctx->scratch = ctx->scratch_save;
  3684. }
  3685. ////////////////////////////////////////////////////////////////////////////////
  3686. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3687. // always insert objects at the end of the context's memory pool
  3688. struct ggml_object * obj_cur = ctx->objects_end;
  3689. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3690. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3691. const size_t cur_end = cur_offs + cur_size;
  3692. // align to GGML_MEM_ALIGN
  3693. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3694. char * const mem_buffer = ctx->mem_buffer;
  3695. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3696. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3697. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3698. __func__, cur_end + size_needed, ctx->mem_size);
  3699. assert(false);
  3700. return NULL;
  3701. }
  3702. *obj_new = (struct ggml_object) {
  3703. .offs = cur_end + GGML_OBJECT_SIZE,
  3704. .size = size_needed,
  3705. .next = NULL,
  3706. .type = type,
  3707. };
  3708. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3709. if (obj_cur != NULL) {
  3710. obj_cur->next = obj_new;
  3711. } else {
  3712. // this is the first object in this context
  3713. ctx->objects_begin = obj_new;
  3714. }
  3715. ctx->objects_end = obj_new;
  3716. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3717. return obj_new;
  3718. }
  3719. static struct ggml_tensor * ggml_new_tensor_impl(
  3720. struct ggml_context * ctx,
  3721. enum ggml_type type,
  3722. int n_dims,
  3723. const int64_t * ne,
  3724. void * data) {
  3725. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3726. size_t data_size = 0;
  3727. if (data == NULL && !ctx->no_alloc) {
  3728. data_size += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3729. for (int i = 1; i < n_dims; i++) {
  3730. data_size *= ne[i];
  3731. }
  3732. }
  3733. if (ctx->scratch.data != NULL && data == NULL) {
  3734. // allocate tensor data in the scratch buffer
  3735. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3736. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3737. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3738. assert(false);
  3739. return NULL;
  3740. }
  3741. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3742. ctx->scratch.offs += data_size;
  3743. data_size = 0;
  3744. }
  3745. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size);
  3746. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3747. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3748. *result = (struct ggml_tensor) {
  3749. /*.type =*/ type,
  3750. /*.backend =*/ GGML_BACKEND_CPU,
  3751. /*.n_dims =*/ n_dims,
  3752. /*.ne =*/ { 1, 1, 1, 1 },
  3753. /*.nb =*/ { 0, 0, 0, 0 },
  3754. /*.op =*/ GGML_OP_NONE,
  3755. /*.op_params =*/ {0},
  3756. /*.is_param =*/ false,
  3757. /*.grad =*/ NULL,
  3758. /*.src =*/ { NULL },
  3759. /*.perf_runs =*/ 0,
  3760. /*.perf_cycles =*/ 0,
  3761. /*.perf_time_us =*/ 0,
  3762. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3763. /*.name =*/ { 0 },
  3764. /*.extra =*/ NULL,
  3765. /*.padding =*/ { 0 },
  3766. };
  3767. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3768. //ggml_assert_aligned(result->data);
  3769. for (int i = 0; i < n_dims; i++) {
  3770. result->ne[i] = ne[i];
  3771. }
  3772. result->nb[0] = GGML_TYPE_SIZE[type];
  3773. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3774. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3775. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3776. }
  3777. ctx->n_objects++;
  3778. return result;
  3779. }
  3780. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3781. assert(params_size <= GGML_MAX_OP_PARAMS);
  3782. memcpy(tensor->op_params, params, params_size);
  3783. }
  3784. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3785. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3786. return ((const int32_t *)(tensor->op_params))[i];
  3787. }
  3788. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3789. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3790. ((int32_t *)(tensor->op_params))[i] = value;
  3791. }
  3792. struct ggml_tensor * ggml_new_tensor(
  3793. struct ggml_context * ctx,
  3794. enum ggml_type type,
  3795. int n_dims,
  3796. const int64_t * ne) {
  3797. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3798. }
  3799. struct ggml_tensor * ggml_new_tensor_1d(
  3800. struct ggml_context * ctx,
  3801. enum ggml_type type,
  3802. int64_t ne0) {
  3803. return ggml_new_tensor(ctx, type, 1, &ne0);
  3804. }
  3805. struct ggml_tensor * ggml_new_tensor_2d(
  3806. struct ggml_context * ctx,
  3807. enum ggml_type type,
  3808. int64_t ne0,
  3809. int64_t ne1) {
  3810. const int64_t ne[2] = { ne0, ne1 };
  3811. return ggml_new_tensor(ctx, type, 2, ne);
  3812. }
  3813. struct ggml_tensor * ggml_new_tensor_3d(
  3814. struct ggml_context * ctx,
  3815. enum ggml_type type,
  3816. int64_t ne0,
  3817. int64_t ne1,
  3818. int64_t ne2) {
  3819. const int64_t ne[3] = { ne0, ne1, ne2 };
  3820. return ggml_new_tensor(ctx, type, 3, ne);
  3821. }
  3822. struct ggml_tensor * ggml_new_tensor_4d(
  3823. struct ggml_context * ctx,
  3824. enum ggml_type type,
  3825. int64_t ne0,
  3826. int64_t ne1,
  3827. int64_t ne2,
  3828. int64_t ne3) {
  3829. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3830. return ggml_new_tensor(ctx, type, 4, ne);
  3831. }
  3832. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3833. ggml_scratch_save(ctx);
  3834. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3835. ggml_scratch_load(ctx);
  3836. ggml_set_i32(result, value);
  3837. return result;
  3838. }
  3839. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3840. ggml_scratch_save(ctx);
  3841. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3842. ggml_scratch_load(ctx);
  3843. ggml_set_f32(result, value);
  3844. return result;
  3845. }
  3846. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3847. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3848. }
  3849. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3850. memset(tensor->data, 0, ggml_nbytes(tensor));
  3851. return tensor;
  3852. }
  3853. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3854. const int n = ggml_nrows(tensor);
  3855. const int nc = tensor->ne[0];
  3856. const size_t n1 = tensor->nb[1];
  3857. char * const data = tensor->data;
  3858. switch (tensor->type) {
  3859. case GGML_TYPE_I8:
  3860. {
  3861. assert(tensor->nb[0] == sizeof(int8_t));
  3862. for (int i = 0; i < n; i++) {
  3863. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3864. }
  3865. } break;
  3866. case GGML_TYPE_I16:
  3867. {
  3868. assert(tensor->nb[0] == sizeof(int16_t));
  3869. for (int i = 0; i < n; i++) {
  3870. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3871. }
  3872. } break;
  3873. case GGML_TYPE_I32:
  3874. {
  3875. assert(tensor->nb[0] == sizeof(int32_t));
  3876. for (int i = 0; i < n; i++) {
  3877. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3878. }
  3879. } break;
  3880. case GGML_TYPE_F16:
  3881. {
  3882. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3883. for (int i = 0; i < n; i++) {
  3884. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3885. }
  3886. } break;
  3887. case GGML_TYPE_F32:
  3888. {
  3889. assert(tensor->nb[0] == sizeof(float));
  3890. for (int i = 0; i < n; i++) {
  3891. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3892. }
  3893. } break;
  3894. default:
  3895. {
  3896. GGML_ASSERT(false);
  3897. } break;
  3898. }
  3899. return tensor;
  3900. }
  3901. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3902. const int n = ggml_nrows(tensor);
  3903. const int nc = tensor->ne[0];
  3904. const size_t n1 = tensor->nb[1];
  3905. char * const data = tensor->data;
  3906. switch (tensor->type) {
  3907. case GGML_TYPE_I8:
  3908. {
  3909. assert(tensor->nb[0] == sizeof(int8_t));
  3910. for (int i = 0; i < n; i++) {
  3911. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3912. }
  3913. } break;
  3914. case GGML_TYPE_I16:
  3915. {
  3916. assert(tensor->nb[0] == sizeof(int16_t));
  3917. for (int i = 0; i < n; i++) {
  3918. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3919. }
  3920. } break;
  3921. case GGML_TYPE_I32:
  3922. {
  3923. assert(tensor->nb[0] == sizeof(int32_t));
  3924. for (int i = 0; i < n; i++) {
  3925. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3926. }
  3927. } break;
  3928. case GGML_TYPE_F16:
  3929. {
  3930. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3931. for (int i = 0; i < n; i++) {
  3932. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3933. }
  3934. } break;
  3935. case GGML_TYPE_F32:
  3936. {
  3937. assert(tensor->nb[0] == sizeof(float));
  3938. for (int i = 0; i < n; i++) {
  3939. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3940. }
  3941. } break;
  3942. default:
  3943. {
  3944. GGML_ASSERT(false);
  3945. } break;
  3946. }
  3947. return tensor;
  3948. }
  3949. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3950. switch (tensor->type) {
  3951. case GGML_TYPE_I8:
  3952. {
  3953. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3954. return ((int8_t *)(tensor->data))[i];
  3955. } break;
  3956. case GGML_TYPE_I16:
  3957. {
  3958. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3959. return ((int16_t *)(tensor->data))[i];
  3960. } break;
  3961. case GGML_TYPE_I32:
  3962. {
  3963. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3964. return ((int32_t *)(tensor->data))[i];
  3965. } break;
  3966. case GGML_TYPE_F16:
  3967. {
  3968. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3969. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3970. } break;
  3971. case GGML_TYPE_F32:
  3972. {
  3973. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3974. return ((float *)(tensor->data))[i];
  3975. } break;
  3976. default:
  3977. {
  3978. GGML_ASSERT(false);
  3979. } break;
  3980. }
  3981. return 0.0f;
  3982. }
  3983. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3984. switch (tensor->type) {
  3985. case GGML_TYPE_I8:
  3986. {
  3987. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3988. ((int8_t *)(tensor->data))[i] = value;
  3989. } break;
  3990. case GGML_TYPE_I16:
  3991. {
  3992. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3993. ((int16_t *)(tensor->data))[i] = value;
  3994. } break;
  3995. case GGML_TYPE_I32:
  3996. {
  3997. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3998. ((int32_t *)(tensor->data))[i] = value;
  3999. } break;
  4000. case GGML_TYPE_F16:
  4001. {
  4002. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4003. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4004. } break;
  4005. case GGML_TYPE_F32:
  4006. {
  4007. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4008. ((float *)(tensor->data))[i] = value;
  4009. } break;
  4010. default:
  4011. {
  4012. GGML_ASSERT(false);
  4013. } break;
  4014. }
  4015. }
  4016. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4017. switch (tensor->type) {
  4018. case GGML_TYPE_I8:
  4019. {
  4020. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4021. return ((int8_t *)(tensor->data))[i];
  4022. } break;
  4023. case GGML_TYPE_I16:
  4024. {
  4025. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4026. return ((int16_t *)(tensor->data))[i];
  4027. } break;
  4028. case GGML_TYPE_I32:
  4029. {
  4030. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4031. return ((int32_t *)(tensor->data))[i];
  4032. } break;
  4033. case GGML_TYPE_F16:
  4034. {
  4035. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4036. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4037. } break;
  4038. case GGML_TYPE_F32:
  4039. {
  4040. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4041. return ((float *)(tensor->data))[i];
  4042. } break;
  4043. default:
  4044. {
  4045. GGML_ASSERT(false);
  4046. } break;
  4047. }
  4048. return 0.0f;
  4049. }
  4050. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4051. switch (tensor->type) {
  4052. case GGML_TYPE_I8:
  4053. {
  4054. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4055. ((int8_t *)(tensor->data))[i] = value;
  4056. } break;
  4057. case GGML_TYPE_I16:
  4058. {
  4059. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4060. ((int16_t *)(tensor->data))[i] = value;
  4061. } break;
  4062. case GGML_TYPE_I32:
  4063. {
  4064. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4065. ((int32_t *)(tensor->data))[i] = value;
  4066. } break;
  4067. case GGML_TYPE_F16:
  4068. {
  4069. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4070. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4071. } break;
  4072. case GGML_TYPE_F32:
  4073. {
  4074. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4075. ((float *)(tensor->data))[i] = value;
  4076. } break;
  4077. default:
  4078. {
  4079. GGML_ASSERT(false);
  4080. } break;
  4081. }
  4082. }
  4083. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4084. return tensor->data;
  4085. }
  4086. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4087. assert(tensor->type == GGML_TYPE_F32);
  4088. return (float *)(tensor->data);
  4089. }
  4090. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4091. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4092. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4093. }
  4094. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4095. return tensor->name;
  4096. }
  4097. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4098. strncpy(tensor->name, name, sizeof(tensor->name));
  4099. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4100. return tensor;
  4101. }
  4102. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4103. va_list args;
  4104. va_start(args, fmt);
  4105. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4106. va_end(args);
  4107. return tensor;
  4108. }
  4109. struct ggml_tensor * ggml_view_tensor(
  4110. struct ggml_context * ctx,
  4111. const struct ggml_tensor * src) {
  4112. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4113. ggml_format_name(result, "%s (view)", src->name);
  4114. result->nb[0] = src->nb[0];
  4115. result->nb[1] = src->nb[1];
  4116. result->nb[2] = src->nb[2];
  4117. result->nb[3] = src->nb[3];
  4118. return result;
  4119. }
  4120. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4121. struct ggml_object * obj = ctx->objects_begin;
  4122. char * const mem_buffer = ctx->mem_buffer;
  4123. while (obj != NULL) {
  4124. if (obj->type == GGML_OBJECT_TENSOR) {
  4125. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4126. if (strcmp(cur->name, name) == 0) {
  4127. return cur;
  4128. }
  4129. }
  4130. obj = obj->next;
  4131. }
  4132. return NULL;
  4133. }
  4134. ////////////////////////////////////////////////////////////////////////////////
  4135. // ggml_dup
  4136. static struct ggml_tensor * ggml_dup_impl(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a,
  4139. bool inplace) {
  4140. bool is_node = false;
  4141. if (!inplace && (a->grad)) {
  4142. is_node = true;
  4143. }
  4144. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4145. result->op = GGML_OP_DUP;
  4146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4147. result->src[0] = a;
  4148. return result;
  4149. }
  4150. struct ggml_tensor * ggml_dup(
  4151. struct ggml_context * ctx,
  4152. struct ggml_tensor * a) {
  4153. return ggml_dup_impl(ctx, a, false);
  4154. }
  4155. struct ggml_tensor * ggml_dup_inplace(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a) {
  4158. return ggml_dup_impl(ctx, a, true);
  4159. }
  4160. // ggml_add
  4161. static struct ggml_tensor * ggml_add_impl(
  4162. struct ggml_context * ctx,
  4163. struct ggml_tensor * a,
  4164. struct ggml_tensor * b,
  4165. bool inplace) {
  4166. // TODO: support less-strict constraint
  4167. // GGML_ASSERT(ggml_can_repeat(b, a));
  4168. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4169. bool is_node = false;
  4170. if (!inplace && (a->grad || b->grad)) {
  4171. // TODO: support backward pass for broadcasting
  4172. GGML_ASSERT(ggml_are_same_shape(a, b));
  4173. is_node = true;
  4174. }
  4175. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4176. result->op = GGML_OP_ADD;
  4177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4178. result->src[0] = a;
  4179. result->src[1] = b;
  4180. return result;
  4181. }
  4182. struct ggml_tensor * ggml_add(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a,
  4185. struct ggml_tensor * b) {
  4186. return ggml_add_impl(ctx, a, b, false);
  4187. }
  4188. struct ggml_tensor * ggml_add_inplace(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. struct ggml_tensor * b) {
  4192. return ggml_add_impl(ctx, a, b, true);
  4193. }
  4194. // ggml_add1
  4195. static struct ggml_tensor * ggml_add1_impl(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a,
  4198. struct ggml_tensor * b,
  4199. bool inplace) {
  4200. GGML_ASSERT(ggml_is_scalar(b));
  4201. GGML_ASSERT(ggml_is_padded_1d(a));
  4202. bool is_node = false;
  4203. if (a->grad || b->grad) {
  4204. is_node = true;
  4205. }
  4206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4207. result->op = GGML_OP_ADD1;
  4208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4209. result->src[0] = a;
  4210. result->src[1] = b;
  4211. return result;
  4212. }
  4213. struct ggml_tensor * ggml_add1(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a,
  4216. struct ggml_tensor * b) {
  4217. return ggml_add1_impl(ctx, a, b, false);
  4218. }
  4219. struct ggml_tensor * ggml_add1_inplace(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a,
  4222. struct ggml_tensor * b) {
  4223. return ggml_add1_impl(ctx, a, b, true);
  4224. }
  4225. // ggml_acc
  4226. static struct ggml_tensor * ggml_acc_impl(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a,
  4229. struct ggml_tensor * b,
  4230. size_t nb1,
  4231. size_t nb2,
  4232. size_t nb3,
  4233. size_t offset,
  4234. bool inplace) {
  4235. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4236. GGML_ASSERT(ggml_is_contiguous(a));
  4237. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4238. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4239. bool is_node = false;
  4240. if (!inplace && (a->grad || b->grad)) {
  4241. is_node = true;
  4242. }
  4243. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4244. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4245. ggml_set_op_params(result, params, sizeof(params));
  4246. result->op = GGML_OP_ACC;
  4247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4248. result->src[0] = a;
  4249. result->src[1] = b;
  4250. return result;
  4251. }
  4252. struct ggml_tensor * ggml_acc(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. struct ggml_tensor * b,
  4256. size_t nb1,
  4257. size_t nb2,
  4258. size_t nb3,
  4259. size_t offset) {
  4260. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4261. }
  4262. struct ggml_tensor * ggml_acc_inplace(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a,
  4265. struct ggml_tensor * b,
  4266. size_t nb1,
  4267. size_t nb2,
  4268. size_t nb3,
  4269. size_t offset) {
  4270. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4271. }
  4272. // ggml_sub
  4273. static struct ggml_tensor * ggml_sub_impl(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a,
  4276. struct ggml_tensor * b,
  4277. bool inplace) {
  4278. GGML_ASSERT(ggml_are_same_shape(a, b));
  4279. bool is_node = false;
  4280. if (!inplace && (a->grad || b->grad)) {
  4281. is_node = true;
  4282. }
  4283. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4284. result->op = GGML_OP_SUB;
  4285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4286. result->src[0] = a;
  4287. result->src[1] = b;
  4288. return result;
  4289. }
  4290. struct ggml_tensor * ggml_sub(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. struct ggml_tensor * b) {
  4294. return ggml_sub_impl(ctx, a, b, false);
  4295. }
  4296. struct ggml_tensor * ggml_sub_inplace(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. struct ggml_tensor * b) {
  4300. return ggml_sub_impl(ctx, a, b, true);
  4301. }
  4302. // ggml_mul
  4303. static struct ggml_tensor * ggml_mul_impl(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b,
  4307. bool inplace) {
  4308. // TODO: support less-strict constraint
  4309. // GGML_ASSERT(ggml_can_repeat(b, a));
  4310. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4311. bool is_node = false;
  4312. if (!inplace && (a->grad || b->grad)) {
  4313. // TODO: support backward pass for broadcasting
  4314. GGML_ASSERT(ggml_are_same_shape(a, b));
  4315. is_node = true;
  4316. }
  4317. if (inplace) {
  4318. GGML_ASSERT(is_node == false);
  4319. }
  4320. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4321. result->op = GGML_OP_MUL;
  4322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4323. result->src[0] = a;
  4324. result->src[1] = b;
  4325. return result;
  4326. }
  4327. struct ggml_tensor * ggml_mul(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * a,
  4330. struct ggml_tensor * b) {
  4331. return ggml_mul_impl(ctx, a, b, false);
  4332. }
  4333. struct ggml_tensor * ggml_mul_inplace(
  4334. struct ggml_context * ctx,
  4335. struct ggml_tensor * a,
  4336. struct ggml_tensor * b) {
  4337. return ggml_mul_impl(ctx, a, b, true);
  4338. }
  4339. // ggml_div
  4340. static struct ggml_tensor * ggml_div_impl(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a,
  4343. struct ggml_tensor * b,
  4344. bool inplace) {
  4345. GGML_ASSERT(ggml_are_same_shape(a, b));
  4346. bool is_node = false;
  4347. if (!inplace && (a->grad || b->grad)) {
  4348. is_node = true;
  4349. }
  4350. if (inplace) {
  4351. GGML_ASSERT(is_node == false);
  4352. }
  4353. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4354. result->op = GGML_OP_DIV;
  4355. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4356. result->src[0] = a;
  4357. result->src[1] = b;
  4358. return result;
  4359. }
  4360. struct ggml_tensor * ggml_div(
  4361. struct ggml_context * ctx,
  4362. struct ggml_tensor * a,
  4363. struct ggml_tensor * b) {
  4364. return ggml_div_impl(ctx, a, b, false);
  4365. }
  4366. struct ggml_tensor * ggml_div_inplace(
  4367. struct ggml_context * ctx,
  4368. struct ggml_tensor * a,
  4369. struct ggml_tensor * b) {
  4370. return ggml_div_impl(ctx, a, b, true);
  4371. }
  4372. // ggml_sqr
  4373. static struct ggml_tensor * ggml_sqr_impl(
  4374. struct ggml_context * ctx,
  4375. struct ggml_tensor * a,
  4376. bool inplace) {
  4377. bool is_node = false;
  4378. if (!inplace && (a->grad)) {
  4379. is_node = true;
  4380. }
  4381. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4382. result->op = GGML_OP_SQR;
  4383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4384. result->src[0] = a;
  4385. return result;
  4386. }
  4387. struct ggml_tensor * ggml_sqr(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a) {
  4390. return ggml_sqr_impl(ctx, a, false);
  4391. }
  4392. struct ggml_tensor * ggml_sqr_inplace(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a) {
  4395. return ggml_sqr_impl(ctx, a, true);
  4396. }
  4397. // ggml_sqrt
  4398. static struct ggml_tensor * ggml_sqrt_impl(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. bool inplace) {
  4402. bool is_node = false;
  4403. if (!inplace && (a->grad)) {
  4404. is_node = true;
  4405. }
  4406. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4407. result->op = GGML_OP_SQRT;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src[0] = a;
  4410. return result;
  4411. }
  4412. struct ggml_tensor * ggml_sqrt(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a) {
  4415. return ggml_sqrt_impl(ctx, a, false);
  4416. }
  4417. struct ggml_tensor * ggml_sqrt_inplace(
  4418. struct ggml_context * ctx,
  4419. struct ggml_tensor * a) {
  4420. return ggml_sqrt_impl(ctx, a, true);
  4421. }
  4422. // ggml_log
  4423. static struct ggml_tensor * ggml_log_impl(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a,
  4426. bool inplace) {
  4427. bool is_node = false;
  4428. if (!inplace && (a->grad)) {
  4429. is_node = true;
  4430. }
  4431. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4432. result->op = GGML_OP_LOG;
  4433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4434. result->src[0] = a;
  4435. return result;
  4436. }
  4437. struct ggml_tensor * ggml_log(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a) {
  4440. return ggml_log_impl(ctx, a, false);
  4441. }
  4442. struct ggml_tensor * ggml_log_inplace(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a) {
  4445. return ggml_log_impl(ctx, a, true);
  4446. }
  4447. // ggml_sum
  4448. struct ggml_tensor * ggml_sum(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a) {
  4451. bool is_node = false;
  4452. if (a->grad) {
  4453. is_node = true;
  4454. }
  4455. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4456. result->op = GGML_OP_SUM;
  4457. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4458. result->src[0] = a;
  4459. return result;
  4460. }
  4461. // ggml_sum_rows
  4462. struct ggml_tensor * ggml_sum_rows(
  4463. struct ggml_context * ctx,
  4464. struct ggml_tensor * a) {
  4465. bool is_node = false;
  4466. if (a->grad) {
  4467. is_node = true;
  4468. }
  4469. int64_t ne[4] = {1,1,1,1};
  4470. for (int i=1; i<a->n_dims; ++i) {
  4471. ne[i] = a->ne[i];
  4472. }
  4473. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4474. result->op = GGML_OP_SUM_ROWS;
  4475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4476. result->src[0] = a;
  4477. return result;
  4478. }
  4479. // ggml_mean
  4480. struct ggml_tensor * ggml_mean(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a) {
  4483. bool is_node = false;
  4484. if (a->grad) {
  4485. GGML_ASSERT(false); // TODO: implement
  4486. is_node = true;
  4487. }
  4488. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4489. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4490. result->op = GGML_OP_MEAN;
  4491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4492. result->src[0] = a;
  4493. return result;
  4494. }
  4495. // ggml_argmax
  4496. struct ggml_tensor * ggml_argmax(
  4497. struct ggml_context * ctx,
  4498. struct ggml_tensor * a) {
  4499. GGML_ASSERT(ggml_is_matrix(a));
  4500. bool is_node = false;
  4501. if (a->grad) {
  4502. GGML_ASSERT(false);
  4503. is_node = true;
  4504. }
  4505. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4506. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4507. result->op = GGML_OP_ARGMAX;
  4508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4509. result->src[0] = a;
  4510. return result;
  4511. }
  4512. // ggml_repeat
  4513. struct ggml_tensor * ggml_repeat(
  4514. struct ggml_context * ctx,
  4515. struct ggml_tensor * a,
  4516. struct ggml_tensor * b) {
  4517. GGML_ASSERT(ggml_can_repeat(a, b));
  4518. bool is_node = false;
  4519. if (a->grad) {
  4520. is_node = true;
  4521. }
  4522. if (ggml_are_same_shape(a, b) && !is_node) {
  4523. return a;
  4524. }
  4525. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4526. result->op = GGML_OP_REPEAT;
  4527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4528. result->src[0] = a;
  4529. result->src[1] = b;
  4530. return result;
  4531. }
  4532. // ggml_repeat_back
  4533. struct ggml_tensor * ggml_repeat_back(
  4534. struct ggml_context * ctx,
  4535. struct ggml_tensor * a,
  4536. struct ggml_tensor * b) {
  4537. GGML_ASSERT(ggml_can_repeat(b, a));
  4538. bool is_node = false;
  4539. if (a->grad) {
  4540. is_node = true;
  4541. }
  4542. if (ggml_are_same_shape(a, b) && !is_node) {
  4543. return a;
  4544. }
  4545. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4546. result->op = GGML_OP_REPEAT_BACK;
  4547. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4548. result->src[0] = a;
  4549. result->src[1] = b;
  4550. return result;
  4551. }
  4552. // ggml_abs
  4553. struct ggml_tensor * ggml_abs(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a) {
  4556. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4557. }
  4558. struct ggml_tensor * ggml_abs_inplace(
  4559. struct ggml_context * ctx,
  4560. struct ggml_tensor * a) {
  4561. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4562. }
  4563. // ggml_sgn
  4564. struct ggml_tensor * ggml_sgn(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a) {
  4567. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4568. }
  4569. struct ggml_tensor * ggml_sgn_inplace(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a) {
  4572. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4573. }
  4574. // ggml_neg
  4575. struct ggml_tensor * ggml_neg(
  4576. struct ggml_context * ctx,
  4577. struct ggml_tensor * a) {
  4578. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4579. }
  4580. struct ggml_tensor * ggml_neg_inplace(
  4581. struct ggml_context * ctx,
  4582. struct ggml_tensor * a) {
  4583. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4584. }
  4585. // ggml_step
  4586. struct ggml_tensor * ggml_step(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a) {
  4589. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4590. }
  4591. struct ggml_tensor * ggml_step_inplace(
  4592. struct ggml_context * ctx,
  4593. struct ggml_tensor * a) {
  4594. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4595. }
  4596. // ggml_tanh
  4597. struct ggml_tensor * ggml_tanh(
  4598. struct ggml_context * ctx,
  4599. struct ggml_tensor * a) {
  4600. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4601. }
  4602. struct ggml_tensor * ggml_tanh_inplace(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a) {
  4605. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4606. }
  4607. // ggml_elu
  4608. struct ggml_tensor * ggml_elu(
  4609. struct ggml_context * ctx,
  4610. struct ggml_tensor * a) {
  4611. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4612. }
  4613. struct ggml_tensor * ggml_elu_inplace(
  4614. struct ggml_context * ctx,
  4615. struct ggml_tensor * a) {
  4616. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4617. }
  4618. // ggml_relu
  4619. struct ggml_tensor * ggml_relu(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a) {
  4622. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4623. }
  4624. struct ggml_tensor * ggml_relu_inplace(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a) {
  4627. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4628. }
  4629. // ggml_gelu
  4630. struct ggml_tensor * ggml_gelu(
  4631. struct ggml_context * ctx,
  4632. struct ggml_tensor * a) {
  4633. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4634. }
  4635. struct ggml_tensor * ggml_gelu_inplace(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a) {
  4638. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4639. }
  4640. // ggml_gelu_quick
  4641. struct ggml_tensor * ggml_gelu_quick(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a) {
  4644. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4645. }
  4646. struct ggml_tensor * ggml_gelu_quick_inplace(
  4647. struct ggml_context * ctx,
  4648. struct ggml_tensor * a) {
  4649. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4650. }
  4651. // ggml_silu
  4652. struct ggml_tensor * ggml_silu(
  4653. struct ggml_context * ctx,
  4654. struct ggml_tensor * a) {
  4655. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4656. }
  4657. struct ggml_tensor * ggml_silu_inplace(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a) {
  4660. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4661. }
  4662. // ggml_silu_back
  4663. struct ggml_tensor * ggml_silu_back(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a,
  4666. struct ggml_tensor * b) {
  4667. bool is_node = false;
  4668. if (a->grad || b->grad) {
  4669. // TODO: implement backward
  4670. is_node = true;
  4671. }
  4672. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4673. result->op = GGML_OP_SILU_BACK;
  4674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4675. result->src[0] = a;
  4676. result->src[1] = b;
  4677. return result;
  4678. }
  4679. // ggml_norm
  4680. static struct ggml_tensor * ggml_norm_impl(
  4681. struct ggml_context * ctx,
  4682. struct ggml_tensor * a,
  4683. bool inplace) {
  4684. bool is_node = false;
  4685. if (!inplace && (a->grad)) {
  4686. GGML_ASSERT(false); // TODO: implement backward
  4687. is_node = true;
  4688. }
  4689. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4690. // TODO: maybe store epsilon here?
  4691. result->op = GGML_OP_NORM;
  4692. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4693. result->src[0] = a;
  4694. return result;
  4695. }
  4696. struct ggml_tensor * ggml_norm(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a) {
  4699. return ggml_norm_impl(ctx, a, false);
  4700. }
  4701. struct ggml_tensor * ggml_norm_inplace(
  4702. struct ggml_context * ctx,
  4703. struct ggml_tensor * a) {
  4704. return ggml_norm_impl(ctx, a, true);
  4705. }
  4706. static struct ggml_tensor * ggml_rms_norm_impl(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a,
  4709. float eps,
  4710. bool inplace) {
  4711. bool is_node = false;
  4712. if (!inplace && (a->grad)) {
  4713. is_node = true;
  4714. }
  4715. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4716. ggml_set_op_params(result, &eps, sizeof(eps));
  4717. result->op = GGML_OP_RMS_NORM;
  4718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4719. result->src[0] = a;
  4720. return result;
  4721. }
  4722. struct ggml_tensor * ggml_rms_norm(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a,
  4725. float eps) {
  4726. return ggml_rms_norm_impl(ctx, a, eps, false);
  4727. }
  4728. struct ggml_tensor * ggml_rms_norm_inplace(
  4729. struct ggml_context * ctx,
  4730. struct ggml_tensor * a,
  4731. float eps) {
  4732. return ggml_rms_norm_impl(ctx, a, eps, true);
  4733. }
  4734. struct ggml_tensor * ggml_rms_norm_back(
  4735. struct ggml_context * ctx,
  4736. struct ggml_tensor * a,
  4737. struct ggml_tensor * b) {
  4738. bool is_node = false;
  4739. if (a->grad) {
  4740. // TODO: implement backward
  4741. is_node = true;
  4742. }
  4743. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4744. result->op = GGML_OP_RMS_NORM_BACK;
  4745. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4746. result->src[0] = a;
  4747. result->src[1] = b;
  4748. return result;
  4749. }
  4750. // ggml_mul_mat
  4751. struct ggml_tensor * ggml_mul_mat(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a,
  4754. struct ggml_tensor * b) {
  4755. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4756. GGML_ASSERT(!ggml_is_transposed(a));
  4757. bool is_node = false;
  4758. if (a->grad || b->grad) {
  4759. is_node = true;
  4760. }
  4761. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4762. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4763. result->op = GGML_OP_MUL_MAT;
  4764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4765. result->src[0] = a;
  4766. result->src[1] = b;
  4767. return result;
  4768. }
  4769. // ggml_out_prod
  4770. struct ggml_tensor * ggml_out_prod(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. struct ggml_tensor * b) {
  4774. GGML_ASSERT(ggml_can_out_prod(a, b));
  4775. GGML_ASSERT(!ggml_is_transposed(a));
  4776. bool is_node = false;
  4777. if (a->grad || b->grad) {
  4778. is_node = true;
  4779. }
  4780. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4781. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4782. result->op = GGML_OP_OUT_PROD;
  4783. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4784. result->src[0] = a;
  4785. result->src[1] = b;
  4786. return result;
  4787. }
  4788. // ggml_scale
  4789. static struct ggml_tensor * ggml_scale_impl(
  4790. struct ggml_context * ctx,
  4791. struct ggml_tensor * a,
  4792. struct ggml_tensor * b,
  4793. bool inplace) {
  4794. GGML_ASSERT(ggml_is_scalar(b));
  4795. GGML_ASSERT(ggml_is_padded_1d(a));
  4796. bool is_node = false;
  4797. if (a->grad || b->grad) {
  4798. is_node = true;
  4799. }
  4800. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4801. result->op = GGML_OP_SCALE;
  4802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4803. result->src[0] = a;
  4804. result->src[1] = b;
  4805. return result;
  4806. }
  4807. struct ggml_tensor * ggml_scale(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a,
  4810. struct ggml_tensor * b) {
  4811. return ggml_scale_impl(ctx, a, b, false);
  4812. }
  4813. struct ggml_tensor * ggml_scale_inplace(
  4814. struct ggml_context * ctx,
  4815. struct ggml_tensor * a,
  4816. struct ggml_tensor * b) {
  4817. return ggml_scale_impl(ctx, a, b, true);
  4818. }
  4819. // ggml_set
  4820. static struct ggml_tensor * ggml_set_impl(
  4821. struct ggml_context * ctx,
  4822. struct ggml_tensor * a,
  4823. struct ggml_tensor * b,
  4824. size_t nb1,
  4825. size_t nb2,
  4826. size_t nb3,
  4827. size_t offset,
  4828. bool inplace) {
  4829. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4830. bool is_node = false;
  4831. if (a->grad || b->grad) {
  4832. is_node = true;
  4833. }
  4834. // make a view of the destination
  4835. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4836. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4837. ggml_set_op_params(result, params, sizeof(params));
  4838. result->op = GGML_OP_SET;
  4839. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4840. result->src[0] = a;
  4841. result->src[1] = b;
  4842. return result;
  4843. }
  4844. struct ggml_tensor * ggml_set(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. struct ggml_tensor * b,
  4848. size_t nb1,
  4849. size_t nb2,
  4850. size_t nb3,
  4851. size_t offset) {
  4852. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4853. }
  4854. struct ggml_tensor * ggml_set_inplace(
  4855. struct ggml_context * ctx,
  4856. struct ggml_tensor * a,
  4857. struct ggml_tensor * b,
  4858. size_t nb1,
  4859. size_t nb2,
  4860. size_t nb3,
  4861. size_t offset) {
  4862. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4863. }
  4864. struct ggml_tensor * ggml_set_1d(
  4865. struct ggml_context * ctx,
  4866. struct ggml_tensor * a,
  4867. struct ggml_tensor * b,
  4868. size_t offset) {
  4869. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4870. }
  4871. struct ggml_tensor * ggml_set_1d_inplace(
  4872. struct ggml_context * ctx,
  4873. struct ggml_tensor * a,
  4874. struct ggml_tensor * b,
  4875. size_t offset) {
  4876. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4877. }
  4878. struct ggml_tensor * ggml_set_2d(
  4879. struct ggml_context * ctx,
  4880. struct ggml_tensor * a,
  4881. struct ggml_tensor * b,
  4882. size_t nb1,
  4883. size_t offset) {
  4884. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4885. }
  4886. struct ggml_tensor * ggml_set_2d_inplace(
  4887. struct ggml_context * ctx,
  4888. struct ggml_tensor * a,
  4889. struct ggml_tensor * b,
  4890. size_t nb1,
  4891. size_t offset) {
  4892. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4893. }
  4894. // ggml_cpy
  4895. static struct ggml_tensor * ggml_cpy_impl(
  4896. struct ggml_context * ctx,
  4897. struct ggml_tensor * a,
  4898. struct ggml_tensor * b,
  4899. bool inplace) {
  4900. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4901. bool is_node = false;
  4902. if (!inplace && (a->grad || b->grad)) {
  4903. is_node = true;
  4904. }
  4905. // make a view of the destination
  4906. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4907. if (strlen(b->name) > 0) {
  4908. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4909. } else {
  4910. ggml_format_name(result, "%s (copy)", a->name);
  4911. }
  4912. result->op = GGML_OP_CPY;
  4913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4914. result->src[0] = a;
  4915. result->src[1] = b;
  4916. return result;
  4917. }
  4918. struct ggml_tensor * ggml_cpy(
  4919. struct ggml_context * ctx,
  4920. struct ggml_tensor * a,
  4921. struct ggml_tensor * b) {
  4922. return ggml_cpy_impl(ctx, a, b, false);
  4923. }
  4924. struct ggml_tensor * ggml_cpy_inplace(
  4925. struct ggml_context * ctx,
  4926. struct ggml_tensor * a,
  4927. struct ggml_tensor * b) {
  4928. return ggml_cpy_impl(ctx, a, b, true);
  4929. }
  4930. // ggml_cont
  4931. static struct ggml_tensor * ggml_cont_impl(
  4932. struct ggml_context * ctx,
  4933. struct ggml_tensor * a,
  4934. bool inplace) {
  4935. bool is_node = false;
  4936. if (!inplace && a->grad) {
  4937. is_node = true;
  4938. }
  4939. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4940. ggml_format_name(result, "%s (cont)", a->name);
  4941. result->op = GGML_OP_CONT;
  4942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4943. result->src[0] = a;
  4944. return result;
  4945. }
  4946. struct ggml_tensor * ggml_cont(
  4947. struct ggml_context * ctx,
  4948. struct ggml_tensor * a) {
  4949. return ggml_cont_impl(ctx, a, false);
  4950. }
  4951. struct ggml_tensor * ggml_cont_inplace(
  4952. struct ggml_context * ctx,
  4953. struct ggml_tensor * a) {
  4954. return ggml_cont_impl(ctx, a, true);
  4955. }
  4956. // ggml_reshape
  4957. struct ggml_tensor * ggml_reshape(
  4958. struct ggml_context * ctx,
  4959. struct ggml_tensor * a,
  4960. struct ggml_tensor * b) {
  4961. GGML_ASSERT(ggml_is_contiguous(a));
  4962. GGML_ASSERT(ggml_is_contiguous(b));
  4963. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4964. bool is_node = false;
  4965. if (a->grad) {
  4966. is_node = true;
  4967. }
  4968. if (b->grad) {
  4969. // gradient propagation is not supported
  4970. //GGML_ASSERT(false);
  4971. }
  4972. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4973. ggml_format_name(result, "%s (reshaped)", a->name);
  4974. result->op = GGML_OP_RESHAPE;
  4975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4976. result->src[0] = a;
  4977. return result;
  4978. }
  4979. struct ggml_tensor * ggml_reshape_1d(
  4980. struct ggml_context * ctx,
  4981. struct ggml_tensor * a,
  4982. int64_t ne0) {
  4983. GGML_ASSERT(ggml_is_contiguous(a));
  4984. GGML_ASSERT(ggml_nelements(a) == ne0);
  4985. bool is_node = false;
  4986. if (a->grad) {
  4987. is_node = true;
  4988. }
  4989. const int64_t ne[1] = { ne0 };
  4990. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4991. ggml_format_name(result, "%s (reshaped)", a->name);
  4992. result->op = GGML_OP_RESHAPE;
  4993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4994. result->src[0] = a;
  4995. return result;
  4996. }
  4997. struct ggml_tensor * ggml_reshape_2d(
  4998. struct ggml_context * ctx,
  4999. struct ggml_tensor * a,
  5000. int64_t ne0,
  5001. int64_t ne1) {
  5002. GGML_ASSERT(ggml_is_contiguous(a));
  5003. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5004. bool is_node = false;
  5005. if (a->grad) {
  5006. is_node = true;
  5007. }
  5008. const int64_t ne[2] = { ne0, ne1 };
  5009. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5010. ggml_format_name(result, "%s (reshaped)", a->name);
  5011. result->op = GGML_OP_RESHAPE;
  5012. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5013. result->src[0] = a;
  5014. return result;
  5015. }
  5016. struct ggml_tensor * ggml_reshape_3d(
  5017. struct ggml_context * ctx,
  5018. struct ggml_tensor * a,
  5019. int64_t ne0,
  5020. int64_t ne1,
  5021. int64_t ne2) {
  5022. GGML_ASSERT(ggml_is_contiguous(a));
  5023. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5024. bool is_node = false;
  5025. if (a->grad) {
  5026. is_node = true;
  5027. }
  5028. const int64_t ne[3] = { ne0, ne1, ne2 };
  5029. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5030. ggml_format_name(result, "%s (reshaped)", a->name);
  5031. result->op = GGML_OP_RESHAPE;
  5032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5033. result->src[0] = a;
  5034. return result;
  5035. }
  5036. struct ggml_tensor * ggml_reshape_4d(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * a,
  5039. int64_t ne0,
  5040. int64_t ne1,
  5041. int64_t ne2,
  5042. int64_t ne3) {
  5043. GGML_ASSERT(ggml_is_contiguous(a));
  5044. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5045. bool is_node = false;
  5046. if (a->grad) {
  5047. is_node = true;
  5048. }
  5049. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5050. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5051. ggml_format_name(result, "%s (reshaped)", a->name);
  5052. result->op = GGML_OP_RESHAPE;
  5053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5054. result->src[0] = a;
  5055. return result;
  5056. }
  5057. // ggml_view_1d
  5058. static struct ggml_tensor * ggml_view_tensor_offset(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. int n_dims,
  5062. const int64_t * ne,
  5063. size_t offset) {
  5064. // don't calculate an offset from an unallocated tensor
  5065. void * data = NULL;
  5066. if (a->data != NULL) {
  5067. data = (char *) a->data + offset;
  5068. }
  5069. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
  5070. ggml_format_name(result, "%s (view)", a->name);
  5071. ggml_set_op_params(result, &offset, sizeof(offset));
  5072. return result;
  5073. }
  5074. struct ggml_tensor * ggml_view_1d(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. int64_t ne0,
  5078. size_t offset) {
  5079. bool is_node = false;
  5080. if (a->grad) {
  5081. is_node = true;
  5082. }
  5083. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
  5084. result->op = GGML_OP_VIEW;
  5085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5086. result->src[0] = a;
  5087. return result;
  5088. }
  5089. // ggml_view_2d
  5090. struct ggml_tensor * ggml_view_2d(
  5091. struct ggml_context * ctx,
  5092. struct ggml_tensor * a,
  5093. int64_t ne0,
  5094. int64_t ne1,
  5095. size_t nb1,
  5096. size_t offset) {
  5097. bool is_node = false;
  5098. if (a->grad) {
  5099. is_node = true;
  5100. }
  5101. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5102. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
  5103. result->nb[1] = nb1;
  5104. result->nb[2] = result->nb[1]*ne1;
  5105. result->nb[3] = result->nb[2];
  5106. result->op = GGML_OP_VIEW;
  5107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5108. result->src[0] = a;
  5109. return result;
  5110. }
  5111. // ggml_view_3d
  5112. struct ggml_tensor * ggml_view_3d(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * a,
  5115. int64_t ne0,
  5116. int64_t ne1,
  5117. int64_t ne2,
  5118. size_t nb1,
  5119. size_t nb2,
  5120. size_t offset) {
  5121. bool is_node = false;
  5122. if (a->grad) {
  5123. is_node = true;
  5124. }
  5125. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5126. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
  5127. result->nb[1] = nb1;
  5128. result->nb[2] = nb2;
  5129. result->nb[3] = result->nb[2]*ne2;
  5130. result->op = GGML_OP_VIEW;
  5131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5132. result->src[0] = a;
  5133. return result;
  5134. }
  5135. // ggml_view_4d
  5136. struct ggml_tensor * ggml_view_4d(
  5137. struct ggml_context * ctx,
  5138. struct ggml_tensor * a,
  5139. int64_t ne0,
  5140. int64_t ne1,
  5141. int64_t ne2,
  5142. int64_t ne3,
  5143. size_t nb1,
  5144. size_t nb2,
  5145. size_t nb3,
  5146. size_t offset) {
  5147. bool is_node = false;
  5148. if (a->grad) {
  5149. is_node = true;
  5150. }
  5151. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5152. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
  5153. result->nb[1] = nb1;
  5154. result->nb[2] = nb2;
  5155. result->nb[3] = nb3;
  5156. result->op = GGML_OP_VIEW;
  5157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5158. result->src[0] = a;
  5159. return result;
  5160. }
  5161. // ggml_permute
  5162. struct ggml_tensor * ggml_permute(
  5163. struct ggml_context * ctx,
  5164. struct ggml_tensor * a,
  5165. int axis0,
  5166. int axis1,
  5167. int axis2,
  5168. int axis3) {
  5169. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5170. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5171. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5172. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5173. GGML_ASSERT(axis0 != axis1);
  5174. GGML_ASSERT(axis0 != axis2);
  5175. GGML_ASSERT(axis0 != axis3);
  5176. GGML_ASSERT(axis1 != axis2);
  5177. GGML_ASSERT(axis1 != axis3);
  5178. GGML_ASSERT(axis2 != axis3);
  5179. bool is_node = false;
  5180. if (a->grad) {
  5181. is_node = true;
  5182. }
  5183. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5184. ggml_format_name(result, "%s (permuted)", a->name);
  5185. int ne[GGML_MAX_DIMS];
  5186. int nb[GGML_MAX_DIMS];
  5187. ne[axis0] = a->ne[0];
  5188. ne[axis1] = a->ne[1];
  5189. ne[axis2] = a->ne[2];
  5190. ne[axis3] = a->ne[3];
  5191. nb[axis0] = a->nb[0];
  5192. nb[axis1] = a->nb[1];
  5193. nb[axis2] = a->nb[2];
  5194. nb[axis3] = a->nb[3];
  5195. result->ne[0] = ne[0];
  5196. result->ne[1] = ne[1];
  5197. result->ne[2] = ne[2];
  5198. result->ne[3] = ne[3];
  5199. result->nb[0] = nb[0];
  5200. result->nb[1] = nb[1];
  5201. result->nb[2] = nb[2];
  5202. result->nb[3] = nb[3];
  5203. result->op = GGML_OP_PERMUTE;
  5204. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5205. result->src[0] = a;
  5206. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5207. ggml_set_op_params(result, &params, sizeof(params));
  5208. return result;
  5209. }
  5210. // ggml_transpose
  5211. struct ggml_tensor * ggml_transpose(
  5212. struct ggml_context * ctx,
  5213. struct ggml_tensor * a) {
  5214. bool is_node = false;
  5215. if (a->grad) {
  5216. is_node = true;
  5217. }
  5218. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5219. ggml_format_name(result, "%s (transposed)", a->name);
  5220. result->ne[0] = a->ne[1];
  5221. result->ne[1] = a->ne[0];
  5222. result->nb[0] = a->nb[1];
  5223. result->nb[1] = a->nb[0];
  5224. result->op = GGML_OP_TRANSPOSE;
  5225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5226. result->src[0] = a;
  5227. return result;
  5228. }
  5229. // ggml_get_rows
  5230. struct ggml_tensor * ggml_get_rows(
  5231. struct ggml_context * ctx,
  5232. struct ggml_tensor * a,
  5233. struct ggml_tensor * b) {
  5234. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5235. bool is_node = false;
  5236. if (a->grad || b->grad) {
  5237. is_node = true;
  5238. }
  5239. // TODO: implement non F32 return
  5240. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5241. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5242. result->op = GGML_OP_GET_ROWS;
  5243. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5244. result->src[0] = a;
  5245. result->src[1] = b;
  5246. return result;
  5247. }
  5248. // ggml_get_rows_back
  5249. struct ggml_tensor * ggml_get_rows_back(
  5250. struct ggml_context * ctx,
  5251. struct ggml_tensor * a,
  5252. struct ggml_tensor * b,
  5253. struct ggml_tensor * c) {
  5254. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5255. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5256. bool is_node = false;
  5257. if (a->grad || b->grad) {
  5258. is_node = true;
  5259. }
  5260. // TODO: implement non F32 return
  5261. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5262. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5263. result->op = GGML_OP_GET_ROWS_BACK;
  5264. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5265. result->src[0] = a;
  5266. result->src[1] = b;
  5267. result->src[2] = c;
  5268. return result;
  5269. }
  5270. // ggml_diag
  5271. struct ggml_tensor * ggml_diag(
  5272. struct ggml_context * ctx,
  5273. struct ggml_tensor * a) {
  5274. GGML_ASSERT(a->ne[1] == 1);
  5275. bool is_node = false;
  5276. if (a->grad) {
  5277. is_node = true;
  5278. }
  5279. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5280. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5281. result->op = GGML_OP_DIAG;
  5282. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5283. result->src[0] = a;
  5284. return result;
  5285. }
  5286. // ggml_diag_mask_inf
  5287. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5288. struct ggml_context * ctx,
  5289. struct ggml_tensor * a,
  5290. int n_past,
  5291. bool inplace) {
  5292. bool is_node = false;
  5293. if (a->grad) {
  5294. is_node = true;
  5295. }
  5296. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5297. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5298. ggml_set_op_params(result, &params, sizeof(params));
  5299. result->op = GGML_OP_DIAG_MASK_INF;
  5300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5301. result->src[0] = a;
  5302. return result;
  5303. }
  5304. struct ggml_tensor * ggml_diag_mask_inf(
  5305. struct ggml_context * ctx,
  5306. struct ggml_tensor * a,
  5307. int n_past) {
  5308. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5309. }
  5310. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5311. struct ggml_context * ctx,
  5312. struct ggml_tensor * a,
  5313. int n_past) {
  5314. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5315. }
  5316. // ggml_diag_mask_zero
  5317. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5318. struct ggml_context * ctx,
  5319. struct ggml_tensor * a,
  5320. int n_past,
  5321. bool inplace) {
  5322. bool is_node = false;
  5323. if (a->grad) {
  5324. is_node = true;
  5325. }
  5326. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5327. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5328. ggml_set_op_params(result, &params, sizeof(params));
  5329. result->op = GGML_OP_DIAG_MASK_ZERO;
  5330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5331. result->src[0] = a;
  5332. return result;
  5333. }
  5334. struct ggml_tensor * ggml_diag_mask_zero(
  5335. struct ggml_context * ctx,
  5336. struct ggml_tensor * a,
  5337. int n_past) {
  5338. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5339. }
  5340. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5341. struct ggml_context * ctx,
  5342. struct ggml_tensor * a,
  5343. int n_past) {
  5344. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5345. }
  5346. // ggml_soft_max
  5347. static struct ggml_tensor * ggml_soft_max_impl(
  5348. struct ggml_context * ctx,
  5349. struct ggml_tensor * a,
  5350. bool inplace) {
  5351. bool is_node = false;
  5352. if (a->grad) {
  5353. is_node = true;
  5354. }
  5355. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5356. result->op = GGML_OP_SOFT_MAX;
  5357. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5358. result->src[0] = a;
  5359. return result;
  5360. }
  5361. struct ggml_tensor * ggml_soft_max(
  5362. struct ggml_context * ctx,
  5363. struct ggml_tensor * a) {
  5364. return ggml_soft_max_impl(ctx, a, false);
  5365. }
  5366. struct ggml_tensor * ggml_soft_max_inplace(
  5367. struct ggml_context * ctx,
  5368. struct ggml_tensor * a) {
  5369. return ggml_soft_max_impl(ctx, a, true);
  5370. }
  5371. // ggml_soft_max_back
  5372. static struct ggml_tensor * ggml_soft_max_back_impl(
  5373. struct ggml_context * ctx,
  5374. struct ggml_tensor * a,
  5375. struct ggml_tensor * b,
  5376. bool inplace) {
  5377. bool is_node = false;
  5378. if (a->grad || b->grad) {
  5379. is_node = true; // TODO : implement backward pass
  5380. }
  5381. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5382. result->op = GGML_OP_SOFT_MAX_BACK;
  5383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5384. result->src[0] = a;
  5385. result->src[1] = b;
  5386. return result;
  5387. }
  5388. struct ggml_tensor * ggml_soft_max_back(
  5389. struct ggml_context * ctx,
  5390. struct ggml_tensor * a,
  5391. struct ggml_tensor * b) {
  5392. return ggml_soft_max_back_impl(ctx, a, b, false);
  5393. }
  5394. struct ggml_tensor * ggml_soft_max_back_inplace(
  5395. struct ggml_context * ctx,
  5396. struct ggml_tensor * a,
  5397. struct ggml_tensor * b) {
  5398. return ggml_soft_max_back_impl(ctx, a, b, true);
  5399. }
  5400. // ggml_rope
  5401. static struct ggml_tensor * ggml_rope_impl(
  5402. struct ggml_context * ctx,
  5403. struct ggml_tensor * a,
  5404. int n_past,
  5405. int n_dims,
  5406. int mode,
  5407. int n_ctx,
  5408. float freq_base,
  5409. float freq_scale,
  5410. bool inplace) {
  5411. GGML_ASSERT(n_past >= 0);
  5412. bool is_node = false;
  5413. if (a->grad) {
  5414. is_node = true;
  5415. }
  5416. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5417. int32_t params[6] = { n_past, n_dims, mode, n_ctx };
  5418. memcpy(params + 4, &freq_base, sizeof(float));
  5419. memcpy(params + 5, &freq_scale, sizeof(float));
  5420. ggml_set_op_params(result, &params, sizeof(params));
  5421. result->op = GGML_OP_ROPE;
  5422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5423. result->src[0] = a;
  5424. return result;
  5425. }
  5426. struct ggml_tensor * ggml_rope(
  5427. struct ggml_context * ctx,
  5428. struct ggml_tensor * a,
  5429. int n_past,
  5430. int n_dims,
  5431. int mode,
  5432. int n_ctx) {
  5433. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, false);
  5434. }
  5435. struct ggml_tensor * ggml_rope_inplace(
  5436. struct ggml_context * ctx,
  5437. struct ggml_tensor * a,
  5438. int n_past,
  5439. int n_dims,
  5440. int mode,
  5441. int n_ctx) {
  5442. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
  5443. }
  5444. struct ggml_tensor * ggml_rope_custom(
  5445. struct ggml_context * ctx,
  5446. struct ggml_tensor * a,
  5447. int n_past,
  5448. int n_dims,
  5449. int mode,
  5450. int n_ctx,
  5451. float freq_base,
  5452. float freq_scale) {
  5453. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, false);
  5454. }
  5455. struct ggml_tensor * ggml_rope_custom_inplace(
  5456. struct ggml_context * ctx,
  5457. struct ggml_tensor * a,
  5458. int n_past,
  5459. int n_dims,
  5460. int mode,
  5461. int n_ctx,
  5462. float freq_base,
  5463. float freq_scale) {
  5464. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, true);
  5465. }
  5466. // ggml_rope_back
  5467. struct ggml_tensor * ggml_rope_back(
  5468. struct ggml_context * ctx,
  5469. struct ggml_tensor * a,
  5470. int n_past,
  5471. int n_dims,
  5472. int mode,
  5473. int n_ctx) {
  5474. GGML_ASSERT(n_past >= 0);
  5475. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5476. bool is_node = false;
  5477. if (a->grad) {
  5478. is_node = false; // TODO: implement backward
  5479. }
  5480. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5481. int32_t params[] = { n_past, n_dims, mode, n_ctx };
  5482. ggml_set_op_params(result, &params, sizeof(params));
  5483. result->op = GGML_OP_ROPE_BACK;
  5484. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5485. result->src[0] = a;
  5486. return result;
  5487. }
  5488. // ggml_alibi
  5489. struct ggml_tensor * ggml_alibi(
  5490. struct ggml_context * ctx,
  5491. struct ggml_tensor * a,
  5492. int n_past,
  5493. int n_head,
  5494. float bias_max) {
  5495. GGML_ASSERT(n_past >= 0);
  5496. bool is_node = false;
  5497. if (a->grad) {
  5498. GGML_ASSERT(false); // TODO: implement backward
  5499. is_node = true;
  5500. }
  5501. // TODO: when implement backward, fix this:
  5502. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5503. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5504. int32_t op_params[3] = { n_past, n_head };
  5505. memcpy(op_params + 2, &bias_max, sizeof(float));
  5506. ggml_set_op_params(result, &op_params, sizeof(op_params));
  5507. result->op = GGML_OP_ALIBI;
  5508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5509. result->src[0] = a;
  5510. return result;
  5511. }
  5512. // ggml_clamp
  5513. struct ggml_tensor * ggml_clamp(
  5514. struct ggml_context * ctx,
  5515. struct ggml_tensor * a,
  5516. float min,
  5517. float max) {
  5518. bool is_node = false;
  5519. if (a->grad) {
  5520. GGML_ASSERT(false); // TODO: implement backward
  5521. is_node = true;
  5522. }
  5523. // TODO: when implement backward, fix this:
  5524. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5525. float params[] = { min, max };
  5526. ggml_set_op_params(result, &params, sizeof(params));
  5527. result->op = GGML_OP_CLAMP;
  5528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5529. result->src[0] = a;
  5530. return result;
  5531. }
  5532. // ggml_conv_1d
  5533. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5534. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5535. }
  5536. GGML_API struct ggml_tensor * ggml_conv_1d(
  5537. struct ggml_context * ctx,
  5538. struct ggml_tensor * a,
  5539. struct ggml_tensor * b,
  5540. int s0,
  5541. int p0,
  5542. int d0) {
  5543. GGML_ASSERT(ggml_is_matrix(b));
  5544. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5545. bool is_node = false;
  5546. if (a->grad || b->grad) {
  5547. GGML_ASSERT(false); // TODO: implement backward
  5548. is_node = true;
  5549. }
  5550. const int64_t ne[4] = {
  5551. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5552. a->ne[2], 1, 1,
  5553. };
  5554. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5555. int32_t params[] = { s0, p0, d0 };
  5556. ggml_set_op_params(result, &params, sizeof(params));
  5557. result->op = GGML_OP_CONV_1D;
  5558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5559. result->src[0] = a;
  5560. result->src[1] = b;
  5561. return result;
  5562. }
  5563. // ggml_conv_2d
  5564. struct ggml_tensor* ggml_conv_2d(
  5565. struct ggml_context* ctx,
  5566. struct ggml_tensor * a,
  5567. struct ggml_tensor * b,
  5568. int s0,
  5569. int s1,
  5570. int p0,
  5571. int p1,
  5572. int d0,
  5573. int d1) {
  5574. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5575. bool is_node = false;
  5576. if (a->grad || b->grad) {
  5577. GGML_ASSERT(false); // TODO: implement backward
  5578. is_node = true;
  5579. }
  5580. const int64_t ne[4] = {
  5581. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5582. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5583. a->ne[3], b->ne[3],
  5584. };
  5585. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5586. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5587. ggml_set_op_params(result, &params, sizeof(params));
  5588. result->op = GGML_OP_CONV_2D;
  5589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5590. result->src[0] = a;
  5591. result->src[1] = b;
  5592. return result;
  5593. }
  5594. // ggml_conv_1d_ph
  5595. struct ggml_tensor* ggml_conv_1d_ph(
  5596. struct ggml_context * ctx,
  5597. struct ggml_tensor * a,
  5598. struct ggml_tensor * b,
  5599. int s,
  5600. int d) {
  5601. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5602. }
  5603. // ggml_pool_*
  5604. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5605. return (ins + 2 * p - ks) / s + 1;
  5606. }
  5607. // ggml_pool_1d
  5608. struct ggml_tensor* ggml_pool_1d(
  5609. struct ggml_context * ctx,
  5610. struct ggml_tensor * a,
  5611. enum ggml_op_pool op,
  5612. int k0,
  5613. int s0,
  5614. int p0) {
  5615. bool is_node = false;
  5616. if (a->grad) {
  5617. GGML_ASSERT(false); // TODO: implement backward
  5618. is_node = true;
  5619. }
  5620. const int64_t ne[3] = {
  5621. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5622. a->ne[1],
  5623. };
  5624. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5625. int32_t params[] = { op, k0, s0, p0 };
  5626. ggml_set_op_params(result, &params, sizeof(params));
  5627. result->op = GGML_OP_POOL_1D;
  5628. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5629. result->src[0] = a;
  5630. return result;
  5631. }
  5632. // ggml_pool_2d
  5633. struct ggml_tensor* ggml_pool_2d(
  5634. struct ggml_context * ctx,
  5635. struct ggml_tensor * a,
  5636. enum ggml_op_pool op,
  5637. int k0,
  5638. int k1,
  5639. int s0,
  5640. int s1,
  5641. int p0,
  5642. int p1) {
  5643. bool is_node = false;
  5644. if (a->grad) {
  5645. GGML_ASSERT(false); // TODO: implement backward
  5646. is_node = true;
  5647. }
  5648. const int64_t ne[3] = {
  5649. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5650. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5651. a->ne[2],
  5652. };
  5653. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5654. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5655. ggml_set_op_params(result, &params, sizeof(params));
  5656. result->op = GGML_OP_POOL_2D;
  5657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5658. result->src[0] = a;
  5659. return result;
  5660. }
  5661. // ggml_flash_attn
  5662. struct ggml_tensor * ggml_flash_attn(
  5663. struct ggml_context * ctx,
  5664. struct ggml_tensor * q,
  5665. struct ggml_tensor * k,
  5666. struct ggml_tensor * v,
  5667. bool masked) {
  5668. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5669. // TODO: check if vT can be multiplied by (k*qT)
  5670. bool is_node = false;
  5671. if (q->grad || k->grad || v->grad) {
  5672. is_node = true;
  5673. }
  5674. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5675. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5676. int32_t t = masked ? 1 : 0;
  5677. ggml_set_op_params(result, &t, sizeof(t));
  5678. result->op = GGML_OP_FLASH_ATTN;
  5679. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5680. result->src[0] = q;
  5681. result->src[1] = k;
  5682. result->src[2] = v;
  5683. return result;
  5684. }
  5685. // ggml_flash_ff
  5686. struct ggml_tensor * ggml_flash_ff(
  5687. struct ggml_context * ctx,
  5688. struct ggml_tensor * a,
  5689. struct ggml_tensor * b0,
  5690. struct ggml_tensor * b1,
  5691. struct ggml_tensor * c0,
  5692. struct ggml_tensor * c1) {
  5693. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5694. // TODO: more checks
  5695. bool is_node = false;
  5696. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5697. is_node = true;
  5698. }
  5699. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5700. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5701. result->op = GGML_OP_FLASH_FF;
  5702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5703. result->src[0] = a;
  5704. result->src[1] = b0;
  5705. result->src[2] = b1;
  5706. result->src[3] = c0;
  5707. result->src[4] = c1;
  5708. return result;
  5709. }
  5710. // ggml_flash_attn_back
  5711. struct ggml_tensor * ggml_flash_attn_back(
  5712. struct ggml_context * ctx,
  5713. struct ggml_tensor * q,
  5714. struct ggml_tensor * k,
  5715. struct ggml_tensor * v,
  5716. struct ggml_tensor * d,
  5717. bool masked) {
  5718. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5719. // TODO: check if vT can be multiplied by (k*qT)
  5720. // d shape [D,N,ne2,ne3]
  5721. // q shape [D,N,ne2,ne3]
  5722. // k shape [D,M,ne2,ne3]
  5723. // v shape [M,D,ne2,ne3]
  5724. const int64_t D = q->ne[0];
  5725. const int64_t N = q->ne[1];
  5726. const int64_t M = k->ne[1];
  5727. const int64_t ne2 = q->ne[2];
  5728. const int64_t ne3 = q->ne[3];
  5729. GGML_ASSERT(k->ne[0] == D);
  5730. GGML_ASSERT(v->ne[0] == M);
  5731. GGML_ASSERT(v->ne[1] == D);
  5732. GGML_ASSERT(d->ne[0] == D);
  5733. GGML_ASSERT(d->ne[1] == N);
  5734. GGML_ASSERT(k->ne[2] == ne2);
  5735. GGML_ASSERT(k->ne[3] == ne3);
  5736. GGML_ASSERT(v->ne[2] == ne2);
  5737. GGML_ASSERT(v->ne[3] == ne3);
  5738. GGML_ASSERT(d->ne[2] == ne2);
  5739. GGML_ASSERT(d->ne[3] == ne3);
  5740. bool is_node = false;
  5741. if (q->grad || k->grad || v->grad) {
  5742. // when using this operation (in backwards pass) these grads are set.
  5743. // we don't want to create (big) grad of our result, so is_node is false.
  5744. is_node = false;
  5745. }
  5746. // store gradients of q, k and v as continuous tensors concatenated in result.
  5747. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5748. // gradq->data = result->data
  5749. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5750. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5751. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5752. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5753. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5754. int32_t masked_i = masked ? 1 : 0;
  5755. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5756. result->op = GGML_OP_FLASH_ATTN_BACK;
  5757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5758. result->src[0] = q;
  5759. result->src[1] = k;
  5760. result->src[2] = v;
  5761. result->src[3] = d;
  5762. return result;
  5763. }
  5764. // ggml_win_part
  5765. struct ggml_tensor * ggml_win_part(
  5766. struct ggml_context * ctx,
  5767. struct ggml_tensor * a,
  5768. int w) {
  5769. GGML_ASSERT(a->ne[3] == 1);
  5770. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5771. bool is_node = false;
  5772. if (a->grad) {
  5773. GGML_ASSERT(false); // TODO: implement backward
  5774. is_node = true;
  5775. }
  5776. // padding
  5777. const int px = (w - a->ne[1]%w)%w;
  5778. const int py = (w - a->ne[2]%w)%w;
  5779. const int npx = (px + a->ne[1])/w;
  5780. const int npy = (py + a->ne[2])/w;
  5781. const int np = npx*npy;
  5782. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5783. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5784. int32_t params[] = { npx, npy, w };
  5785. ggml_set_op_params(result, &params, sizeof(params));
  5786. result->op = GGML_OP_WIN_PART;
  5787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5788. result->src[0] = a;
  5789. return result;
  5790. }
  5791. // ggml_win_unpart
  5792. struct ggml_tensor * ggml_win_unpart(
  5793. struct ggml_context * ctx,
  5794. struct ggml_tensor * a,
  5795. int w0,
  5796. int h0,
  5797. int w) {
  5798. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5799. bool is_node = false;
  5800. if (a->grad) {
  5801. GGML_ASSERT(false); // TODO: implement backward
  5802. is_node = true;
  5803. }
  5804. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5805. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5806. int32_t params[] = { w };
  5807. ggml_set_op_params(result, &params, sizeof(params));
  5808. result->op = GGML_OP_WIN_UNPART;
  5809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5810. result->src[0] = a;
  5811. return result;
  5812. }
  5813. // gmml_unary
  5814. static struct ggml_tensor * ggml_unary_impl(
  5815. struct ggml_context * ctx,
  5816. struct ggml_tensor * a,
  5817. enum ggml_unary_op op,
  5818. bool inplace) {
  5819. bool is_node = false;
  5820. if (!inplace && (a->grad)) {
  5821. is_node = true;
  5822. }
  5823. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5824. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5825. result->op = GGML_OP_UNARY;
  5826. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5827. result->src[0] = a;
  5828. return result;
  5829. }
  5830. struct ggml_tensor * ggml_unary(
  5831. struct ggml_context * ctx,
  5832. struct ggml_tensor * a,
  5833. enum ggml_unary_op op) {
  5834. return ggml_unary_impl(ctx, a, op, false);
  5835. }
  5836. struct ggml_tensor * ggml_unary_inplace(
  5837. struct ggml_context * ctx,
  5838. struct ggml_tensor * a,
  5839. enum ggml_unary_op op) {
  5840. return ggml_unary_impl(ctx, a, op, true);
  5841. }
  5842. // ggml_map_unary
  5843. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5844. struct ggml_context * ctx,
  5845. struct ggml_tensor * a,
  5846. const ggml_unary_op_f32_t fun,
  5847. bool inplace) {
  5848. bool is_node = false;
  5849. if (!inplace && a->grad) {
  5850. is_node = true;
  5851. }
  5852. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5853. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5854. result->op = GGML_OP_MAP_UNARY;
  5855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5856. result->src[0] = a;
  5857. return result;
  5858. }
  5859. struct ggml_tensor * ggml_map_unary_f32(
  5860. struct ggml_context * ctx,
  5861. struct ggml_tensor * a,
  5862. const ggml_unary_op_f32_t fun) {
  5863. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5864. }
  5865. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5866. struct ggml_context * ctx,
  5867. struct ggml_tensor * a,
  5868. const ggml_unary_op_f32_t fun) {
  5869. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5870. }
  5871. // ggml_map_binary
  5872. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5873. struct ggml_context * ctx,
  5874. struct ggml_tensor * a,
  5875. struct ggml_tensor * b,
  5876. const ggml_binary_op_f32_t fun,
  5877. bool inplace) {
  5878. GGML_ASSERT(ggml_are_same_shape(a, b));
  5879. bool is_node = false;
  5880. if (!inplace && (a->grad || b->grad)) {
  5881. is_node = true;
  5882. }
  5883. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5884. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5885. result->op = GGML_OP_MAP_BINARY;
  5886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5887. result->src[0] = a;
  5888. result->src[1] = b;
  5889. return result;
  5890. }
  5891. struct ggml_tensor * ggml_map_binary_f32(
  5892. struct ggml_context * ctx,
  5893. struct ggml_tensor * a,
  5894. struct ggml_tensor * b,
  5895. const ggml_binary_op_f32_t fun) {
  5896. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5897. }
  5898. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5899. struct ggml_context * ctx,
  5900. struct ggml_tensor * a,
  5901. struct ggml_tensor * b,
  5902. const ggml_binary_op_f32_t fun) {
  5903. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5904. }
  5905. // ggml_map_custom1
  5906. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5907. struct ggml_context * ctx,
  5908. struct ggml_tensor * a,
  5909. const ggml_custom1_op_f32_t fun,
  5910. bool inplace) {
  5911. bool is_node = false;
  5912. if (!inplace && a->grad) {
  5913. is_node = true;
  5914. }
  5915. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5916. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5917. result->op = GGML_OP_MAP_CUSTOM1;
  5918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5919. result->src[0] = a;
  5920. return result;
  5921. }
  5922. struct ggml_tensor * ggml_map_custom1_f32(
  5923. struct ggml_context * ctx,
  5924. struct ggml_tensor * a,
  5925. const ggml_custom1_op_f32_t fun) {
  5926. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5927. }
  5928. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5929. struct ggml_context * ctx,
  5930. struct ggml_tensor * a,
  5931. const ggml_custom1_op_f32_t fun) {
  5932. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5933. }
  5934. // ggml_map_custom2
  5935. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5936. struct ggml_context * ctx,
  5937. struct ggml_tensor * a,
  5938. struct ggml_tensor * b,
  5939. const ggml_custom2_op_f32_t fun,
  5940. bool inplace) {
  5941. bool is_node = false;
  5942. if (!inplace && (a->grad || b->grad)) {
  5943. is_node = true;
  5944. }
  5945. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5946. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5947. result->op = GGML_OP_MAP_CUSTOM2;
  5948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5949. result->src[0] = a;
  5950. result->src[1] = b;
  5951. return result;
  5952. }
  5953. struct ggml_tensor * ggml_map_custom2_f32(
  5954. struct ggml_context * ctx,
  5955. struct ggml_tensor * a,
  5956. struct ggml_tensor * b,
  5957. const ggml_custom2_op_f32_t fun) {
  5958. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5959. }
  5960. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5961. struct ggml_context * ctx,
  5962. struct ggml_tensor * a,
  5963. struct ggml_tensor * b,
  5964. const ggml_custom2_op_f32_t fun) {
  5965. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5966. }
  5967. // ggml_map_custom3
  5968. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5969. struct ggml_context * ctx,
  5970. struct ggml_tensor * a,
  5971. struct ggml_tensor * b,
  5972. struct ggml_tensor * c,
  5973. const ggml_custom3_op_f32_t fun,
  5974. bool inplace) {
  5975. bool is_node = false;
  5976. if (!inplace && (a->grad || b->grad || c->grad)) {
  5977. is_node = true;
  5978. }
  5979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5980. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5981. result->op = GGML_OP_MAP_CUSTOM3;
  5982. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5983. result->src[0] = a;
  5984. result->src[1] = b;
  5985. result->src[2] = c;
  5986. return result;
  5987. }
  5988. struct ggml_tensor * ggml_map_custom3_f32(
  5989. struct ggml_context * ctx,
  5990. struct ggml_tensor * a,
  5991. struct ggml_tensor * b,
  5992. struct ggml_tensor * c,
  5993. const ggml_custom3_op_f32_t fun) {
  5994. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5995. }
  5996. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5997. struct ggml_context * ctx,
  5998. struct ggml_tensor * a,
  5999. struct ggml_tensor * b,
  6000. struct ggml_tensor * c,
  6001. const ggml_custom3_op_f32_t fun) {
  6002. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6003. }
  6004. // ggml_cross_entropy_loss
  6005. struct ggml_tensor * ggml_cross_entropy_loss(
  6006. struct ggml_context * ctx,
  6007. struct ggml_tensor * a,
  6008. struct ggml_tensor * b) {
  6009. GGML_ASSERT(ggml_are_same_shape(a, b));
  6010. bool is_node = false;
  6011. if (a->grad || b->grad) {
  6012. is_node = true;
  6013. }
  6014. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6015. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6017. result->src[0] = a;
  6018. result->src[1] = b;
  6019. return result;
  6020. }
  6021. // ggml_cross_entropy_loss_back
  6022. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6023. struct ggml_context * ctx,
  6024. struct ggml_tensor * a,
  6025. struct ggml_tensor * b,
  6026. struct ggml_tensor * c) {
  6027. GGML_ASSERT(ggml_are_same_shape(a, b));
  6028. GGML_ASSERT(ggml_is_scalar(c));
  6029. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6030. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6031. result->grad = NULL;
  6032. result->src[0] = a;
  6033. result->src[1] = b;
  6034. result->src[2] = c;
  6035. return result;
  6036. }
  6037. ////////////////////////////////////////////////////////////////////////////////
  6038. void ggml_set_param(
  6039. struct ggml_context * ctx,
  6040. struct ggml_tensor * tensor) {
  6041. tensor->is_param = true;
  6042. GGML_ASSERT(tensor->grad == NULL);
  6043. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6044. }
  6045. // ggml_compute_forward_dup
  6046. static void ggml_compute_forward_dup_same_cont(
  6047. const struct ggml_compute_params * params,
  6048. const struct ggml_tensor * src0,
  6049. struct ggml_tensor * dst) {
  6050. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6051. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6052. GGML_ASSERT(src0->type == dst->type);
  6053. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6054. return;
  6055. }
  6056. const size_t nb00 = src0->nb[0];
  6057. const size_t nb0 = dst->nb[0];
  6058. const int ith = params->ith; // thread index
  6059. const int nth = params->nth; // number of threads
  6060. // parallelize by elements
  6061. const int ne = ggml_nelements(dst);
  6062. const int dr = (ne + nth - 1) / nth;
  6063. const int ie0 = dr * ith;
  6064. const int ie1 = MIN(ie0 + dr, ne);
  6065. if (ie0 < ie1) {
  6066. memcpy(
  6067. ((char *) dst->data + ie0*nb0),
  6068. ((char *) src0->data + ie0*nb00),
  6069. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6070. }
  6071. }
  6072. static void ggml_compute_forward_dup_f16(
  6073. const struct ggml_compute_params * params,
  6074. const struct ggml_tensor * src0,
  6075. struct ggml_tensor * dst) {
  6076. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6077. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6078. return;
  6079. }
  6080. GGML_TENSOR_UNARY_OP_LOCALS;
  6081. const int ith = params->ith; // thread index
  6082. const int nth = params->nth; // number of threads
  6083. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6084. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6085. return;
  6086. }
  6087. // parallelize by rows
  6088. const int nr = ne01;
  6089. // number of rows per thread
  6090. const int dr = (nr + nth - 1) / nth;
  6091. // row range for this thread
  6092. const int ir0 = dr * ith;
  6093. const int ir1 = MIN(ir0 + dr, nr);
  6094. if (src0->type == dst->type &&
  6095. ne00 == ne0 &&
  6096. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6097. // copy by rows
  6098. const size_t rs = ne00*nb00;
  6099. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6100. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6101. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6102. memcpy(
  6103. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6104. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6105. rs);
  6106. }
  6107. }
  6108. }
  6109. return;
  6110. }
  6111. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6112. if (ggml_is_contiguous(dst)) {
  6113. if (nb00 == sizeof(ggml_fp16_t)) {
  6114. if (dst->type == GGML_TYPE_F16) {
  6115. size_t id = 0;
  6116. const size_t rs = ne00 * nb00;
  6117. char * dst_ptr = (char *) dst->data;
  6118. for (int i03 = 0; i03 < ne03; i03++) {
  6119. for (int i02 = 0; i02 < ne02; i02++) {
  6120. id += rs * ir0;
  6121. for (int i01 = ir0; i01 < ir1; i01++) {
  6122. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6123. memcpy(dst_ptr + id, src0_ptr, rs);
  6124. id += rs;
  6125. }
  6126. id += rs * (ne01 - ir1);
  6127. }
  6128. }
  6129. } else if (dst->type == GGML_TYPE_F32) {
  6130. size_t id = 0;
  6131. float * dst_ptr = (float *) dst->data;
  6132. for (int i03 = 0; i03 < ne03; i03++) {
  6133. for (int i02 = 0; i02 < ne02; i02++) {
  6134. id += ne00 * ir0;
  6135. for (int i01 = ir0; i01 < ir1; i01++) {
  6136. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6137. for (int i00 = 0; i00 < ne00; i00++) {
  6138. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6139. id++;
  6140. }
  6141. }
  6142. id += ne00 * (ne01 - ir1);
  6143. }
  6144. }
  6145. } else if (type_traits[dst->type].from_float) {
  6146. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6147. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6148. size_t id = 0;
  6149. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6150. char * dst_ptr = (char *) dst->data;
  6151. for (int i03 = 0; i03 < ne03; i03++) {
  6152. for (int i02 = 0; i02 < ne02; i02++) {
  6153. id += rs * ir0;
  6154. for (int i01 = ir0; i01 < ir1; i01++) {
  6155. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6156. for (int i00 = 0; i00 < ne00; i00++) {
  6157. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6158. }
  6159. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6160. id += rs;
  6161. }
  6162. id += rs * (ne01 - ir1);
  6163. }
  6164. }
  6165. } else {
  6166. GGML_ASSERT(false); // TODO: implement
  6167. }
  6168. } else {
  6169. //printf("%s: this is not optimal - fix me\n", __func__);
  6170. if (dst->type == GGML_TYPE_F32) {
  6171. size_t id = 0;
  6172. float * dst_ptr = (float *) dst->data;
  6173. for (int i03 = 0; i03 < ne03; i03++) {
  6174. for (int i02 = 0; i02 < ne02; i02++) {
  6175. id += ne00 * ir0;
  6176. for (int i01 = ir0; i01 < ir1; i01++) {
  6177. for (int i00 = 0; i00 < ne00; i00++) {
  6178. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6179. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6180. id++;
  6181. }
  6182. }
  6183. id += ne00 * (ne01 - ir1);
  6184. }
  6185. }
  6186. } else if (dst->type == GGML_TYPE_F16) {
  6187. size_t id = 0;
  6188. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6189. for (int i03 = 0; i03 < ne03; i03++) {
  6190. for (int i02 = 0; i02 < ne02; i02++) {
  6191. id += ne00 * ir0;
  6192. for (int i01 = ir0; i01 < ir1; i01++) {
  6193. for (int i00 = 0; i00 < ne00; i00++) {
  6194. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6195. dst_ptr[id] = *src0_ptr;
  6196. id++;
  6197. }
  6198. }
  6199. id += ne00 * (ne01 - ir1);
  6200. }
  6201. }
  6202. } else {
  6203. GGML_ASSERT(false); // TODO: implement
  6204. }
  6205. }
  6206. return;
  6207. }
  6208. // dst counters
  6209. int64_t i10 = 0;
  6210. int64_t i11 = 0;
  6211. int64_t i12 = 0;
  6212. int64_t i13 = 0;
  6213. if (dst->type == GGML_TYPE_F16) {
  6214. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6215. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6216. i10 += ne00 * ir0;
  6217. while (i10 >= ne0) {
  6218. i10 -= ne0;
  6219. if (++i11 == ne1) {
  6220. i11 = 0;
  6221. if (++i12 == ne2) {
  6222. i12 = 0;
  6223. if (++i13 == ne3) {
  6224. i13 = 0;
  6225. }
  6226. }
  6227. }
  6228. }
  6229. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6230. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6231. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6232. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6233. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6234. if (++i10 == ne00) {
  6235. i10 = 0;
  6236. if (++i11 == ne01) {
  6237. i11 = 0;
  6238. if (++i12 == ne02) {
  6239. i12 = 0;
  6240. if (++i13 == ne03) {
  6241. i13 = 0;
  6242. }
  6243. }
  6244. }
  6245. }
  6246. }
  6247. }
  6248. i10 += ne00 * (ne01 - ir1);
  6249. while (i10 >= ne0) {
  6250. i10 -= ne0;
  6251. if (++i11 == ne1) {
  6252. i11 = 0;
  6253. if (++i12 == ne2) {
  6254. i12 = 0;
  6255. if (++i13 == ne3) {
  6256. i13 = 0;
  6257. }
  6258. }
  6259. }
  6260. }
  6261. }
  6262. }
  6263. } else if (dst->type == GGML_TYPE_F32) {
  6264. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6265. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6266. i10 += ne00 * ir0;
  6267. while (i10 >= ne0) {
  6268. i10 -= ne0;
  6269. if (++i11 == ne1) {
  6270. i11 = 0;
  6271. if (++i12 == ne2) {
  6272. i12 = 0;
  6273. if (++i13 == ne3) {
  6274. i13 = 0;
  6275. }
  6276. }
  6277. }
  6278. }
  6279. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6280. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6281. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6282. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6283. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6284. if (++i10 == ne0) {
  6285. i10 = 0;
  6286. if (++i11 == ne1) {
  6287. i11 = 0;
  6288. if (++i12 == ne2) {
  6289. i12 = 0;
  6290. if (++i13 == ne3) {
  6291. i13 = 0;
  6292. }
  6293. }
  6294. }
  6295. }
  6296. }
  6297. }
  6298. i10 += ne00 * (ne01 - ir1);
  6299. while (i10 >= ne0) {
  6300. i10 -= ne0;
  6301. if (++i11 == ne1) {
  6302. i11 = 0;
  6303. if (++i12 == ne2) {
  6304. i12 = 0;
  6305. if (++i13 == ne3) {
  6306. i13 = 0;
  6307. }
  6308. }
  6309. }
  6310. }
  6311. }
  6312. }
  6313. } else {
  6314. GGML_ASSERT(false); // TODO: implement
  6315. }
  6316. }
  6317. static void ggml_compute_forward_dup_f32(
  6318. const struct ggml_compute_params * params,
  6319. const struct ggml_tensor * src0,
  6320. struct ggml_tensor * dst) {
  6321. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6323. return;
  6324. }
  6325. GGML_TENSOR_UNARY_OP_LOCALS;
  6326. const int ith = params->ith; // thread index
  6327. const int nth = params->nth; // number of threads
  6328. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6329. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6330. return;
  6331. }
  6332. // parallelize by rows
  6333. const int nr = ne01;
  6334. // number of rows per thread
  6335. const int dr = (nr + nth - 1) / nth;
  6336. // row range for this thread
  6337. const int ir0 = dr * ith;
  6338. const int ir1 = MIN(ir0 + dr, nr);
  6339. if (src0->type == dst->type &&
  6340. ne00 == ne0 &&
  6341. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6342. // copy by rows
  6343. const size_t rs = ne00*nb00;
  6344. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6345. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6346. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6347. memcpy(
  6348. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6349. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6350. rs);
  6351. }
  6352. }
  6353. }
  6354. return;
  6355. }
  6356. if (ggml_is_contiguous(dst)) {
  6357. // TODO: simplify
  6358. if (nb00 == sizeof(float)) {
  6359. if (dst->type == GGML_TYPE_F32) {
  6360. size_t id = 0;
  6361. const size_t rs = ne00 * nb00;
  6362. char * dst_ptr = (char *) dst->data;
  6363. for (int i03 = 0; i03 < ne03; i03++) {
  6364. for (int i02 = 0; i02 < ne02; i02++) {
  6365. id += rs * ir0;
  6366. for (int i01 = ir0; i01 < ir1; i01++) {
  6367. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6368. memcpy(dst_ptr + id, src0_ptr, rs);
  6369. id += rs;
  6370. }
  6371. id += rs * (ne01 - ir1);
  6372. }
  6373. }
  6374. } else if (type_traits[dst->type].from_float) {
  6375. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6376. size_t id = 0;
  6377. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6378. char * dst_ptr = (char *) dst->data;
  6379. for (int i03 = 0; i03 < ne03; i03++) {
  6380. for (int i02 = 0; i02 < ne02; i02++) {
  6381. id += rs * ir0;
  6382. for (int i01 = ir0; i01 < ir1; i01++) {
  6383. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6384. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6385. id += rs;
  6386. }
  6387. id += rs * (ne01 - ir1);
  6388. }
  6389. }
  6390. } else {
  6391. GGML_ASSERT(false); // TODO: implement
  6392. }
  6393. } else {
  6394. //printf("%s: this is not optimal - fix me\n", __func__);
  6395. if (dst->type == GGML_TYPE_F32) {
  6396. size_t id = 0;
  6397. float * dst_ptr = (float *) dst->data;
  6398. for (int i03 = 0; i03 < ne03; i03++) {
  6399. for (int i02 = 0; i02 < ne02; i02++) {
  6400. id += ne00 * ir0;
  6401. for (int i01 = ir0; i01 < ir1; i01++) {
  6402. for (int i00 = 0; i00 < ne00; i00++) {
  6403. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6404. dst_ptr[id] = *src0_ptr;
  6405. id++;
  6406. }
  6407. }
  6408. id += ne00 * (ne01 - ir1);
  6409. }
  6410. }
  6411. } else if (dst->type == GGML_TYPE_F16) {
  6412. size_t id = 0;
  6413. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6414. for (int i03 = 0; i03 < ne03; i03++) {
  6415. for (int i02 = 0; i02 < ne02; i02++) {
  6416. id += ne00 * ir0;
  6417. for (int i01 = ir0; i01 < ir1; i01++) {
  6418. for (int i00 = 0; i00 < ne00; i00++) {
  6419. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6420. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6421. id++;
  6422. }
  6423. }
  6424. id += ne00 * (ne01 - ir1);
  6425. }
  6426. }
  6427. } else {
  6428. GGML_ASSERT(false); // TODO: implement
  6429. }
  6430. }
  6431. return;
  6432. }
  6433. // dst counters
  6434. int64_t i10 = 0;
  6435. int64_t i11 = 0;
  6436. int64_t i12 = 0;
  6437. int64_t i13 = 0;
  6438. if (dst->type == GGML_TYPE_F32) {
  6439. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6440. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6441. i10 += ne00 * ir0;
  6442. while (i10 >= ne0) {
  6443. i10 -= ne0;
  6444. if (++i11 == ne1) {
  6445. i11 = 0;
  6446. if (++i12 == ne2) {
  6447. i12 = 0;
  6448. if (++i13 == ne3) {
  6449. i13 = 0;
  6450. }
  6451. }
  6452. }
  6453. }
  6454. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6455. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6456. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6457. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6458. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6459. if (++i10 == ne0) {
  6460. i10 = 0;
  6461. if (++i11 == ne1) {
  6462. i11 = 0;
  6463. if (++i12 == ne2) {
  6464. i12 = 0;
  6465. if (++i13 == ne3) {
  6466. i13 = 0;
  6467. }
  6468. }
  6469. }
  6470. }
  6471. }
  6472. }
  6473. i10 += ne00 * (ne01 - ir1);
  6474. while (i10 >= ne0) {
  6475. i10 -= ne0;
  6476. if (++i11 == ne1) {
  6477. i11 = 0;
  6478. if (++i12 == ne2) {
  6479. i12 = 0;
  6480. if (++i13 == ne3) {
  6481. i13 = 0;
  6482. }
  6483. }
  6484. }
  6485. }
  6486. }
  6487. }
  6488. } else if (dst->type == GGML_TYPE_F16) {
  6489. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6490. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6491. i10 += ne00 * ir0;
  6492. while (i10 >= ne0) {
  6493. i10 -= ne0;
  6494. if (++i11 == ne1) {
  6495. i11 = 0;
  6496. if (++i12 == ne2) {
  6497. i12 = 0;
  6498. if (++i13 == ne3) {
  6499. i13 = 0;
  6500. }
  6501. }
  6502. }
  6503. }
  6504. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6505. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6506. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6507. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6508. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6509. if (++i10 == ne0) {
  6510. i10 = 0;
  6511. if (++i11 == ne1) {
  6512. i11 = 0;
  6513. if (++i12 == ne2) {
  6514. i12 = 0;
  6515. if (++i13 == ne3) {
  6516. i13 = 0;
  6517. }
  6518. }
  6519. }
  6520. }
  6521. }
  6522. }
  6523. i10 += ne00 * (ne01 - ir1);
  6524. while (i10 >= ne0) {
  6525. i10 -= ne0;
  6526. if (++i11 == ne1) {
  6527. i11 = 0;
  6528. if (++i12 == ne2) {
  6529. i12 = 0;
  6530. if (++i13 == ne3) {
  6531. i13 = 0;
  6532. }
  6533. }
  6534. }
  6535. }
  6536. }
  6537. }
  6538. } else {
  6539. GGML_ASSERT(false); // TODO: implement
  6540. }
  6541. }
  6542. static void ggml_compute_forward_dup(
  6543. const struct ggml_compute_params * params,
  6544. const struct ggml_tensor * src0,
  6545. struct ggml_tensor * dst) {
  6546. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6547. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6548. return;
  6549. }
  6550. switch (src0->type) {
  6551. case GGML_TYPE_F16:
  6552. {
  6553. ggml_compute_forward_dup_f16(params, src0, dst);
  6554. } break;
  6555. case GGML_TYPE_F32:
  6556. {
  6557. ggml_compute_forward_dup_f32(params, src0, dst);
  6558. } break;
  6559. default:
  6560. {
  6561. GGML_ASSERT(false);
  6562. } break;
  6563. }
  6564. }
  6565. // ggml_compute_forward_add
  6566. static void ggml_compute_forward_add_f32(
  6567. const struct ggml_compute_params * params,
  6568. const struct ggml_tensor * src0,
  6569. const struct ggml_tensor * src1,
  6570. struct ggml_tensor * dst) {
  6571. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6572. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6573. return;
  6574. }
  6575. const int ith = params->ith;
  6576. const int nth = params->nth;
  6577. const int nr = ggml_nrows(src0);
  6578. GGML_TENSOR_BINARY_OP_LOCALS;
  6579. GGML_ASSERT( nb0 == sizeof(float));
  6580. GGML_ASSERT(nb00 == sizeof(float));
  6581. // rows per thread
  6582. const int dr = (nr + nth - 1)/nth;
  6583. // row range for this thread
  6584. const int ir0 = dr*ith;
  6585. const int ir1 = MIN(ir0 + dr, nr);
  6586. if (nb10 == sizeof(float)) {
  6587. for (int ir = ir0; ir < ir1; ++ir) {
  6588. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6589. const int64_t i03 = ir/(ne02*ne01);
  6590. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6591. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6592. const int64_t i13 = i03 % ne13;
  6593. const int64_t i12 = i02 % ne12;
  6594. const int64_t i11 = i01 % ne11;
  6595. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6596. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6597. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6598. #ifdef GGML_USE_ACCELERATE
  6599. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6600. #else
  6601. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6602. #endif
  6603. // }
  6604. // }
  6605. }
  6606. } else {
  6607. // src1 is not contiguous
  6608. for (int ir = ir0; ir < ir1; ++ir) {
  6609. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6610. const int64_t i03 = ir/(ne02*ne01);
  6611. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6612. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6613. const int64_t i13 = i03 % ne13;
  6614. const int64_t i12 = i02 % ne12;
  6615. const int64_t i11 = i01 % ne11;
  6616. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6617. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6618. for (int i0 = 0; i0 < ne0; i0++) {
  6619. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6620. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6621. }
  6622. }
  6623. }
  6624. }
  6625. static void ggml_compute_forward_add_f16_f32(
  6626. const struct ggml_compute_params * params,
  6627. const struct ggml_tensor * src0,
  6628. const struct ggml_tensor * src1,
  6629. struct ggml_tensor * dst) {
  6630. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6632. return;
  6633. }
  6634. const int ith = params->ith;
  6635. const int nth = params->nth;
  6636. const int nr = ggml_nrows(src0);
  6637. GGML_TENSOR_BINARY_OP_LOCALS;
  6638. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6639. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6640. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6641. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6642. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6643. // rows per thread
  6644. const int dr = (nr + nth - 1)/nth;
  6645. // row range for this thread
  6646. const int ir0 = dr*ith;
  6647. const int ir1 = MIN(ir0 + dr, nr);
  6648. if (nb10 == sizeof(float)) {
  6649. for (int ir = ir0; ir < ir1; ++ir) {
  6650. // src0, src1 and dst are same shape => same indices
  6651. const int i3 = ir/(ne2*ne1);
  6652. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6653. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6654. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6655. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6656. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6657. for (int i = 0; i < ne0; i++) {
  6658. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6659. }
  6660. }
  6661. }
  6662. else {
  6663. // src1 is not contiguous
  6664. GGML_ASSERT(false);
  6665. }
  6666. }
  6667. static void ggml_compute_forward_add_f16_f16(
  6668. const struct ggml_compute_params * params,
  6669. const struct ggml_tensor * src0,
  6670. const struct ggml_tensor * src1,
  6671. struct ggml_tensor * dst) {
  6672. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6673. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6674. return;
  6675. }
  6676. const int ith = params->ith;
  6677. const int nth = params->nth;
  6678. const int nr = ggml_nrows(src0);
  6679. GGML_TENSOR_BINARY_OP_LOCALS;
  6680. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6681. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6682. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6683. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6684. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6685. // rows per thread
  6686. const int dr = (nr + nth - 1)/nth;
  6687. // row range for this thread
  6688. const int ir0 = dr*ith;
  6689. const int ir1 = MIN(ir0 + dr, nr);
  6690. if (nb10 == sizeof(ggml_fp16_t)) {
  6691. for (int ir = ir0; ir < ir1; ++ir) {
  6692. // src0, src1 and dst are same shape => same indices
  6693. const int i3 = ir/(ne2*ne1);
  6694. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6695. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6696. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6697. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6698. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6699. for (int i = 0; i < ne0; i++) {
  6700. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6701. }
  6702. }
  6703. }
  6704. else {
  6705. // src1 is not contiguous
  6706. GGML_ASSERT(false);
  6707. }
  6708. }
  6709. static void ggml_compute_forward_add_q_f32(
  6710. const struct ggml_compute_params * params,
  6711. const struct ggml_tensor * src0,
  6712. const struct ggml_tensor * src1,
  6713. struct ggml_tensor * dst) {
  6714. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6715. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6716. return;
  6717. }
  6718. const int nr = ggml_nrows(src0);
  6719. GGML_TENSOR_BINARY_OP_LOCALS;
  6720. const int ith = params->ith;
  6721. const int nth = params->nth;
  6722. const enum ggml_type type = src0->type;
  6723. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6724. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6725. // we don't support permuted src0 or src1
  6726. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6727. GGML_ASSERT(nb10 == sizeof(float));
  6728. // dst cannot be transposed or permuted
  6729. GGML_ASSERT(nb0 <= nb1);
  6730. GGML_ASSERT(nb1 <= nb2);
  6731. GGML_ASSERT(nb2 <= nb3);
  6732. GGML_ASSERT(ggml_is_quantized(src0->type));
  6733. GGML_ASSERT(dst->type == src0->type);
  6734. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6735. // rows per thread
  6736. const int dr = (nr + nth - 1)/nth;
  6737. // row range for this thread
  6738. const int ir0 = dr*ith;
  6739. const int ir1 = MIN(ir0 + dr, nr);
  6740. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6741. for (int ir = ir0; ir < ir1; ++ir) {
  6742. // src0 indices
  6743. const int i03 = ir/(ne02*ne01);
  6744. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6745. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6746. // src1 and dst are same shape as src0 => same indices
  6747. const int i13 = i03;
  6748. const int i12 = i02;
  6749. const int i11 = i01;
  6750. const int i3 = i03;
  6751. const int i2 = i02;
  6752. const int i1 = i01;
  6753. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6754. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6755. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6756. assert(ne00 % 32 == 0);
  6757. // unquantize row from src0 to temp buffer
  6758. dequantize_row_q(src0_row, wdata, ne00);
  6759. // add src1
  6760. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6761. // quantize row to dst
  6762. quantize_row_q(wdata, dst_row, ne00);
  6763. }
  6764. }
  6765. static void ggml_compute_forward_add(
  6766. const struct ggml_compute_params * params,
  6767. const struct ggml_tensor * src0,
  6768. const struct ggml_tensor * src1,
  6769. struct ggml_tensor * dst) {
  6770. switch (src0->type) {
  6771. case GGML_TYPE_F32:
  6772. {
  6773. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6774. } break;
  6775. case GGML_TYPE_F16:
  6776. {
  6777. if (src1->type == GGML_TYPE_F16) {
  6778. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6779. }
  6780. else if (src1->type == GGML_TYPE_F32) {
  6781. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6782. }
  6783. else {
  6784. GGML_ASSERT(false);
  6785. }
  6786. } break;
  6787. case GGML_TYPE_Q4_0:
  6788. case GGML_TYPE_Q4_1:
  6789. case GGML_TYPE_Q5_0:
  6790. case GGML_TYPE_Q5_1:
  6791. case GGML_TYPE_Q8_0:
  6792. case GGML_TYPE_Q2_K:
  6793. case GGML_TYPE_Q3_K:
  6794. case GGML_TYPE_Q4_K:
  6795. case GGML_TYPE_Q5_K:
  6796. case GGML_TYPE_Q6_K:
  6797. {
  6798. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6799. } break;
  6800. default:
  6801. {
  6802. GGML_ASSERT(false);
  6803. } break;
  6804. }
  6805. }
  6806. // ggml_compute_forward_add1
  6807. static void ggml_compute_forward_add1_f32(
  6808. const struct ggml_compute_params * params,
  6809. const struct ggml_tensor * src0,
  6810. const struct ggml_tensor * src1,
  6811. struct ggml_tensor * dst) {
  6812. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6813. GGML_ASSERT(ggml_is_scalar(src1));
  6814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6815. return;
  6816. }
  6817. const int ith = params->ith;
  6818. const int nth = params->nth;
  6819. const int nr = ggml_nrows(src0);
  6820. GGML_TENSOR_UNARY_OP_LOCALS;
  6821. GGML_ASSERT( nb0 == sizeof(float));
  6822. GGML_ASSERT(nb00 == sizeof(float));
  6823. // rows per thread
  6824. const int dr = (nr + nth - 1)/nth;
  6825. // row range for this thread
  6826. const int ir0 = dr*ith;
  6827. const int ir1 = MIN(ir0 + dr, nr);
  6828. for (int ir = ir0; ir < ir1; ++ir) {
  6829. // src0 and dst are same shape => same indices
  6830. const int i3 = ir/(ne2*ne1);
  6831. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6832. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6833. #ifdef GGML_USE_ACCELERATE
  6834. UNUSED(ggml_vec_add1_f32);
  6835. vDSP_vadd(
  6836. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6837. (float *) ((char *) src1->data), 0,
  6838. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6839. ne0);
  6840. #else
  6841. ggml_vec_add1_f32(ne0,
  6842. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6843. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6844. *(float *) src1->data);
  6845. #endif
  6846. }
  6847. }
  6848. static void ggml_compute_forward_add1_f16_f32(
  6849. const struct ggml_compute_params * params,
  6850. const struct ggml_tensor * src0,
  6851. const struct ggml_tensor * src1,
  6852. struct ggml_tensor * dst) {
  6853. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6854. GGML_ASSERT(ggml_is_scalar(src1));
  6855. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6856. return;
  6857. }
  6858. // scalar to add
  6859. const float v = *(float *) src1->data;
  6860. const int ith = params->ith;
  6861. const int nth = params->nth;
  6862. const int nr = ggml_nrows(src0);
  6863. GGML_TENSOR_UNARY_OP_LOCALS;
  6864. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6865. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6866. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6867. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6868. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6869. // rows per thread
  6870. const int dr = (nr + nth - 1)/nth;
  6871. // row range for this thread
  6872. const int ir0 = dr*ith;
  6873. const int ir1 = MIN(ir0 + dr, nr);
  6874. for (int ir = ir0; ir < ir1; ++ir) {
  6875. // src0 and dst are same shape => same indices
  6876. const int i3 = ir/(ne2*ne1);
  6877. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6878. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6879. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6880. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6881. for (int i = 0; i < ne0; i++) {
  6882. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6883. }
  6884. }
  6885. }
  6886. static void ggml_compute_forward_add1_f16_f16(
  6887. const struct ggml_compute_params * params,
  6888. const struct ggml_tensor * src0,
  6889. const struct ggml_tensor * src1,
  6890. struct ggml_tensor * dst) {
  6891. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6892. GGML_ASSERT(ggml_is_scalar(src1));
  6893. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6894. return;
  6895. }
  6896. // scalar to add
  6897. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6898. const int ith = params->ith;
  6899. const int nth = params->nth;
  6900. const int nr = ggml_nrows(src0);
  6901. GGML_TENSOR_UNARY_OP_LOCALS;
  6902. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6903. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6904. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6905. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6906. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6907. // rows per thread
  6908. const int dr = (nr + nth - 1)/nth;
  6909. // row range for this thread
  6910. const int ir0 = dr*ith;
  6911. const int ir1 = MIN(ir0 + dr, nr);
  6912. for (int ir = ir0; ir < ir1; ++ir) {
  6913. // src0 and dst are same shape => same indices
  6914. const int i3 = ir/(ne2*ne1);
  6915. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6916. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6917. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6918. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6919. for (int i = 0; i < ne0; i++) {
  6920. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6921. }
  6922. }
  6923. }
  6924. static void ggml_compute_forward_add1_q_f32(
  6925. const struct ggml_compute_params * params,
  6926. const struct ggml_tensor * src0,
  6927. const struct ggml_tensor * src1,
  6928. struct ggml_tensor * dst) {
  6929. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6930. GGML_ASSERT(ggml_is_scalar(src1));
  6931. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6932. return;
  6933. }
  6934. // scalar to add
  6935. const float v = *(float *) src1->data;
  6936. const int ith = params->ith;
  6937. const int nth = params->nth;
  6938. const int nr = ggml_nrows(src0);
  6939. GGML_TENSOR_UNARY_OP_LOCALS;
  6940. const enum ggml_type type = src0->type;
  6941. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6942. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6943. // we don't support permuted src0
  6944. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6945. // dst cannot be transposed or permuted
  6946. GGML_ASSERT(nb0 <= nb1);
  6947. GGML_ASSERT(nb1 <= nb2);
  6948. GGML_ASSERT(nb2 <= nb3);
  6949. GGML_ASSERT(ggml_is_quantized(src0->type));
  6950. GGML_ASSERT(dst->type == src0->type);
  6951. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6952. // rows per thread
  6953. const int dr = (nr + nth - 1)/nth;
  6954. // row range for this thread
  6955. const int ir0 = dr*ith;
  6956. const int ir1 = MIN(ir0 + dr, nr);
  6957. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6958. for (int ir = ir0; ir < ir1; ++ir) {
  6959. // src0 and dst are same shape => same indices
  6960. const int i3 = ir/(ne2*ne1);
  6961. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6962. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6963. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6964. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6965. assert(ne0 % 32 == 0);
  6966. // unquantize row from src0 to temp buffer
  6967. dequantize_row_q(src0_row, wdata, ne0);
  6968. // add src1
  6969. ggml_vec_acc1_f32(ne0, wdata, v);
  6970. // quantize row to dst
  6971. quantize_row_q(wdata, dst_row, ne0);
  6972. }
  6973. }
  6974. static void ggml_compute_forward_add1(
  6975. const struct ggml_compute_params * params,
  6976. const struct ggml_tensor * src0,
  6977. const struct ggml_tensor * src1,
  6978. struct ggml_tensor * dst) {
  6979. switch (src0->type) {
  6980. case GGML_TYPE_F32:
  6981. {
  6982. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6983. } break;
  6984. case GGML_TYPE_F16:
  6985. {
  6986. if (src1->type == GGML_TYPE_F16) {
  6987. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6988. }
  6989. else if (src1->type == GGML_TYPE_F32) {
  6990. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6991. }
  6992. else {
  6993. GGML_ASSERT(false);
  6994. }
  6995. } break;
  6996. case GGML_TYPE_Q4_0:
  6997. case GGML_TYPE_Q4_1:
  6998. case GGML_TYPE_Q5_0:
  6999. case GGML_TYPE_Q5_1:
  7000. case GGML_TYPE_Q8_0:
  7001. case GGML_TYPE_Q8_1:
  7002. case GGML_TYPE_Q2_K:
  7003. case GGML_TYPE_Q3_K:
  7004. case GGML_TYPE_Q4_K:
  7005. case GGML_TYPE_Q5_K:
  7006. case GGML_TYPE_Q6_K:
  7007. {
  7008. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7009. } break;
  7010. default:
  7011. {
  7012. GGML_ASSERT(false);
  7013. } break;
  7014. }
  7015. }
  7016. // ggml_compute_forward_acc
  7017. static void ggml_compute_forward_acc_f32(
  7018. const struct ggml_compute_params * params,
  7019. const struct ggml_tensor * src0,
  7020. const struct ggml_tensor * src1,
  7021. struct ggml_tensor * dst) {
  7022. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7023. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7024. // view src0 and dst with these strides and data offset inbytes during acc
  7025. // nb0 is implicitely element_size because src0 and dst are contiguous
  7026. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7027. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7028. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7029. size_t offset = ((int32_t *) dst->op_params)[3];
  7030. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7031. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7032. // memcpy needs to be synchronized across threads to avoid race conditions.
  7033. // => do it in INIT phase
  7034. memcpy(
  7035. ((char *) dst->data),
  7036. ((char *) src0->data),
  7037. ggml_nbytes(dst));
  7038. }
  7039. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7040. return;
  7041. }
  7042. const int ith = params->ith;
  7043. const int nth = params->nth;
  7044. const int nr = ggml_nrows(src1);
  7045. const int nc = src1->ne[0];
  7046. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7047. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7048. // src0 and dst as viewed during acc
  7049. const size_t nb0 = ggml_element_size(src0);
  7050. const size_t nb00 = nb0;
  7051. const size_t nb01 = nb1;
  7052. const size_t nb02 = nb2;
  7053. const size_t nb03 = nb3;
  7054. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7055. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7056. GGML_ASSERT(nb10 == sizeof(float));
  7057. // rows per thread
  7058. const int dr = (nr + nth - 1)/nth;
  7059. // row range for this thread
  7060. const int ir0 = dr*ith;
  7061. const int ir1 = MIN(ir0 + dr, nr);
  7062. for (int ir = ir0; ir < ir1; ++ir) {
  7063. // src0 and dst are viewed with shape of src1 and offset
  7064. // => same indices
  7065. const int i3 = ir/(ne12*ne11);
  7066. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7067. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7068. #ifdef GGML_USE_ACCELERATE
  7069. vDSP_vadd(
  7070. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7071. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7072. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7073. #else
  7074. ggml_vec_add_f32(nc,
  7075. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7076. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7077. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7078. #endif
  7079. }
  7080. }
  7081. static void ggml_compute_forward_acc(
  7082. const struct ggml_compute_params * params,
  7083. const struct ggml_tensor * src0,
  7084. const struct ggml_tensor * src1,
  7085. struct ggml_tensor * dst) {
  7086. switch (src0->type) {
  7087. case GGML_TYPE_F32:
  7088. {
  7089. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7090. } break;
  7091. case GGML_TYPE_F16:
  7092. case GGML_TYPE_Q4_0:
  7093. case GGML_TYPE_Q4_1:
  7094. case GGML_TYPE_Q5_0:
  7095. case GGML_TYPE_Q5_1:
  7096. case GGML_TYPE_Q8_0:
  7097. case GGML_TYPE_Q8_1:
  7098. case GGML_TYPE_Q2_K:
  7099. case GGML_TYPE_Q3_K:
  7100. case GGML_TYPE_Q4_K:
  7101. case GGML_TYPE_Q5_K:
  7102. case GGML_TYPE_Q6_K:
  7103. default:
  7104. {
  7105. GGML_ASSERT(false);
  7106. } break;
  7107. }
  7108. }
  7109. // ggml_compute_forward_sub
  7110. static void ggml_compute_forward_sub_f32(
  7111. const struct ggml_compute_params * params,
  7112. const struct ggml_tensor * src0,
  7113. const struct ggml_tensor * src1,
  7114. struct ggml_tensor * dst) {
  7115. assert(params->ith == 0);
  7116. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7117. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7118. return;
  7119. }
  7120. const int nr = ggml_nrows(src0);
  7121. GGML_TENSOR_BINARY_OP_LOCALS;
  7122. GGML_ASSERT( nb0 == sizeof(float));
  7123. GGML_ASSERT(nb00 == sizeof(float));
  7124. if (nb10 == sizeof(float)) {
  7125. for (int ir = 0; ir < nr; ++ir) {
  7126. // src0, src1 and dst are same shape => same indices
  7127. const int i3 = ir/(ne2*ne1);
  7128. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7129. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7130. #ifdef GGML_USE_ACCELERATE
  7131. vDSP_vsub(
  7132. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7133. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7134. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7135. ne0);
  7136. #else
  7137. ggml_vec_sub_f32(ne0,
  7138. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7139. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7140. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7141. #endif
  7142. // }
  7143. // }
  7144. }
  7145. } else {
  7146. // src1 is not contiguous
  7147. for (int ir = 0; ir < nr; ++ir) {
  7148. // src0, src1 and dst are same shape => same indices
  7149. const int i3 = ir/(ne2*ne1);
  7150. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7151. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7152. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7153. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7154. for (int i0 = 0; i0 < ne0; i0++) {
  7155. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7156. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7157. }
  7158. }
  7159. }
  7160. }
  7161. static void ggml_compute_forward_sub(
  7162. const struct ggml_compute_params * params,
  7163. const struct ggml_tensor * src0,
  7164. const struct ggml_tensor * src1,
  7165. struct ggml_tensor * dst) {
  7166. switch (src0->type) {
  7167. case GGML_TYPE_F32:
  7168. {
  7169. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7170. } break;
  7171. default:
  7172. {
  7173. GGML_ASSERT(false);
  7174. } break;
  7175. }
  7176. }
  7177. // ggml_compute_forward_mul
  7178. static void ggml_compute_forward_mul_f32(
  7179. const struct ggml_compute_params * params,
  7180. const struct ggml_tensor * src0,
  7181. const struct ggml_tensor * src1,
  7182. struct ggml_tensor * dst) {
  7183. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7184. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7185. return;
  7186. }
  7187. const int ith = params->ith;
  7188. const int nth = params->nth;
  7189. #ifdef GGML_USE_CLBLAST
  7190. if (src1->backend == GGML_BACKEND_GPU) {
  7191. if (ith == 0) {
  7192. ggml_cl_mul(src0, src1, dst);
  7193. }
  7194. return;
  7195. }
  7196. #endif
  7197. const int64_t nr = ggml_nrows(src0);
  7198. GGML_TENSOR_BINARY_OP_LOCALS;
  7199. GGML_ASSERT( nb0 == sizeof(float));
  7200. GGML_ASSERT(nb00 == sizeof(float));
  7201. GGML_ASSERT(ne00 == ne10);
  7202. if (nb10 == sizeof(float)) {
  7203. for (int64_t ir = ith; ir < nr; ir += nth) {
  7204. // src0 and dst are same shape => same indices
  7205. const int64_t i03 = ir/(ne02*ne01);
  7206. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7207. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7208. const int64_t i13 = i03 % ne13;
  7209. const int64_t i12 = i02 % ne12;
  7210. const int64_t i11 = i01 % ne11;
  7211. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7212. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7213. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7214. #ifdef GGML_USE_ACCELERATE
  7215. UNUSED(ggml_vec_mul_f32);
  7216. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7217. #else
  7218. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7219. #endif
  7220. // }
  7221. // }
  7222. }
  7223. } else {
  7224. // src1 is not contiguous
  7225. for (int64_t ir = ith; ir < nr; ir += nth) {
  7226. // src0 and dst are same shape => same indices
  7227. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7228. const int64_t i03 = ir/(ne02*ne01);
  7229. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7230. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7231. const int64_t i13 = i03 % ne13;
  7232. const int64_t i12 = i02 % ne12;
  7233. const int64_t i11 = i01 % ne11;
  7234. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7235. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7236. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7237. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7238. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7239. }
  7240. }
  7241. }
  7242. }
  7243. static void ggml_compute_forward_mul(
  7244. const struct ggml_compute_params * params,
  7245. const struct ggml_tensor * src0,
  7246. const struct ggml_tensor * src1,
  7247. struct ggml_tensor * dst) {
  7248. switch (src0->type) {
  7249. case GGML_TYPE_F32:
  7250. {
  7251. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7252. } break;
  7253. default:
  7254. {
  7255. GGML_ASSERT(false);
  7256. } break;
  7257. }
  7258. }
  7259. // ggml_compute_forward_div
  7260. static void ggml_compute_forward_div_f32(
  7261. const struct ggml_compute_params * params,
  7262. const struct ggml_tensor * src0,
  7263. const struct ggml_tensor * src1,
  7264. struct ggml_tensor * dst) {
  7265. assert(params->ith == 0);
  7266. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7268. return;
  7269. }
  7270. const int nr = ggml_nrows(src0);
  7271. GGML_TENSOR_BINARY_OP_LOCALS;
  7272. GGML_ASSERT( nb0 == sizeof(float));
  7273. GGML_ASSERT(nb00 == sizeof(float));
  7274. if (nb10 == sizeof(float)) {
  7275. for (int ir = 0; ir < nr; ++ir) {
  7276. // src0, src1 and dst are same shape => same indices
  7277. const int i3 = ir/(ne2*ne1);
  7278. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7279. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7280. #ifdef GGML_USE_ACCELERATE
  7281. vDSP_vdiv(
  7282. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7283. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7284. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7285. ne0);
  7286. #else
  7287. ggml_vec_div_f32(ne0,
  7288. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7289. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7290. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7291. #endif
  7292. // }
  7293. // }
  7294. }
  7295. } else {
  7296. // src1 is not contiguous
  7297. for (int ir = 0; ir < nr; ++ir) {
  7298. // src0, src1 and dst are same shape => same indices
  7299. const int i3 = ir/(ne2*ne1);
  7300. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7301. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7302. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7303. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7304. for (int i0 = 0; i0 < ne0; i0++) {
  7305. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7306. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7307. }
  7308. }
  7309. }
  7310. }
  7311. static void ggml_compute_forward_div(
  7312. const struct ggml_compute_params * params,
  7313. const struct ggml_tensor * src0,
  7314. const struct ggml_tensor * src1,
  7315. struct ggml_tensor * dst) {
  7316. switch (src0->type) {
  7317. case GGML_TYPE_F32:
  7318. {
  7319. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7320. } break;
  7321. default:
  7322. {
  7323. GGML_ASSERT(false);
  7324. } break;
  7325. }
  7326. }
  7327. // ggml_compute_forward_sqr
  7328. static void ggml_compute_forward_sqr_f32(
  7329. const struct ggml_compute_params * params,
  7330. const struct ggml_tensor * src0,
  7331. struct ggml_tensor * dst) {
  7332. assert(params->ith == 0);
  7333. assert(ggml_are_same_shape(src0, dst));
  7334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7335. return;
  7336. }
  7337. const int n = ggml_nrows(src0);
  7338. const int nc = src0->ne[0];
  7339. assert( dst->nb[0] == sizeof(float));
  7340. assert(src0->nb[0] == sizeof(float));
  7341. for (int i = 0; i < n; i++) {
  7342. ggml_vec_sqr_f32(nc,
  7343. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7344. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7345. }
  7346. }
  7347. static void ggml_compute_forward_sqr(
  7348. const struct ggml_compute_params * params,
  7349. const struct ggml_tensor * src0,
  7350. struct ggml_tensor * dst) {
  7351. switch (src0->type) {
  7352. case GGML_TYPE_F32:
  7353. {
  7354. ggml_compute_forward_sqr_f32(params, src0, dst);
  7355. } break;
  7356. default:
  7357. {
  7358. GGML_ASSERT(false);
  7359. } break;
  7360. }
  7361. }
  7362. // ggml_compute_forward_sqrt
  7363. static void ggml_compute_forward_sqrt_f32(
  7364. const struct ggml_compute_params * params,
  7365. const struct ggml_tensor * src0,
  7366. struct ggml_tensor * dst) {
  7367. assert(params->ith == 0);
  7368. assert(ggml_are_same_shape(src0, dst));
  7369. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7370. return;
  7371. }
  7372. const int n = ggml_nrows(src0);
  7373. const int nc = src0->ne[0];
  7374. assert( dst->nb[0] == sizeof(float));
  7375. assert(src0->nb[0] == sizeof(float));
  7376. for (int i = 0; i < n; i++) {
  7377. ggml_vec_sqrt_f32(nc,
  7378. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7379. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7380. }
  7381. }
  7382. static void ggml_compute_forward_sqrt(
  7383. const struct ggml_compute_params * params,
  7384. const struct ggml_tensor * src0,
  7385. struct ggml_tensor * dst) {
  7386. switch (src0->type) {
  7387. case GGML_TYPE_F32:
  7388. {
  7389. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7390. } break;
  7391. default:
  7392. {
  7393. GGML_ASSERT(false);
  7394. } break;
  7395. }
  7396. }
  7397. // ggml_compute_forward_log
  7398. static void ggml_compute_forward_log_f32(
  7399. const struct ggml_compute_params * params,
  7400. const struct ggml_tensor * src0,
  7401. struct ggml_tensor * dst) {
  7402. GGML_ASSERT(params->ith == 0);
  7403. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7404. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7405. return;
  7406. }
  7407. const int n = ggml_nrows(src0);
  7408. const int nc = src0->ne[0];
  7409. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7410. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7411. for (int i = 0; i < n; i++) {
  7412. ggml_vec_log_f32(nc,
  7413. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7414. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7415. }
  7416. }
  7417. static void ggml_compute_forward_log(
  7418. const struct ggml_compute_params * params,
  7419. const struct ggml_tensor * src0,
  7420. struct ggml_tensor * dst) {
  7421. switch (src0->type) {
  7422. case GGML_TYPE_F32:
  7423. {
  7424. ggml_compute_forward_log_f32(params, src0, dst);
  7425. } break;
  7426. default:
  7427. {
  7428. GGML_ASSERT(false);
  7429. } break;
  7430. }
  7431. }
  7432. // ggml_compute_forward_sum
  7433. static void ggml_compute_forward_sum_f32(
  7434. const struct ggml_compute_params * params,
  7435. const struct ggml_tensor * src0,
  7436. struct ggml_tensor * dst) {
  7437. assert(params->ith == 0);
  7438. assert(ggml_is_scalar(dst));
  7439. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7440. return;
  7441. }
  7442. assert(ggml_is_scalar(dst));
  7443. assert(src0->nb[0] == sizeof(float));
  7444. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7445. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7446. ggml_float sum = 0;
  7447. ggml_float row_sum = 0;
  7448. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7449. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7450. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7451. ggml_vec_sum_f32_ggf(ne00,
  7452. &row_sum,
  7453. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7454. sum += row_sum;
  7455. }
  7456. }
  7457. }
  7458. ((float *) dst->data)[0] = sum;
  7459. }
  7460. static void ggml_compute_forward_sum_f16(
  7461. const struct ggml_compute_params * params,
  7462. const struct ggml_tensor * src0,
  7463. struct ggml_tensor * dst) {
  7464. assert(params->ith == 0);
  7465. assert(ggml_is_scalar(dst));
  7466. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7467. return;
  7468. }
  7469. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7470. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7471. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7472. float sum = 0;
  7473. float row_sum = 0;
  7474. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7475. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7476. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7477. ggml_vec_sum_f16_ggf(ne00,
  7478. &row_sum,
  7479. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7480. sum += row_sum;
  7481. }
  7482. }
  7483. }
  7484. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7485. }
  7486. static void ggml_compute_forward_sum(
  7487. const struct ggml_compute_params * params,
  7488. const struct ggml_tensor * src0,
  7489. struct ggml_tensor * dst) {
  7490. switch (src0->type) {
  7491. case GGML_TYPE_F32:
  7492. {
  7493. ggml_compute_forward_sum_f32(params, src0, dst);
  7494. } break;
  7495. case GGML_TYPE_F16:
  7496. {
  7497. ggml_compute_forward_sum_f16(params, src0, dst);
  7498. } break;
  7499. default:
  7500. {
  7501. GGML_ASSERT(false);
  7502. } break;
  7503. }
  7504. }
  7505. // ggml_compute_forward_sum_rows
  7506. static void ggml_compute_forward_sum_rows_f32(
  7507. const struct ggml_compute_params * params,
  7508. const struct ggml_tensor * src0,
  7509. struct ggml_tensor * dst) {
  7510. GGML_ASSERT(params->ith == 0);
  7511. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7512. return;
  7513. }
  7514. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7515. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7516. GGML_TENSOR_UNARY_OP_LOCALS;
  7517. GGML_ASSERT(ne0 == 1);
  7518. GGML_ASSERT(ne1 == ne01);
  7519. GGML_ASSERT(ne2 == ne02);
  7520. GGML_ASSERT(ne3 == ne03);
  7521. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7522. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7523. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7524. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7525. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7526. float row_sum = 0;
  7527. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7528. dst_row[0] = row_sum;
  7529. }
  7530. }
  7531. }
  7532. }
  7533. static void ggml_compute_forward_sum_rows(
  7534. const struct ggml_compute_params * params,
  7535. const struct ggml_tensor * src0,
  7536. struct ggml_tensor * dst) {
  7537. switch (src0->type) {
  7538. case GGML_TYPE_F32:
  7539. {
  7540. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7541. } break;
  7542. default:
  7543. {
  7544. GGML_ASSERT(false);
  7545. } break;
  7546. }
  7547. }
  7548. // ggml_compute_forward_mean
  7549. static void ggml_compute_forward_mean_f32(
  7550. const struct ggml_compute_params * params,
  7551. const struct ggml_tensor * src0,
  7552. struct ggml_tensor * dst) {
  7553. assert(params->ith == 0);
  7554. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7555. return;
  7556. }
  7557. assert(src0->nb[0] == sizeof(float));
  7558. GGML_TENSOR_UNARY_OP_LOCALS;
  7559. assert(ne0 == 1);
  7560. assert(ne1 == ne01);
  7561. assert(ne2 == ne02);
  7562. assert(ne3 == ne03);
  7563. UNUSED(ne0);
  7564. UNUSED(ne1);
  7565. UNUSED(ne2);
  7566. UNUSED(ne3);
  7567. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7568. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7569. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7570. ggml_vec_sum_f32(ne00,
  7571. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7572. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7573. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7574. }
  7575. }
  7576. }
  7577. }
  7578. static void ggml_compute_forward_mean(
  7579. const struct ggml_compute_params * params,
  7580. const struct ggml_tensor * src0,
  7581. struct ggml_tensor * dst) {
  7582. switch (src0->type) {
  7583. case GGML_TYPE_F32:
  7584. {
  7585. ggml_compute_forward_mean_f32(params, src0, dst);
  7586. } break;
  7587. default:
  7588. {
  7589. GGML_ASSERT(false);
  7590. } break;
  7591. }
  7592. }
  7593. // ggml_compute_forward_argmax
  7594. static void ggml_compute_forward_argmax_f32(
  7595. const struct ggml_compute_params * params,
  7596. const struct ggml_tensor * src0,
  7597. struct ggml_tensor * dst) {
  7598. assert(params->ith == 0);
  7599. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7600. return;
  7601. }
  7602. assert(src0->nb[0] == sizeof(float));
  7603. assert(dst->nb[0] == sizeof(float));
  7604. const int64_t ne00 = src0->ne[0];
  7605. const int64_t ne01 = src0->ne[1];
  7606. const size_t nb01 = src0->nb[1];
  7607. const size_t nb0 = dst->nb[0];
  7608. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7609. float * src = (float *) ((char *) src0->data + i1*nb01);
  7610. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7611. int v = 0;
  7612. ggml_vec_argmax_f32(ne00, &v, src);
  7613. dst_[0] = v;
  7614. }
  7615. }
  7616. static void ggml_compute_forward_argmax(
  7617. const struct ggml_compute_params * params,
  7618. const struct ggml_tensor * src0,
  7619. struct ggml_tensor * dst) {
  7620. switch (src0->type) {
  7621. case GGML_TYPE_F32:
  7622. {
  7623. ggml_compute_forward_argmax_f32(params, src0, dst);
  7624. } break;
  7625. default:
  7626. {
  7627. GGML_ASSERT(false);
  7628. } break;
  7629. }
  7630. }
  7631. // ggml_compute_forward_repeat
  7632. static void ggml_compute_forward_repeat_f32(
  7633. const struct ggml_compute_params * params,
  7634. const struct ggml_tensor * src0,
  7635. struct ggml_tensor * dst) {
  7636. GGML_ASSERT(params->ith == 0);
  7637. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7638. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7639. return;
  7640. }
  7641. GGML_TENSOR_UNARY_OP_LOCALS;
  7642. // guaranteed to be an integer due to the check in ggml_can_repeat
  7643. const int nr0 = (int)(ne0/ne00);
  7644. const int nr1 = (int)(ne1/ne01);
  7645. const int nr2 = (int)(ne2/ne02);
  7646. const int nr3 = (int)(ne3/ne03);
  7647. // TODO: support for transposed / permuted tensors
  7648. GGML_ASSERT(nb0 == sizeof(float));
  7649. GGML_ASSERT(nb00 == sizeof(float));
  7650. // TODO: maybe this is not optimal?
  7651. for (int i3 = 0; i3 < nr3; i3++) {
  7652. for (int k3 = 0; k3 < ne03; k3++) {
  7653. for (int i2 = 0; i2 < nr2; i2++) {
  7654. for (int k2 = 0; k2 < ne02; k2++) {
  7655. for (int i1 = 0; i1 < nr1; i1++) {
  7656. for (int k1 = 0; k1 < ne01; k1++) {
  7657. for (int i0 = 0; i0 < nr0; i0++) {
  7658. ggml_vec_cpy_f32(ne00,
  7659. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7660. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7661. }
  7662. }
  7663. }
  7664. }
  7665. }
  7666. }
  7667. }
  7668. }
  7669. static void ggml_compute_forward_repeat(
  7670. const struct ggml_compute_params * params,
  7671. const struct ggml_tensor * src0,
  7672. struct ggml_tensor * dst) {
  7673. switch (src0->type) {
  7674. case GGML_TYPE_F32:
  7675. {
  7676. ggml_compute_forward_repeat_f32(params, src0, dst);
  7677. } break;
  7678. default:
  7679. {
  7680. GGML_ASSERT(false);
  7681. } break;
  7682. }
  7683. }
  7684. // ggml_compute_forward_repeat_back
  7685. static void ggml_compute_forward_repeat_back_f32(
  7686. const struct ggml_compute_params * params,
  7687. const struct ggml_tensor * src0,
  7688. struct ggml_tensor * dst) {
  7689. GGML_ASSERT(params->ith == 0);
  7690. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7691. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7692. return;
  7693. }
  7694. GGML_TENSOR_UNARY_OP_LOCALS;
  7695. // guaranteed to be an integer due to the check in ggml_can_repeat
  7696. const int nr0 = (int)(ne00/ne0);
  7697. const int nr1 = (int)(ne01/ne1);
  7698. const int nr2 = (int)(ne02/ne2);
  7699. const int nr3 = (int)(ne03/ne3);
  7700. // TODO: support for transposed / permuted tensors
  7701. GGML_ASSERT(nb0 == sizeof(float));
  7702. GGML_ASSERT(nb00 == sizeof(float));
  7703. if (ggml_is_contiguous(dst)) {
  7704. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7705. } else {
  7706. for (int k3 = 0; k3 < ne3; k3++) {
  7707. for (int k2 = 0; k2 < ne2; k2++) {
  7708. for (int k1 = 0; k1 < ne1; k1++) {
  7709. ggml_vec_set_f32(ne0,
  7710. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7711. 0);
  7712. }
  7713. }
  7714. }
  7715. }
  7716. // TODO: maybe this is not optimal?
  7717. for (int i3 = 0; i3 < nr3; i3++) {
  7718. for (int k3 = 0; k3 < ne3; k3++) {
  7719. for (int i2 = 0; i2 < nr2; i2++) {
  7720. for (int k2 = 0; k2 < ne2; k2++) {
  7721. for (int i1 = 0; i1 < nr1; i1++) {
  7722. for (int k1 = 0; k1 < ne1; k1++) {
  7723. for (int i0 = 0; i0 < nr0; i0++) {
  7724. ggml_vec_acc_f32(ne0,
  7725. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7726. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7727. }
  7728. }
  7729. }
  7730. }
  7731. }
  7732. }
  7733. }
  7734. }
  7735. static void ggml_compute_forward_repeat_back(
  7736. const struct ggml_compute_params * params,
  7737. const struct ggml_tensor * src0,
  7738. struct ggml_tensor * dst) {
  7739. switch (src0->type) {
  7740. case GGML_TYPE_F32:
  7741. {
  7742. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7743. } break;
  7744. default:
  7745. {
  7746. GGML_ASSERT(false);
  7747. } break;
  7748. }
  7749. }
  7750. // ggml_compute_forward_abs
  7751. static void ggml_compute_forward_abs_f32(
  7752. const struct ggml_compute_params * params,
  7753. const struct ggml_tensor * src0,
  7754. struct ggml_tensor * dst) {
  7755. assert(params->ith == 0);
  7756. assert(ggml_are_same_shape(src0, dst));
  7757. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7758. return;
  7759. }
  7760. const int n = ggml_nrows(src0);
  7761. const int nc = src0->ne[0];
  7762. assert(dst->nb[0] == sizeof(float));
  7763. assert(src0->nb[0] == sizeof(float));
  7764. for (int i = 0; i < n; i++) {
  7765. ggml_vec_abs_f32(nc,
  7766. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7767. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7768. }
  7769. }
  7770. static void ggml_compute_forward_abs(
  7771. const struct ggml_compute_params * params,
  7772. const struct ggml_tensor * src0,
  7773. struct ggml_tensor * dst) {
  7774. switch (src0->type) {
  7775. case GGML_TYPE_F32:
  7776. {
  7777. ggml_compute_forward_abs_f32(params, src0, dst);
  7778. } break;
  7779. default:
  7780. {
  7781. GGML_ASSERT(false);
  7782. } break;
  7783. }
  7784. }
  7785. // ggml_compute_forward_sgn
  7786. static void ggml_compute_forward_sgn_f32(
  7787. const struct ggml_compute_params * params,
  7788. const struct ggml_tensor * src0,
  7789. struct ggml_tensor * dst) {
  7790. assert(params->ith == 0);
  7791. assert(ggml_are_same_shape(src0, dst));
  7792. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7793. return;
  7794. }
  7795. const int n = ggml_nrows(src0);
  7796. const int nc = src0->ne[0];
  7797. assert(dst->nb[0] == sizeof(float));
  7798. assert(src0->nb[0] == sizeof(float));
  7799. for (int i = 0; i < n; i++) {
  7800. ggml_vec_sgn_f32(nc,
  7801. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7802. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7803. }
  7804. }
  7805. static void ggml_compute_forward_sgn(
  7806. const struct ggml_compute_params * params,
  7807. const struct ggml_tensor * src0,
  7808. struct ggml_tensor * dst) {
  7809. switch (src0->type) {
  7810. case GGML_TYPE_F32:
  7811. {
  7812. ggml_compute_forward_sgn_f32(params, src0, dst);
  7813. } break;
  7814. default:
  7815. {
  7816. GGML_ASSERT(false);
  7817. } break;
  7818. }
  7819. }
  7820. // ggml_compute_forward_neg
  7821. static void ggml_compute_forward_neg_f32(
  7822. const struct ggml_compute_params * params,
  7823. const struct ggml_tensor * src0,
  7824. struct ggml_tensor * dst) {
  7825. assert(params->ith == 0);
  7826. assert(ggml_are_same_shape(src0, dst));
  7827. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7828. return;
  7829. }
  7830. const int n = ggml_nrows(src0);
  7831. const int nc = src0->ne[0];
  7832. assert(dst->nb[0] == sizeof(float));
  7833. assert(src0->nb[0] == sizeof(float));
  7834. for (int i = 0; i < n; i++) {
  7835. ggml_vec_neg_f32(nc,
  7836. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7837. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7838. }
  7839. }
  7840. static void ggml_compute_forward_neg(
  7841. const struct ggml_compute_params * params,
  7842. const struct ggml_tensor * src0,
  7843. struct ggml_tensor * dst) {
  7844. switch (src0->type) {
  7845. case GGML_TYPE_F32:
  7846. {
  7847. ggml_compute_forward_neg_f32(params, src0, dst);
  7848. } break;
  7849. default:
  7850. {
  7851. GGML_ASSERT(false);
  7852. } break;
  7853. }
  7854. }
  7855. // ggml_compute_forward_step
  7856. static void ggml_compute_forward_step_f32(
  7857. const struct ggml_compute_params * params,
  7858. const struct ggml_tensor * src0,
  7859. struct ggml_tensor * dst) {
  7860. assert(params->ith == 0);
  7861. assert(ggml_are_same_shape(src0, dst));
  7862. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7863. return;
  7864. }
  7865. const int n = ggml_nrows(src0);
  7866. const int nc = src0->ne[0];
  7867. assert(dst->nb[0] == sizeof(float));
  7868. assert(src0->nb[0] == sizeof(float));
  7869. for (int i = 0; i < n; i++) {
  7870. ggml_vec_step_f32(nc,
  7871. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7872. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7873. }
  7874. }
  7875. static void ggml_compute_forward_step(
  7876. const struct ggml_compute_params * params,
  7877. const struct ggml_tensor * src0,
  7878. struct ggml_tensor * dst) {
  7879. switch (src0->type) {
  7880. case GGML_TYPE_F32:
  7881. {
  7882. ggml_compute_forward_step_f32(params, src0, dst);
  7883. } break;
  7884. default:
  7885. {
  7886. GGML_ASSERT(false);
  7887. } break;
  7888. }
  7889. }
  7890. // ggml_compute_forward_tanh
  7891. static void ggml_compute_forward_tanh_f32(
  7892. const struct ggml_compute_params * params,
  7893. const struct ggml_tensor * src0,
  7894. struct ggml_tensor * dst) {
  7895. assert(params->ith == 0);
  7896. assert(ggml_are_same_shape(src0, dst));
  7897. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7898. return;
  7899. }
  7900. const int n = ggml_nrows(src0);
  7901. const int nc = src0->ne[0];
  7902. assert(dst->nb[0] == sizeof(float));
  7903. assert(src0->nb[0] == sizeof(float));
  7904. for (int i = 0; i < n; i++) {
  7905. ggml_vec_tanh_f32(nc,
  7906. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7907. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7908. }
  7909. }
  7910. static void ggml_compute_forward_tanh(
  7911. const struct ggml_compute_params * params,
  7912. const struct ggml_tensor * src0,
  7913. struct ggml_tensor * dst) {
  7914. switch (src0->type) {
  7915. case GGML_TYPE_F32:
  7916. {
  7917. ggml_compute_forward_tanh_f32(params, src0, dst);
  7918. } break;
  7919. default:
  7920. {
  7921. GGML_ASSERT(false);
  7922. } break;
  7923. }
  7924. }
  7925. // ggml_compute_forward_elu
  7926. static void ggml_compute_forward_elu_f32(
  7927. const struct ggml_compute_params * params,
  7928. const struct ggml_tensor * src0,
  7929. struct ggml_tensor * dst) {
  7930. assert(params->ith == 0);
  7931. assert(ggml_are_same_shape(src0, dst));
  7932. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7933. return;
  7934. }
  7935. const int n = ggml_nrows(src0);
  7936. const int nc = src0->ne[0];
  7937. assert(dst->nb[0] == sizeof(float));
  7938. assert(src0->nb[0] == sizeof(float));
  7939. for (int i = 0; i < n; i++) {
  7940. ggml_vec_elu_f32(nc,
  7941. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7942. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7943. }
  7944. }
  7945. static void ggml_compute_forward_elu(
  7946. const struct ggml_compute_params * params,
  7947. const struct ggml_tensor * src0,
  7948. struct ggml_tensor * dst) {
  7949. switch (src0->type) {
  7950. case GGML_TYPE_F32:
  7951. {
  7952. ggml_compute_forward_elu_f32(params, src0, dst);
  7953. } break;
  7954. default:
  7955. {
  7956. GGML_ASSERT(false);
  7957. } break;
  7958. }
  7959. }
  7960. // ggml_compute_forward_relu
  7961. static void ggml_compute_forward_relu_f32(
  7962. const struct ggml_compute_params * params,
  7963. const struct ggml_tensor * src0,
  7964. struct ggml_tensor * dst) {
  7965. assert(params->ith == 0);
  7966. assert(ggml_are_same_shape(src0, dst));
  7967. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7968. return;
  7969. }
  7970. const int n = ggml_nrows(src0);
  7971. const int nc = src0->ne[0];
  7972. assert(dst->nb[0] == sizeof(float));
  7973. assert(src0->nb[0] == sizeof(float));
  7974. for (int i = 0; i < n; i++) {
  7975. ggml_vec_relu_f32(nc,
  7976. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7977. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7978. }
  7979. }
  7980. static void ggml_compute_forward_relu(
  7981. const struct ggml_compute_params * params,
  7982. const struct ggml_tensor * src0,
  7983. struct ggml_tensor * dst) {
  7984. switch (src0->type) {
  7985. case GGML_TYPE_F32:
  7986. {
  7987. ggml_compute_forward_relu_f32(params, src0, dst);
  7988. } break;
  7989. default:
  7990. {
  7991. GGML_ASSERT(false);
  7992. } break;
  7993. }
  7994. }
  7995. // ggml_compute_forward_gelu
  7996. static void ggml_compute_forward_gelu_f32(
  7997. const struct ggml_compute_params * params,
  7998. const struct ggml_tensor * src0,
  7999. struct ggml_tensor * dst) {
  8000. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8001. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8002. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8003. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8004. return;
  8005. }
  8006. const int ith = params->ith;
  8007. const int nth = params->nth;
  8008. const int nc = src0->ne[0];
  8009. const int nr = ggml_nrows(src0);
  8010. // rows per thread
  8011. const int dr = (nr + nth - 1)/nth;
  8012. // row range for this thread
  8013. const int ir0 = dr*ith;
  8014. const int ir1 = MIN(ir0 + dr, nr);
  8015. for (int i1 = ir0; i1 < ir1; i1++) {
  8016. ggml_vec_gelu_f32(nc,
  8017. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8018. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8019. #ifndef NDEBUG
  8020. for (int k = 0; k < nc; k++) {
  8021. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8022. UNUSED(x);
  8023. assert(!isnan(x));
  8024. assert(!isinf(x));
  8025. }
  8026. #endif
  8027. }
  8028. }
  8029. static void ggml_compute_forward_gelu(
  8030. const struct ggml_compute_params * params,
  8031. const struct ggml_tensor * src0,
  8032. struct ggml_tensor * dst) {
  8033. switch (src0->type) {
  8034. case GGML_TYPE_F32:
  8035. {
  8036. ggml_compute_forward_gelu_f32(params, src0, dst);
  8037. } break;
  8038. default:
  8039. {
  8040. GGML_ASSERT(false);
  8041. } break;
  8042. }
  8043. }
  8044. // ggml_compute_forward_gelu_quick
  8045. static void ggml_compute_forward_gelu_quick_f32(
  8046. const struct ggml_compute_params * params,
  8047. const struct ggml_tensor * src0,
  8048. struct ggml_tensor * dst) {
  8049. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8050. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8051. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8052. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8053. return;
  8054. }
  8055. const int ith = params->ith;
  8056. const int nth = params->nth;
  8057. const int nc = src0->ne[0];
  8058. const int nr = ggml_nrows(src0);
  8059. // rows per thread
  8060. const int dr = (nr + nth - 1)/nth;
  8061. // row range for this thread
  8062. const int ir0 = dr*ith;
  8063. const int ir1 = MIN(ir0 + dr, nr);
  8064. for (int i1 = ir0; i1 < ir1; i1++) {
  8065. ggml_vec_gelu_quick_f32(nc,
  8066. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8067. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8068. #ifndef NDEBUG
  8069. for (int k = 0; k < nc; k++) {
  8070. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8071. UNUSED(x);
  8072. assert(!isnan(x));
  8073. assert(!isinf(x));
  8074. }
  8075. #endif
  8076. }
  8077. }
  8078. static void ggml_compute_forward_gelu_quick(
  8079. const struct ggml_compute_params * params,
  8080. const struct ggml_tensor * src0,
  8081. struct ggml_tensor * dst) {
  8082. switch (src0->type) {
  8083. case GGML_TYPE_F32:
  8084. {
  8085. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8086. } break;
  8087. default:
  8088. {
  8089. GGML_ASSERT(false);
  8090. } break;
  8091. }
  8092. }
  8093. // ggml_compute_forward_silu
  8094. static void ggml_compute_forward_silu_f32(
  8095. const struct ggml_compute_params * params,
  8096. const struct ggml_tensor * src0,
  8097. struct ggml_tensor * dst) {
  8098. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8099. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8100. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8101. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8102. return;
  8103. }
  8104. const int ith = params->ith;
  8105. const int nth = params->nth;
  8106. const int nc = src0->ne[0];
  8107. const int nr = ggml_nrows(src0);
  8108. // rows per thread
  8109. const int dr = (nr + nth - 1)/nth;
  8110. // row range for this thread
  8111. const int ir0 = dr*ith;
  8112. const int ir1 = MIN(ir0 + dr, nr);
  8113. for (int i1 = ir0; i1 < ir1; i1++) {
  8114. ggml_vec_silu_f32(nc,
  8115. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8116. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8117. #ifndef NDEBUG
  8118. for (int k = 0; k < nc; k++) {
  8119. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8120. UNUSED(x);
  8121. assert(!isnan(x));
  8122. assert(!isinf(x));
  8123. }
  8124. #endif
  8125. }
  8126. }
  8127. static void ggml_compute_forward_silu(
  8128. const struct ggml_compute_params * params,
  8129. const struct ggml_tensor * src0,
  8130. struct ggml_tensor * dst) {
  8131. switch (src0->type) {
  8132. case GGML_TYPE_F32:
  8133. {
  8134. ggml_compute_forward_silu_f32(params, src0, dst);
  8135. } break;
  8136. default:
  8137. {
  8138. GGML_ASSERT(false);
  8139. } break;
  8140. }
  8141. }
  8142. // ggml_compute_forward_silu_back
  8143. static void ggml_compute_forward_silu_back_f32(
  8144. const struct ggml_compute_params * params,
  8145. const struct ggml_tensor * src0,
  8146. const struct ggml_tensor * grad,
  8147. struct ggml_tensor * dst) {
  8148. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8149. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8150. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8151. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8152. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8153. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8154. return;
  8155. }
  8156. const int ith = params->ith;
  8157. const int nth = params->nth;
  8158. const int nc = src0->ne[0];
  8159. const int nr = ggml_nrows(src0);
  8160. // rows per thread
  8161. const int dr = (nr + nth - 1)/nth;
  8162. // row range for this thread
  8163. const int ir0 = dr*ith;
  8164. const int ir1 = MIN(ir0 + dr, nr);
  8165. for (int i1 = ir0; i1 < ir1; i1++) {
  8166. ggml_vec_silu_backward_f32(nc,
  8167. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8168. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8169. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8170. #ifndef NDEBUG
  8171. for (int k = 0; k < nc; k++) {
  8172. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8173. UNUSED(x);
  8174. assert(!isnan(x));
  8175. assert(!isinf(x));
  8176. }
  8177. #endif
  8178. }
  8179. }
  8180. static void ggml_compute_forward_silu_back(
  8181. const struct ggml_compute_params * params,
  8182. const struct ggml_tensor * src0,
  8183. const struct ggml_tensor * grad,
  8184. struct ggml_tensor * dst) {
  8185. switch (src0->type) {
  8186. case GGML_TYPE_F32:
  8187. {
  8188. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8189. } break;
  8190. default:
  8191. {
  8192. GGML_ASSERT(false);
  8193. } break;
  8194. }
  8195. }
  8196. // ggml_compute_forward_norm
  8197. static void ggml_compute_forward_norm_f32(
  8198. const struct ggml_compute_params * params,
  8199. const struct ggml_tensor * src0,
  8200. struct ggml_tensor * dst) {
  8201. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8202. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8203. return;
  8204. }
  8205. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8206. const int ith = params->ith;
  8207. const int nth = params->nth;
  8208. GGML_TENSOR_UNARY_OP_LOCALS;
  8209. const float eps = 1e-5f; // TODO: make this a parameter
  8210. // TODO: optimize
  8211. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8212. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8213. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8214. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8215. ggml_float sum = 0.0;
  8216. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8217. sum += (ggml_float)x[i00];
  8218. }
  8219. float mean = sum/ne00;
  8220. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8221. ggml_float sum2 = 0.0;
  8222. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8223. float v = x[i00] - mean;
  8224. y[i00] = v;
  8225. sum2 += (ggml_float)(v*v);
  8226. }
  8227. float variance = sum2/ne00;
  8228. const float scale = 1.0f/sqrtf(variance + eps);
  8229. ggml_vec_scale_f32(ne00, y, scale);
  8230. }
  8231. }
  8232. }
  8233. }
  8234. static void ggml_compute_forward_norm(
  8235. const struct ggml_compute_params * params,
  8236. const struct ggml_tensor * src0,
  8237. struct ggml_tensor * dst) {
  8238. switch (src0->type) {
  8239. case GGML_TYPE_F32:
  8240. {
  8241. ggml_compute_forward_norm_f32(params, src0, dst);
  8242. } break;
  8243. default:
  8244. {
  8245. GGML_ASSERT(false);
  8246. } break;
  8247. }
  8248. }
  8249. static void ggml_compute_forward_rms_norm_f32(
  8250. const struct ggml_compute_params * params,
  8251. const struct ggml_tensor * src0,
  8252. struct ggml_tensor * dst) {
  8253. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8254. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8255. return;
  8256. }
  8257. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8258. const int ith = params->ith;
  8259. const int nth = params->nth;
  8260. GGML_TENSOR_UNARY_OP_LOCALS;
  8261. float eps;
  8262. memcpy(&eps, dst->op_params, sizeof(float));
  8263. // TODO: optimize
  8264. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8265. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8266. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8267. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8268. ggml_float sum = 0.0;
  8269. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8270. sum += (ggml_float)(x[i00] * x[i00]);
  8271. }
  8272. const float mean = sum/ne00;
  8273. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8274. memcpy(y, x, ne00 * sizeof(float));
  8275. // for (int i00 = 0; i00 < ne00; i00++) {
  8276. // y[i00] = x[i00];
  8277. // }
  8278. const float scale = 1.0f/sqrtf(mean + eps);
  8279. ggml_vec_scale_f32(ne00, y, scale);
  8280. }
  8281. }
  8282. }
  8283. }
  8284. static void ggml_compute_forward_rms_norm(
  8285. const struct ggml_compute_params * params,
  8286. const struct ggml_tensor * src0,
  8287. struct ggml_tensor * dst) {
  8288. switch (src0->type) {
  8289. case GGML_TYPE_F32:
  8290. {
  8291. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8292. } break;
  8293. default:
  8294. {
  8295. GGML_ASSERT(false);
  8296. } break;
  8297. }
  8298. }
  8299. static void ggml_compute_forward_rms_norm_back_f32(
  8300. const struct ggml_compute_params * params,
  8301. const struct ggml_tensor * src0,
  8302. const struct ggml_tensor * src1,
  8303. struct ggml_tensor * dst) {
  8304. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8305. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8306. return;
  8307. }
  8308. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8309. const int ith = params->ith;
  8310. const int nth = params->nth;
  8311. GGML_TENSOR_BINARY_OP_LOCALS;
  8312. const float eps = 1e-6f; // TODO: make this a parameter
  8313. // TODO: optimize
  8314. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8315. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8316. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8317. // src1 is same shape as src0 => same indices
  8318. const int64_t i11 = i01;
  8319. const int64_t i12 = i02;
  8320. const int64_t i13 = i03;
  8321. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8322. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8323. ggml_float sum_xx = 0.0;
  8324. ggml_float sum_xdz = 0.0;
  8325. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8326. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8327. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8328. }
  8329. //const float mean = (float)(sum_xx)/ne00;
  8330. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8331. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8332. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8333. // we could cache rms from forward pass to improve performance.
  8334. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8335. //const float rms = sqrtf(mean_eps);
  8336. const float rrms = 1.0f / sqrtf(mean_eps);
  8337. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8338. {
  8339. // z = rms_norm(x)
  8340. //
  8341. // rms_norm(src0) =
  8342. // scale(
  8343. // src0,
  8344. // div(
  8345. // 1,
  8346. // sqrt(
  8347. // add(
  8348. // scale(
  8349. // sum(
  8350. // sqr(
  8351. // src0)),
  8352. // (1.0/N)),
  8353. // eps))));
  8354. // postorder:
  8355. // ## op args grad
  8356. // 00 param src0 grad[#00]
  8357. // 01 const 1
  8358. // 02 sqr (#00) grad[#02]
  8359. // 03 sum (#02) grad[#03]
  8360. // 04 const 1/N
  8361. // 05 scale (#03, #04) grad[#05]
  8362. // 06 const eps
  8363. // 07 add (#05, #06) grad[#07]
  8364. // 08 sqrt (#07) grad[#08]
  8365. // 09 div (#01,#08) grad[#09]
  8366. // 10 scale (#00,#09) grad[#10]
  8367. //
  8368. // backward pass, given grad[#10]
  8369. // #10: scale
  8370. // grad[#00] += scale(grad[#10],#09)
  8371. // grad[#09] += sum(mul(grad[#10],#00))
  8372. // #09: div
  8373. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8374. // #08: sqrt
  8375. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8376. // #07: add
  8377. // grad[#05] += grad[#07]
  8378. // #05: scale
  8379. // grad[#03] += scale(grad[#05],#04)
  8380. // #03: sum
  8381. // grad[#02] += repeat(grad[#03], #02)
  8382. // #02:
  8383. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8384. //
  8385. // substitute and simplify:
  8386. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8387. // grad[#02] = repeat(grad[#03], #02)
  8388. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8389. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8390. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8391. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8392. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8393. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8394. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8395. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8396. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8397. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8398. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8399. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8400. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8401. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8402. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8403. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8404. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8405. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8406. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8407. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8408. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8409. // a = b*c + d*e
  8410. // a = b*c*f/f + d*e*f/f
  8411. // a = (b*c*f + d*e*f)*(1/f)
  8412. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8413. // a = (b + d*e/c)*c
  8414. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8415. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8416. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8417. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8418. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8419. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8420. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8421. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8422. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8423. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8424. }
  8425. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8426. // post-order:
  8427. // dx := x
  8428. // dx := scale(dx,-mean_xdz/mean_eps)
  8429. // dx := add(dx, dz)
  8430. // dx := scale(dx, rrms)
  8431. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8432. ggml_vec_cpy_f32 (ne00, dx, x);
  8433. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8434. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8435. ggml_vec_acc_f32 (ne00, dx, dz);
  8436. ggml_vec_scale_f32(ne00, dx, rrms);
  8437. }
  8438. }
  8439. }
  8440. }
  8441. static void ggml_compute_forward_rms_norm_back(
  8442. const struct ggml_compute_params * params,
  8443. const struct ggml_tensor * src0,
  8444. const struct ggml_tensor * src1,
  8445. struct ggml_tensor * dst) {
  8446. switch (src0->type) {
  8447. case GGML_TYPE_F32:
  8448. {
  8449. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8450. } break;
  8451. default:
  8452. {
  8453. GGML_ASSERT(false);
  8454. } break;
  8455. }
  8456. }
  8457. // ggml_compute_forward_mul_mat
  8458. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8459. // helper function to determine if it is better to use BLAS or not
  8460. // for large matrices, BLAS is faster
  8461. static bool ggml_compute_forward_mul_mat_use_blas(
  8462. const struct ggml_tensor * src0,
  8463. const struct ggml_tensor * src1,
  8464. struct ggml_tensor * dst) {
  8465. //const int64_t ne00 = src0->ne[0];
  8466. //const int64_t ne01 = src0->ne[1];
  8467. const int64_t ne10 = src1->ne[0];
  8468. const int64_t ne0 = dst->ne[0];
  8469. const int64_t ne1 = dst->ne[1];
  8470. // TODO: find the optimal values for these
  8471. if (ggml_is_contiguous(src0) &&
  8472. ggml_is_contiguous(src1) &&
  8473. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8474. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8475. return true;
  8476. }
  8477. return false;
  8478. }
  8479. #endif
  8480. static void ggml_compute_forward_mul_mat(
  8481. const struct ggml_compute_params * params,
  8482. const struct ggml_tensor * src0,
  8483. const struct ggml_tensor * src1,
  8484. struct ggml_tensor * dst) {
  8485. int64_t t0 = ggml_perf_time_us();
  8486. UNUSED(t0);
  8487. GGML_TENSOR_BINARY_OP_LOCALS;
  8488. const int ith = params->ith;
  8489. const int nth = params->nth;
  8490. const enum ggml_type type = src0->type;
  8491. const bool src1_cont = ggml_is_contiguous(src1);
  8492. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8493. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8494. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8495. GGML_ASSERT(ne0 == ne01);
  8496. GGML_ASSERT(ne1 == ne11);
  8497. GGML_ASSERT(ne2 == ne12);
  8498. GGML_ASSERT(ne3 == ne13);
  8499. // we don't support permuted src0 or src1
  8500. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8501. GGML_ASSERT(nb10 == sizeof(float));
  8502. // dst cannot be transposed or permuted
  8503. GGML_ASSERT(nb0 == sizeof(float));
  8504. GGML_ASSERT(nb0 <= nb1);
  8505. GGML_ASSERT(nb1 <= nb2);
  8506. GGML_ASSERT(nb2 <= nb3);
  8507. // nb01 >= nb00 - src0 is not transposed
  8508. // compute by src0 rows
  8509. #if defined(GGML_USE_CLBLAST)
  8510. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8511. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8512. // ref: https://github.com/ggerganov/ggml/pull/224
  8513. GGML_ASSERT(ne02 == ne12);
  8514. GGML_ASSERT(ne03 == ne13);
  8515. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8516. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8517. }
  8518. return;
  8519. }
  8520. #endif
  8521. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8522. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8523. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8524. // ref: https://github.com/ggerganov/ggml/pull/224
  8525. GGML_ASSERT(ne02 == ne12);
  8526. GGML_ASSERT(ne03 == ne13);
  8527. if (params->ith != 0) {
  8528. return;
  8529. }
  8530. if (params->type == GGML_TASK_INIT) {
  8531. return;
  8532. }
  8533. if (params->type == GGML_TASK_FINALIZE) {
  8534. return;
  8535. }
  8536. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8537. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8538. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8539. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8540. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8541. if (type != GGML_TYPE_F32) {
  8542. float * const wdata = params->wdata;
  8543. ggml_to_float_t const to_float = type_traits[type].to_float;
  8544. size_t id = 0;
  8545. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8546. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8547. id += ne00;
  8548. }
  8549. assert(id*sizeof(float) <= params->wsize);
  8550. x = wdata;
  8551. }
  8552. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8553. ne11, ne01, ne10,
  8554. 1.0f, y, ne10,
  8555. x, ne00,
  8556. 0.0f, d, ne01);
  8557. }
  8558. }
  8559. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8560. return;
  8561. }
  8562. #endif
  8563. if (params->type == GGML_TASK_INIT) {
  8564. if (src1->type != vec_dot_type) {
  8565. char * wdata = params->wdata;
  8566. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8567. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8568. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8569. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8570. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8571. wdata += row_size;
  8572. }
  8573. }
  8574. }
  8575. }
  8576. return;
  8577. }
  8578. if (params->type == GGML_TASK_FINALIZE) {
  8579. return;
  8580. }
  8581. // parallelize by src0 rows
  8582. const int64_t dr = (ne01 + nth - 1)/nth;
  8583. const int64_t ir10 = dr*ith;
  8584. const int64_t ir11 = MIN(ir10 + dr, ne01);
  8585. // src1 rows
  8586. const int64_t nr1 = ne11*ne12*ne13;
  8587. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8588. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8589. for (int64_t ir1 = 0; ir1 < nr1; ++ir1) {
  8590. const int64_t i13 = (ir1/(ne12*ne11));
  8591. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  8592. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  8593. const int64_t ir0 = (ir1/ne11)%(ne02*ne03);
  8594. const int64_t i03 = (ir0/(ne02));
  8595. // Hack for "Falcon multi-query-attention key stutter" / alternative to ggml_repeat2.
  8596. // See https://github.com/ggerganov/llama.cpp/issues/1602#issuecomment-1606087470:
  8597. // GG: this is likely the correct way to broadcast, though need some more thought
  8598. // therefore leaving the comments to remind us for now
  8599. const int64_t i02 = (i12 / (ne12 / ne02));
  8600. // Original from PR/224 (and also essential/correct for non-broadcast matmuls in Falcon)
  8601. // const int64_t i02 = (ir0 - i03*ne02);
  8602. const int64_t i1 = i11;
  8603. const int64_t i2 = i12;
  8604. const int64_t i3 = i13;
  8605. const char * src0_row = (const char *) src0->data + ( 0 + i02*nb02 + i03*nb03 );
  8606. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8607. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8608. // the original src1 data pointer, so we should index using the indices directly
  8609. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8610. const char * src1_col = (const char *) wdata +
  8611. (src1_cont || src1->type != vec_dot_type
  8612. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8613. : (i11*nb11 + i12*nb12 + i13*nb13));
  8614. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8615. for (int64_t ir = ir10; ir < ir11; ++ir) {
  8616. vec_dot(ne00, &dst_col[ir], src0_row + ir*nb01, src1_col);
  8617. }
  8618. }
  8619. //int64_t t1 = ggml_time_us();
  8620. //static int64_t acc = 0;
  8621. //acc += t1 - t0;
  8622. //if (t1 - t0 > 10) {
  8623. // printf("\n");
  8624. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8625. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8626. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8627. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8628. //}
  8629. }
  8630. // ggml_compute_forward_out_prod
  8631. static void ggml_compute_forward_out_prod_f32(
  8632. const struct ggml_compute_params * params,
  8633. const struct ggml_tensor * src0,
  8634. const struct ggml_tensor * src1,
  8635. struct ggml_tensor * dst) {
  8636. int64_t t0 = ggml_perf_time_us();
  8637. UNUSED(t0);
  8638. GGML_TENSOR_BINARY_OP_LOCALS;
  8639. const int ith = params->ith;
  8640. const int nth = params->nth;
  8641. GGML_ASSERT(ne02 == ne12);
  8642. GGML_ASSERT(ne03 == ne13);
  8643. GGML_ASSERT(ne2 == ne12);
  8644. GGML_ASSERT(ne3 == ne13);
  8645. // we don't support permuted src0 or src1
  8646. GGML_ASSERT(nb00 == sizeof(float));
  8647. // dst cannot be transposed or permuted
  8648. GGML_ASSERT(nb0 == sizeof(float));
  8649. // GGML_ASSERT(nb0 <= nb1);
  8650. // GGML_ASSERT(nb1 <= nb2);
  8651. // GGML_ASSERT(nb2 <= nb3);
  8652. GGML_ASSERT(ne0 == ne00);
  8653. GGML_ASSERT(ne1 == ne10);
  8654. GGML_ASSERT(ne2 == ne02);
  8655. GGML_ASSERT(ne3 == ne03);
  8656. // nb01 >= nb00 - src0 is not transposed
  8657. // compute by src0 rows
  8658. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8659. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8660. if (params->type == GGML_TASK_INIT) {
  8661. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8662. return;
  8663. }
  8664. if (params->type == GGML_TASK_FINALIZE) {
  8665. return;
  8666. }
  8667. // parallelize by last three dimensions
  8668. // total rows in dst
  8669. const int64_t nr = ne1*ne2*ne3;
  8670. // rows per thread
  8671. const int64_t dr = (nr + nth - 1)/nth;
  8672. // row range for this thread
  8673. const int64_t ir0 = dr*ith;
  8674. const int64_t ir1 = MIN(ir0 + dr, nr);
  8675. // dst[:,:,:,:] = 0
  8676. // for i2,i3:
  8677. // for i1:
  8678. // for i01:
  8679. // for i0:
  8680. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8681. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8682. // dst indices
  8683. const int64_t i3 = ir/(ne2*ne1);
  8684. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8685. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8686. const int64_t i02 = i2;
  8687. const int64_t i03 = i3;
  8688. //const int64_t i10 = i1;
  8689. const int64_t i12 = i2;
  8690. const int64_t i13 = i3;
  8691. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8692. const int64_t i11 = i01;
  8693. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8694. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8695. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8696. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8697. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8698. // d[i0] += s0[i0] * s1[i1];
  8699. // }
  8700. }
  8701. }
  8702. //int64_t t1 = ggml_perf_time_us();
  8703. //static int64_t acc = 0;
  8704. //acc += t1 - t0;
  8705. //if (t1 - t0 > 10) {
  8706. // printf("\n");
  8707. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8708. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8709. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8710. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8711. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8712. //}
  8713. }
  8714. static void ggml_compute_forward_out_prod(
  8715. const struct ggml_compute_params * params,
  8716. const struct ggml_tensor * src0,
  8717. const struct ggml_tensor * src1,
  8718. struct ggml_tensor * dst) {
  8719. switch (src0->type) {
  8720. case GGML_TYPE_Q4_0:
  8721. case GGML_TYPE_Q4_1:
  8722. case GGML_TYPE_Q5_0:
  8723. case GGML_TYPE_Q5_1:
  8724. case GGML_TYPE_Q8_0:
  8725. case GGML_TYPE_Q8_1:
  8726. {
  8727. GGML_ASSERT(false); // todo
  8728. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8729. } break;
  8730. case GGML_TYPE_F16:
  8731. {
  8732. GGML_ASSERT(false); // todo
  8733. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8734. } break;
  8735. case GGML_TYPE_F32:
  8736. {
  8737. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8738. } break;
  8739. default:
  8740. {
  8741. GGML_ASSERT(false);
  8742. } break;
  8743. }
  8744. }
  8745. // ggml_compute_forward_scale
  8746. static void ggml_compute_forward_scale_f32(
  8747. const struct ggml_compute_params * params,
  8748. const struct ggml_tensor * src0,
  8749. const struct ggml_tensor * src1,
  8750. struct ggml_tensor * dst) {
  8751. GGML_ASSERT(ggml_is_contiguous(src0));
  8752. GGML_ASSERT(ggml_is_contiguous(dst));
  8753. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8754. GGML_ASSERT(ggml_is_scalar(src1));
  8755. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8756. return;
  8757. }
  8758. // scale factor
  8759. const float v = *(float *) src1->data;
  8760. const int ith = params->ith;
  8761. const int nth = params->nth;
  8762. const int nc = src0->ne[0];
  8763. const int nr = ggml_nrows(src0);
  8764. // rows per thread
  8765. const int dr = (nr + nth - 1)/nth;
  8766. // row range for this thread
  8767. const int ir0 = dr*ith;
  8768. const int ir1 = MIN(ir0 + dr, nr);
  8769. const size_t nb01 = src0->nb[1];
  8770. const size_t nb1 = dst->nb[1];
  8771. for (int i1 = ir0; i1 < ir1; i1++) {
  8772. if (dst->data != src0->data) {
  8773. // src0 is same shape as dst => same indices
  8774. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8775. }
  8776. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8777. }
  8778. }
  8779. static void ggml_compute_forward_scale(
  8780. const struct ggml_compute_params * params,
  8781. const struct ggml_tensor * src0,
  8782. const struct ggml_tensor * src1,
  8783. struct ggml_tensor * dst) {
  8784. switch (src0->type) {
  8785. case GGML_TYPE_F32:
  8786. {
  8787. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8788. } break;
  8789. default:
  8790. {
  8791. GGML_ASSERT(false);
  8792. } break;
  8793. }
  8794. }
  8795. // ggml_compute_forward_set
  8796. static void ggml_compute_forward_set_f32(
  8797. const struct ggml_compute_params * params,
  8798. const struct ggml_tensor * src0,
  8799. const struct ggml_tensor * src1,
  8800. struct ggml_tensor * dst) {
  8801. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8802. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8803. // view src0 and dst with these strides and data offset inbytes during set
  8804. // nb0 is implicitely element_size because src0 and dst are contiguous
  8805. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8806. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8807. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8808. size_t offset = ((int32_t *) dst->op_params)[3];
  8809. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8810. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8811. // memcpy needs to be synchronized across threads to avoid race conditions.
  8812. // => do it in INIT phase
  8813. memcpy(
  8814. ((char *) dst->data),
  8815. ((char *) src0->data),
  8816. ggml_nbytes(dst));
  8817. }
  8818. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8819. return;
  8820. }
  8821. const int ith = params->ith;
  8822. const int nth = params->nth;
  8823. const int nr = ggml_nrows(src1);
  8824. const int nc = src1->ne[0];
  8825. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8826. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8827. // src0 and dst as viewed during set
  8828. const size_t nb0 = ggml_element_size(src0);
  8829. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8830. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8831. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8832. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8833. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8834. GGML_ASSERT(nb10 == sizeof(float));
  8835. // rows per thread
  8836. const int dr = (nr + nth - 1)/nth;
  8837. // row range for this thread
  8838. const int ir0 = dr*ith;
  8839. const int ir1 = MIN(ir0 + dr, nr);
  8840. for (int ir = ir0; ir < ir1; ++ir) {
  8841. // src0 and dst are viewed with shape of src1 and offset
  8842. // => same indices
  8843. const int i3 = ir/(ne12*ne11);
  8844. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8845. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8846. ggml_vec_cpy_f32(nc,
  8847. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8848. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8849. }
  8850. }
  8851. static void ggml_compute_forward_set(
  8852. const struct ggml_compute_params * params,
  8853. const struct ggml_tensor * src0,
  8854. const struct ggml_tensor * src1,
  8855. struct ggml_tensor * dst) {
  8856. switch (src0->type) {
  8857. case GGML_TYPE_F32:
  8858. {
  8859. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8860. } break;
  8861. case GGML_TYPE_F16:
  8862. case GGML_TYPE_Q4_0:
  8863. case GGML_TYPE_Q4_1:
  8864. case GGML_TYPE_Q5_0:
  8865. case GGML_TYPE_Q5_1:
  8866. case GGML_TYPE_Q8_0:
  8867. case GGML_TYPE_Q8_1:
  8868. case GGML_TYPE_Q2_K:
  8869. case GGML_TYPE_Q3_K:
  8870. case GGML_TYPE_Q4_K:
  8871. case GGML_TYPE_Q5_K:
  8872. case GGML_TYPE_Q6_K:
  8873. default:
  8874. {
  8875. GGML_ASSERT(false);
  8876. } break;
  8877. }
  8878. }
  8879. // ggml_compute_forward_cpy
  8880. static void ggml_compute_forward_cpy(
  8881. const struct ggml_compute_params * params,
  8882. const struct ggml_tensor * src0,
  8883. struct ggml_tensor * dst) {
  8884. ggml_compute_forward_dup(params, src0, dst);
  8885. }
  8886. // ggml_compute_forward_cont
  8887. static void ggml_compute_forward_cont(
  8888. const struct ggml_compute_params * params,
  8889. const struct ggml_tensor * src0,
  8890. struct ggml_tensor * dst) {
  8891. ggml_compute_forward_dup(params, src0, dst);
  8892. }
  8893. // ggml_compute_forward_reshape
  8894. static void ggml_compute_forward_reshape(
  8895. const struct ggml_compute_params * params,
  8896. const struct ggml_tensor * src0,
  8897. struct ggml_tensor * dst) {
  8898. // NOP
  8899. UNUSED(params);
  8900. UNUSED(src0);
  8901. UNUSED(dst);
  8902. }
  8903. // ggml_compute_forward_view
  8904. static void ggml_compute_forward_view(
  8905. const struct ggml_compute_params * params,
  8906. const struct ggml_tensor * src0) {
  8907. // NOP
  8908. UNUSED(params);
  8909. UNUSED(src0);
  8910. }
  8911. // ggml_compute_forward_permute
  8912. static void ggml_compute_forward_permute(
  8913. const struct ggml_compute_params * params,
  8914. const struct ggml_tensor * src0) {
  8915. // NOP
  8916. UNUSED(params);
  8917. UNUSED(src0);
  8918. }
  8919. // ggml_compute_forward_transpose
  8920. static void ggml_compute_forward_transpose(
  8921. const struct ggml_compute_params * params,
  8922. const struct ggml_tensor * src0) {
  8923. // NOP
  8924. UNUSED(params);
  8925. UNUSED(src0);
  8926. }
  8927. // ggml_compute_forward_get_rows
  8928. static void ggml_compute_forward_get_rows_q(
  8929. const struct ggml_compute_params * params,
  8930. const struct ggml_tensor * src0,
  8931. const struct ggml_tensor * src1,
  8932. struct ggml_tensor * dst) {
  8933. assert(params->ith == 0);
  8934. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8935. return;
  8936. }
  8937. const int nc = src0->ne[0];
  8938. const int nr = ggml_nelements(src1);
  8939. const enum ggml_type type = src0->type;
  8940. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8941. assert( dst->ne[0] == nc);
  8942. assert( dst->ne[1] == nr);
  8943. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8944. for (int i = 0; i < nr; ++i) {
  8945. const int r = ((int32_t *) src1->data)[i];
  8946. dequantize_row_q(
  8947. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8948. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8949. }
  8950. }
  8951. static void ggml_compute_forward_get_rows_f16(
  8952. const struct ggml_compute_params * params,
  8953. const struct ggml_tensor * src0,
  8954. const struct ggml_tensor * src1,
  8955. struct ggml_tensor * dst) {
  8956. assert(params->ith == 0);
  8957. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8958. return;
  8959. }
  8960. const int nc = src0->ne[0];
  8961. const int nr = ggml_nelements(src1);
  8962. assert( dst->ne[0] == nc);
  8963. assert( dst->ne[1] == nr);
  8964. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8965. for (int i = 0; i < nr; ++i) {
  8966. const int r = ((int32_t *) src1->data)[i];
  8967. for (int j = 0; j < nc; ++j) {
  8968. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8969. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8970. }
  8971. }
  8972. }
  8973. static void ggml_compute_forward_get_rows_f32(
  8974. const struct ggml_compute_params * params,
  8975. const struct ggml_tensor * src0,
  8976. const struct ggml_tensor * src1,
  8977. struct ggml_tensor * dst) {
  8978. assert(params->ith == 0);
  8979. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8980. return;
  8981. }
  8982. const int nc = src0->ne[0];
  8983. const int nr = ggml_nelements(src1);
  8984. assert( dst->ne[0] == nc);
  8985. assert( dst->ne[1] == nr);
  8986. assert(src0->nb[0] == sizeof(float));
  8987. for (int i = 0; i < nr; ++i) {
  8988. const int r = ((int32_t *) src1->data)[i];
  8989. ggml_vec_cpy_f32(nc,
  8990. (float *) ((char *) dst->data + i*dst->nb[1]),
  8991. (float *) ((char *) src0->data + r*src0->nb[1]));
  8992. }
  8993. }
  8994. static void ggml_compute_forward_get_rows(
  8995. const struct ggml_compute_params * params,
  8996. const struct ggml_tensor * src0,
  8997. const struct ggml_tensor * src1,
  8998. struct ggml_tensor * dst) {
  8999. switch (src0->type) {
  9000. case GGML_TYPE_Q4_0:
  9001. case GGML_TYPE_Q4_1:
  9002. case GGML_TYPE_Q5_0:
  9003. case GGML_TYPE_Q5_1:
  9004. case GGML_TYPE_Q8_0:
  9005. case GGML_TYPE_Q8_1:
  9006. case GGML_TYPE_Q2_K:
  9007. case GGML_TYPE_Q3_K:
  9008. case GGML_TYPE_Q4_K:
  9009. case GGML_TYPE_Q5_K:
  9010. case GGML_TYPE_Q6_K:
  9011. {
  9012. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9013. } break;
  9014. case GGML_TYPE_F16:
  9015. {
  9016. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9017. } break;
  9018. case GGML_TYPE_F32:
  9019. {
  9020. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9021. } break;
  9022. default:
  9023. {
  9024. GGML_ASSERT(false);
  9025. } break;
  9026. }
  9027. //static bool first = true;
  9028. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9029. //if (first) {
  9030. // first = false;
  9031. //} else {
  9032. // for (int k = 0; k < dst->ne[1]; ++k) {
  9033. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9034. // for (int i = 0; i < 16; ++i) {
  9035. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9036. // }
  9037. // printf("\n");
  9038. // }
  9039. // printf("\n");
  9040. // }
  9041. // printf("\n");
  9042. // exit(0);
  9043. //}
  9044. }
  9045. // ggml_compute_forward_get_rows_back
  9046. static void ggml_compute_forward_get_rows_back_f32_f16(
  9047. const struct ggml_compute_params * params,
  9048. const struct ggml_tensor * src0,
  9049. const struct ggml_tensor * src1,
  9050. const struct ggml_tensor * opt0,
  9051. struct ggml_tensor * dst) {
  9052. GGML_ASSERT(params->ith == 0);
  9053. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9054. GGML_ASSERT(ggml_is_contiguous(opt0));
  9055. GGML_ASSERT(ggml_is_contiguous(dst));
  9056. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9057. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9058. return;
  9059. }
  9060. const int nc = src0->ne[0];
  9061. const int nr = ggml_nelements(src1);
  9062. GGML_ASSERT( dst->ne[0] == nc);
  9063. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9064. for (int i = 0; i < nr; ++i) {
  9065. const int r = ((int32_t *) src1->data)[i];
  9066. for (int j = 0; j < nc; ++j) {
  9067. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9068. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9069. }
  9070. }
  9071. }
  9072. static void ggml_compute_forward_get_rows_back_f32(
  9073. const struct ggml_compute_params * params,
  9074. const struct ggml_tensor * src0,
  9075. const struct ggml_tensor * src1,
  9076. const struct ggml_tensor * opt0,
  9077. struct ggml_tensor * dst) {
  9078. GGML_ASSERT(params->ith == 0);
  9079. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9080. GGML_ASSERT(ggml_is_contiguous(opt0));
  9081. GGML_ASSERT(ggml_is_contiguous(dst));
  9082. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9083. if (params->type == GGML_TASK_INIT) {
  9084. memset(dst->data, 0, ggml_nbytes(dst));
  9085. }
  9086. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9087. return;
  9088. }
  9089. const int nc = src0->ne[0];
  9090. const int nr = ggml_nelements(src1);
  9091. GGML_ASSERT( dst->ne[0] == nc);
  9092. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9093. for (int i = 0; i < nr; ++i) {
  9094. const int r = ((int32_t *) src1->data)[i];
  9095. ggml_vec_add_f32(nc,
  9096. (float *) ((char *) dst->data + r*dst->nb[1]),
  9097. (float *) ((char *) dst->data + r*dst->nb[1]),
  9098. (float *) ((char *) src0->data + i*src0->nb[1]));
  9099. }
  9100. }
  9101. static void ggml_compute_forward_get_rows_back(
  9102. const struct ggml_compute_params * params,
  9103. const struct ggml_tensor * src0,
  9104. const struct ggml_tensor * src1,
  9105. const struct ggml_tensor * opt0,
  9106. struct ggml_tensor * dst) {
  9107. switch (src0->type) {
  9108. case GGML_TYPE_F16:
  9109. {
  9110. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9111. } break;
  9112. case GGML_TYPE_F32:
  9113. {
  9114. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9115. } break;
  9116. default:
  9117. {
  9118. GGML_ASSERT(false);
  9119. } break;
  9120. }
  9121. //static bool first = true;
  9122. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9123. //if (first) {
  9124. // first = false;
  9125. //} else {
  9126. // for (int k = 0; k < dst->ne[1]; ++k) {
  9127. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9128. // for (int i = 0; i < 16; ++i) {
  9129. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9130. // }
  9131. // printf("\n");
  9132. // }
  9133. // printf("\n");
  9134. // }
  9135. // printf("\n");
  9136. // exit(0);
  9137. //}
  9138. }
  9139. // ggml_compute_forward_diag
  9140. static void ggml_compute_forward_diag_f32(
  9141. const struct ggml_compute_params * params,
  9142. const struct ggml_tensor * src0,
  9143. struct ggml_tensor * dst) {
  9144. GGML_ASSERT(params->ith == 0);
  9145. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9146. return;
  9147. }
  9148. // TODO: handle transposed/permuted matrices
  9149. GGML_TENSOR_UNARY_OP_LOCALS;
  9150. GGML_ASSERT(ne00 == ne0);
  9151. GGML_ASSERT(ne00 == ne1);
  9152. GGML_ASSERT(ne01 == 1);
  9153. GGML_ASSERT(ne02 == ne2);
  9154. GGML_ASSERT(ne03 == ne3);
  9155. GGML_ASSERT(nb00 == sizeof(float));
  9156. GGML_ASSERT(nb0 == sizeof(float));
  9157. for (int i3 = 0; i3 < ne3; i3++) {
  9158. for (int i2 = 0; i2 < ne2; i2++) {
  9159. for (int i1 = 0; i1 < ne1; i1++) {
  9160. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9161. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9162. for (int i0 = 0; i0 < i1; i0++) {
  9163. d[i0] = 0;
  9164. }
  9165. d[i1] = s[i1];
  9166. for (int i0 = i1+1; i0 < ne0; i0++) {
  9167. d[i0] = 0;
  9168. }
  9169. }
  9170. }
  9171. }
  9172. }
  9173. static void ggml_compute_forward_diag(
  9174. const struct ggml_compute_params * params,
  9175. const struct ggml_tensor * src0,
  9176. struct ggml_tensor * dst) {
  9177. switch (src0->type) {
  9178. case GGML_TYPE_F32:
  9179. {
  9180. ggml_compute_forward_diag_f32(params, src0, dst);
  9181. } break;
  9182. default:
  9183. {
  9184. GGML_ASSERT(false);
  9185. } break;
  9186. }
  9187. }
  9188. // ggml_compute_forward_diag_mask_inf
  9189. static void ggml_compute_forward_diag_mask_f32(
  9190. const struct ggml_compute_params * params,
  9191. const struct ggml_tensor * src0,
  9192. struct ggml_tensor * dst,
  9193. const float value) {
  9194. const int ith = params->ith;
  9195. const int nth = params->nth;
  9196. const int n_past = ((int32_t *) dst->op_params)[0];
  9197. const bool inplace = (bool)((int32_t *) dst->op_params)[1];
  9198. GGML_ASSERT(n_past >= 0);
  9199. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9200. // memcpy needs to be synchronized across threads to avoid race conditions.
  9201. // => do it in INIT phase
  9202. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9203. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9204. memcpy(
  9205. ((char *) dst->data),
  9206. ((char *) src0->data),
  9207. ggml_nbytes(dst));
  9208. }
  9209. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9210. return;
  9211. }
  9212. // TODO: handle transposed/permuted matrices
  9213. const int n = ggml_nrows(src0);
  9214. const int nc = src0->ne[0];
  9215. const int nr = src0->ne[1];
  9216. const int nz = n/nr;
  9217. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9218. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9219. for (int k = 0; k < nz; k++) {
  9220. for (int j = ith; j < nr; j += nth) {
  9221. for (int i = n_past; i < nc; i++) {
  9222. if (i > n_past + j) {
  9223. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9224. }
  9225. }
  9226. }
  9227. }
  9228. }
  9229. static void ggml_compute_forward_diag_mask_inf(
  9230. const struct ggml_compute_params * params,
  9231. const struct ggml_tensor * src0,
  9232. struct ggml_tensor * dst) {
  9233. switch (src0->type) {
  9234. case GGML_TYPE_F32:
  9235. {
  9236. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9237. } break;
  9238. default:
  9239. {
  9240. GGML_ASSERT(false);
  9241. } break;
  9242. }
  9243. }
  9244. static void ggml_compute_forward_diag_mask_zero(
  9245. const struct ggml_compute_params * params,
  9246. const struct ggml_tensor * src0,
  9247. struct ggml_tensor * dst) {
  9248. switch (src0->type) {
  9249. case GGML_TYPE_F32:
  9250. {
  9251. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9252. } break;
  9253. default:
  9254. {
  9255. GGML_ASSERT(false);
  9256. } break;
  9257. }
  9258. }
  9259. // ggml_compute_forward_soft_max
  9260. static void ggml_compute_forward_soft_max_f32(
  9261. const struct ggml_compute_params * params,
  9262. const struct ggml_tensor * src0,
  9263. struct ggml_tensor * dst) {
  9264. GGML_ASSERT(ggml_is_contiguous(src0));
  9265. GGML_ASSERT(ggml_is_contiguous(dst));
  9266. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9268. return;
  9269. }
  9270. // TODO: handle transposed/permuted matrices
  9271. const int ith = params->ith;
  9272. const int nth = params->nth;
  9273. const int nc = src0->ne[0];
  9274. const int nr = ggml_nrows(src0);
  9275. // rows per thread
  9276. const int dr = (nr + nth - 1)/nth;
  9277. // row range for this thread
  9278. const int ir0 = dr*ith;
  9279. const int ir1 = MIN(ir0 + dr, nr);
  9280. for (int i1 = ir0; i1 < ir1; i1++) {
  9281. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9282. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9283. #ifndef NDEBUG
  9284. for (int i = 0; i < nc; ++i) {
  9285. //printf("p[%d] = %f\n", i, p[i]);
  9286. assert(!isnan(sp[i]));
  9287. }
  9288. #endif
  9289. float max = -INFINITY;
  9290. ggml_vec_max_f32(nc, &max, sp);
  9291. ggml_float sum = 0.0;
  9292. uint16_t scvt;
  9293. for (int i = 0; i < nc; i++) {
  9294. if (sp[i] == -INFINITY) {
  9295. dp[i] = 0.0f;
  9296. } else {
  9297. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9298. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9299. memcpy(&scvt, &s, sizeof(scvt));
  9300. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9301. sum += (ggml_float)val;
  9302. dp[i] = val;
  9303. }
  9304. }
  9305. assert(sum > 0.0);
  9306. sum = 1.0/sum;
  9307. ggml_vec_scale_f32(nc, dp, sum);
  9308. #ifndef NDEBUG
  9309. for (int i = 0; i < nc; ++i) {
  9310. assert(!isnan(dp[i]));
  9311. assert(!isinf(dp[i]));
  9312. }
  9313. #endif
  9314. }
  9315. }
  9316. static void ggml_compute_forward_soft_max(
  9317. const struct ggml_compute_params * params,
  9318. const struct ggml_tensor * src0,
  9319. struct ggml_tensor * dst) {
  9320. switch (src0->type) {
  9321. case GGML_TYPE_F32:
  9322. {
  9323. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9324. } break;
  9325. default:
  9326. {
  9327. GGML_ASSERT(false);
  9328. } break;
  9329. }
  9330. }
  9331. // ggml_compute_forward_soft_max_back
  9332. static void ggml_compute_forward_soft_max_back_f32(
  9333. const struct ggml_compute_params * params,
  9334. const struct ggml_tensor * src0,
  9335. const struct ggml_tensor * src1,
  9336. struct ggml_tensor * dst) {
  9337. GGML_ASSERT(ggml_is_contiguous(src0));
  9338. GGML_ASSERT(ggml_is_contiguous(src1));
  9339. GGML_ASSERT(ggml_is_contiguous(dst));
  9340. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9341. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9342. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9343. return;
  9344. }
  9345. // TODO: handle transposed/permuted matrices
  9346. const int ith = params->ith;
  9347. const int nth = params->nth;
  9348. const int nc = src0->ne[0];
  9349. const int nr = ggml_nrows(src0);
  9350. // rows per thread
  9351. const int dr = (nr + nth - 1)/nth;
  9352. // row range for this thread
  9353. const int ir0 = dr*ith;
  9354. const int ir1 = MIN(ir0 + dr, nr);
  9355. for (int i1 = ir0; i1 < ir1; i1++) {
  9356. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9357. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9358. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9359. #ifndef NDEBUG
  9360. for (int i = 0; i < nc; ++i) {
  9361. //printf("p[%d] = %f\n", i, p[i]);
  9362. assert(!isnan(dy[i]));
  9363. assert(!isnan(y[i]));
  9364. }
  9365. #endif
  9366. // Jii = yi - yi*yi
  9367. // Jij = -yi*yj
  9368. // J = diag(y)-y.T*y
  9369. // dx = J * dy
  9370. // dxk = sum_i(Jki * dyi)
  9371. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9372. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9373. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9374. // dxk = -yk * dot(y, dy) + yk*dyk
  9375. // dxk = yk * (- dot(y, dy) + dyk)
  9376. // dxk = yk * (dyk - dot(y, dy))
  9377. //
  9378. // post-order:
  9379. // dot_y_dy := dot(y, dy)
  9380. // dx := dy
  9381. // dx := dx - dot_y_dy
  9382. // dx := dx * y
  9383. // linear runtime, no additional memory
  9384. float dot_y_dy = 0;
  9385. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9386. ggml_vec_cpy_f32 (nc, dx, dy);
  9387. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9388. ggml_vec_mul_f32 (nc, dx, dx, y);
  9389. #ifndef NDEBUG
  9390. for (int i = 0; i < nc; ++i) {
  9391. assert(!isnan(dx[i]));
  9392. assert(!isinf(dx[i]));
  9393. }
  9394. #endif
  9395. }
  9396. }
  9397. static void ggml_compute_forward_soft_max_back(
  9398. const struct ggml_compute_params * params,
  9399. const struct ggml_tensor * src0,
  9400. const struct ggml_tensor * src1,
  9401. struct ggml_tensor * dst) {
  9402. switch (src0->type) {
  9403. case GGML_TYPE_F32:
  9404. {
  9405. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9406. } break;
  9407. default:
  9408. {
  9409. GGML_ASSERT(false);
  9410. } break;
  9411. }
  9412. }
  9413. // ggml_compute_forward_alibi
  9414. static void ggml_compute_forward_alibi_f32(
  9415. const struct ggml_compute_params * params,
  9416. const struct ggml_tensor * src0,
  9417. struct ggml_tensor * dst) {
  9418. assert(params->ith == 0);
  9419. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9420. return;
  9421. }
  9422. const int n_past = ((int32_t *) dst->op_params)[0];
  9423. const int n_head = ((int32_t *) dst->op_params)[1];
  9424. float max_bias;
  9425. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9426. assert(n_past >= 0);
  9427. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9428. const int ne1 = src0->ne[1]; // seq_len_without_past
  9429. const int ne2 = src0->ne[2]; // n_head -> this is k
  9430. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9431. const int n = ggml_nrows(src0);
  9432. const int ne2_ne3 = n/ne1; // ne2*ne3
  9433. const int nb0 = src0->nb[0];
  9434. const int nb1 = src0->nb[1];
  9435. const int nb2 = src0->nb[2];
  9436. //const int nb3 = src0->nb[3];
  9437. GGML_ASSERT(nb0 == sizeof(float));
  9438. GGML_ASSERT(ne1 + n_past == ne0);
  9439. GGML_ASSERT(n_head == ne2);
  9440. // add alibi to src0 (KQ_scaled)
  9441. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9442. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9443. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9444. for (int i = 0; i < ne0; i++) {
  9445. for (int j = 0; j < ne1; j++) {
  9446. for (int k = 0; k < ne2_ne3; k++) {
  9447. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9448. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9449. // TODO: k*nb2 or k*nb3
  9450. float m_k;
  9451. if (k < n_heads_log2_floor) {
  9452. m_k = powf(m0, k + 1);
  9453. } else {
  9454. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9455. }
  9456. pdst[0] = i * m_k + src[0];
  9457. }
  9458. }
  9459. }
  9460. }
  9461. static void ggml_compute_forward_alibi_f16(
  9462. const struct ggml_compute_params * params,
  9463. const struct ggml_tensor * src0,
  9464. struct ggml_tensor * dst) {
  9465. assert(params->ith == 0);
  9466. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9467. return;
  9468. }
  9469. const int n_past = ((int32_t *) dst->op_params)[0];
  9470. const int n_head = ((int32_t *) dst->op_params)[1];
  9471. float max_bias;
  9472. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9473. assert(n_past >= 0);
  9474. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9475. const int ne1 = src0->ne[1]; // seq_len_without_past
  9476. const int ne2 = src0->ne[2]; // n_head -> this is k
  9477. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9478. const int n = ggml_nrows(src0);
  9479. const int ne2_ne3 = n/ne1; // ne2*ne3
  9480. const int nb0 = src0->nb[0];
  9481. const int nb1 = src0->nb[1];
  9482. const int nb2 = src0->nb[2];
  9483. //const int nb3 = src0->nb[3];
  9484. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9485. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9486. GGML_ASSERT(n_head == ne2);
  9487. // add alibi to src0 (KQ_scaled)
  9488. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9489. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9490. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9491. for (int i = 0; i < ne0; i++) {
  9492. for (int j = 0; j < ne1; j++) {
  9493. for (int k = 0; k < ne2_ne3; k++) {
  9494. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9495. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9496. // TODO: k*nb2 or k*nb3
  9497. float m_k;
  9498. if (k < n_heads_log2_floor) {
  9499. m_k = powf(m0, k + 1);
  9500. } else {
  9501. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9502. }
  9503. // we return F32
  9504. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9505. }
  9506. }
  9507. }
  9508. }
  9509. static void ggml_compute_forward_alibi(
  9510. const struct ggml_compute_params * params,
  9511. const struct ggml_tensor * src0,
  9512. struct ggml_tensor * dst) {
  9513. switch (src0->type) {
  9514. case GGML_TYPE_F16:
  9515. {
  9516. ggml_compute_forward_alibi_f16(params, src0, dst);
  9517. } break;
  9518. case GGML_TYPE_F32:
  9519. {
  9520. ggml_compute_forward_alibi_f32(params, src0, dst);
  9521. } break;
  9522. case GGML_TYPE_Q4_0:
  9523. case GGML_TYPE_Q4_1:
  9524. case GGML_TYPE_Q5_0:
  9525. case GGML_TYPE_Q5_1:
  9526. case GGML_TYPE_Q8_0:
  9527. case GGML_TYPE_Q8_1:
  9528. case GGML_TYPE_Q2_K:
  9529. case GGML_TYPE_Q3_K:
  9530. case GGML_TYPE_Q4_K:
  9531. case GGML_TYPE_Q5_K:
  9532. case GGML_TYPE_Q6_K:
  9533. case GGML_TYPE_Q8_K:
  9534. case GGML_TYPE_I8:
  9535. case GGML_TYPE_I16:
  9536. case GGML_TYPE_I32:
  9537. case GGML_TYPE_COUNT:
  9538. {
  9539. GGML_ASSERT(false);
  9540. } break;
  9541. }
  9542. }
  9543. // ggml_compute_forward_clamp
  9544. static void ggml_compute_forward_clamp_f32(
  9545. const struct ggml_compute_params * params,
  9546. const struct ggml_tensor * src0,
  9547. struct ggml_tensor * dst) {
  9548. assert(params->ith == 0);
  9549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9550. return;
  9551. }
  9552. float min;
  9553. float max;
  9554. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9555. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9556. const int ith = params->ith;
  9557. const int nth = params->nth;
  9558. const int n = ggml_nrows(src0);
  9559. const int nc = src0->ne[0];
  9560. const size_t nb00 = src0->nb[0];
  9561. const size_t nb01 = src0->nb[1];
  9562. const size_t nb0 = dst->nb[0];
  9563. const size_t nb1 = dst->nb[1];
  9564. GGML_ASSERT( nb0 == sizeof(float));
  9565. GGML_ASSERT(nb00 == sizeof(float));
  9566. for (int j = ith; j < n; j += nth) {
  9567. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9568. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9569. for (int i = 0; i < nc; i++) {
  9570. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9571. }
  9572. }
  9573. }
  9574. static void ggml_compute_forward_clamp(
  9575. const struct ggml_compute_params * params,
  9576. const struct ggml_tensor * src0,
  9577. struct ggml_tensor * dst) {
  9578. switch (src0->type) {
  9579. case GGML_TYPE_F32:
  9580. {
  9581. ggml_compute_forward_clamp_f32(params, src0, dst);
  9582. } break;
  9583. case GGML_TYPE_F16:
  9584. case GGML_TYPE_Q4_0:
  9585. case GGML_TYPE_Q4_1:
  9586. case GGML_TYPE_Q5_0:
  9587. case GGML_TYPE_Q5_1:
  9588. case GGML_TYPE_Q8_0:
  9589. case GGML_TYPE_Q8_1:
  9590. case GGML_TYPE_Q2_K:
  9591. case GGML_TYPE_Q3_K:
  9592. case GGML_TYPE_Q4_K:
  9593. case GGML_TYPE_Q5_K:
  9594. case GGML_TYPE_Q6_K:
  9595. case GGML_TYPE_Q8_K:
  9596. case GGML_TYPE_I8:
  9597. case GGML_TYPE_I16:
  9598. case GGML_TYPE_I32:
  9599. case GGML_TYPE_COUNT:
  9600. {
  9601. GGML_ASSERT(false);
  9602. } break;
  9603. }
  9604. }
  9605. // ggml_compute_forward_rope
  9606. static void ggml_compute_forward_rope_f32(
  9607. const struct ggml_compute_params * params,
  9608. const struct ggml_tensor * src0,
  9609. struct ggml_tensor * dst) {
  9610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9611. return;
  9612. }
  9613. float freq_base;
  9614. float freq_scale;
  9615. const int n_past = ((int32_t *) dst->op_params)[0];
  9616. const int n_dims = ((int32_t *) dst->op_params)[1];
  9617. const int mode = ((int32_t *) dst->op_params)[2];
  9618. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9619. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9620. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9621. assert(n_past >= 0);
  9622. GGML_TENSOR_UNARY_OP_LOCALS;
  9623. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9624. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9625. GGML_ASSERT(nb00 == sizeof(float));
  9626. const int ith = params->ith;
  9627. const int nth = params->nth;
  9628. const int nr = ggml_nrows(dst);
  9629. GGML_ASSERT(n_dims <= ne0);
  9630. GGML_ASSERT(n_dims % 2 == 0);
  9631. // rows per thread
  9632. const int dr = (nr + nth - 1)/nth;
  9633. // row range for this thread
  9634. const int ir0 = dr*ith;
  9635. const int ir1 = MIN(ir0 + dr, nr);
  9636. // row index used to determine which thread to use
  9637. int ir = 0;
  9638. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9639. const bool is_neox = mode & 2;
  9640. const bool is_glm = mode & 4;
  9641. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9642. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9643. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9644. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9645. if (ir++ < ir0) continue;
  9646. if (ir > ir1) break;
  9647. float theta = freq_scale * (float)p;
  9648. if (is_glm) {
  9649. theta = MIN(p, n_ctx - 2);
  9650. float block_theta = MAX(p - (n_ctx - 2), 0);
  9651. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9652. const float cos_theta = cosf(theta);
  9653. const float sin_theta = sinf(theta);
  9654. const float cos_block_theta = cosf(block_theta);
  9655. const float sin_block_theta = sinf(block_theta);
  9656. theta *= theta_scale;
  9657. block_theta *= theta_scale;
  9658. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9659. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9660. const float x0 = src[0];
  9661. const float x1 = src[n_dims/2];
  9662. const float x2 = src[n_dims];
  9663. const float x3 = src[n_dims/2*3];
  9664. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9665. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9666. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9667. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9668. }
  9669. } else if (!is_neox) {
  9670. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9671. const float cos_theta = cosf(theta);
  9672. const float sin_theta = sinf(theta);
  9673. theta *= theta_scale;
  9674. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9675. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9676. const float x0 = src[0];
  9677. const float x1 = src[1];
  9678. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9679. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9680. }
  9681. } else {
  9682. // TODO: this is probably wrong, but I can't figure it out ..
  9683. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9684. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9685. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9686. const float cos_theta = cosf(theta);
  9687. const float sin_theta = sinf(theta);
  9688. theta *= theta_scale;
  9689. const int64_t i0 = ib*n_dims + ic/2;
  9690. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9691. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9692. const float x0 = src[0];
  9693. const float x1 = src[n_dims/2];
  9694. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9695. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9696. }
  9697. }
  9698. }
  9699. }
  9700. }
  9701. }
  9702. }
  9703. static void ggml_compute_forward_rope_f16(
  9704. const struct ggml_compute_params * params,
  9705. const struct ggml_tensor * src0,
  9706. struct ggml_tensor * dst) {
  9707. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9708. return;
  9709. }
  9710. float freq_base;
  9711. float freq_scale;
  9712. const int n_past = ((int32_t *) dst->op_params)[0];
  9713. const int n_dims = ((int32_t *) dst->op_params)[1];
  9714. const int mode = ((int32_t *) dst->op_params)[2];
  9715. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9716. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9717. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9718. assert(n_past >= 0);
  9719. GGML_TENSOR_UNARY_OP_LOCALS;
  9720. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9721. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9722. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9723. const int ith = params->ith;
  9724. const int nth = params->nth;
  9725. const int nr = ggml_nrows(dst);
  9726. GGML_ASSERT(n_dims <= ne0);
  9727. GGML_ASSERT(n_dims % 2 == 0);
  9728. // rows per thread
  9729. const int dr = (nr + nth - 1)/nth;
  9730. // row range for this thread
  9731. const int ir0 = dr*ith;
  9732. const int ir1 = MIN(ir0 + dr, nr);
  9733. // row index used to determine which thread to use
  9734. int ir = 0;
  9735. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9736. const bool is_neox = mode & 2;
  9737. const bool is_glm = mode & 4;
  9738. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9739. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9740. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9741. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9742. if (ir++ < ir0) continue;
  9743. if (ir > ir1) break;
  9744. float theta = freq_scale * (float)p;
  9745. if (is_glm) {
  9746. theta = MIN(p, n_ctx - 2);
  9747. float block_theta = MAX(p - (n_ctx - 2), 0);
  9748. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9749. const float cos_theta = cosf(theta);
  9750. const float sin_theta = sinf(theta);
  9751. const float cos_block_theta = cosf(block_theta);
  9752. const float sin_block_theta = sinf(block_theta);
  9753. theta *= theta_scale;
  9754. block_theta *= theta_scale;
  9755. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9756. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9757. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9758. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9759. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9760. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9761. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9762. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9763. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9764. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9765. }
  9766. } if (!is_neox) {
  9767. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9768. const float cos_theta = cosf(theta);
  9769. const float sin_theta = sinf(theta);
  9770. theta *= theta_scale;
  9771. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9772. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9773. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9774. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9775. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9776. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9777. }
  9778. } else {
  9779. // TODO: this is probably wrong, but I can't figure it out ..
  9780. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9781. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9782. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9783. const float cos_theta = cosf(theta);
  9784. const float sin_theta = sinf(theta);
  9785. theta *= theta_scale;
  9786. const int64_t i0 = ib*n_dims + ic/2;
  9787. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9788. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9789. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9790. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9791. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9792. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9793. }
  9794. }
  9795. }
  9796. }
  9797. }
  9798. }
  9799. }
  9800. static void ggml_compute_forward_rope(
  9801. const struct ggml_compute_params * params,
  9802. const struct ggml_tensor * src0,
  9803. struct ggml_tensor * dst) {
  9804. switch (src0->type) {
  9805. case GGML_TYPE_F16:
  9806. {
  9807. ggml_compute_forward_rope_f16(params, src0, dst);
  9808. } break;
  9809. case GGML_TYPE_F32:
  9810. {
  9811. ggml_compute_forward_rope_f32(params, src0, dst);
  9812. } break;
  9813. default:
  9814. {
  9815. GGML_ASSERT(false);
  9816. } break;
  9817. }
  9818. }
  9819. // ggml_compute_forward_rope_back
  9820. static void ggml_compute_forward_rope_back_f32(
  9821. const struct ggml_compute_params * params,
  9822. const struct ggml_tensor * src0,
  9823. struct ggml_tensor * dst) {
  9824. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9825. return;
  9826. }
  9827. // y = rope(x, src1)
  9828. // dx = rope_back(dy, src1)
  9829. // src0 is dy, src1 contains options
  9830. const int n_past = ((int32_t *) dst->op_params)[0];
  9831. const int n_dims = ((int32_t *) dst->op_params)[1];
  9832. const int mode = ((int32_t *) dst->op_params)[2];
  9833. assert(n_past >= 0);
  9834. GGML_TENSOR_UNARY_OP_LOCALS;
  9835. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9836. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9837. assert(nb0 == sizeof(float));
  9838. const int ith = params->ith;
  9839. const int nth = params->nth;
  9840. const int nr = ggml_nrows(dst);
  9841. // rows per thread
  9842. const int dr = (nr + nth - 1)/nth;
  9843. // row range for this thread
  9844. const int ir0 = dr*ith;
  9845. const int ir1 = MIN(ir0 + dr, nr);
  9846. // row index used to determine which thread to use
  9847. int ir = 0;
  9848. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9849. const bool is_neox = mode & 2;
  9850. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9851. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9852. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9853. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9854. if (ir++ < ir0) continue;
  9855. if (ir > ir1) break;
  9856. float theta = (float)p;
  9857. if (!is_neox) {
  9858. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9859. const float cos_theta = cosf(theta);
  9860. const float sin_theta = sinf(theta);
  9861. theta *= theta_scale;
  9862. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9863. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9864. const float dy0 = dy[0];
  9865. const float dy1 = dy[1];
  9866. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9867. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9868. }
  9869. } else {
  9870. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9871. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9872. const float cos_theta = cosf(theta);
  9873. const float sin_theta = sinf(theta);
  9874. theta *= theta_scale;
  9875. const int64_t i0 = ib*n_dims + ic/2;
  9876. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9877. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9878. const float dy0 = dy[0];
  9879. const float dy1 = dy[n_dims/2];
  9880. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9881. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9882. }
  9883. }
  9884. }
  9885. }
  9886. }
  9887. }
  9888. }
  9889. static void ggml_compute_forward_rope_back_f16(
  9890. const struct ggml_compute_params * params,
  9891. const struct ggml_tensor * src0,
  9892. struct ggml_tensor * dst) {
  9893. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9894. return;
  9895. }
  9896. // y = rope(x, src1)
  9897. // dx = rope_back(dy, src1)
  9898. // src0 is dy, src1 contains options
  9899. const int n_past = ((int32_t *) dst->op_params)[0];
  9900. const int n_dims = ((int32_t *) dst->op_params)[1];
  9901. const int mode = ((int32_t *) dst->op_params)[2];
  9902. assert(n_past >= 0);
  9903. GGML_TENSOR_UNARY_OP_LOCALS;
  9904. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9905. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9906. assert(nb0 == sizeof(ggml_fp16_t));
  9907. const int ith = params->ith;
  9908. const int nth = params->nth;
  9909. const int nr = ggml_nrows(dst);
  9910. // rows per thread
  9911. const int dr = (nr + nth - 1)/nth;
  9912. // row range for this thread
  9913. const int ir0 = dr*ith;
  9914. const int ir1 = MIN(ir0 + dr, nr);
  9915. // row index used to determine which thread to use
  9916. int ir = 0;
  9917. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9918. const bool is_neox = mode & 2;
  9919. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9920. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9921. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9922. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9923. if (ir++ < ir0) continue;
  9924. if (ir > ir1) break;
  9925. float theta = (float)p;
  9926. if (!is_neox) {
  9927. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9928. const float cos_theta = cosf(theta);
  9929. const float sin_theta = sinf(theta);
  9930. theta *= theta_scale;
  9931. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9932. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9933. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9934. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9935. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9936. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9937. }
  9938. } else {
  9939. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9940. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9941. const float cos_theta = cosf(theta);
  9942. const float sin_theta = sinf(theta);
  9943. theta *= theta_scale;
  9944. const int64_t i0 = ib*n_dims + ic/2;
  9945. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9946. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9947. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9948. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9949. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9950. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9951. }
  9952. }
  9953. }
  9954. }
  9955. }
  9956. }
  9957. }
  9958. static void ggml_compute_forward_rope_back(
  9959. const struct ggml_compute_params * params,
  9960. const struct ggml_tensor * src0,
  9961. struct ggml_tensor * dst) {
  9962. switch (src0->type) {
  9963. case GGML_TYPE_F16:
  9964. {
  9965. ggml_compute_forward_rope_back_f16(params, src0, dst);
  9966. } break;
  9967. case GGML_TYPE_F32:
  9968. {
  9969. ggml_compute_forward_rope_back_f32(params, src0, dst);
  9970. } break;
  9971. default:
  9972. {
  9973. GGML_ASSERT(false);
  9974. } break;
  9975. }
  9976. }
  9977. // ggml_compute_forward_conv_1d
  9978. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  9979. const struct ggml_compute_params * params,
  9980. const struct ggml_tensor * src0,
  9981. const struct ggml_tensor * src1,
  9982. struct ggml_tensor * dst) {
  9983. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9984. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9985. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9986. int64_t t0 = ggml_perf_time_us();
  9987. UNUSED(t0);
  9988. GGML_TENSOR_BINARY_OP_LOCALS;
  9989. const int ith = params->ith;
  9990. const int nth = params->nth;
  9991. const int nk = ne00;
  9992. const int nh = nk/2;
  9993. const int ew0 = ggml_up32(ne01);
  9994. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9995. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9996. GGML_ASSERT(nb10 == sizeof(float));
  9997. if (params->type == GGML_TASK_INIT) {
  9998. // TODO: fix this memset (wsize is overestimated)
  9999. memset(params->wdata, 0, params->wsize);
  10000. // prepare kernel data (src0)
  10001. {
  10002. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10003. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10004. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10005. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10006. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10007. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10008. dst_data[i00*ew0 + i01] = src[i00];
  10009. }
  10010. }
  10011. }
  10012. }
  10013. // prepare source data (src1)
  10014. {
  10015. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10016. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10017. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10018. ggml_fp16_t * dst_data = wdata;
  10019. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10020. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10021. }
  10022. }
  10023. }
  10024. return;
  10025. }
  10026. if (params->type == GGML_TASK_FINALIZE) {
  10027. return;
  10028. }
  10029. // total rows in dst
  10030. const int nr = ne02;
  10031. // rows per thread
  10032. const int dr = (nr + nth - 1)/nth;
  10033. // row range for this thread
  10034. const int ir0 = dr*ith;
  10035. const int ir1 = MIN(ir0 + dr, nr);
  10036. for (int i1 = ir0; i1 < ir1; i1++) {
  10037. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10038. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10039. dst_data[i0] = 0;
  10040. for (int k = -nh; k <= nh; k++) {
  10041. float v = 0.0f;
  10042. ggml_vec_dot_f16(ew0, &v,
  10043. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10044. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10045. dst_data[i0] += v;
  10046. }
  10047. }
  10048. }
  10049. }
  10050. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10051. const struct ggml_compute_params * params,
  10052. const struct ggml_tensor * src0,
  10053. const struct ggml_tensor * src1,
  10054. struct ggml_tensor * dst) {
  10055. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10056. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10057. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10058. int64_t t0 = ggml_perf_time_us();
  10059. UNUSED(t0);
  10060. GGML_TENSOR_BINARY_OP_LOCALS;
  10061. const int ith = params->ith;
  10062. const int nth = params->nth;
  10063. const int nk = ne00;
  10064. const int nh = nk/2;
  10065. const int ew0 = ggml_up32(ne01);
  10066. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10067. GGML_ASSERT(nb00 == sizeof(float));
  10068. GGML_ASSERT(nb10 == sizeof(float));
  10069. if (params->type == GGML_TASK_INIT) {
  10070. // TODO: fix this memset (wsize is overestimated)
  10071. memset(params->wdata, 0, params->wsize);
  10072. // prepare kernel data (src0)
  10073. {
  10074. float * const wdata = (float *) params->wdata + 0;
  10075. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10076. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10077. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10078. float * dst_data = wdata + i02*ew0*ne00;
  10079. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10080. dst_data[i00*ew0 + i01] = src[i00];
  10081. }
  10082. }
  10083. }
  10084. }
  10085. // prepare source data (src1)
  10086. {
  10087. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10088. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10089. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10090. float * dst_data = wdata;
  10091. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10092. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10093. }
  10094. }
  10095. }
  10096. return;
  10097. }
  10098. if (params->type == GGML_TASK_FINALIZE) {
  10099. return;
  10100. }
  10101. // total rows in dst
  10102. const int nr = ne02;
  10103. // rows per thread
  10104. const int dr = (nr + nth - 1)/nth;
  10105. // row range for this thread
  10106. const int ir0 = dr*ith;
  10107. const int ir1 = MIN(ir0 + dr, nr);
  10108. for (int i1 = ir0; i1 < ir1; i1++) {
  10109. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10110. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10111. dst_data[i0] = 0;
  10112. for (int k = -nh; k <= nh; k++) {
  10113. float v = 0.0f;
  10114. ggml_vec_dot_f32(ew0, &v,
  10115. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10116. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10117. dst_data[i0] += v;
  10118. }
  10119. }
  10120. }
  10121. }
  10122. static void ggml_compute_forward_conv_1d_s1_ph(
  10123. const struct ggml_compute_params * params,
  10124. const struct ggml_tensor * src0,
  10125. const struct ggml_tensor * src1,
  10126. struct ggml_tensor * dst) {
  10127. switch (src0->type) {
  10128. case GGML_TYPE_F16:
  10129. {
  10130. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10131. } break;
  10132. case GGML_TYPE_F32:
  10133. {
  10134. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10135. } break;
  10136. default:
  10137. {
  10138. GGML_ASSERT(false);
  10139. } break;
  10140. }
  10141. }
  10142. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10143. const struct ggml_compute_params * params,
  10144. const struct ggml_tensor * src0,
  10145. const struct ggml_tensor * src1,
  10146. struct ggml_tensor * dst) {
  10147. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10148. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10149. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10150. int64_t t0 = ggml_perf_time_us();
  10151. UNUSED(t0);
  10152. GGML_TENSOR_BINARY_OP_LOCALS;
  10153. const int ith = params->ith;
  10154. const int nth = params->nth;
  10155. const int nk = ne00;
  10156. const int nh = nk/2;
  10157. const int ew0 = ggml_up32(ne01);
  10158. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10159. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10160. GGML_ASSERT(nb10 == sizeof(float));
  10161. if (params->type == GGML_TASK_INIT) {
  10162. // TODO: fix this memset (wsize is overestimated)
  10163. memset(params->wdata, 0, params->wsize);
  10164. // prepare kernel data (src0)
  10165. {
  10166. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10167. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10168. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10169. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10170. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10171. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10172. dst_data[i00*ew0 + i01] = src[i00];
  10173. }
  10174. }
  10175. }
  10176. }
  10177. // prepare source data (src1)
  10178. {
  10179. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10180. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10181. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10182. ggml_fp16_t * dst_data = wdata;
  10183. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10184. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10185. }
  10186. }
  10187. }
  10188. return;
  10189. }
  10190. if (params->type == GGML_TASK_FINALIZE) {
  10191. return;
  10192. }
  10193. // total rows in dst
  10194. const int nr = ne02;
  10195. // rows per thread
  10196. const int dr = (nr + nth - 1)/nth;
  10197. // row range for this thread
  10198. const int ir0 = dr*ith;
  10199. const int ir1 = MIN(ir0 + dr, nr);
  10200. for (int i1 = ir0; i1 < ir1; i1++) {
  10201. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10202. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10203. dst_data[i0/2] = 0;
  10204. for (int k = -nh; k <= nh; k++) {
  10205. float v = 0.0f;
  10206. ggml_vec_dot_f16(ew0, &v,
  10207. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10208. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10209. dst_data[i0/2] += v;
  10210. }
  10211. }
  10212. }
  10213. }
  10214. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10215. const struct ggml_compute_params * params,
  10216. const struct ggml_tensor * src0,
  10217. const struct ggml_tensor * src1,
  10218. struct ggml_tensor * dst) {
  10219. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10220. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10221. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10222. int64_t t0 = ggml_perf_time_us();
  10223. UNUSED(t0);
  10224. GGML_TENSOR_BINARY_OP_LOCALS;
  10225. const int ith = params->ith;
  10226. const int nth = params->nth;
  10227. const int nk = ne00;
  10228. const int nh = nk/2;
  10229. const int ew0 = ggml_up32(ne01);
  10230. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10231. GGML_ASSERT(nb00 == sizeof(float));
  10232. GGML_ASSERT(nb10 == sizeof(float));
  10233. if (params->type == GGML_TASK_INIT) {
  10234. // TODO: fix this memset (wsize is overestimated)
  10235. memset(params->wdata, 0, params->wsize);
  10236. // prepare kernel data (src0)
  10237. {
  10238. float * const wdata = (float *) params->wdata + 0;
  10239. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10240. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10241. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10242. float * dst_data = wdata + i02*ew0*ne00;
  10243. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10244. dst_data[i00*ew0 + i01] = src[i00];
  10245. }
  10246. }
  10247. }
  10248. }
  10249. // prepare source data (src1)
  10250. {
  10251. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10252. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10253. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10254. float * dst_data = wdata;
  10255. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10256. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10257. }
  10258. }
  10259. }
  10260. return;
  10261. }
  10262. if (params->type == GGML_TASK_FINALIZE) {
  10263. return;
  10264. }
  10265. // total rows in dst
  10266. const int nr = ne02;
  10267. // rows per thread
  10268. const int dr = (nr + nth - 1)/nth;
  10269. // row range for this thread
  10270. const int ir0 = dr*ith;
  10271. const int ir1 = MIN(ir0 + dr, nr);
  10272. for (int i1 = ir0; i1 < ir1; i1++) {
  10273. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10274. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10275. dst_data[i0/2] = 0;
  10276. for (int k = -nh; k <= nh; k++) {
  10277. float v = 0.0f;
  10278. ggml_vec_dot_f32(ew0, &v,
  10279. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10280. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10281. dst_data[i0/2] += v;
  10282. }
  10283. }
  10284. }
  10285. }
  10286. static void ggml_compute_forward_conv_1d_s2_ph(
  10287. const struct ggml_compute_params * params,
  10288. const struct ggml_tensor * src0,
  10289. const struct ggml_tensor * src1,
  10290. struct ggml_tensor * dst) {
  10291. switch (src0->type) {
  10292. case GGML_TYPE_F16:
  10293. {
  10294. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10295. } break;
  10296. case GGML_TYPE_F32:
  10297. {
  10298. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10299. } break;
  10300. default:
  10301. {
  10302. GGML_ASSERT(false);
  10303. } break;
  10304. }
  10305. }
  10306. // ggml_compute_forward_conv_1d
  10307. static void ggml_compute_forward_conv_1d(
  10308. const struct ggml_compute_params * params,
  10309. const struct ggml_tensor * src0,
  10310. const struct ggml_tensor * src1,
  10311. struct ggml_tensor * dst) {
  10312. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10313. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10314. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10315. GGML_ASSERT(d0 == 1); // dilation not supported
  10316. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10317. if (s0 == 1) {
  10318. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10319. } else if (s0 == 2) {
  10320. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10321. } else {
  10322. GGML_ASSERT(false); // only stride 1 and 2 supported
  10323. };
  10324. }
  10325. // ggml_compute_forward_conv_2d
  10326. static void ggml_compute_forward_conv_2d_f16_f32(
  10327. const struct ggml_compute_params * params,
  10328. const struct ggml_tensor * src0,
  10329. const struct ggml_tensor * src1,
  10330. struct ggml_tensor * dst) {
  10331. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10332. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10333. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10334. int64_t t0 = ggml_perf_time_us();
  10335. UNUSED(t0);
  10336. GGML_TENSOR_BINARY_OP_LOCALS;
  10337. const int ith = params->ith;
  10338. const int nth = params->nth;
  10339. const int nk0 = ne00;
  10340. const int nk1 = ne01;
  10341. // size of the convolution row - the kernel size unrolled across all channels
  10342. const int ew0 = nk0*nk1*ne02;
  10343. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10344. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10345. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10346. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10347. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10348. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10349. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10350. GGML_ASSERT(nb10 == sizeof(float));
  10351. if (params->type == GGML_TASK_INIT) {
  10352. memset(params->wdata, 0, params->wsize);
  10353. // prepare source data (src1)
  10354. {
  10355. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10356. for (int i12 = 0; i12 < ne12; i12++) {
  10357. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10358. ggml_fp16_t * dst_data = wdata;
  10359. for (int i1 = 0; i1 < ne1; i1++) {
  10360. for (int i0 = 0; i0 < ne0; i0++) {
  10361. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10362. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10363. const int idx0 = i0*s0 + ik0*d0 - p0;
  10364. const int idx1 = i1*s1 + ik1*d1 - p1;
  10365. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10366. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10367. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10368. }
  10369. }
  10370. }
  10371. }
  10372. }
  10373. }
  10374. }
  10375. return;
  10376. }
  10377. if (params->type == GGML_TASK_FINALIZE) {
  10378. return;
  10379. }
  10380. // total patches in dst
  10381. const int np = ne2;
  10382. // patches per thread
  10383. const int dp = (np + nth - 1)/nth;
  10384. // patch range for this thread
  10385. const int ip0 = dp*ith;
  10386. const int ip1 = MIN(ip0 + dp, np);
  10387. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10388. for (int i3 = 0; i3 < ne3; i3++) {
  10389. for (int i2 = ip0; i2 < ip1; i2++) {
  10390. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10391. for (int i1 = 0; i1 < ne1; ++i1) {
  10392. for (int i0 = 0; i0 < ne0; ++i0) {
  10393. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10394. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10395. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10396. }
  10397. }
  10398. }
  10399. }
  10400. }
  10401. static void ggml_compute_forward_conv_2d(
  10402. const struct ggml_compute_params * params,
  10403. const struct ggml_tensor * src0,
  10404. const struct ggml_tensor * src1,
  10405. struct ggml_tensor * dst) {
  10406. switch (src0->type) {
  10407. case GGML_TYPE_F16:
  10408. {
  10409. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10410. } break;
  10411. case GGML_TYPE_F32:
  10412. {
  10413. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10414. GGML_ASSERT(false);
  10415. } break;
  10416. default:
  10417. {
  10418. GGML_ASSERT(false);
  10419. } break;
  10420. }
  10421. }
  10422. // ggml_compute_forward_pool_1d_sk_p0
  10423. static void ggml_compute_forward_pool_1d_sk_p0(
  10424. const struct ggml_compute_params * params,
  10425. const enum ggml_op_pool op,
  10426. const struct ggml_tensor * src,
  10427. const int k,
  10428. struct ggml_tensor * dst) {
  10429. assert(src->type == GGML_TYPE_F32);
  10430. assert(params->ith == 0);
  10431. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10432. return;
  10433. }
  10434. const char * cdata = (const char *)src->data;
  10435. const char * const data_end = cdata + ggml_nbytes(src);
  10436. float * drow = (float *)dst->data;
  10437. const int64_t rs = dst->ne[0];
  10438. while (cdata < data_end) {
  10439. const float * const srow = (const float *)cdata;
  10440. int j = 0;
  10441. for (int64_t i = 0; i < rs; ++i) {
  10442. switch (op) {
  10443. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10444. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10445. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10446. }
  10447. for (int ki = 0; ki < k; ++ki) {
  10448. switch (op) {
  10449. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10450. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10451. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10452. }
  10453. ++j;
  10454. }
  10455. switch (op) {
  10456. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10457. case GGML_OP_POOL_MAX: break;
  10458. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10459. }
  10460. }
  10461. cdata += src->nb[1];
  10462. drow += rs;
  10463. }
  10464. }
  10465. // ggml_compute_forward_pool_1d
  10466. static void ggml_compute_forward_pool_1d(
  10467. const struct ggml_compute_params * params,
  10468. const struct ggml_tensor * src0,
  10469. struct ggml_tensor * dst) {
  10470. const int32_t* opts = (const int32_t*)dst->op_params;
  10471. enum ggml_op_pool op = opts[0];
  10472. const int k0 = opts[1];
  10473. const int s0 = opts[2];
  10474. const int p0 = opts[3];
  10475. GGML_ASSERT(p0 == 0); // padding not supported
  10476. GGML_ASSERT(k0 == s0); // only s = k supported
  10477. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10478. }
  10479. // ggml_compute_forward_pool_2d_sk_p0
  10480. static void ggml_compute_forward_pool_2d_sk_p0(
  10481. const struct ggml_compute_params * params,
  10482. const enum ggml_op_pool op,
  10483. const struct ggml_tensor * src,
  10484. const int k0,
  10485. const int k1,
  10486. struct ggml_tensor * dst) {
  10487. assert(src->type == GGML_TYPE_F32);
  10488. assert(params->ith == 0);
  10489. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10490. return;
  10491. }
  10492. const char * cdata = (const char*)src->data;
  10493. const char * const data_end = cdata + ggml_nbytes(src);
  10494. const int64_t px = dst->ne[0];
  10495. const int64_t py = dst->ne[1];
  10496. const int64_t pa = px * py;
  10497. float * dplane = (float *)dst->data;
  10498. const int ka = k0 * k1;
  10499. while (cdata < data_end) {
  10500. for (int oy = 0; oy < py; ++oy) {
  10501. float * const drow = dplane + oy * px;
  10502. for (int ox = 0; ox < px; ++ox) {
  10503. float * const out = drow + ox;
  10504. switch (op) {
  10505. case GGML_OP_POOL_AVG: *out = 0; break;
  10506. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10507. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10508. }
  10509. const int ix = ox * k0;
  10510. const int iy = oy * k1;
  10511. for (int ky = 0; ky < k1; ++ky) {
  10512. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10513. for (int kx = 0; kx < k0; ++kx) {
  10514. int j = ix + kx;
  10515. switch (op) {
  10516. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10517. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10518. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10519. }
  10520. }
  10521. }
  10522. switch (op) {
  10523. case GGML_OP_POOL_AVG: *out /= ka; break;
  10524. case GGML_OP_POOL_MAX: break;
  10525. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10526. }
  10527. }
  10528. }
  10529. cdata += src->nb[2];
  10530. dplane += pa;
  10531. }
  10532. }
  10533. // ggml_compute_forward_pool_2d
  10534. static void ggml_compute_forward_pool_2d(
  10535. const struct ggml_compute_params * params,
  10536. const struct ggml_tensor * src0,
  10537. struct ggml_tensor * dst) {
  10538. const int32_t * opts = (const int32_t *)dst->op_params;
  10539. enum ggml_op_pool op = opts[0];
  10540. const int k0 = opts[1];
  10541. const int k1 = opts[2];
  10542. const int s0 = opts[3];
  10543. const int s1 = opts[4];
  10544. const int p0 = opts[5];
  10545. const int p1 = opts[6];
  10546. GGML_ASSERT(p0 == 0);
  10547. GGML_ASSERT(p1 == 0); // padding not supported
  10548. GGML_ASSERT(k0 == s0);
  10549. GGML_ASSERT(k1 == s1); // only s = k supported
  10550. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10551. }
  10552. // ggml_compute_forward_flash_attn
  10553. static void ggml_compute_forward_flash_attn_f32(
  10554. const struct ggml_compute_params * params,
  10555. const struct ggml_tensor * q,
  10556. const struct ggml_tensor * k,
  10557. const struct ggml_tensor * v,
  10558. const bool masked,
  10559. struct ggml_tensor * dst) {
  10560. int64_t t0 = ggml_perf_time_us();
  10561. UNUSED(t0);
  10562. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10563. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10564. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10565. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10566. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10567. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10568. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10569. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10570. const int ith = params->ith;
  10571. const int nth = params->nth;
  10572. const int64_t D = neq0;
  10573. const int64_t N = neq1;
  10574. const int64_t P = nek1 - N;
  10575. const int64_t M = P + N;
  10576. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10577. GGML_ASSERT(ne0 == D);
  10578. GGML_ASSERT(ne1 == N);
  10579. GGML_ASSERT(P >= 0);
  10580. GGML_ASSERT(nbq0 == sizeof(float));
  10581. GGML_ASSERT(nbk0 == sizeof(float));
  10582. GGML_ASSERT(nbv0 == sizeof(float));
  10583. GGML_ASSERT(neq0 == D);
  10584. GGML_ASSERT(nek0 == D);
  10585. GGML_ASSERT(nev1 == D);
  10586. GGML_ASSERT(neq1 == N);
  10587. GGML_ASSERT(nek1 == N + P);
  10588. GGML_ASSERT(nev1 == D);
  10589. // dst cannot be transposed or permuted
  10590. GGML_ASSERT(nb0 == sizeof(float));
  10591. GGML_ASSERT(nb0 <= nb1);
  10592. GGML_ASSERT(nb1 <= nb2);
  10593. GGML_ASSERT(nb2 <= nb3);
  10594. if (params->type == GGML_TASK_INIT) {
  10595. return;
  10596. }
  10597. if (params->type == GGML_TASK_FINALIZE) {
  10598. return;
  10599. }
  10600. // parallelize by q rows using ggml_vec_dot_f32
  10601. // total rows in q
  10602. const int nr = neq1*neq2*neq3;
  10603. // rows per thread
  10604. const int dr = (nr + nth - 1)/nth;
  10605. // row range for this thread
  10606. const int ir0 = dr*ith;
  10607. const int ir1 = MIN(ir0 + dr, nr);
  10608. const float scale = 1.0f/sqrtf(D);
  10609. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10610. for (int ir = ir0; ir < ir1; ++ir) {
  10611. // q indices
  10612. const int iq3 = ir/(neq2*neq1);
  10613. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10614. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10615. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10616. for (int i = M; i < Mup; ++i) {
  10617. S[i] = -INFINITY;
  10618. }
  10619. for (int64_t ic = 0; ic < nek1; ++ic) {
  10620. // k indices
  10621. const int ik3 = iq3;
  10622. const int ik2 = iq2;
  10623. const int ik1 = ic;
  10624. // S indices
  10625. const int i1 = ik1;
  10626. ggml_vec_dot_f32(neq0,
  10627. S + i1,
  10628. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10629. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10630. }
  10631. // scale
  10632. ggml_vec_scale_f32(nek1, S, scale);
  10633. if (masked) {
  10634. for (int64_t i = P; i < M; i++) {
  10635. if (i > P + iq1) {
  10636. S[i] = -INFINITY;
  10637. }
  10638. }
  10639. }
  10640. // softmax
  10641. {
  10642. float max = -INFINITY;
  10643. ggml_vec_max_f32(M, &max, S);
  10644. ggml_float sum = 0.0;
  10645. {
  10646. #ifdef GGML_SOFT_MAX_ACCELERATE
  10647. max = -max;
  10648. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10649. vvexpf(S, S, &Mup);
  10650. ggml_vec_sum_f32(Mup, &sum, S);
  10651. #else
  10652. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10653. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10654. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10655. float * SS = S + i;
  10656. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10657. if (SS[j] == -INFINITY) {
  10658. SS[j] = 0.0f;
  10659. } else {
  10660. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10661. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10662. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10663. sump[j] += (ggml_float)val;
  10664. SS[j] = val;
  10665. }
  10666. }
  10667. }
  10668. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10669. sum += sump[i];
  10670. }
  10671. #endif
  10672. }
  10673. assert(sum > 0.0);
  10674. sum = 1.0/sum;
  10675. ggml_vec_scale_f32(M, S, sum);
  10676. #ifndef NDEBUG
  10677. for (int i = 0; i < M; ++i) {
  10678. assert(!isnan(S[i]));
  10679. assert(!isinf(S[i]));
  10680. }
  10681. #endif
  10682. }
  10683. for (int64_t ic = 0; ic < nev1; ++ic) {
  10684. // dst indices
  10685. const int i1 = iq1;
  10686. const int i2 = iq2;
  10687. const int i3 = iq3;
  10688. ggml_vec_dot_f32(nek1,
  10689. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10690. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10691. S);
  10692. }
  10693. }
  10694. }
  10695. static void ggml_compute_forward_flash_attn_f16(
  10696. const struct ggml_compute_params * params,
  10697. const struct ggml_tensor * q,
  10698. const struct ggml_tensor * k,
  10699. const struct ggml_tensor * v,
  10700. const bool masked,
  10701. struct ggml_tensor * dst) {
  10702. int64_t t0 = ggml_perf_time_us();
  10703. UNUSED(t0);
  10704. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10705. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10706. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10707. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10708. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10709. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10710. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10711. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10712. const int ith = params->ith;
  10713. const int nth = params->nth;
  10714. const int64_t D = neq0;
  10715. const int64_t N = neq1;
  10716. const int64_t P = nek1 - N;
  10717. const int64_t M = P + N;
  10718. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10719. GGML_ASSERT(ne0 == D);
  10720. GGML_ASSERT(ne1 == N);
  10721. GGML_ASSERT(P >= 0);
  10722. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10723. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10724. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10725. GGML_ASSERT(neq0 == D);
  10726. GGML_ASSERT(nek0 == D);
  10727. GGML_ASSERT(nev1 == D);
  10728. GGML_ASSERT(neq1 == N);
  10729. GGML_ASSERT(nek1 == N + P);
  10730. GGML_ASSERT(nev1 == D);
  10731. // dst cannot be transposed or permuted
  10732. GGML_ASSERT(nb0 == sizeof(float));
  10733. GGML_ASSERT(nb0 <= nb1);
  10734. GGML_ASSERT(nb1 <= nb2);
  10735. GGML_ASSERT(nb2 <= nb3);
  10736. if (params->type == GGML_TASK_INIT) {
  10737. return;
  10738. }
  10739. if (params->type == GGML_TASK_FINALIZE) {
  10740. return;
  10741. }
  10742. // parallelize by q rows using ggml_vec_dot_f32
  10743. // total rows in q
  10744. const int nr = neq1*neq2*neq3;
  10745. // rows per thread
  10746. const int dr = (nr + nth - 1)/nth;
  10747. // row range for this thread
  10748. const int ir0 = dr*ith;
  10749. const int ir1 = MIN(ir0 + dr, nr);
  10750. const float scale = 1.0f/sqrtf(D);
  10751. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10752. for (int ir = ir0; ir < ir1; ++ir) {
  10753. // q indices
  10754. const int iq3 = ir/(neq2*neq1);
  10755. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10756. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10757. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10758. for (int i = M; i < Mup; ++i) {
  10759. S[i] = -INFINITY;
  10760. }
  10761. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10762. for (int64_t ic = 0; ic < nek1; ++ic) {
  10763. // k indices
  10764. const int ik3 = iq3;
  10765. const int ik2 = iq2;
  10766. const int ik1 = ic;
  10767. // S indices
  10768. const int i1 = ik1;
  10769. ggml_vec_dot_f16(neq0,
  10770. S + i1,
  10771. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10772. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10773. }
  10774. } else {
  10775. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10776. // k indices
  10777. const int ik3 = iq3;
  10778. const int ik2 = iq2;
  10779. const int ik1 = ic;
  10780. // S indices
  10781. const int i1 = ik1;
  10782. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10783. S + i1,
  10784. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10785. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10786. }
  10787. }
  10788. // scale
  10789. ggml_vec_scale_f32(nek1, S, scale);
  10790. if (masked) {
  10791. for (int64_t i = P; i < M; i++) {
  10792. if (i > P + iq1) {
  10793. S[i] = -INFINITY;
  10794. }
  10795. }
  10796. }
  10797. // softmax
  10798. {
  10799. float max = -INFINITY;
  10800. ggml_vec_max_f32(M, &max, S);
  10801. ggml_float sum = 0.0;
  10802. {
  10803. #ifdef GGML_SOFT_MAX_ACCELERATE
  10804. max = -max;
  10805. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10806. vvexpf(S, S, &Mup);
  10807. ggml_vec_sum_f32(Mup, &sum, S);
  10808. #else
  10809. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10810. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10811. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10812. float * SS = S + i;
  10813. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10814. if (SS[j] == -INFINITY) {
  10815. SS[j] = 0.0f;
  10816. } else {
  10817. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10818. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10819. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10820. sump[j] += (ggml_float)val;
  10821. SS[j] = val;
  10822. }
  10823. }
  10824. }
  10825. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10826. sum += sump[i];
  10827. }
  10828. #endif
  10829. }
  10830. assert(sum > 0.0);
  10831. sum = 1.0/sum;
  10832. ggml_vec_scale_f32(M, S, sum);
  10833. #ifndef NDEBUG
  10834. for (int i = 0; i < M; ++i) {
  10835. assert(!isnan(S[i]));
  10836. assert(!isinf(S[i]));
  10837. }
  10838. #endif
  10839. }
  10840. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10841. for (int64_t i = 0; i < M; i++) {
  10842. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10843. }
  10844. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10845. for (int64_t ic = 0; ic < nev1; ++ic) {
  10846. // dst indices
  10847. const int i1 = iq1;
  10848. const int i2 = iq2;
  10849. const int i3 = iq3;
  10850. ggml_vec_dot_f16(nek1,
  10851. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10852. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10853. S16);
  10854. }
  10855. } else {
  10856. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10857. // dst indices
  10858. const int i1 = iq1;
  10859. const int i2 = iq2;
  10860. const int i3 = iq3;
  10861. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10862. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10863. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10864. S16);
  10865. }
  10866. }
  10867. }
  10868. }
  10869. static void ggml_compute_forward_flash_attn(
  10870. const struct ggml_compute_params * params,
  10871. const struct ggml_tensor * q,
  10872. const struct ggml_tensor * k,
  10873. const struct ggml_tensor * v,
  10874. const bool masked,
  10875. struct ggml_tensor * dst) {
  10876. switch (q->type) {
  10877. case GGML_TYPE_F16:
  10878. {
  10879. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10880. } break;
  10881. case GGML_TYPE_F32:
  10882. {
  10883. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10884. } break;
  10885. default:
  10886. {
  10887. GGML_ASSERT(false);
  10888. } break;
  10889. }
  10890. }
  10891. // ggml_compute_forward_flash_ff
  10892. static void ggml_compute_forward_flash_ff_f16(
  10893. const struct ggml_compute_params * params,
  10894. const struct ggml_tensor * a, // F16
  10895. const struct ggml_tensor * b0, // F16 fc_w
  10896. const struct ggml_tensor * b1, // F32 fc_b
  10897. const struct ggml_tensor * c0, // F16 proj_w
  10898. const struct ggml_tensor * c1, // F32 proj_b
  10899. struct ggml_tensor * dst) {
  10900. int64_t t0 = ggml_perf_time_us();
  10901. UNUSED(t0);
  10902. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  10903. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  10904. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  10905. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  10906. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  10907. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  10908. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  10909. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  10910. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  10911. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  10912. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10913. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10914. const int ith = params->ith;
  10915. const int nth = params->nth;
  10916. const int64_t D = nea0;
  10917. //const int64_t N = nea1;
  10918. const int64_t M = neb01;
  10919. GGML_ASSERT(ne0 == nea0);
  10920. GGML_ASSERT(ne1 == nea1);
  10921. GGML_ASSERT(ne2 == nea2);
  10922. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10923. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10924. GGML_ASSERT(nbb10 == sizeof(float));
  10925. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10926. GGML_ASSERT(nbc10 == sizeof(float));
  10927. GGML_ASSERT(neb00 == D);
  10928. GGML_ASSERT(neb01 == M);
  10929. GGML_ASSERT(neb10 == M);
  10930. GGML_ASSERT(neb11 == 1);
  10931. GGML_ASSERT(nec00 == M);
  10932. GGML_ASSERT(nec01 == D);
  10933. GGML_ASSERT(nec10 == D);
  10934. GGML_ASSERT(nec11 == 1);
  10935. // dst cannot be transposed or permuted
  10936. GGML_ASSERT(nb0 == sizeof(float));
  10937. GGML_ASSERT(nb0 <= nb1);
  10938. GGML_ASSERT(nb1 <= nb2);
  10939. GGML_ASSERT(nb2 <= nb3);
  10940. if (params->type == GGML_TASK_INIT) {
  10941. return;
  10942. }
  10943. if (params->type == GGML_TASK_FINALIZE) {
  10944. return;
  10945. }
  10946. // parallelize by a rows using ggml_vec_dot_f32
  10947. // total rows in a
  10948. const int nr = nea1*nea2*nea3;
  10949. // rows per thread
  10950. const int dr = (nr + nth - 1)/nth;
  10951. // row range for this thread
  10952. const int ir0 = dr*ith;
  10953. const int ir1 = MIN(ir0 + dr, nr);
  10954. for (int ir = ir0; ir < ir1; ++ir) {
  10955. // a indices
  10956. const int ia3 = ir/(nea2*nea1);
  10957. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10958. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10959. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10960. for (int64_t ic = 0; ic < neb01; ++ic) {
  10961. // b0 indices
  10962. const int ib03 = ia3;
  10963. const int ib02 = ia2;
  10964. const int ib01 = ic;
  10965. // S indices
  10966. const int i1 = ib01;
  10967. ggml_vec_dot_f16(nea0,
  10968. S + i1,
  10969. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10970. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10971. }
  10972. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10973. //ggml_vec_gelu_f32(neb01, S, S);
  10974. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10975. for (int64_t i = 0; i < M; i++) {
  10976. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10977. }
  10978. ggml_vec_gelu_f16(neb01, S16, S16);
  10979. {
  10980. // dst indices
  10981. const int i1 = ia1;
  10982. const int i2 = ia2;
  10983. const int i3 = ia3;
  10984. for (int64_t ic = 0; ic < nec01; ++ic) {
  10985. ggml_vec_dot_f16(neb01,
  10986. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10987. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10988. S16);
  10989. }
  10990. ggml_vec_add_f32(nec01,
  10991. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10992. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10993. (float *) c1->data);
  10994. }
  10995. }
  10996. }
  10997. static void ggml_compute_forward_flash_ff(
  10998. const struct ggml_compute_params * params,
  10999. const struct ggml_tensor * a,
  11000. const struct ggml_tensor * b0,
  11001. const struct ggml_tensor * b1,
  11002. const struct ggml_tensor * c0,
  11003. const struct ggml_tensor * c1,
  11004. struct ggml_tensor * dst) {
  11005. switch (b0->type) {
  11006. case GGML_TYPE_F16:
  11007. {
  11008. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11009. } break;
  11010. case GGML_TYPE_F32:
  11011. {
  11012. GGML_ASSERT(false); // TODO
  11013. } break;
  11014. default:
  11015. {
  11016. GGML_ASSERT(false);
  11017. } break;
  11018. }
  11019. }
  11020. // ggml_compute_forward_flash_attn_back
  11021. static void ggml_compute_forward_flash_attn_back_f32(
  11022. const struct ggml_compute_params * params,
  11023. const struct ggml_tensor * q,
  11024. const struct ggml_tensor * k,
  11025. const struct ggml_tensor * v,
  11026. const struct ggml_tensor * d,
  11027. const bool masked,
  11028. struct ggml_tensor * dst) {
  11029. int64_t t0 = ggml_perf_time_us();
  11030. UNUSED(t0);
  11031. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11032. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11033. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11034. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11035. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11036. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11037. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11038. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11039. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11040. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11041. const int ith = params->ith;
  11042. const int nth = params->nth;
  11043. const int64_t D = neq0;
  11044. const int64_t N = neq1;
  11045. const int64_t P = nek1 - N;
  11046. const int64_t M = P + N;
  11047. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11048. const int mxDM = MAX(D, Mup);
  11049. // GGML_ASSERT(ne0 == D);
  11050. // GGML_ASSERT(ne1 == N);
  11051. GGML_ASSERT(P >= 0);
  11052. GGML_ASSERT(nbq0 == sizeof(float));
  11053. GGML_ASSERT(nbk0 == sizeof(float));
  11054. GGML_ASSERT(nbv0 == sizeof(float));
  11055. GGML_ASSERT(neq0 == D);
  11056. GGML_ASSERT(nek0 == D);
  11057. GGML_ASSERT(nev1 == D);
  11058. GGML_ASSERT(ned0 == D);
  11059. GGML_ASSERT(neq1 == N);
  11060. GGML_ASSERT(nek1 == N + P);
  11061. GGML_ASSERT(nev1 == D);
  11062. GGML_ASSERT(ned1 == N);
  11063. // dst cannot be transposed or permuted
  11064. GGML_ASSERT(nb0 == sizeof(float));
  11065. GGML_ASSERT(nb0 <= nb1);
  11066. GGML_ASSERT(nb1 <= nb2);
  11067. GGML_ASSERT(nb2 <= nb3);
  11068. if (params->type == GGML_TASK_INIT) {
  11069. if (ith == 0) {
  11070. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11071. }
  11072. return;
  11073. }
  11074. if (params->type == GGML_TASK_FINALIZE) {
  11075. return;
  11076. }
  11077. // parallelize by q rows using ggml_vec_dot_f32
  11078. // total rows in q
  11079. const int nr = neq2*neq3;
  11080. // rows per thread
  11081. const int dr = (nr + nth - 1)/nth;
  11082. // row range for this thread
  11083. const int ir0 = dr*ith;
  11084. const int ir1 = MIN(ir0 + dr, nr);
  11085. const float scale = 1.0f/sqrtf(D);
  11086. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11087. for (int ir = ir0; ir < ir1; ++ir) {
  11088. // q indices
  11089. const int iq3 = ir/(neq2);
  11090. const int iq2 = ir - iq3*neq2;
  11091. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11092. // not sure about CACHE_LINE_SIZE_F32..
  11093. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11094. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11095. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11096. for (int i = M; i < Mup; ++i) {
  11097. S[i] = -INFINITY;
  11098. }
  11099. for (int64_t ic = 0; ic < nek1; ++ic) {
  11100. // k indices
  11101. const int ik3 = iq3;
  11102. const int ik2 = iq2;
  11103. const int ik1 = ic;
  11104. // S indices
  11105. const int i1 = ik1;
  11106. ggml_vec_dot_f32(neq0,
  11107. S + i1,
  11108. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11109. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11110. }
  11111. // scale
  11112. ggml_vec_scale_f32(nek1, S, scale);
  11113. if (masked) {
  11114. for (int64_t i = P; i < M; i++) {
  11115. if (i > P + iq1) {
  11116. S[i] = -INFINITY;
  11117. }
  11118. }
  11119. }
  11120. // softmax
  11121. {
  11122. float max = -INFINITY;
  11123. ggml_vec_max_f32(M, &max, S);
  11124. ggml_float sum = 0.0;
  11125. {
  11126. #ifdef GGML_SOFT_MAX_ACCELERATE
  11127. max = -max;
  11128. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11129. vvexpf(SM, SM, &Mup);
  11130. ggml_vec_sum_f32(Mup, &sum, SM);
  11131. #else
  11132. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11133. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11134. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11135. float * SR = S + i;
  11136. float * SW = SM + i;
  11137. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11138. if (SR[j] == -INFINITY) {
  11139. SW[j] = 0.0f;
  11140. } else {
  11141. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11142. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11143. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11144. sump[j] += (ggml_float)val;
  11145. SW[j] = val;
  11146. }
  11147. }
  11148. }
  11149. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11150. sum += sump[i];
  11151. }
  11152. #endif
  11153. }
  11154. assert(sum > 0.0);
  11155. sum = 1.0/sum;
  11156. ggml_vec_scale_f32(M, SM, sum);
  11157. }
  11158. // step-by-step explanation
  11159. {
  11160. // forward-process shape grads from backward process
  11161. // parallel_for iq2,iq3:
  11162. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11163. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11164. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11165. // for iq1:
  11166. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11167. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11168. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11169. // S0 = -Inf [D,1,1,1]
  11170. // ~S1[i] = dot(kcur[:D,i], qcur)
  11171. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11172. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11173. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11174. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11175. // ~S5[i] = dot(vcur[:,i], S4)
  11176. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11177. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11178. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11179. // dst backward-/ grad[dst] = d
  11180. //
  11181. // output gradients with their dependencies:
  11182. //
  11183. // grad[kcur] = grad[S1].T @ qcur
  11184. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11185. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11186. // grad[S4] = grad[S5] @ vcur
  11187. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11188. // grad[qcur] = grad[S1] @ kcur
  11189. // grad[vcur] = grad[S5].T @ S4
  11190. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11191. //
  11192. // in post-order:
  11193. //
  11194. // S1 = qcur @ kcur.T
  11195. // S2 = S1 * scale
  11196. // S3 = diag_mask_inf(S2, P)
  11197. // S4 = softmax(S3)
  11198. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11199. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11200. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11201. // grad[qcur] = grad[S1] @ kcur
  11202. // grad[kcur] = grad[S1].T @ qcur
  11203. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11204. //
  11205. // using less variables (SM=S4):
  11206. //
  11207. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11208. // SM = softmax(S)
  11209. // S = d[:D,iq1,iq2,iq3] @ vcur
  11210. // dot_SM_gradSM = dot(SM, S)
  11211. // S = SM * (S - dot(SM, S))
  11212. // S = diag_mask_zero(S, P) * scale
  11213. //
  11214. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11215. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11216. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11217. }
  11218. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11219. // S = d[:D,iq1,iq2,iq3] @ vcur
  11220. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11221. ggml_vec_set_f32(M, S, 0);
  11222. for (int64_t ic = 0; ic < D; ++ic) {
  11223. // dst indices
  11224. const int i1 = iq1;
  11225. const int i2 = iq2;
  11226. const int i3 = iq3;
  11227. ggml_vec_mad_f32(M,
  11228. S,
  11229. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11230. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11231. }
  11232. // S = SM * (S - dot(SM, S))
  11233. float dot_SM_gradSM = 0;
  11234. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11235. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11236. ggml_vec_mul_f32 (M, S, S, SM);
  11237. // S = diag_mask_zero(S, P) * scale
  11238. if (masked) {
  11239. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11240. // S[i] = 0;
  11241. // }
  11242. for (int64_t i = P; i < M; i++) {
  11243. if (i > P + iq1) {
  11244. S[i] = 0;
  11245. }
  11246. }
  11247. }
  11248. ggml_vec_scale_f32(M, S, scale);
  11249. void * grad_q = (char *) dst->data;
  11250. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11251. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11252. const size_t nbgq1 = nb0*neq0;
  11253. const size_t nbgq2 = nb0*neq0*neq1;
  11254. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11255. const size_t nbgk1 = nb0*nek0;
  11256. const size_t nbgk2 = nb0*nek0*nek1;
  11257. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11258. const size_t nbgv1 = nb0*nev0;
  11259. const size_t nbgv2 = nb0*nev0*nev1;
  11260. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11261. // S shape [M,1]
  11262. // SM shape [M,1]
  11263. // kcur shape [D,M]
  11264. // qcur shape [D,1]
  11265. // vcur shape [M,D]
  11266. //
  11267. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11268. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11269. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11270. //
  11271. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11272. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11273. for (int64_t ic = 0; ic < M; ++ic) {
  11274. // dst indices
  11275. const int i1 = iq1;
  11276. const int i2 = iq2;
  11277. const int i3 = iq3;
  11278. ggml_vec_mad_f32(D,
  11279. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11280. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11281. S[ic]);
  11282. }
  11283. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11284. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11285. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11286. for (int64_t ic = 0; ic < M; ++ic) {
  11287. // dst indices
  11288. const int i1 = iq1;
  11289. const int i2 = iq2;
  11290. const int i3 = iq3;
  11291. // ggml_vec_set_f32(D,
  11292. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11293. // 0);
  11294. ggml_vec_mad_f32(D,
  11295. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11296. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11297. S[ic]);
  11298. }
  11299. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11300. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11301. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11302. for (int64_t ic = 0; ic < D; ++ic) {
  11303. // dst indices
  11304. const int i1 = iq1;
  11305. const int i2 = iq2;
  11306. const int i3 = iq3;
  11307. // ggml_vec_set_f32(M,
  11308. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11309. // 0);
  11310. ggml_vec_mad_f32(M,
  11311. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11312. SM,
  11313. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11314. }
  11315. }
  11316. }
  11317. }
  11318. static void ggml_compute_forward_flash_attn_back(
  11319. const struct ggml_compute_params * params,
  11320. const struct ggml_tensor * q,
  11321. const struct ggml_tensor * k,
  11322. const struct ggml_tensor * v,
  11323. const struct ggml_tensor * d,
  11324. const bool masked,
  11325. struct ggml_tensor * dst) {
  11326. switch (q->type) {
  11327. case GGML_TYPE_F32:
  11328. {
  11329. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11330. } break;
  11331. default:
  11332. {
  11333. GGML_ASSERT(false);
  11334. } break;
  11335. }
  11336. }
  11337. // ggml_compute_forward_win_part
  11338. static void ggml_compute_forward_win_part_f32(
  11339. const struct ggml_compute_params * params,
  11340. const struct ggml_tensor * src0,
  11341. struct ggml_tensor * dst) {
  11342. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11343. return;
  11344. }
  11345. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11346. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11347. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11348. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11349. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11350. assert(ne00 == ne0);
  11351. assert(ne3 == nep0*nep1);
  11352. // TODO: optimize / multi-thread
  11353. for (int py = 0; py < nep1; ++py) {
  11354. for (int px = 0; px < nep0; ++px) {
  11355. const int64_t i3 = py*nep0 + px;
  11356. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11357. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11358. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11359. const int64_t i02 = py*w + i2;
  11360. const int64_t i01 = px*w + i1;
  11361. const int64_t i00 = i0;
  11362. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11363. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11364. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11365. ((float *) dst->data)[i] = 0.0f;
  11366. } else {
  11367. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11368. }
  11369. }
  11370. }
  11371. }
  11372. }
  11373. }
  11374. }
  11375. static void ggml_compute_forward_win_part(
  11376. const struct ggml_compute_params * params,
  11377. const struct ggml_tensor * src0,
  11378. struct ggml_tensor * dst) {
  11379. switch (src0->type) {
  11380. case GGML_TYPE_F32:
  11381. {
  11382. ggml_compute_forward_win_part_f32(params, src0, dst);
  11383. } break;
  11384. default:
  11385. {
  11386. GGML_ASSERT(false);
  11387. } break;
  11388. }
  11389. }
  11390. // ggml_compute_forward_win_unpart
  11391. static void ggml_compute_forward_win_unpart_f32(
  11392. const struct ggml_compute_params * params,
  11393. const struct ggml_tensor * src0,
  11394. struct ggml_tensor * dst) {
  11395. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11396. return;
  11397. }
  11398. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11399. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11400. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11401. // padding
  11402. const int px = (w - ne1%w)%w;
  11403. //const int py = (w - ne2%w)%w;
  11404. const int npx = (px + ne1)/w;
  11405. //const int npy = (py + ne2)/w;
  11406. assert(ne0 == ne00);
  11407. // TODO: optimize / multi-thread
  11408. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11409. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11410. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11411. const int ip2 = i2/w;
  11412. const int ip1 = i1/w;
  11413. const int64_t i02 = i2%w;
  11414. const int64_t i01 = i1%w;
  11415. const int64_t i00 = i0;
  11416. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11417. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11418. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11419. }
  11420. }
  11421. }
  11422. }
  11423. static void ggml_compute_forward_win_unpart(
  11424. const struct ggml_compute_params * params,
  11425. const struct ggml_tensor * src0,
  11426. struct ggml_tensor * dst) {
  11427. switch (src0->type) {
  11428. case GGML_TYPE_F32:
  11429. {
  11430. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11431. } break;
  11432. default:
  11433. {
  11434. GGML_ASSERT(false);
  11435. } break;
  11436. }
  11437. }
  11438. //gmml_compute_forward_unary
  11439. static void ggml_compute_forward_unary(
  11440. const struct ggml_compute_params * params,
  11441. const struct ggml_tensor * src0,
  11442. struct ggml_tensor * dst) {
  11443. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11444. switch (op) {
  11445. case GGML_UNARY_OP_ABS:
  11446. {
  11447. ggml_compute_forward_abs(params, src0, dst);
  11448. } break;
  11449. case GGML_UNARY_OP_SGN:
  11450. {
  11451. ggml_compute_forward_sgn(params, src0, dst);
  11452. } break;
  11453. case GGML_UNARY_OP_NEG:
  11454. {
  11455. ggml_compute_forward_neg(params, src0, dst);
  11456. } break;
  11457. case GGML_UNARY_OP_STEP:
  11458. {
  11459. ggml_compute_forward_step(params, src0, dst);
  11460. } break;
  11461. case GGML_UNARY_OP_TANH:
  11462. {
  11463. ggml_compute_forward_tanh(params, src0, dst);
  11464. } break;
  11465. case GGML_UNARY_OP_ELU:
  11466. {
  11467. ggml_compute_forward_elu(params, src0, dst);
  11468. } break;
  11469. case GGML_UNARY_OP_RELU:
  11470. {
  11471. ggml_compute_forward_relu(params, src0, dst);
  11472. } break;
  11473. case GGML_UNARY_OP_GELU:
  11474. {
  11475. ggml_compute_forward_gelu(params, src0, dst);
  11476. } break;
  11477. case GGML_UNARY_OP_GELU_QUICK:
  11478. {
  11479. ggml_compute_forward_gelu_quick(params, src0, dst);
  11480. } break;
  11481. case GGML_UNARY_OP_SILU:
  11482. {
  11483. ggml_compute_forward_silu(params, src0, dst);
  11484. } break;
  11485. default:
  11486. {
  11487. GGML_ASSERT(false);
  11488. } break;
  11489. }
  11490. }
  11491. // ggml_compute_forward_map_unary
  11492. static void ggml_compute_forward_map_unary_f32(
  11493. const struct ggml_compute_params * params,
  11494. const struct ggml_tensor * src0,
  11495. struct ggml_tensor * dst,
  11496. const ggml_unary_op_f32_t fun) {
  11497. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11499. return;
  11500. }
  11501. const int n = ggml_nrows(src0);
  11502. const int nc = src0->ne[0];
  11503. assert( dst->nb[0] == sizeof(float));
  11504. assert(src0->nb[0] == sizeof(float));
  11505. for (int i = 0; i < n; i++) {
  11506. fun(nc,
  11507. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11508. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11509. }
  11510. }
  11511. static void ggml_compute_forward_map_unary(
  11512. const struct ggml_compute_params * params,
  11513. const struct ggml_tensor * src0,
  11514. struct ggml_tensor * dst,
  11515. const ggml_unary_op_f32_t fun) {
  11516. switch (src0->type) {
  11517. case GGML_TYPE_F32:
  11518. {
  11519. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11520. } break;
  11521. default:
  11522. {
  11523. GGML_ASSERT(false);
  11524. } break;
  11525. }
  11526. }
  11527. // ggml_compute_forward_map_binary
  11528. static void ggml_compute_forward_map_binary_f32(
  11529. const struct ggml_compute_params * params,
  11530. const struct ggml_tensor * src0,
  11531. const struct ggml_tensor * src1,
  11532. struct ggml_tensor * dst,
  11533. const ggml_binary_op_f32_t fun) {
  11534. assert(params->ith == 0);
  11535. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11536. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11537. return;
  11538. }
  11539. const int n = ggml_nrows(src0);
  11540. const int nc = src0->ne[0];
  11541. assert( dst->nb[0] == sizeof(float));
  11542. assert(src0->nb[0] == sizeof(float));
  11543. assert(src1->nb[0] == sizeof(float));
  11544. for (int i = 0; i < n; i++) {
  11545. fun(nc,
  11546. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11547. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11548. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11549. }
  11550. }
  11551. static void ggml_compute_forward_map_binary(
  11552. const struct ggml_compute_params * params,
  11553. const struct ggml_tensor * src0,
  11554. const struct ggml_tensor * src1,
  11555. struct ggml_tensor * dst,
  11556. const ggml_binary_op_f32_t fun) {
  11557. switch (src0->type) {
  11558. case GGML_TYPE_F32:
  11559. {
  11560. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11561. } break;
  11562. default:
  11563. {
  11564. GGML_ASSERT(false);
  11565. } break;
  11566. }
  11567. }
  11568. // ggml_compute_forward_map_custom1
  11569. static void ggml_compute_forward_map_custom1_f32(
  11570. const struct ggml_compute_params * params,
  11571. const struct ggml_tensor * a,
  11572. struct ggml_tensor * dst,
  11573. const ggml_custom1_op_f32_t fun) {
  11574. assert(params->ith == 0);
  11575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11576. return;
  11577. }
  11578. fun(dst, a);
  11579. }
  11580. static void ggml_compute_forward_map_custom1(
  11581. const struct ggml_compute_params * params,
  11582. const struct ggml_tensor * a,
  11583. struct ggml_tensor * dst,
  11584. const ggml_custom1_op_f32_t fun) {
  11585. switch (a->type) {
  11586. case GGML_TYPE_F32:
  11587. {
  11588. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11589. } break;
  11590. default:
  11591. {
  11592. GGML_ASSERT(false);
  11593. } break;
  11594. }
  11595. }
  11596. // ggml_compute_forward_map_custom2
  11597. static void ggml_compute_forward_map_custom2_f32(
  11598. const struct ggml_compute_params * params,
  11599. const struct ggml_tensor * a,
  11600. const struct ggml_tensor * b,
  11601. struct ggml_tensor * dst,
  11602. const ggml_custom2_op_f32_t fun) {
  11603. assert(params->ith == 0);
  11604. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11605. return;
  11606. }
  11607. fun(dst, a, b);
  11608. }
  11609. static void ggml_compute_forward_map_custom2(
  11610. const struct ggml_compute_params * params,
  11611. const struct ggml_tensor * a,
  11612. const struct ggml_tensor * b,
  11613. struct ggml_tensor * dst,
  11614. const ggml_custom2_op_f32_t fun) {
  11615. switch (a->type) {
  11616. case GGML_TYPE_F32:
  11617. {
  11618. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11619. } break;
  11620. default:
  11621. {
  11622. GGML_ASSERT(false);
  11623. } break;
  11624. }
  11625. }
  11626. // ggml_compute_forward_map_custom3
  11627. static void ggml_compute_forward_map_custom3_f32(
  11628. const struct ggml_compute_params * params,
  11629. const struct ggml_tensor * a,
  11630. const struct ggml_tensor * b,
  11631. const struct ggml_tensor * c,
  11632. struct ggml_tensor * dst,
  11633. const ggml_custom3_op_f32_t fun) {
  11634. assert(params->ith == 0);
  11635. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11636. return;
  11637. }
  11638. fun(dst, a, b, c);
  11639. }
  11640. static void ggml_compute_forward_map_custom3(
  11641. const struct ggml_compute_params * params,
  11642. const struct ggml_tensor * a,
  11643. const struct ggml_tensor * b,
  11644. const struct ggml_tensor * c,
  11645. struct ggml_tensor * dst,
  11646. const ggml_custom3_op_f32_t fun) {
  11647. switch (a->type) {
  11648. case GGML_TYPE_F32:
  11649. {
  11650. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11651. } break;
  11652. default:
  11653. {
  11654. GGML_ASSERT(false);
  11655. } break;
  11656. }
  11657. }
  11658. // ggml_compute_forward_cross_entropy_loss
  11659. static void ggml_compute_forward_cross_entropy_loss_f32(
  11660. const struct ggml_compute_params * params,
  11661. const struct ggml_tensor * src0,
  11662. const struct ggml_tensor * src1,
  11663. struct ggml_tensor * dst) {
  11664. GGML_ASSERT(ggml_is_contiguous(src0));
  11665. GGML_ASSERT(ggml_is_contiguous(src1));
  11666. GGML_ASSERT(ggml_is_scalar(dst));
  11667. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11668. const int ith = params->ith;
  11669. const int nth = params->nth;
  11670. float * sums = (float *) params->wdata;
  11671. // TODO: handle transposed/permuted matrices
  11672. const int nc = src0->ne[0];
  11673. const int nr = ggml_nrows(src0);
  11674. if (params->type == GGML_TASK_INIT) {
  11675. if (ith == 0) {
  11676. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11677. }
  11678. return;
  11679. }
  11680. if (params->type == GGML_TASK_FINALIZE) {
  11681. if (ith == 0) {
  11682. float * dp = (float *) dst->data;
  11683. ggml_vec_sum_f32(nth, dp, sums);
  11684. dp[0] *= -1.0f;
  11685. }
  11686. return;
  11687. }
  11688. const double eps = 1e-9;
  11689. // rows per thread
  11690. const int dr = (nr + nth - 1)/nth;
  11691. // row range for this thread
  11692. const int ir0 = dr*ith;
  11693. const int ir1 = MIN(ir0 + dr, nr);
  11694. for (int i1 = ir0; i1 < ir1; i1++) {
  11695. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11696. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11697. float * st = (float *) params->wdata + nth + ith*nc;
  11698. #ifndef NDEBUG
  11699. for (int i = 0; i < nc; ++i) {
  11700. //printf("p[%d] = %f\n", i, p[i]);
  11701. assert(!isnan(s0[i]));
  11702. assert(!isnan(s1[i]));
  11703. }
  11704. #endif
  11705. // soft_max
  11706. ggml_float sum = 0.0;
  11707. {
  11708. float max = -INFINITY;
  11709. ggml_vec_max_f32(nc, &max, s0);
  11710. uint16_t scvt;
  11711. for (int i = 0; i < nc; i++) {
  11712. if (s0[i] == -INFINITY) {
  11713. st[i] = 0.0f;
  11714. } else {
  11715. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11716. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11717. memcpy(&scvt, &s, sizeof(scvt));
  11718. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11719. sum += (ggml_float)val;
  11720. st[i] = val;
  11721. }
  11722. }
  11723. assert(sum > 0.0);
  11724. // sum = 1.0/sum;
  11725. }
  11726. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11727. sum = (1.0 - eps) / sum;
  11728. ggml_vec_scale_f32(nc, st, sum);
  11729. ggml_vec_add1_f32(nc, st, st, eps);
  11730. ggml_vec_log_f32(nc, st, st);
  11731. ggml_vec_mul_f32(nc, st, st, s1);
  11732. ggml_vec_sum_f32(nc, sums + ith, st);
  11733. #ifndef NDEBUG
  11734. for (int i = 0; i < nc; ++i) {
  11735. assert(!isnan(st[i]));
  11736. assert(!isinf(st[i]));
  11737. }
  11738. #endif
  11739. }
  11740. }
  11741. static void ggml_compute_forward_cross_entropy_loss(
  11742. const struct ggml_compute_params * params,
  11743. const struct ggml_tensor * src0,
  11744. const struct ggml_tensor * src1,
  11745. struct ggml_tensor * dst) {
  11746. switch (src0->type) {
  11747. case GGML_TYPE_F32:
  11748. {
  11749. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11750. } break;
  11751. default:
  11752. {
  11753. GGML_ASSERT(false);
  11754. } break;
  11755. }
  11756. }
  11757. // ggml_compute_forward_cross_entropy_loss_back
  11758. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11759. const struct ggml_compute_params * params,
  11760. const struct ggml_tensor * src0,
  11761. const struct ggml_tensor * src1,
  11762. const struct ggml_tensor * opt0,
  11763. struct ggml_tensor * dst) {
  11764. GGML_ASSERT(ggml_is_contiguous(dst));
  11765. GGML_ASSERT(ggml_is_contiguous(src0));
  11766. GGML_ASSERT(ggml_is_contiguous(src1));
  11767. GGML_ASSERT(ggml_is_contiguous(opt0));
  11768. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11769. const int64_t ith = params->ith;
  11770. const int64_t nth = params->nth;
  11771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11772. return;
  11773. }
  11774. const float eps = 1e-9f;
  11775. // TODO: handle transposed/permuted matrices
  11776. const int64_t nc = src0->ne[0];
  11777. const int64_t nr = ggml_nrows(src0);
  11778. // rows per thread
  11779. const int64_t dr = (nr + nth - 1)/nth;
  11780. // row range for this thread
  11781. const int64_t ir0 = dr*ith;
  11782. const int64_t ir1 = MIN(ir0 + dr, nr);
  11783. float * d = (float *) opt0->data;
  11784. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11785. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11786. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11787. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11788. float * sm = (float *) params->wdata + ith*nc;
  11789. #ifndef NDEBUG
  11790. for (int i = 0; i < nc; ++i) {
  11791. //printf("p[%d] = %f\n", i, p[i]);
  11792. assert(!isnan(s0[i]));
  11793. assert(!isnan(s1[i]));
  11794. }
  11795. #endif
  11796. // step by step explanation:
  11797. {
  11798. //float * sums = (float *) params->wdata;
  11799. // forward pass with annotated gradients from backward pass
  11800. // (built by going in reverse operation order, adding to gradients of current operation args)
  11801. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11802. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11803. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11804. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11805. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11806. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11807. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11808. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11809. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11810. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11811. // postorder:
  11812. // grad[st1] := softmax(s0)
  11813. // grad[st1] := grad[st1]*(1.0 - eps)
  11814. // grad[st1] := grad[st1] + eps
  11815. // grad[st1] := s1 / grad[st1]
  11816. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11817. // src0 gradients by going through softmax_back
  11818. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11819. // from softmax_back:
  11820. // dxk = yk * (dyk - dot(y, dy))
  11821. // dot_y_dy := dot(y, dy)
  11822. // dx := dy
  11823. // dx := dx - dot_y_dy
  11824. // dx := dx * y
  11825. // postorder:
  11826. // dot_st1_dst1 := dot(st1, grad[st1])
  11827. // grad[s0] := grad[st1]
  11828. // grad[s0] := grad[s0] - dot_st1_dst1
  11829. // grad[s0] := grad[s0] * st1
  11830. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11831. // sm := softmax(s0)
  11832. // grad[s0] := sm*(1.0 - eps)
  11833. // grad[s0] := grad[s0] + eps
  11834. // grad[s0] := s1 / grad[s0]
  11835. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11836. // dot_st1_dst1 := dot(sm, grad[s0])
  11837. // grad[s0] := grad[s0] - dot_st1_dst1
  11838. // grad[s0] := grad[s0] * sm
  11839. }
  11840. // soft_max
  11841. ggml_float sum = 0.0;
  11842. {
  11843. float max = -INFINITY;
  11844. ggml_vec_max_f32(nc, &max, s0);
  11845. uint16_t scvt;
  11846. for (int i = 0; i < nc; i++) {
  11847. if (s0[i] == -INFINITY) {
  11848. sm[i] = 0.0f;
  11849. } else {
  11850. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11851. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11852. memcpy(&scvt, &s, sizeof(scvt));
  11853. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11854. sum += (ggml_float)val;
  11855. sm[i] = val;
  11856. }
  11857. }
  11858. assert(sum > 0.0);
  11859. sum = 1.0/sum;
  11860. }
  11861. float dot_st1_dst1 = 0;
  11862. ggml_vec_scale_f32(nc, sm, sum);
  11863. ggml_vec_cpy_f32 (nc, ds0, sm);
  11864. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11865. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11866. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11867. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11868. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11869. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11870. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11871. #ifndef NDEBUG
  11872. for (int i = 0; i < nc; ++i) {
  11873. assert(!isnan(sm[i]));
  11874. assert(!isinf(sm[i]));
  11875. assert(!isnan(ds0[i]));
  11876. assert(!isinf(ds0[i]));
  11877. }
  11878. #endif
  11879. }
  11880. }
  11881. static void ggml_compute_forward_cross_entropy_loss_back(
  11882. const struct ggml_compute_params * params,
  11883. const struct ggml_tensor * src0,
  11884. const struct ggml_tensor * src1,
  11885. const struct ggml_tensor * opt0,
  11886. struct ggml_tensor * dst) {
  11887. switch (src0->type) {
  11888. case GGML_TYPE_F32:
  11889. {
  11890. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11891. } break;
  11892. default:
  11893. {
  11894. GGML_ASSERT(false);
  11895. } break;
  11896. }
  11897. }
  11898. /////////////////////////////////
  11899. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11900. GGML_ASSERT(params);
  11901. #ifdef GGML_USE_CUBLAS
  11902. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11903. if (skip_cpu) {
  11904. return;
  11905. }
  11906. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11907. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11908. #endif // GGML_USE_CUBLAS
  11909. switch (tensor->op) {
  11910. case GGML_OP_DUP:
  11911. {
  11912. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11913. } break;
  11914. case GGML_OP_ADD:
  11915. {
  11916. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11917. } break;
  11918. case GGML_OP_ADD1:
  11919. {
  11920. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11921. } break;
  11922. case GGML_OP_ACC:
  11923. {
  11924. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11925. } break;
  11926. case GGML_OP_SUB:
  11927. {
  11928. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11929. } break;
  11930. case GGML_OP_MUL:
  11931. {
  11932. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11933. } break;
  11934. case GGML_OP_DIV:
  11935. {
  11936. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11937. } break;
  11938. case GGML_OP_SQR:
  11939. {
  11940. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11941. } break;
  11942. case GGML_OP_SQRT:
  11943. {
  11944. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11945. } break;
  11946. case GGML_OP_LOG:
  11947. {
  11948. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11949. } break;
  11950. case GGML_OP_SUM:
  11951. {
  11952. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11953. } break;
  11954. case GGML_OP_SUM_ROWS:
  11955. {
  11956. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11957. } break;
  11958. case GGML_OP_MEAN:
  11959. {
  11960. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11961. } break;
  11962. case GGML_OP_ARGMAX:
  11963. {
  11964. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11965. } break;
  11966. case GGML_OP_REPEAT:
  11967. {
  11968. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11969. } break;
  11970. case GGML_OP_REPEAT_BACK:
  11971. {
  11972. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11973. } break;
  11974. case GGML_OP_SILU_BACK:
  11975. {
  11976. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11977. } break;
  11978. case GGML_OP_NORM:
  11979. {
  11980. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11981. } break;
  11982. case GGML_OP_RMS_NORM:
  11983. {
  11984. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11985. } break;
  11986. case GGML_OP_RMS_NORM_BACK:
  11987. {
  11988. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11989. } break;
  11990. case GGML_OP_MUL_MAT:
  11991. {
  11992. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11993. } break;
  11994. case GGML_OP_OUT_PROD:
  11995. {
  11996. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11997. } break;
  11998. case GGML_OP_SCALE:
  11999. {
  12000. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12001. } break;
  12002. case GGML_OP_SET:
  12003. {
  12004. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12005. } break;
  12006. case GGML_OP_CPY:
  12007. {
  12008. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12009. } break;
  12010. case GGML_OP_CONT:
  12011. {
  12012. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12013. } break;
  12014. case GGML_OP_RESHAPE:
  12015. {
  12016. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12017. } break;
  12018. case GGML_OP_VIEW:
  12019. {
  12020. ggml_compute_forward_view(params, tensor->src[0]);
  12021. } break;
  12022. case GGML_OP_PERMUTE:
  12023. {
  12024. ggml_compute_forward_permute(params, tensor->src[0]);
  12025. } break;
  12026. case GGML_OP_TRANSPOSE:
  12027. {
  12028. ggml_compute_forward_transpose(params, tensor->src[0]);
  12029. } break;
  12030. case GGML_OP_GET_ROWS:
  12031. {
  12032. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12033. } break;
  12034. case GGML_OP_GET_ROWS_BACK:
  12035. {
  12036. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12037. } break;
  12038. case GGML_OP_DIAG:
  12039. {
  12040. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12041. } break;
  12042. case GGML_OP_DIAG_MASK_INF:
  12043. {
  12044. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12045. } break;
  12046. case GGML_OP_DIAG_MASK_ZERO:
  12047. {
  12048. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12049. } break;
  12050. case GGML_OP_SOFT_MAX:
  12051. {
  12052. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12053. } break;
  12054. case GGML_OP_SOFT_MAX_BACK:
  12055. {
  12056. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12057. } break;
  12058. case GGML_OP_ROPE:
  12059. {
  12060. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12061. } break;
  12062. case GGML_OP_ROPE_BACK:
  12063. {
  12064. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12065. } break;
  12066. case GGML_OP_ALIBI:
  12067. {
  12068. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12069. } break;
  12070. case GGML_OP_CLAMP:
  12071. {
  12072. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12073. } break;
  12074. case GGML_OP_CONV_1D:
  12075. {
  12076. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12077. } break;
  12078. case GGML_OP_CONV_2D:
  12079. {
  12080. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12081. } break;
  12082. case GGML_OP_POOL_1D:
  12083. {
  12084. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12085. } break;
  12086. case GGML_OP_POOL_2D:
  12087. {
  12088. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12089. } break;
  12090. case GGML_OP_FLASH_ATTN:
  12091. {
  12092. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12093. GGML_ASSERT(t == 0 || t == 1);
  12094. const bool masked = t != 0;
  12095. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12096. } break;
  12097. case GGML_OP_FLASH_FF:
  12098. {
  12099. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12100. } break;
  12101. case GGML_OP_FLASH_ATTN_BACK:
  12102. {
  12103. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12104. GGML_ASSERT(t == 0 || t == 1);
  12105. bool masked = t != 0;
  12106. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12107. } break;
  12108. case GGML_OP_WIN_PART:
  12109. {
  12110. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12111. } break;
  12112. case GGML_OP_WIN_UNPART:
  12113. {
  12114. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12115. } break;
  12116. case GGML_OP_UNARY:
  12117. {
  12118. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12119. } break;
  12120. case GGML_OP_MAP_UNARY:
  12121. {
  12122. ggml_unary_op_f32_t fun;
  12123. memcpy(&fun, tensor->op_params, sizeof(fun));
  12124. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12125. }
  12126. break;
  12127. case GGML_OP_MAP_BINARY:
  12128. {
  12129. ggml_binary_op_f32_t fun;
  12130. memcpy(&fun, tensor->op_params, sizeof(fun));
  12131. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12132. }
  12133. break;
  12134. case GGML_OP_MAP_CUSTOM1:
  12135. {
  12136. ggml_custom1_op_f32_t fun;
  12137. memcpy(&fun, tensor->op_params, sizeof(fun));
  12138. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
  12139. }
  12140. break;
  12141. case GGML_OP_MAP_CUSTOM2:
  12142. {
  12143. ggml_custom2_op_f32_t fun;
  12144. memcpy(&fun, tensor->op_params, sizeof(fun));
  12145. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
  12146. }
  12147. break;
  12148. case GGML_OP_MAP_CUSTOM3:
  12149. {
  12150. ggml_custom3_op_f32_t fun;
  12151. memcpy(&fun, tensor->op_params, sizeof(fun));
  12152. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12153. }
  12154. break;
  12155. case GGML_OP_CROSS_ENTROPY_LOSS:
  12156. {
  12157. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12158. }
  12159. break;
  12160. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12161. {
  12162. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12163. }
  12164. break;
  12165. case GGML_OP_NONE:
  12166. {
  12167. // nop
  12168. } break;
  12169. case GGML_OP_COUNT:
  12170. {
  12171. GGML_ASSERT(false);
  12172. } break;
  12173. }
  12174. }
  12175. ////////////////////////////////////////////////////////////////////////////////
  12176. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12177. struct ggml_tensor * src0 = tensor->src[0];
  12178. struct ggml_tensor * src1 = tensor->src[1];
  12179. switch (tensor->op) {
  12180. case GGML_OP_DUP:
  12181. {
  12182. if (src0->grad) {
  12183. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12184. }
  12185. } break;
  12186. case GGML_OP_ADD:
  12187. {
  12188. if (src0->grad) {
  12189. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12190. }
  12191. if (src1->grad) {
  12192. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12193. }
  12194. } break;
  12195. case GGML_OP_ADD1:
  12196. {
  12197. if (src0->grad) {
  12198. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12199. }
  12200. if (src1->grad) {
  12201. src1->grad = ggml_add_impl(ctx,
  12202. src1->grad,
  12203. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12204. inplace);
  12205. }
  12206. } break;
  12207. case GGML_OP_ACC:
  12208. {
  12209. if (src0->grad) {
  12210. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12211. }
  12212. if (src1->grad) {
  12213. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12214. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12215. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12216. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12217. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12218. tensor->grad,
  12219. src1->grad->ne[0],
  12220. src1->grad->ne[1],
  12221. src1->grad->ne[2],
  12222. src1->grad->ne[3],
  12223. nb1, nb2, nb3, offset);
  12224. src1->grad =
  12225. ggml_add_impl(ctx,
  12226. src1->grad,
  12227. ggml_reshape(ctx,
  12228. ggml_cont(ctx, tensor_grad_view),
  12229. src1->grad),
  12230. inplace);
  12231. }
  12232. } break;
  12233. case GGML_OP_SUB:
  12234. {
  12235. if (src0->grad) {
  12236. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12237. }
  12238. if (src1->grad) {
  12239. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12240. }
  12241. } break;
  12242. case GGML_OP_MUL:
  12243. {
  12244. if (src0->grad) {
  12245. src0->grad =
  12246. ggml_add_impl(ctx,
  12247. src0->grad,
  12248. ggml_mul(ctx, src1, tensor->grad),
  12249. inplace);
  12250. }
  12251. if (src1->grad) {
  12252. src1->grad =
  12253. ggml_add_impl(ctx,
  12254. src1->grad,
  12255. ggml_mul(ctx, src0, tensor->grad),
  12256. inplace);
  12257. }
  12258. } break;
  12259. case GGML_OP_DIV:
  12260. {
  12261. if (src0->grad) {
  12262. src0->grad =
  12263. ggml_add_impl(ctx,
  12264. src0->grad,
  12265. ggml_div(ctx, tensor->grad, src1),
  12266. inplace);
  12267. }
  12268. if (src1->grad) {
  12269. src1->grad =
  12270. ggml_sub_impl(ctx,
  12271. src1->grad,
  12272. ggml_mul(ctx,
  12273. tensor->grad,
  12274. ggml_div(ctx, tensor, src1)),
  12275. inplace);
  12276. }
  12277. } break;
  12278. case GGML_OP_SQR:
  12279. {
  12280. if (src0->grad) {
  12281. src0->grad =
  12282. ggml_add_impl(ctx,
  12283. src0->grad,
  12284. ggml_scale(ctx,
  12285. ggml_mul(ctx, src0, tensor->grad),
  12286. ggml_new_f32(ctx, 2.0f)),
  12287. inplace);
  12288. }
  12289. } break;
  12290. case GGML_OP_SQRT:
  12291. {
  12292. if (src0->grad) {
  12293. src0->grad =
  12294. ggml_add_impl(ctx,
  12295. src0->grad,
  12296. ggml_scale(ctx,
  12297. ggml_div(ctx,
  12298. tensor->grad,
  12299. tensor),
  12300. ggml_new_f32(ctx, 0.5f)),
  12301. inplace);
  12302. }
  12303. } break;
  12304. case GGML_OP_LOG:
  12305. {
  12306. if (src0->grad) {
  12307. src0->grad =
  12308. ggml_add_impl(ctx,
  12309. src0->grad,
  12310. ggml_div(ctx,
  12311. tensor->grad,
  12312. src0),
  12313. inplace);
  12314. }
  12315. } break;
  12316. case GGML_OP_SUM:
  12317. {
  12318. if (src0->grad) {
  12319. src0->grad =
  12320. ggml_add1_impl(ctx,
  12321. src0->grad,
  12322. tensor->grad,
  12323. inplace);
  12324. }
  12325. } break;
  12326. case GGML_OP_SUM_ROWS:
  12327. {
  12328. if (src0->grad) {
  12329. src0->grad =
  12330. ggml_add_impl(ctx,
  12331. src0->grad,
  12332. ggml_repeat(ctx,
  12333. tensor->grad,
  12334. src0->grad),
  12335. inplace);
  12336. }
  12337. } break;
  12338. case GGML_OP_MEAN:
  12339. case GGML_OP_ARGMAX:
  12340. {
  12341. GGML_ASSERT(false); // TODO: implement
  12342. } break;
  12343. case GGML_OP_REPEAT:
  12344. {
  12345. // necessary for llama
  12346. if (src0->grad) {
  12347. src0->grad = ggml_add_impl(ctx,
  12348. src0->grad,
  12349. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12350. inplace);
  12351. }
  12352. } break;
  12353. case GGML_OP_REPEAT_BACK:
  12354. {
  12355. if (src0->grad) {
  12356. // TODO: test this
  12357. src0->grad = ggml_add_impl(ctx,
  12358. src0->grad,
  12359. ggml_repeat(ctx, tensor->grad, src0->grad),
  12360. inplace);
  12361. }
  12362. } break;
  12363. case GGML_OP_SILU_BACK:
  12364. {
  12365. GGML_ASSERT(false); // TODO: not implemented
  12366. } break;
  12367. case GGML_OP_NORM:
  12368. {
  12369. GGML_ASSERT(false); // TODO: not implemented
  12370. } break;
  12371. case GGML_OP_RMS_NORM:
  12372. {
  12373. // necessary for llama
  12374. if (src0->grad) {
  12375. src0->grad = ggml_add_impl(ctx,
  12376. src0->grad,
  12377. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12378. inplace);
  12379. }
  12380. } break;
  12381. case GGML_OP_RMS_NORM_BACK:
  12382. {
  12383. GGML_ASSERT(false); // TODO: not implemented
  12384. } break;
  12385. case GGML_OP_MUL_MAT:
  12386. {
  12387. // https://cs231n.github.io/optimization-2/#staged
  12388. // # forward pass
  12389. // s0 = np.random.randn(5, 10)
  12390. // s1 = np.random.randn(10, 3)
  12391. // t = s0.dot(s1)
  12392. // # now suppose we had the gradient on t from above in the circuit
  12393. // dt = np.random.randn(*t.shape) # same shape as t
  12394. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12395. // ds1 = t.T.dot(dt)
  12396. // tensor.shape [m,p]
  12397. // src0.shape [n,m]
  12398. // src1.shape [n,p]
  12399. // necessary for llama
  12400. if (src0->grad) {
  12401. src0->grad =
  12402. ggml_add_impl(ctx,
  12403. src0->grad,
  12404. ggml_out_prod(ctx, // [n,m]
  12405. src1, // [n,p]
  12406. tensor->grad), // [m,p]
  12407. inplace);
  12408. }
  12409. if (src1->grad) {
  12410. src1->grad =
  12411. ggml_add_impl(ctx,
  12412. src1->grad,
  12413. // ggml_mul_mat(ctx, // [n,p]
  12414. // ggml_cont(ctx, // [m,n]
  12415. // ggml_transpose(ctx, src0)), // [m,n]
  12416. // tensor->grad), // [m,p]
  12417. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12418. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12419. // // and then use ggml_out_prod
  12420. ggml_out_prod(ctx, // [n,p]
  12421. src0, // [n,m]
  12422. ggml_transpose(ctx, // [p,m]
  12423. tensor->grad)), // [m,p]
  12424. inplace);
  12425. }
  12426. } break;
  12427. case GGML_OP_OUT_PROD:
  12428. {
  12429. GGML_ASSERT(false); // TODO: not implemented
  12430. } break;
  12431. case GGML_OP_SCALE:
  12432. {
  12433. // necessary for llama
  12434. if (src0->grad) {
  12435. src0->grad =
  12436. ggml_add_impl(ctx,
  12437. src0->grad,
  12438. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12439. inplace);
  12440. }
  12441. if (src1->grad) {
  12442. src1->grad =
  12443. ggml_add_impl(ctx,
  12444. src1->grad,
  12445. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12446. inplace);
  12447. }
  12448. } break;
  12449. case GGML_OP_SET:
  12450. {
  12451. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12452. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12453. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12454. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12455. struct ggml_tensor * tensor_grad_view = NULL;
  12456. if (src0->grad || src1->grad) {
  12457. GGML_ASSERT(src0->type == tensor->type);
  12458. GGML_ASSERT(tensor->grad->type == tensor->type);
  12459. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12460. tensor_grad_view = ggml_view_4d(ctx,
  12461. tensor->grad,
  12462. src1->grad->ne[0],
  12463. src1->grad->ne[1],
  12464. src1->grad->ne[2],
  12465. src1->grad->ne[3],
  12466. nb1, nb2, nb3, offset);
  12467. }
  12468. if (src0->grad) {
  12469. src0->grad = ggml_add_impl(ctx,
  12470. src0->grad,
  12471. ggml_acc_impl(ctx,
  12472. tensor->grad,
  12473. ggml_neg(ctx, tensor_grad_view),
  12474. nb1, nb2, nb3, offset, false),
  12475. inplace);
  12476. }
  12477. if (src1->grad) {
  12478. src1->grad =
  12479. ggml_add_impl(ctx,
  12480. src1->grad,
  12481. ggml_reshape(ctx,
  12482. ggml_cont(ctx, tensor_grad_view),
  12483. src1->grad),
  12484. inplace);
  12485. }
  12486. } break;
  12487. case GGML_OP_CPY:
  12488. {
  12489. // necessary for llama
  12490. // cpy overwrites value of src1 by src0 and returns view(src1)
  12491. // the overwriting is mathematically equivalent to:
  12492. // tensor = src0 * 1 + src1 * 0
  12493. if (src0->grad) {
  12494. // dsrc0 = dtensor * 1
  12495. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12496. }
  12497. if (src1->grad) {
  12498. // dsrc1 = dtensor * 0 -> noop
  12499. }
  12500. } break;
  12501. case GGML_OP_CONT:
  12502. {
  12503. // same as cpy
  12504. if (src0->grad) {
  12505. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12506. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12507. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12508. }
  12509. } break;
  12510. case GGML_OP_RESHAPE:
  12511. {
  12512. // necessary for llama
  12513. if (src0->grad) {
  12514. src0->grad =
  12515. ggml_add_impl(ctx, src0->grad,
  12516. ggml_reshape(ctx, tensor->grad, src0->grad),
  12517. inplace);
  12518. }
  12519. } break;
  12520. case GGML_OP_VIEW:
  12521. {
  12522. // necessary for llama
  12523. if (src0->grad) {
  12524. size_t offset;
  12525. memcpy(&offset, tensor->op_params, sizeof(offset));
  12526. size_t nb1 = tensor->nb[1];
  12527. size_t nb2 = tensor->nb[2];
  12528. size_t nb3 = tensor->nb[3];
  12529. if (src0->type != src0->grad->type) {
  12530. // gradient is typically F32, but src0 could be other type
  12531. size_t ng = ggml_element_size(src0->grad);
  12532. size_t n0 = ggml_element_size(src0);
  12533. GGML_ASSERT(offset % n0 == 0);
  12534. GGML_ASSERT(nb1 % n0 == 0);
  12535. GGML_ASSERT(nb2 % n0 == 0);
  12536. GGML_ASSERT(nb3 % n0 == 0);
  12537. offset = (offset / n0) * ng;
  12538. nb1 = (nb1 / n0) * ng;
  12539. nb2 = (nb2 / n0) * ng;
  12540. nb3 = (nb3 / n0) * ng;
  12541. }
  12542. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12543. }
  12544. } break;
  12545. case GGML_OP_PERMUTE:
  12546. {
  12547. // necessary for llama
  12548. if (src0->grad) {
  12549. int32_t * axes = (int32_t *) tensor->op_params;
  12550. int axis0 = axes[0] & 0x3;
  12551. int axis1 = axes[1] & 0x3;
  12552. int axis2 = axes[2] & 0x3;
  12553. int axis3 = axes[3] & 0x3;
  12554. int axes_backward[4] = {0,0,0,0};
  12555. axes_backward[axis0] = 0;
  12556. axes_backward[axis1] = 1;
  12557. axes_backward[axis2] = 2;
  12558. axes_backward[axis3] = 3;
  12559. src0->grad =
  12560. ggml_add_impl(ctx, src0->grad,
  12561. ggml_permute(ctx,
  12562. tensor->grad,
  12563. axes_backward[0],
  12564. axes_backward[1],
  12565. axes_backward[2],
  12566. axes_backward[3]),
  12567. inplace);
  12568. }
  12569. } break;
  12570. case GGML_OP_TRANSPOSE:
  12571. {
  12572. // necessary for llama
  12573. if (src0->grad) {
  12574. src0->grad =
  12575. ggml_add_impl(ctx, src0->grad,
  12576. ggml_transpose(ctx, tensor->grad),
  12577. inplace);
  12578. }
  12579. } break;
  12580. case GGML_OP_GET_ROWS:
  12581. {
  12582. // necessary for llama (only for tokenizer)
  12583. if (src0->grad) {
  12584. src0->grad =
  12585. ggml_add_impl(ctx, src0->grad,
  12586. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12587. inplace);
  12588. }
  12589. if (src1->grad) {
  12590. // noop
  12591. }
  12592. } break;
  12593. case GGML_OP_GET_ROWS_BACK:
  12594. {
  12595. GGML_ASSERT(false); // TODO: not implemented
  12596. } break;
  12597. case GGML_OP_DIAG:
  12598. {
  12599. GGML_ASSERT(false); // TODO: not implemented
  12600. } break;
  12601. case GGML_OP_DIAG_MASK_INF:
  12602. {
  12603. // necessary for llama
  12604. if (src0->grad) {
  12605. const int n_past = ((int32_t *) tensor->op_params)[0];
  12606. src0->grad =
  12607. ggml_add_impl(ctx, src0->grad,
  12608. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12609. inplace);
  12610. }
  12611. } break;
  12612. case GGML_OP_DIAG_MASK_ZERO:
  12613. {
  12614. // necessary for llama
  12615. if (src0->grad) {
  12616. const int n_past = ((int32_t *) tensor->op_params)[0];
  12617. src0->grad =
  12618. ggml_add_impl(ctx, src0->grad,
  12619. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12620. inplace);
  12621. }
  12622. } break;
  12623. case GGML_OP_SOFT_MAX:
  12624. {
  12625. // necessary for llama
  12626. if (src0->grad) {
  12627. src0->grad =
  12628. ggml_add_impl(ctx, src0->grad,
  12629. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12630. inplace);
  12631. }
  12632. } break;
  12633. case GGML_OP_SOFT_MAX_BACK:
  12634. {
  12635. GGML_ASSERT(false); // TODO: not implemented
  12636. } break;
  12637. case GGML_OP_ROPE:
  12638. {
  12639. // necessary for llama
  12640. if (src0->grad) {
  12641. const int n_past = ((int32_t *) tensor->op_params)[0];
  12642. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12643. const int mode = ((int32_t *) tensor->op_params)[2];
  12644. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12645. src0->grad = ggml_add_impl(ctx,
  12646. src0->grad,
  12647. ggml_rope_back(ctx,
  12648. tensor->grad,
  12649. n_past,
  12650. n_dims,
  12651. mode,
  12652. n_ctx),
  12653. inplace);
  12654. }
  12655. } break;
  12656. case GGML_OP_ROPE_BACK:
  12657. {
  12658. if (src0->grad) {
  12659. const int n_past = ((int32_t *) tensor->op_params)[0];
  12660. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12661. const int mode = ((int32_t *) tensor->op_params)[2];
  12662. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12663. src0->grad = ggml_add_impl(ctx,
  12664. src0->grad,
  12665. ggml_rope(ctx,
  12666. tensor->grad,
  12667. n_past,
  12668. n_dims,
  12669. mode,
  12670. n_ctx),
  12671. inplace);
  12672. }
  12673. } break;
  12674. case GGML_OP_ALIBI:
  12675. {
  12676. GGML_ASSERT(false); // TODO: not implemented
  12677. } break;
  12678. case GGML_OP_CLAMP:
  12679. {
  12680. GGML_ASSERT(false); // TODO: not implemented
  12681. } break;
  12682. case GGML_OP_CONV_1D:
  12683. {
  12684. GGML_ASSERT(false); // TODO: not implemented
  12685. } break;
  12686. case GGML_OP_CONV_2D:
  12687. {
  12688. GGML_ASSERT(false); // TODO: not implemented
  12689. } break;
  12690. case GGML_OP_POOL_1D:
  12691. {
  12692. GGML_ASSERT(false); // TODO: not implemented
  12693. } break;
  12694. case GGML_OP_POOL_2D:
  12695. {
  12696. GGML_ASSERT(false); // TODO: not implemented
  12697. } break;
  12698. case GGML_OP_FLASH_ATTN:
  12699. {
  12700. struct ggml_tensor * flash_grad = NULL;
  12701. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12702. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12703. GGML_ASSERT(t == 0 || t == 1);
  12704. bool masked = t != 0;
  12705. flash_grad =
  12706. ggml_flash_attn_back(ctx,
  12707. src0,
  12708. src1,
  12709. tensor->src[2],
  12710. tensor->grad,
  12711. masked);
  12712. }
  12713. if (src0->grad) {
  12714. struct ggml_tensor * grad_q = NULL;
  12715. const size_t nb0 = flash_grad->nb[0];
  12716. const size_t offset = 0;
  12717. switch(src0->n_dims) {
  12718. case 2:
  12719. {
  12720. grad_q = ggml_view_2d(ctx,
  12721. flash_grad,
  12722. src0->ne[0],
  12723. src0->ne[1],
  12724. nb0*src0->ne[0],
  12725. offset);
  12726. } break;
  12727. case 3:
  12728. {
  12729. grad_q = ggml_view_3d(ctx,
  12730. flash_grad,
  12731. src0->ne[0],
  12732. src0->ne[1],
  12733. src0->ne[2],
  12734. nb0*src0->ne[0],
  12735. nb0*src0->ne[0]*src0->ne[1],
  12736. offset);
  12737. } break;
  12738. case 4:
  12739. {
  12740. grad_q = ggml_view_4d(ctx,
  12741. flash_grad,
  12742. src0->ne[0],
  12743. src0->ne[1],
  12744. src0->ne[2],
  12745. src0->ne[3],
  12746. nb0*src0->ne[0],
  12747. nb0*src0->ne[0]*src0->ne[1],
  12748. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12749. offset);
  12750. } break;
  12751. }
  12752. src0->grad = ggml_add_impl(ctx,
  12753. src0->grad,
  12754. grad_q,
  12755. inplace);
  12756. }
  12757. if (src1->grad) {
  12758. struct ggml_tensor * grad_k = NULL;
  12759. const size_t nb0 = flash_grad->nb[0];
  12760. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12761. switch(src1->n_dims) {
  12762. case 2:
  12763. {
  12764. grad_k = ggml_view_2d(ctx,
  12765. flash_grad,
  12766. src1->ne[0],
  12767. src1->ne[1],
  12768. nb0*src1->ne[0],
  12769. offset);
  12770. } break;
  12771. case 3:
  12772. {
  12773. grad_k = ggml_view_3d(ctx,
  12774. flash_grad,
  12775. src1->ne[0],
  12776. src1->ne[1],
  12777. src1->ne[2],
  12778. nb0*src1->ne[0],
  12779. nb0*src1->ne[0]*src1->ne[1],
  12780. offset);
  12781. } break;
  12782. case 4:
  12783. {
  12784. grad_k = ggml_view_4d(ctx,
  12785. flash_grad,
  12786. src1->ne[0],
  12787. src1->ne[1],
  12788. src1->ne[2],
  12789. src1->ne[3],
  12790. nb0*src1->ne[0],
  12791. nb0*src1->ne[0]*src1->ne[1],
  12792. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12793. offset);
  12794. } break;
  12795. }
  12796. src1->grad = ggml_add_impl(ctx,
  12797. src1->grad,
  12798. grad_k,
  12799. inplace);
  12800. }
  12801. struct ggml_tensor * opt0 = tensor->src[2];
  12802. if (opt0->grad) {
  12803. struct ggml_tensor * grad_v = NULL;
  12804. const size_t nb0 = flash_grad->nb[0];
  12805. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12806. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12807. switch(opt0->n_dims) {
  12808. case 2:
  12809. {
  12810. grad_v = ggml_view_2d(ctx,
  12811. flash_grad,
  12812. opt0->ne[0],
  12813. opt0->ne[1],
  12814. nb0*opt0->ne[0],
  12815. offset);
  12816. } break;
  12817. case 3:
  12818. {
  12819. grad_v = ggml_view_3d(ctx,
  12820. flash_grad,
  12821. opt0->ne[0],
  12822. opt0->ne[1],
  12823. opt0->ne[2],
  12824. nb0*opt0->ne[0],
  12825. nb0*opt0->ne[0]*opt0->ne[1],
  12826. offset);
  12827. } break;
  12828. case 4:
  12829. {
  12830. grad_v = ggml_view_4d(ctx,
  12831. flash_grad,
  12832. opt0->ne[0],
  12833. opt0->ne[1],
  12834. opt0->ne[2],
  12835. opt0->ne[3],
  12836. nb0*opt0->ne[0],
  12837. nb0*opt0->ne[0]*opt0->ne[1],
  12838. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12839. offset);
  12840. } break;
  12841. }
  12842. opt0->grad = ggml_add_impl(ctx,
  12843. opt0->grad,
  12844. grad_v,
  12845. inplace);
  12846. }
  12847. } break;
  12848. case GGML_OP_FLASH_FF:
  12849. {
  12850. GGML_ASSERT(false); // not supported
  12851. } break;
  12852. case GGML_OP_FLASH_ATTN_BACK:
  12853. {
  12854. GGML_ASSERT(false); // not supported
  12855. } break;
  12856. case GGML_OP_WIN_PART:
  12857. case GGML_OP_WIN_UNPART:
  12858. case GGML_OP_UNARY:
  12859. {
  12860. switch (ggml_get_unary_op(tensor)) {
  12861. case GGML_UNARY_OP_ABS:
  12862. {
  12863. if (src0->grad) {
  12864. src0->grad =
  12865. ggml_add_impl(ctx,
  12866. src0->grad,
  12867. ggml_mul(ctx,
  12868. ggml_sgn(ctx, src0),
  12869. tensor->grad),
  12870. inplace);
  12871. }
  12872. } break;
  12873. case GGML_UNARY_OP_SGN:
  12874. {
  12875. if (src0->grad) {
  12876. // noop
  12877. }
  12878. } break;
  12879. case GGML_UNARY_OP_NEG:
  12880. {
  12881. if (src0->grad) {
  12882. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12883. }
  12884. } break;
  12885. case GGML_UNARY_OP_STEP:
  12886. {
  12887. if (src0->grad) {
  12888. // noop
  12889. }
  12890. } break;
  12891. case GGML_UNARY_OP_TANH:
  12892. {
  12893. GGML_ASSERT(false); // TODO: not implemented
  12894. } break;
  12895. case GGML_UNARY_OP_ELU:
  12896. {
  12897. GGML_ASSERT(false); // TODO: not implemented
  12898. } break;
  12899. case GGML_UNARY_OP_RELU:
  12900. {
  12901. if (src0->grad) {
  12902. src0->grad = ggml_add_impl(ctx,
  12903. src0->grad,
  12904. ggml_mul(ctx,
  12905. ggml_step(ctx, src0),
  12906. tensor->grad),
  12907. inplace);
  12908. }
  12909. } break;
  12910. case GGML_UNARY_OP_GELU:
  12911. {
  12912. GGML_ASSERT(false); // TODO: not implemented
  12913. } break;
  12914. case GGML_UNARY_OP_GELU_QUICK:
  12915. {
  12916. GGML_ASSERT(false); // TODO: not implemented
  12917. } break;
  12918. case GGML_UNARY_OP_SILU:
  12919. {
  12920. // necessary for llama
  12921. if (src0->grad) {
  12922. src0->grad = ggml_add_impl(ctx,
  12923. src0->grad,
  12924. ggml_silu_back(ctx, src0, tensor->grad),
  12925. inplace);
  12926. }
  12927. } break;
  12928. default:
  12929. GGML_ASSERT(false);
  12930. }
  12931. } break;
  12932. case GGML_OP_MAP_UNARY:
  12933. case GGML_OP_MAP_BINARY:
  12934. case GGML_OP_MAP_CUSTOM1:
  12935. case GGML_OP_MAP_CUSTOM2:
  12936. case GGML_OP_MAP_CUSTOM3:
  12937. {
  12938. GGML_ASSERT(false); // not supported
  12939. } break;
  12940. case GGML_OP_CROSS_ENTROPY_LOSS:
  12941. {
  12942. if (src0->grad) {
  12943. src0->grad = ggml_add_impl(ctx,
  12944. src0->grad,
  12945. ggml_cross_entropy_loss_back(ctx,
  12946. src0,
  12947. src1,
  12948. tensor->grad),
  12949. inplace);
  12950. }
  12951. } break;
  12952. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12953. {
  12954. GGML_ASSERT(false); // not supported
  12955. } break;
  12956. case GGML_OP_NONE:
  12957. {
  12958. // nop
  12959. } break;
  12960. case GGML_OP_COUNT:
  12961. {
  12962. GGML_ASSERT(false);
  12963. } break;
  12964. }
  12965. }
  12966. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  12967. static size_t hash(void * p) {
  12968. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  12969. }
  12970. static bool hash_insert(void * hash_table[], void * p) {
  12971. size_t h = hash(p);
  12972. // linear probing
  12973. size_t i = h;
  12974. while (hash_table[i] != NULL && hash_table[i] != p) {
  12975. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  12976. if (i == h) {
  12977. // hash table is full
  12978. GGML_ASSERT(false);
  12979. }
  12980. }
  12981. if (hash_table[i] == p) {
  12982. return true;
  12983. }
  12984. // insert
  12985. hash_table[i] = p;
  12986. return false;
  12987. }
  12988. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12989. if (node->grad == NULL) {
  12990. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12991. // it can also happen during forward pass, if the user performs computations with constants
  12992. if (node->op != GGML_OP_NONE) {
  12993. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12994. }
  12995. }
  12996. // check if already visited
  12997. if (hash_insert(cgraph->visited_hash_table, node)) {
  12998. return;
  12999. }
  13000. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13001. if (node->src[i]) {
  13002. ggml_visit_parents(cgraph, node->src[i]);
  13003. }
  13004. }
  13005. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13006. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13007. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13008. if (strlen(node->name) == 0) {
  13009. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13010. }
  13011. cgraph->leafs[cgraph->n_leafs] = node;
  13012. cgraph->n_leafs++;
  13013. } else {
  13014. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13015. if (strlen(node->name) == 0) {
  13016. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13017. }
  13018. cgraph->nodes[cgraph->n_nodes] = node;
  13019. cgraph->grads[cgraph->n_nodes] = node->grad;
  13020. cgraph->n_nodes++;
  13021. }
  13022. }
  13023. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13024. if (!expand) {
  13025. cgraph->n_nodes = 0;
  13026. cgraph->n_leafs = 0;
  13027. }
  13028. const int n0 = cgraph->n_nodes;
  13029. UNUSED(n0);
  13030. ggml_visit_parents(cgraph, tensor);
  13031. const int n_new = cgraph->n_nodes - n0;
  13032. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13033. if (n_new > 0) {
  13034. // the last added node should always be starting point
  13035. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13036. }
  13037. }
  13038. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13039. ggml_build_forward_impl(cgraph, tensor, true);
  13040. }
  13041. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13042. struct ggml_cgraph result = {
  13043. /*.n_nodes =*/ 0,
  13044. /*.n_leafs =*/ 0,
  13045. /*.nodes =*/ { NULL },
  13046. /*.grads =*/ { NULL },
  13047. /*.leafs =*/ { NULL },
  13048. /*.hash_table =*/ { NULL },
  13049. /*.perf_runs =*/ 0,
  13050. /*.perf_cycles =*/ 0,
  13051. /*.perf_time_us =*/ 0,
  13052. };
  13053. ggml_build_forward_impl(&result, tensor, false);
  13054. return result;
  13055. }
  13056. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13057. struct ggml_cgraph result = *gf;
  13058. GGML_ASSERT(gf->n_nodes > 0);
  13059. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13060. if (keep) {
  13061. for (int i = 0; i < gf->n_nodes; i++) {
  13062. struct ggml_tensor * node = gf->nodes[i];
  13063. if (node->grad) {
  13064. node->grad = ggml_dup_tensor(ctx, node);
  13065. gf->grads[i] = node->grad;
  13066. }
  13067. }
  13068. }
  13069. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13070. struct ggml_tensor * node = gf->nodes[i];
  13071. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13072. if (node->grad) {
  13073. ggml_compute_backward(ctx, node, keep);
  13074. }
  13075. }
  13076. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13077. struct ggml_tensor * node = gf->nodes[i];
  13078. if (node->is_param) {
  13079. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13080. ggml_build_forward_expand(&result, node->grad);
  13081. }
  13082. }
  13083. return result;
  13084. }
  13085. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13086. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13087. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13088. *cgraph = (struct ggml_cgraph) {
  13089. /*.n_nodes =*/ 0,
  13090. /*.n_leafs =*/ 0,
  13091. /*.nodes =*/ { NULL },
  13092. /*.grads =*/ { NULL },
  13093. /*.leafs =*/ { NULL },
  13094. /*.hash_table =*/ { NULL },
  13095. /*.perf_runs =*/ 0,
  13096. /*.perf_cycles =*/ 0,
  13097. /*.perf_time_us =*/ 0,
  13098. };
  13099. return cgraph;
  13100. }
  13101. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13102. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13103. ggml_build_forward_impl(cgraph, tensor, false);
  13104. return cgraph;
  13105. }
  13106. size_t ggml_graph_overhead(void) {
  13107. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13108. }
  13109. //
  13110. // thread data
  13111. //
  13112. // synchronization is done via busy loops
  13113. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13114. //
  13115. #ifdef __APPLE__
  13116. //#include <os/lock.h>
  13117. //
  13118. //typedef os_unfair_lock ggml_lock_t;
  13119. //
  13120. //#define ggml_lock_init(x) UNUSED(x)
  13121. //#define ggml_lock_destroy(x) UNUSED(x)
  13122. //#define ggml_lock_lock os_unfair_lock_lock
  13123. //#define ggml_lock_unlock os_unfair_lock_unlock
  13124. //
  13125. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13126. typedef int ggml_lock_t;
  13127. #define ggml_lock_init(x) UNUSED(x)
  13128. #define ggml_lock_destroy(x) UNUSED(x)
  13129. #define ggml_lock_lock(x) UNUSED(x)
  13130. #define ggml_lock_unlock(x) UNUSED(x)
  13131. #define GGML_LOCK_INITIALIZER 0
  13132. typedef pthread_t ggml_thread_t;
  13133. #define ggml_thread_create pthread_create
  13134. #define ggml_thread_join pthread_join
  13135. #else
  13136. //typedef pthread_spinlock_t ggml_lock_t;
  13137. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13138. //#define ggml_lock_destroy pthread_spin_destroy
  13139. //#define ggml_lock_lock pthread_spin_lock
  13140. //#define ggml_lock_unlock pthread_spin_unlock
  13141. typedef int ggml_lock_t;
  13142. #define ggml_lock_init(x) UNUSED(x)
  13143. #define ggml_lock_destroy(x) UNUSED(x)
  13144. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13145. #define ggml_lock_lock(x) _mm_pause()
  13146. #else
  13147. #define ggml_lock_lock(x) UNUSED(x)
  13148. #endif
  13149. #define ggml_lock_unlock(x) UNUSED(x)
  13150. #define GGML_LOCK_INITIALIZER 0
  13151. typedef pthread_t ggml_thread_t;
  13152. #define ggml_thread_create pthread_create
  13153. #define ggml_thread_join pthread_join
  13154. #endif
  13155. // Android's libc implementation "bionic" does not support setting affinity
  13156. #if defined(__linux__) && !defined(__BIONIC__)
  13157. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13158. if (!ggml_is_numa()) {
  13159. return;
  13160. }
  13161. // run thread on node_num thread_n / (threads per node)
  13162. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13163. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13164. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13165. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13166. CPU_ZERO_S(setsize, cpus);
  13167. for (size_t i = 0; i < node->n_cpus; ++i) {
  13168. CPU_SET_S(node->cpus[i], setsize, cpus);
  13169. }
  13170. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13171. if (rv) {
  13172. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13173. strerror(rv));
  13174. }
  13175. CPU_FREE(cpus);
  13176. }
  13177. static void clear_numa_thread_affinity(void) {
  13178. if (!ggml_is_numa()) {
  13179. return;
  13180. }
  13181. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13182. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13183. CPU_ZERO_S(setsize, cpus);
  13184. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13185. CPU_SET_S(i, setsize, cpus);
  13186. }
  13187. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13188. if (rv) {
  13189. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13190. strerror(rv));
  13191. }
  13192. CPU_FREE(cpus);
  13193. }
  13194. #else
  13195. // TODO: Windows etc.
  13196. // (the linux implementation may also work on BSD, someone should test)
  13197. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13198. static void clear_numa_thread_affinity(void) {}
  13199. #endif
  13200. struct ggml_compute_state_shared {
  13201. const struct ggml_cgraph * cgraph;
  13202. const struct ggml_cplan * cplan;
  13203. int64_t perf_node_start_cycles;
  13204. int64_t perf_node_start_time_us;
  13205. const int n_threads;
  13206. // synchronization primitives
  13207. atomic_int n_active; // num active threads
  13208. atomic_int node_n; // active graph node
  13209. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13210. void * abort_callback_data;
  13211. };
  13212. struct ggml_compute_state {
  13213. ggml_thread_t thrd;
  13214. int ith;
  13215. struct ggml_compute_state_shared * shared;
  13216. };
  13217. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13218. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13219. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13220. node->perf_runs++;
  13221. node->perf_cycles += cycles_cur;
  13222. node->perf_time_us += time_us_cur;
  13223. }
  13224. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13225. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13226. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13227. const struct ggml_cplan * cplan = state->shared->cplan;
  13228. const int * n_tasks_arr = cplan->n_tasks;
  13229. const int n_threads = state->shared->n_threads;
  13230. set_numa_thread_affinity(state->ith, n_threads);
  13231. int node_n = -1;
  13232. while (true) {
  13233. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13234. state->shared->node_n += 1;
  13235. return (thread_ret_t) GGML_EXIT_ABORTED;
  13236. }
  13237. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13238. // all other threads are finished and spinning
  13239. // do finalize and init here so we don't have synchronize again
  13240. struct ggml_compute_params params = {
  13241. /*.type =*/ GGML_TASK_FINALIZE,
  13242. /*.ith =*/ 0,
  13243. /*.nth =*/ 0,
  13244. /*.wsize =*/ cplan->work_size,
  13245. /*.wdata =*/ cplan->work_data,
  13246. };
  13247. if (node_n != -1) {
  13248. /* FINALIZE */
  13249. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13250. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13251. params.nth = n_tasks_arr[node_n];
  13252. ggml_compute_forward(&params, node);
  13253. }
  13254. ggml_graph_compute_perf_stats_node(node, state->shared);
  13255. }
  13256. // distribute new work or execute it direct if 1T
  13257. while (++node_n < cgraph->n_nodes) {
  13258. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13259. struct ggml_tensor * node = cgraph->nodes[node_n];
  13260. const int n_tasks = n_tasks_arr[node_n];
  13261. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13262. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13263. params.nth = n_tasks;
  13264. /* INIT */
  13265. if (GGML_OP_HAS_INIT[node->op]) {
  13266. params.type = GGML_TASK_INIT;
  13267. ggml_compute_forward(&params, node);
  13268. }
  13269. if (n_tasks == 1) {
  13270. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13271. // they do something more efficient than spinning (?)
  13272. params.type = GGML_TASK_COMPUTE;
  13273. ggml_compute_forward(&params, node);
  13274. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13275. params.type = GGML_TASK_FINALIZE;
  13276. ggml_compute_forward(&params, node);
  13277. }
  13278. ggml_graph_compute_perf_stats_node(node, state->shared);
  13279. } else {
  13280. break;
  13281. }
  13282. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13283. break;
  13284. }
  13285. }
  13286. atomic_store(&state->shared->n_active, n_threads);
  13287. atomic_store(&state->shared->node_n, node_n);
  13288. } else {
  13289. // wait for other threads to finish
  13290. const int last = node_n;
  13291. do {
  13292. //sched_yield();
  13293. node_n = atomic_load(&state->shared->node_n);
  13294. } while (node_n == last);
  13295. }
  13296. // check if we should stop
  13297. if (node_n >= cgraph->n_nodes) break;
  13298. /* COMPUTE */
  13299. struct ggml_tensor * node = cgraph->nodes[node_n];
  13300. const int n_tasks = n_tasks_arr[node_n];
  13301. struct ggml_compute_params params = {
  13302. /*.type =*/ GGML_TASK_COMPUTE,
  13303. /*.ith =*/ state->ith,
  13304. /*.nth =*/ n_tasks,
  13305. /*.wsize =*/ cplan->work_size,
  13306. /*.wdata =*/ cplan->work_data,
  13307. };
  13308. if (state->ith < n_tasks) {
  13309. ggml_compute_forward(&params, node);
  13310. }
  13311. }
  13312. return GGML_EXIT_SUCCESS;
  13313. }
  13314. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13315. if (n_threads <= 0) {
  13316. n_threads = GGML_DEFAULT_N_THREADS;
  13317. }
  13318. size_t work_size = 0;
  13319. struct ggml_cplan cplan;
  13320. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13321. // thread scheduling for the different operations + work buffer size estimation
  13322. for (int i = 0; i < cgraph->n_nodes; i++) {
  13323. int n_tasks = 1;
  13324. struct ggml_tensor * node = cgraph->nodes[i];
  13325. switch (node->op) {
  13326. case GGML_OP_CPY:
  13327. case GGML_OP_DUP:
  13328. {
  13329. n_tasks = n_threads;
  13330. size_t cur = 0;
  13331. if (ggml_is_quantized(node->type)) {
  13332. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13333. }
  13334. work_size = MAX(work_size, cur);
  13335. } break;
  13336. case GGML_OP_ADD:
  13337. case GGML_OP_ADD1:
  13338. {
  13339. n_tasks = n_threads;
  13340. size_t cur = 0;
  13341. if (ggml_is_quantized(node->src[0]->type)) {
  13342. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
  13343. }
  13344. work_size = MAX(work_size, cur);
  13345. } break;
  13346. case GGML_OP_ACC:
  13347. {
  13348. n_tasks = n_threads;
  13349. size_t cur = 0;
  13350. if (ggml_is_quantized(node->src[0]->type)) {
  13351. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
  13352. }
  13353. work_size = MAX(work_size, cur);
  13354. } break;
  13355. case GGML_OP_SUB:
  13356. case GGML_OP_DIV:
  13357. case GGML_OP_SQR:
  13358. case GGML_OP_SQRT:
  13359. case GGML_OP_LOG:
  13360. case GGML_OP_SUM:
  13361. case GGML_OP_SUM_ROWS:
  13362. case GGML_OP_MEAN:
  13363. case GGML_OP_ARGMAX:
  13364. case GGML_OP_REPEAT:
  13365. case GGML_OP_REPEAT_BACK:
  13366. {
  13367. n_tasks = 1;
  13368. } break;
  13369. case GGML_OP_UNARY:
  13370. {
  13371. switch (ggml_get_unary_op(node)) {
  13372. case GGML_UNARY_OP_ABS:
  13373. case GGML_UNARY_OP_SGN:
  13374. case GGML_UNARY_OP_NEG:
  13375. case GGML_UNARY_OP_STEP:
  13376. case GGML_UNARY_OP_TANH:
  13377. case GGML_UNARY_OP_ELU:
  13378. case GGML_UNARY_OP_RELU:
  13379. {
  13380. n_tasks = 1;
  13381. } break;
  13382. case GGML_UNARY_OP_GELU:
  13383. case GGML_UNARY_OP_GELU_QUICK:
  13384. case GGML_UNARY_OP_SILU:
  13385. {
  13386. n_tasks = n_threads;
  13387. } break;
  13388. }
  13389. } break;
  13390. case GGML_OP_SILU_BACK:
  13391. case GGML_OP_MUL:
  13392. case GGML_OP_NORM:
  13393. case GGML_OP_RMS_NORM:
  13394. case GGML_OP_RMS_NORM_BACK:
  13395. {
  13396. n_tasks = n_threads;
  13397. } break;
  13398. case GGML_OP_MUL_MAT:
  13399. case GGML_OP_OUT_PROD:
  13400. {
  13401. n_tasks = n_threads;
  13402. // TODO: use different scheduling for different matrix sizes
  13403. //const int nr0 = ggml_nrows(node->src[0]);
  13404. //const int nr1 = ggml_nrows(node->src[1]);
  13405. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13406. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13407. size_t cur = 0;
  13408. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13409. #if defined(GGML_USE_CUBLAS)
  13410. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13411. n_tasks = 1; // TODO: this actually is doing nothing
  13412. // the threads are still spinning
  13413. } else
  13414. #elif defined(GGML_USE_CLBLAST)
  13415. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13416. n_tasks = 1; // TODO: this actually is doing nothing
  13417. // the threads are still spinning
  13418. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13419. } else
  13420. #endif
  13421. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13422. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13423. n_tasks = 1; // TODO: this actually is doing nothing
  13424. // the threads are still spinning
  13425. if (node->src[0]->type != GGML_TYPE_F32) {
  13426. // here we need memory just for single 2D matrix from src0
  13427. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13428. }
  13429. } else
  13430. #endif
  13431. if (node->src[1]->type != vec_dot_type) {
  13432. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
  13433. } else {
  13434. cur = 0;
  13435. }
  13436. work_size = MAX(work_size, cur);
  13437. } break;
  13438. case GGML_OP_SCALE:
  13439. {
  13440. n_tasks = 1;
  13441. } break;
  13442. case GGML_OP_SET:
  13443. case GGML_OP_CONT:
  13444. case GGML_OP_RESHAPE:
  13445. case GGML_OP_VIEW:
  13446. case GGML_OP_PERMUTE:
  13447. case GGML_OP_TRANSPOSE:
  13448. case GGML_OP_GET_ROWS:
  13449. case GGML_OP_GET_ROWS_BACK:
  13450. case GGML_OP_DIAG:
  13451. {
  13452. n_tasks = 1;
  13453. } break;
  13454. case GGML_OP_DIAG_MASK_ZERO:
  13455. case GGML_OP_DIAG_MASK_INF:
  13456. case GGML_OP_SOFT_MAX:
  13457. case GGML_OP_SOFT_MAX_BACK:
  13458. case GGML_OP_ROPE:
  13459. case GGML_OP_ROPE_BACK:
  13460. {
  13461. n_tasks = n_threads;
  13462. } break;
  13463. case GGML_OP_ALIBI:
  13464. {
  13465. n_tasks = 1; //TODO
  13466. } break;
  13467. case GGML_OP_CLAMP:
  13468. {
  13469. n_tasks = 1; //TODO
  13470. } break;
  13471. case GGML_OP_CONV_1D:
  13472. {
  13473. n_tasks = n_threads;
  13474. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13475. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13476. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13477. size_t cur = 0;
  13478. const int nk = node->src[0]->ne[0];
  13479. if (node->src[0]->type == GGML_TYPE_F16 &&
  13480. node->src[1]->type == GGML_TYPE_F32) {
  13481. cur = sizeof(ggml_fp16_t)*(
  13482. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13483. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13484. );
  13485. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13486. node->src[1]->type == GGML_TYPE_F32) {
  13487. cur = sizeof(float)*(
  13488. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13489. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13490. );
  13491. } else {
  13492. GGML_ASSERT(false);
  13493. }
  13494. work_size = MAX(work_size, cur);
  13495. } break;
  13496. case GGML_OP_CONV_2D:
  13497. {
  13498. n_tasks = n_threads;
  13499. const int64_t ne00 = node->src[0]->ne[0]; // W
  13500. const int64_t ne01 = node->src[0]->ne[1]; // H
  13501. const int64_t ne02 = node->src[0]->ne[2]; // C
  13502. const int64_t ne03 = node->src[0]->ne[3]; // N
  13503. const int64_t ne10 = node->src[1]->ne[0]; // W
  13504. const int64_t ne11 = node->src[1]->ne[1]; // H
  13505. const int64_t ne12 = node->src[1]->ne[2]; // C
  13506. const int64_t ne0 = node->ne[0];
  13507. const int64_t ne1 = node->ne[1];
  13508. const int64_t ne2 = node->ne[2];
  13509. const int64_t nk = ne00*ne01;
  13510. const int64_t ew0 = nk * ne02;
  13511. UNUSED(ne03);
  13512. UNUSED(ne2);
  13513. size_t cur = 0;
  13514. if (node->src[0]->type == GGML_TYPE_F16 &&
  13515. node->src[1]->type == GGML_TYPE_F32) {
  13516. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13517. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13518. node->src[1]->type == GGML_TYPE_F32) {
  13519. cur = sizeof(float)* (ne10*ne11*ne12);
  13520. } else {
  13521. GGML_ASSERT(false);
  13522. }
  13523. work_size = MAX(work_size, cur);
  13524. } break;
  13525. case GGML_OP_POOL_1D:
  13526. case GGML_OP_POOL_2D:
  13527. {
  13528. n_tasks = 1;
  13529. } break;
  13530. case GGML_OP_FLASH_ATTN:
  13531. {
  13532. n_tasks = n_threads;
  13533. size_t cur = 0;
  13534. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13535. if (node->src[1]->type == GGML_TYPE_F32) {
  13536. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13537. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13538. }
  13539. if (node->src[1]->type == GGML_TYPE_F16) {
  13540. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13541. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13542. }
  13543. work_size = MAX(work_size, cur);
  13544. } break;
  13545. case GGML_OP_FLASH_FF:
  13546. {
  13547. n_tasks = n_threads;
  13548. size_t cur = 0;
  13549. if (node->src[1]->type == GGML_TYPE_F32) {
  13550. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13551. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13552. }
  13553. if (node->src[1]->type == GGML_TYPE_F16) {
  13554. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13555. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13556. }
  13557. work_size = MAX(work_size, cur);
  13558. } break;
  13559. case GGML_OP_FLASH_ATTN_BACK:
  13560. {
  13561. n_tasks = n_threads;
  13562. size_t cur = 0;
  13563. const int64_t D = node->src[0]->ne[0];
  13564. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13565. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13566. if (node->src[1]->type == GGML_TYPE_F32) {
  13567. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13568. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13569. }
  13570. if (node->src[1]->type == GGML_TYPE_F16) {
  13571. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13572. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13573. }
  13574. work_size = MAX(work_size, cur);
  13575. } break;
  13576. case GGML_OP_WIN_PART:
  13577. case GGML_OP_WIN_UNPART:
  13578. case GGML_OP_MAP_UNARY:
  13579. case GGML_OP_MAP_BINARY:
  13580. case GGML_OP_MAP_CUSTOM1:
  13581. case GGML_OP_MAP_CUSTOM2:
  13582. case GGML_OP_MAP_CUSTOM3:
  13583. {
  13584. n_tasks = 1;
  13585. } break;
  13586. case GGML_OP_CROSS_ENTROPY_LOSS:
  13587. {
  13588. n_tasks = n_threads;
  13589. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13590. work_size = MAX(work_size, cur);
  13591. } break;
  13592. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13593. {
  13594. n_tasks = n_threads;
  13595. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13596. work_size = MAX(work_size, cur);
  13597. } break;
  13598. case GGML_OP_NONE:
  13599. {
  13600. n_tasks = 1;
  13601. } break;
  13602. case GGML_OP_COUNT:
  13603. {
  13604. GGML_ASSERT(false);
  13605. } break;
  13606. }
  13607. cplan.n_tasks[i] = n_tasks;
  13608. }
  13609. if (work_size > 0) {
  13610. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13611. }
  13612. cplan.n_threads = n_threads;
  13613. cplan.work_size = work_size;
  13614. cplan.work_data = NULL;
  13615. return cplan;
  13616. }
  13617. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13618. {
  13619. GGML_ASSERT(cplan);
  13620. GGML_ASSERT(cplan->n_threads > 0);
  13621. if (cplan->work_size > 0) {
  13622. GGML_ASSERT(cplan->work_data);
  13623. }
  13624. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13625. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13626. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13627. }
  13628. }
  13629. }
  13630. const int n_threads = cplan->n_threads;
  13631. struct ggml_compute_state_shared state_shared = {
  13632. /*.cgraph =*/ cgraph,
  13633. /*.cgraph_plan =*/ cplan,
  13634. /*.perf_node_start_cycles =*/ 0,
  13635. /*.perf_node_start_time_us =*/ 0,
  13636. /*.n_threads =*/ n_threads,
  13637. /*.n_active =*/ n_threads,
  13638. /*.node_n =*/ -1,
  13639. /*.abort_callback =*/ NULL,
  13640. /*.abort_callback_data =*/ NULL,
  13641. };
  13642. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13643. // create thread pool
  13644. if (n_threads > 1) {
  13645. for (int j = 1; j < n_threads; ++j) {
  13646. workers[j] = (struct ggml_compute_state) {
  13647. .thrd = 0,
  13648. .ith = j,
  13649. .shared = &state_shared,
  13650. };
  13651. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13652. GGML_ASSERT(rc == 0);
  13653. }
  13654. }
  13655. workers[0].ith = 0;
  13656. workers[0].shared = &state_shared;
  13657. const int64_t perf_start_cycles = ggml_perf_cycles();
  13658. const int64_t perf_start_time_us = ggml_perf_time_us();
  13659. // this is a work thread too
  13660. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13661. // don't leave affinity set on the main thread
  13662. clear_numa_thread_affinity();
  13663. // join or kill thread pool
  13664. if (n_threads > 1) {
  13665. for (int j = 1; j < n_threads; j++) {
  13666. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13667. GGML_ASSERT(rc == 0);
  13668. }
  13669. }
  13670. // performance stats (graph)
  13671. {
  13672. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13673. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13674. cgraph->perf_runs++;
  13675. cgraph->perf_cycles += perf_cycles_cur;
  13676. cgraph->perf_time_us += perf_time_us_cur;
  13677. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13678. __func__, cgraph->perf_runs,
  13679. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13680. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13681. (double) perf_time_us_cur / 1000.0,
  13682. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13683. }
  13684. return compute_status;
  13685. }
  13686. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13687. for (int i = 0; i < cgraph->n_nodes; i++) {
  13688. struct ggml_tensor * grad = cgraph->grads[i];
  13689. if (grad) {
  13690. ggml_set_zero(grad);
  13691. }
  13692. }
  13693. }
  13694. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13695. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13696. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13697. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13698. ggml_graph_compute(cgraph, &cplan);
  13699. }
  13700. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13701. for (int i = 0; i < cgraph->n_leafs; i++) {
  13702. struct ggml_tensor * leaf = cgraph->leafs[i];
  13703. if (strcmp(leaf->name, name) == 0) {
  13704. return leaf;
  13705. }
  13706. }
  13707. for (int i = 0; i < cgraph->n_nodes; i++) {
  13708. struct ggml_tensor * node = cgraph->nodes[i];
  13709. if (strcmp(node->name, name) == 0) {
  13710. return node;
  13711. }
  13712. }
  13713. return NULL;
  13714. }
  13715. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13716. const int64_t * ne = tensor->ne;
  13717. const size_t * nb = tensor->nb;
  13718. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13719. ggml_type_name(tensor->type),
  13720. ggml_op_name (tensor->op),
  13721. tensor->n_dims,
  13722. ne[0], ne[1], ne[2], ne[3],
  13723. nb[0], nb[1], nb[2], nb[3],
  13724. tensor->data,
  13725. tensor->name);
  13726. }
  13727. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13728. const int64_t * ne = tensor->ne;
  13729. const size_t * nb = tensor->nb;
  13730. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13731. arg,
  13732. ggml_type_name(tensor->type),
  13733. ggml_op_name (tensor->op),
  13734. tensor->n_dims,
  13735. ne[0], ne[1], ne[2], ne[3],
  13736. nb[0], nb[1], nb[2], nb[3],
  13737. tensor->data,
  13738. tensor->name);
  13739. }
  13740. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13741. uint64_t size_eval = 0;
  13742. // compute size of intermediate results
  13743. // TODO: does not take into account scratch buffers !!!!
  13744. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13745. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13746. }
  13747. // print
  13748. {
  13749. FILE * fout = stdout;
  13750. fprintf(fout, "\n");
  13751. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13752. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13753. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13754. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13755. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13756. // header
  13757. fprintf(fout, "\n");
  13758. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13759. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13760. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13761. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13762. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13763. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13764. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13765. }
  13766. // header
  13767. fprintf(fout, "\n");
  13768. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13769. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13770. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13771. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13772. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13773. if (cgraph->nodes[i]->src[j]) {
  13774. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13775. }
  13776. }
  13777. fprintf(fout, "\n");
  13778. }
  13779. fprintf(fout, "\n");
  13780. }
  13781. // write binary data
  13782. {
  13783. FILE * fout = fopen(fname, "wb");
  13784. if (!fout) {
  13785. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13786. return;
  13787. }
  13788. // header
  13789. {
  13790. const uint32_t magic = GGML_FILE_MAGIC;
  13791. const uint32_t version = GGML_FILE_VERSION;
  13792. const uint32_t n_leafs = cgraph->n_leafs;
  13793. const uint32_t nodes = cgraph->n_nodes;
  13794. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13795. fwrite(&version, sizeof(uint32_t), 1, fout);
  13796. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13797. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13798. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13799. }
  13800. // leafs
  13801. {
  13802. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13803. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13804. const uint32_t type = tensor->type;
  13805. const uint32_t op = tensor->op;
  13806. const uint32_t n_dims = tensor->n_dims;
  13807. fwrite(&type, sizeof(uint32_t), 1, fout);
  13808. fwrite(&op, sizeof(uint32_t), 1, fout);
  13809. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13810. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13811. const uint64_t ne = tensor->ne[j];
  13812. const uint64_t nb = tensor->nb[j];
  13813. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13814. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13815. }
  13816. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13817. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13818. // dump the data
  13819. // TODO: pad this to 32 byte boundary
  13820. {
  13821. const size_t size = ggml_nbytes(tensor);
  13822. fwrite(tensor->data, sizeof(char), size, fout);
  13823. }
  13824. }
  13825. }
  13826. // nodes
  13827. {
  13828. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13829. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13830. const uint32_t type = tensor->type;
  13831. const uint32_t op = tensor->op;
  13832. const uint32_t n_dims = tensor->n_dims;
  13833. fwrite(&type, sizeof(uint32_t), 1, fout);
  13834. fwrite(&op, sizeof(uint32_t), 1, fout);
  13835. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13836. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13837. const uint64_t ne = tensor->ne[j];
  13838. const uint64_t nb = tensor->nb[j];
  13839. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13840. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13841. }
  13842. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13843. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13844. // output the op arguments
  13845. {
  13846. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13847. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13848. args[j] = tensor->src[j];
  13849. }
  13850. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13851. if (args[j]) {
  13852. int32_t idx = -1;
  13853. // check if leaf
  13854. {
  13855. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13856. if (args[j] == cgraph->leafs[k]) {
  13857. idx = k;
  13858. break;
  13859. }
  13860. }
  13861. }
  13862. // check if node
  13863. if (idx == -1) {
  13864. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13865. if (args[j] == cgraph->nodes[k]) {
  13866. idx = GGML_MAX_NODES + k;
  13867. break;
  13868. }
  13869. }
  13870. }
  13871. if (idx == -1) {
  13872. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13873. return;
  13874. }
  13875. fwrite(&idx, sizeof(int32_t), 1, fout);
  13876. } else {
  13877. const int32_t nul = -1;
  13878. fwrite(&nul, sizeof(int32_t), 1, fout);
  13879. }
  13880. }
  13881. }
  13882. }
  13883. }
  13884. fclose(fout);
  13885. }
  13886. }
  13887. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13888. assert(*ctx_data == NULL);
  13889. assert(*ctx_eval == NULL);
  13890. struct ggml_cgraph result = { 0 };
  13891. struct ggml_tensor * data = NULL;
  13892. // read file into data
  13893. {
  13894. FILE * fin = fopen(fname, "rb");
  13895. if (!fin) {
  13896. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13897. return result;
  13898. }
  13899. size_t fsize = 0;
  13900. fseek(fin, 0, SEEK_END);
  13901. fsize = ftell(fin);
  13902. fseek(fin, 0, SEEK_SET);
  13903. // create the data context
  13904. {
  13905. const size_t overhead = 1*ggml_tensor_overhead();
  13906. struct ggml_init_params params = {
  13907. .mem_size = fsize + overhead,
  13908. .mem_buffer = NULL,
  13909. .no_alloc = false,
  13910. };
  13911. *ctx_data = ggml_init(params);
  13912. if (!*ctx_data) {
  13913. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13914. fclose(fin);
  13915. return result;
  13916. }
  13917. }
  13918. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13919. {
  13920. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13921. if (ret != fsize) {
  13922. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13923. fclose(fin);
  13924. return result;
  13925. }
  13926. }
  13927. fclose(fin);
  13928. }
  13929. // populate result
  13930. {
  13931. char * ptr = (char *) data->data;
  13932. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13933. if (magic != GGML_FILE_MAGIC) {
  13934. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13935. return result;
  13936. }
  13937. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13938. if (version != GGML_FILE_VERSION) {
  13939. fprintf(stderr, "%s: invalid version number\n", __func__);
  13940. return result;
  13941. }
  13942. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13943. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13944. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13945. result.n_leafs = n_leafs;
  13946. result.n_nodes = n_nodes;
  13947. // create the data context
  13948. {
  13949. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13950. struct ggml_init_params params = {
  13951. .mem_size = size_eval + overhead,
  13952. .mem_buffer = NULL,
  13953. .no_alloc = true,
  13954. };
  13955. *ctx_eval = ggml_init(params);
  13956. if (!*ctx_eval) {
  13957. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13958. return result;
  13959. }
  13960. }
  13961. // leafs
  13962. {
  13963. uint32_t type;
  13964. uint32_t op;
  13965. uint32_t n_dims;
  13966. for (uint32_t i = 0; i < n_leafs; ++i) {
  13967. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13968. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13969. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13970. int64_t ne[GGML_MAX_DIMS];
  13971. size_t nb[GGML_MAX_DIMS];
  13972. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13973. uint64_t ne_cur;
  13974. uint64_t nb_cur;
  13975. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13976. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13977. ne[j] = ne_cur;
  13978. nb[j] = nb_cur;
  13979. }
  13980. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13981. tensor->op = (enum ggml_op) op;
  13982. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13983. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  13984. tensor->data = (void *) ptr;
  13985. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13986. tensor->nb[j] = nb[j];
  13987. }
  13988. result.leafs[i] = tensor;
  13989. ptr += ggml_nbytes(tensor);
  13990. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13991. }
  13992. }
  13993. ggml_set_no_alloc(*ctx_eval, false);
  13994. // nodes
  13995. {
  13996. uint32_t type;
  13997. uint32_t op;
  13998. uint32_t n_dims;
  13999. for (uint32_t i = 0; i < n_nodes; ++i) {
  14000. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14001. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14002. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14003. enum ggml_op eop = (enum ggml_op) op;
  14004. int64_t ne[GGML_MAX_DIMS];
  14005. size_t nb[GGML_MAX_DIMS];
  14006. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14007. uint64_t ne_cur;
  14008. uint64_t nb_cur;
  14009. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14010. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14011. ne[j] = ne_cur;
  14012. nb[j] = nb_cur;
  14013. }
  14014. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14015. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14016. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14017. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14018. // parse args
  14019. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14020. const int32_t arg_idx = ptr_arg_idx[j];
  14021. if (arg_idx == -1) {
  14022. continue;
  14023. }
  14024. if (arg_idx < GGML_MAX_NODES) {
  14025. args[j] = result.leafs[arg_idx];
  14026. } else {
  14027. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14028. }
  14029. }
  14030. // create the tensor
  14031. // "view" operations are handled differently
  14032. // TODO: handle inplace ops - currently a copy is always made
  14033. struct ggml_tensor * tensor = NULL;
  14034. switch (eop) {
  14035. // TODO: implement other view ops
  14036. case GGML_OP_RESHAPE:
  14037. {
  14038. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14039. } break;
  14040. case GGML_OP_VIEW:
  14041. {
  14042. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14043. size_t offs;
  14044. memcpy(&offs, ptr_op_params, sizeof(offs));
  14045. tensor->data = ((char *) tensor->data) + offs;
  14046. } break;
  14047. case GGML_OP_TRANSPOSE:
  14048. {
  14049. tensor = ggml_transpose(*ctx_eval, args[0]);
  14050. } break;
  14051. case GGML_OP_PERMUTE:
  14052. {
  14053. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14054. } break;
  14055. default:
  14056. {
  14057. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14058. tensor->op = eop;
  14059. } break;
  14060. }
  14061. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14062. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14063. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14064. tensor->nb[j] = nb[j];
  14065. }
  14066. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14067. tensor->src[j] = args[j];
  14068. }
  14069. result.nodes[i] = tensor;
  14070. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14071. }
  14072. }
  14073. }
  14074. return result;
  14075. }
  14076. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14077. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14078. GGML_PRINT("=== GRAPH ===\n");
  14079. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14080. for (int i = 0; i < cgraph->n_nodes; i++) {
  14081. struct ggml_tensor * node = cgraph->nodes[i];
  14082. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14083. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14084. i,
  14085. node->ne[0], node->ne[1], node->ne[2],
  14086. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14087. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14088. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14089. (double) node->perf_time_us / 1000.0,
  14090. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14091. }
  14092. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14093. for (int i = 0; i < cgraph->n_leafs; i++) {
  14094. struct ggml_tensor * node = cgraph->leafs[i];
  14095. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14096. i,
  14097. node->ne[0], node->ne[1],
  14098. ggml_op_name(node->op));
  14099. }
  14100. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14101. if (perf_total_per_op_us[i] == 0) {
  14102. continue;
  14103. }
  14104. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14105. }
  14106. GGML_PRINT("========================================\n");
  14107. }
  14108. // check if node is part of the graph
  14109. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14110. if (cgraph == NULL) {
  14111. return true;
  14112. }
  14113. for (int i = 0; i < cgraph->n_nodes; i++) {
  14114. if (cgraph->nodes[i] == node) {
  14115. return true;
  14116. }
  14117. }
  14118. return false;
  14119. }
  14120. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14121. for (int i = 0; i < cgraph->n_nodes; i++) {
  14122. struct ggml_tensor * parent = cgraph->nodes[i];
  14123. if (parent->grad == node) {
  14124. return parent;
  14125. }
  14126. }
  14127. return NULL;
  14128. }
  14129. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14130. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14131. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14132. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14133. gparent0 ? (void *) gparent0 : (void *) parent,
  14134. gparent0 ? "g" : "x",
  14135. gparent ? (void *) gparent : (void *) node,
  14136. gparent ? "g" : "x",
  14137. gparent ? "empty" : "vee",
  14138. gparent ? "dashed" : "solid",
  14139. label);
  14140. }
  14141. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14142. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14143. (void *) parent, "x",
  14144. (void *) node, "x",
  14145. label);
  14146. }
  14147. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14148. char color[16];
  14149. FILE * fp = fopen(filename, "w");
  14150. GGML_ASSERT(fp);
  14151. fprintf(fp, "digraph G {\n");
  14152. fprintf(fp, " newrank = true;\n");
  14153. fprintf(fp, " rankdir = LR;\n");
  14154. for (int i = 0; i < gb->n_nodes; i++) {
  14155. struct ggml_tensor * node = gb->nodes[i];
  14156. if (ggml_graph_get_parent(gb, node) != NULL) {
  14157. continue;
  14158. }
  14159. if (node->is_param) {
  14160. snprintf(color, sizeof(color), "yellow");
  14161. } else if (node->grad) {
  14162. if (ggml_graph_find(gf, node)) {
  14163. snprintf(color, sizeof(color), "green");
  14164. } else {
  14165. snprintf(color, sizeof(color), "lightblue");
  14166. }
  14167. } else {
  14168. snprintf(color, sizeof(color), "white");
  14169. }
  14170. fprintf(fp, " \"%p\" [ "
  14171. "style = filled; fillcolor = %s; shape = record; "
  14172. "label=\"",
  14173. (void *) node, color);
  14174. if (strlen(node->name) > 0) {
  14175. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14176. } else {
  14177. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14178. }
  14179. if (node->n_dims == 2) {
  14180. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14181. } else {
  14182. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14183. }
  14184. if (node->grad) {
  14185. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14186. } else {
  14187. fprintf(fp, "\"; ]\n");
  14188. }
  14189. }
  14190. for (int i = 0; i < gb->n_leafs; i++) {
  14191. struct ggml_tensor * node = gb->leafs[i];
  14192. snprintf(color, sizeof(color), "pink");
  14193. fprintf(fp, " \"%p\" [ "
  14194. "style = filled; fillcolor = %s; shape = record; "
  14195. "label=\"<x>",
  14196. (void *) node, color);
  14197. if (strlen(node->name) > 0) {
  14198. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14199. } else {
  14200. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14201. }
  14202. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14203. if (ggml_nelements(node) < 5) {
  14204. fprintf(fp, " | (");
  14205. for (int j = 0; j < ggml_nelements(node); j++) {
  14206. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14207. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14208. }
  14209. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14210. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14211. }
  14212. else {
  14213. fprintf(fp, "#");
  14214. }
  14215. if (j < ggml_nelements(node) - 1) {
  14216. fprintf(fp, ", ");
  14217. }
  14218. }
  14219. fprintf(fp, ")");
  14220. }
  14221. fprintf(fp, "\"; ]\n");
  14222. }
  14223. for (int i = 0; i < gb->n_nodes; i++) {
  14224. struct ggml_tensor * node = gb->nodes[i];
  14225. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14226. if (node->src[j]) {
  14227. char label[16];
  14228. snprintf(label, sizeof(label), "src %d", j);
  14229. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14230. }
  14231. }
  14232. }
  14233. for (int i = 0; i < gb->n_leafs; i++) {
  14234. struct ggml_tensor * node = gb->leafs[i];
  14235. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14236. if (node->src[j]) {
  14237. char label[16];
  14238. snprintf(label, sizeof(label), "src %d", j);
  14239. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14240. }
  14241. }
  14242. }
  14243. fprintf(fp, "}\n");
  14244. fclose(fp);
  14245. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14246. }
  14247. ////////////////////////////////////////////////////////////////////////////////
  14248. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14249. int i = 0;
  14250. for (int p = 0; p < np; ++p) {
  14251. const int64_t ne = ggml_nelements(ps[p]) ;
  14252. // TODO: add function to set tensor from array
  14253. for (int64_t j = 0; j < ne; ++j) {
  14254. ggml_set_f32_1d(ps[p], j, x[i++]);
  14255. }
  14256. }
  14257. }
  14258. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14259. int i = 0;
  14260. for (int p = 0; p < np; ++p) {
  14261. const int64_t ne = ggml_nelements(ps[p]) ;
  14262. // TODO: add function to get all elements at once
  14263. for (int64_t j = 0; j < ne; ++j) {
  14264. x[i++] = ggml_get_f32_1d(ps[p], j);
  14265. }
  14266. }
  14267. }
  14268. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14269. int i = 0;
  14270. for (int p = 0; p < np; ++p) {
  14271. const int64_t ne = ggml_nelements(ps[p]) ;
  14272. // TODO: add function to get all elements at once
  14273. for (int64_t j = 0; j < ne; ++j) {
  14274. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14275. }
  14276. }
  14277. }
  14278. //
  14279. // ADAM
  14280. //
  14281. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14282. //
  14283. static enum ggml_opt_result ggml_opt_adam(
  14284. struct ggml_context * ctx,
  14285. struct ggml_opt_context * opt,
  14286. struct ggml_opt_params params,
  14287. struct ggml_tensor * f,
  14288. struct ggml_cgraph * gf,
  14289. struct ggml_cgraph * gb) {
  14290. GGML_ASSERT(ggml_is_scalar(f));
  14291. // these will store the parameters we want to optimize
  14292. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14293. int np = 0;
  14294. int nx = 0;
  14295. for (int i = 0; i < gf->n_nodes; ++i) {
  14296. if (gf->nodes[i]->is_param) {
  14297. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14298. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14299. ps[np++] = gf->nodes[i];
  14300. nx += ggml_nelements(gf->nodes[i]);
  14301. }
  14302. }
  14303. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14304. int iter = opt->iter;
  14305. ggml_opt_init(opt->ctx, opt, params, nx);
  14306. opt->iter = iter;
  14307. }
  14308. // constants
  14309. const float sched = params.adam.sched;
  14310. const float decay = params.adam.decay * sched;
  14311. const float alpha = params.adam.alpha * sched;
  14312. const float beta1 = params.adam.beta1;
  14313. const float beta2 = params.adam.beta2;
  14314. const float eps = params.adam.eps;
  14315. float * x = opt->adam.x->data; // view of the parameters
  14316. float * g1 = opt->adam.g1->data; // gradient
  14317. float * g2 = opt->adam.g2->data; // gradient squared
  14318. float * m = opt->adam.m->data; // first moment
  14319. float * v = opt->adam.v->data; // second moment
  14320. float * mh = opt->adam.mh->data; // first moment hat
  14321. float * vh = opt->adam.vh->data; // second moment hat
  14322. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14323. // update view
  14324. ggml_opt_get_params(np, ps, x);
  14325. // compute the function value
  14326. ggml_graph_reset (gf);
  14327. ggml_set_f32 (f->grad, 1.0f);
  14328. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14329. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14330. opt->adam.fx_best = opt->adam.fx_prev;
  14331. if (pf) {
  14332. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14333. }
  14334. // initialize
  14335. if (opt->just_initialized) {
  14336. opt->adam.n_no_improvement = 0;
  14337. opt->just_initialized = false;
  14338. }
  14339. float * fx_best = &opt->adam.fx_best;
  14340. float * fx_prev = &opt->adam.fx_prev;
  14341. int * n_no_improvement = &opt->adam.n_no_improvement;
  14342. int iter0 = opt->iter;
  14343. // run the optimizer
  14344. for (int t = 0; t < params.adam.n_iter; ++t) {
  14345. opt->iter = iter0 + t + 1;
  14346. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14347. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14348. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14349. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14350. for (int i = 0; i < np; ++i) {
  14351. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14352. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14353. }
  14354. const int64_t t_start_wall = ggml_time_us();
  14355. const int64_t t_start_cpu = ggml_cycles();
  14356. UNUSED(t_start_wall);
  14357. UNUSED(t_start_cpu);
  14358. {
  14359. // update the gradient
  14360. ggml_opt_get_grad(np, ps, g1);
  14361. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14362. ggml_vec_scale_f32(nx, m, beta1);
  14363. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14364. // g2 = g1^2
  14365. ggml_vec_sqr_f32 (nx, g2, g1);
  14366. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14367. ggml_vec_scale_f32(nx, v, beta2);
  14368. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14369. // m^hat = m_t / (1 - beta1^t)
  14370. // v^hat = v_t / (1 - beta2^t)
  14371. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14372. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14373. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14374. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14375. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14376. ggml_vec_cpy_f32 (nx, mh, m);
  14377. ggml_vec_cpy_f32 (nx, vh, v);
  14378. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14379. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14380. ggml_vec_sqrt_f32 (nx, vh, vh);
  14381. ggml_vec_acc1_f32 (nx, vh, eps);
  14382. ggml_vec_div_f32 (nx, mh, mh, vh);
  14383. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14384. ggml_vec_sub_f32 (nx, x, x, mh);
  14385. // update the parameters
  14386. ggml_opt_set_params(np, ps, x);
  14387. }
  14388. ggml_graph_reset (gf);
  14389. ggml_set_f32 (f->grad, 1.0f);
  14390. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14391. const float fx = ggml_get_f32_1d(f, 0);
  14392. // check convergence
  14393. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14394. GGML_PRINT_DEBUG("converged\n");
  14395. return GGML_OPT_OK;
  14396. }
  14397. // delta-based convergence test
  14398. if (pf != NULL) {
  14399. // need at least params.past iterations to start checking for convergence
  14400. if (params.past <= iter0 + t) {
  14401. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14402. if (fabsf(rate) < params.delta) {
  14403. return GGML_OPT_OK;
  14404. }
  14405. }
  14406. pf[(iter0 + t)%params.past] = fx;
  14407. }
  14408. // check for improvement
  14409. if (params.max_no_improvement > 0) {
  14410. if (fx_best[0] > fx) {
  14411. fx_best[0] = fx;
  14412. n_no_improvement[0] = 0;
  14413. } else {
  14414. ++n_no_improvement[0];
  14415. if (n_no_improvement[0] >= params.max_no_improvement) {
  14416. return GGML_OPT_OK;
  14417. }
  14418. }
  14419. }
  14420. fx_prev[0] = fx;
  14421. {
  14422. const int64_t t_end_cpu = ggml_cycles();
  14423. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14424. UNUSED(t_end_cpu);
  14425. const int64_t t_end_wall = ggml_time_us();
  14426. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14427. UNUSED(t_end_wall);
  14428. }
  14429. }
  14430. return GGML_OPT_DID_NOT_CONVERGE;
  14431. }
  14432. //
  14433. // L-BFGS
  14434. //
  14435. // the L-BFGS implementation below is based on the following implementation:
  14436. //
  14437. // https://github.com/chokkan/liblbfgs
  14438. //
  14439. struct ggml_lbfgs_iteration_data {
  14440. float alpha;
  14441. float ys;
  14442. float * s;
  14443. float * y;
  14444. };
  14445. static enum ggml_opt_result linesearch_backtracking(
  14446. struct ggml_context * ctx,
  14447. const struct ggml_opt_params * params,
  14448. int nx,
  14449. float * x,
  14450. float * fx,
  14451. float * g,
  14452. float * d,
  14453. float * step,
  14454. const float * xp,
  14455. struct ggml_tensor * f,
  14456. struct ggml_cgraph * gf,
  14457. struct ggml_cgraph * gb,
  14458. const int np,
  14459. struct ggml_tensor * ps[]) {
  14460. int count = 0;
  14461. float width = 0.0f;
  14462. float dg = 0.0f;
  14463. float finit = 0.0f;
  14464. float dginit = 0.0f;
  14465. float dgtest = 0.0f;
  14466. const float dec = 0.5f;
  14467. const float inc = 2.1f;
  14468. if (*step <= 0.f) {
  14469. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14470. }
  14471. // compute the initial gradient in the search direction
  14472. ggml_vec_dot_f32(nx, &dginit, g, d);
  14473. // make sure that d points to a descent direction
  14474. if (0 < dginit) {
  14475. return GGML_LINESEARCH_FAIL;
  14476. }
  14477. // initialize local variables
  14478. finit = *fx;
  14479. dgtest = params->lbfgs.ftol*dginit;
  14480. while (true) {
  14481. ggml_vec_cpy_f32(nx, x, xp);
  14482. ggml_vec_mad_f32(nx, x, d, *step);
  14483. // evaluate the function and gradient values
  14484. {
  14485. ggml_opt_set_params(np, ps, x);
  14486. ggml_graph_reset (gf);
  14487. ggml_set_f32 (f->grad, 1.0f);
  14488. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14489. ggml_opt_get_grad(np, ps, g);
  14490. *fx = ggml_get_f32_1d(f, 0);
  14491. }
  14492. ++count;
  14493. if (*fx > finit + (*step)*dgtest) {
  14494. width = dec;
  14495. } else {
  14496. // Armijo condition is satisfied
  14497. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14498. return count;
  14499. }
  14500. ggml_vec_dot_f32(nx, &dg, g, d);
  14501. // check the Wolfe condition
  14502. if (dg < params->lbfgs.wolfe * dginit) {
  14503. width = inc;
  14504. } else {
  14505. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14506. // regular Wolfe conditions
  14507. return count;
  14508. }
  14509. if(dg > -params->lbfgs.wolfe*dginit) {
  14510. width = dec;
  14511. } else {
  14512. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14513. return count;
  14514. }
  14515. return count;
  14516. }
  14517. }
  14518. if (*step < params->lbfgs.min_step) {
  14519. return GGML_LINESEARCH_MINIMUM_STEP;
  14520. }
  14521. if (*step > params->lbfgs.max_step) {
  14522. return GGML_LINESEARCH_MAXIMUM_STEP;
  14523. }
  14524. if (params->lbfgs.max_linesearch <= count) {
  14525. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14526. }
  14527. (*step) *= width;
  14528. }
  14529. return GGML_LINESEARCH_FAIL;
  14530. }
  14531. static enum ggml_opt_result ggml_opt_lbfgs(
  14532. struct ggml_context * ctx,
  14533. struct ggml_opt_context * opt,
  14534. struct ggml_opt_params params,
  14535. struct ggml_tensor * f,
  14536. struct ggml_cgraph * gf,
  14537. struct ggml_cgraph * gb) {
  14538. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14539. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14540. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14541. return GGML_OPT_INVALID_WOLFE;
  14542. }
  14543. }
  14544. const int m = params.lbfgs.m;
  14545. // these will store the parameters we want to optimize
  14546. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14547. int np = 0;
  14548. int nx = 0;
  14549. for (int i = 0; i < gf->n_nodes; ++i) {
  14550. if (gf->nodes[i]->is_param) {
  14551. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14552. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14553. ps[np++] = gf->nodes[i];
  14554. nx += ggml_nelements(gf->nodes[i]);
  14555. }
  14556. }
  14557. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14558. int iter = opt->iter;
  14559. ggml_opt_init(ctx, opt, params, nx);
  14560. opt->iter = iter;
  14561. }
  14562. float * x = opt->lbfgs.x->data; // current parameters
  14563. float * xp = opt->lbfgs.xp->data; // previous parameters
  14564. float * g = opt->lbfgs.g->data; // current gradient
  14565. float * gp = opt->lbfgs.gp->data; // previous gradient
  14566. float * d = opt->lbfgs.d->data; // search direction
  14567. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14568. float fx = 0.0f; // cost function value
  14569. float xnorm = 0.0f; // ||x||
  14570. float gnorm = 0.0f; // ||g||
  14571. // initialize x from the graph nodes
  14572. ggml_opt_get_params(np, ps, x);
  14573. // the L-BFGS memory
  14574. float * lm_alpha = opt->lbfgs.lmal->data;
  14575. float * lm_ys = opt->lbfgs.lmys->data;
  14576. float * lm_s = opt->lbfgs.lms->data;
  14577. float * lm_y = opt->lbfgs.lmy->data;
  14578. // evaluate the function value and its gradient
  14579. {
  14580. ggml_opt_set_params(np, ps, x);
  14581. ggml_graph_reset (gf);
  14582. ggml_set_f32 (f->grad, 1.0f);
  14583. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14584. ggml_opt_get_grad(np, ps, g);
  14585. fx = ggml_get_f32_1d(f, 0);
  14586. }
  14587. // search direction = -gradient
  14588. ggml_vec_neg_f32(nx, d, g);
  14589. // ||x||, ||g||
  14590. ggml_vec_norm_f32(nx, &xnorm, x);
  14591. ggml_vec_norm_f32(nx, &gnorm, g);
  14592. if (xnorm < 1.0f) {
  14593. xnorm = 1.0f;
  14594. }
  14595. // already optimized
  14596. if (gnorm/xnorm <= params.lbfgs.eps) {
  14597. return GGML_OPT_OK;
  14598. }
  14599. if (opt->just_initialized) {
  14600. if (pf) {
  14601. pf[0] = fx;
  14602. }
  14603. opt->lbfgs.fx_best = fx;
  14604. // initial step
  14605. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14606. opt->lbfgs.j = 0;
  14607. opt->lbfgs.k = 1;
  14608. opt->lbfgs.end = 0;
  14609. opt->lbfgs.n_no_improvement = 0;
  14610. opt->just_initialized = false;
  14611. }
  14612. float * fx_best = &opt->lbfgs.fx_best;
  14613. float * step = &opt->lbfgs.step;
  14614. int * j = &opt->lbfgs.j;
  14615. int * k = &opt->lbfgs.k;
  14616. int * end = &opt->lbfgs.end;
  14617. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14618. int ls = 0;
  14619. int bound = 0;
  14620. float ys = 0.0f;
  14621. float yy = 0.0f;
  14622. float beta = 0.0f;
  14623. int it = 0;
  14624. while (true) {
  14625. // store the current position and gradient vectors
  14626. ggml_vec_cpy_f32(nx, xp, x);
  14627. ggml_vec_cpy_f32(nx, gp, g);
  14628. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14629. if (ls < 0) {
  14630. // linesearch failed - go back to the previous point and return
  14631. ggml_vec_cpy_f32(nx, x, xp);
  14632. ggml_vec_cpy_f32(nx, g, gp);
  14633. return ls;
  14634. }
  14635. ggml_vec_norm_f32(nx, &xnorm, x);
  14636. ggml_vec_norm_f32(nx, &gnorm, g);
  14637. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14638. if (xnorm < 1.0f) {
  14639. xnorm = 1.0f;
  14640. }
  14641. if (gnorm/xnorm <= params.lbfgs.eps) {
  14642. // converged
  14643. return GGML_OPT_OK;
  14644. }
  14645. // delta-based convergence test
  14646. if (pf != NULL) {
  14647. // need at least params.past iterations to start checking for convergence
  14648. if (params.past <= k[0]) {
  14649. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14650. if (fabsf(rate) < params.delta) {
  14651. return GGML_OPT_OK;
  14652. }
  14653. }
  14654. pf[k[0]%params.past] = fx;
  14655. }
  14656. // check for improvement
  14657. if (params.max_no_improvement > 0) {
  14658. if (fx < fx_best[0]) {
  14659. fx_best[0] = fx;
  14660. n_no_improvement[0] = 0;
  14661. } else {
  14662. n_no_improvement[0]++;
  14663. if (n_no_improvement[0] >= params.max_no_improvement) {
  14664. return GGML_OPT_OK;
  14665. }
  14666. }
  14667. }
  14668. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14669. // reached the maximum number of iterations
  14670. return GGML_OPT_DID_NOT_CONVERGE;
  14671. }
  14672. // update vectors s and y:
  14673. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14674. // y_{k+1} = g_{k+1} - g_{k}.
  14675. //
  14676. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14677. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14678. // compute scalars ys and yy:
  14679. // ys = y^t \cdot s -> 1 / \rho.
  14680. // yy = y^t \cdot y.
  14681. //
  14682. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14683. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14684. lm_ys[end[0]] = ys;
  14685. // find new search direction
  14686. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14687. bound = (m <= k[0]) ? m : k[0];
  14688. k[0]++;
  14689. it++;
  14690. end[0] = (end[0] + 1)%m;
  14691. // initialize search direction with -g
  14692. ggml_vec_neg_f32(nx, d, g);
  14693. j[0] = end[0];
  14694. for (int i = 0; i < bound; ++i) {
  14695. j[0] = (j[0] + m - 1) % m;
  14696. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14697. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14698. lm_alpha[j[0]] /= lm_ys[j[0]];
  14699. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14700. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14701. }
  14702. ggml_vec_scale_f32(nx, d, ys/yy);
  14703. for (int i = 0; i < bound; ++i) {
  14704. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14705. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14706. beta /= lm_ys[j[0]];
  14707. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14708. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14709. j[0] = (j[0] + 1)%m;
  14710. }
  14711. step[0] = 1.0;
  14712. }
  14713. return GGML_OPT_DID_NOT_CONVERGE;
  14714. }
  14715. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14716. struct ggml_opt_params result;
  14717. switch (type) {
  14718. case GGML_OPT_ADAM:
  14719. {
  14720. result = (struct ggml_opt_params) {
  14721. .type = GGML_OPT_ADAM,
  14722. .n_threads = 1,
  14723. .past = 0,
  14724. .delta = 1e-5f,
  14725. .max_no_improvement = 100,
  14726. .print_forward_graph = true,
  14727. .print_backward_graph = true,
  14728. .adam = {
  14729. .n_iter = 10000,
  14730. .sched = 1.000f,
  14731. .decay = 0.001f,
  14732. .alpha = 0.001f,
  14733. .beta1 = 0.9f,
  14734. .beta2 = 0.999f,
  14735. .eps = 1e-8f,
  14736. .eps_f = 1e-5f,
  14737. .eps_g = 1e-3f,
  14738. },
  14739. };
  14740. } break;
  14741. case GGML_OPT_LBFGS:
  14742. {
  14743. result = (struct ggml_opt_params) {
  14744. .type = GGML_OPT_LBFGS,
  14745. .n_threads = 1,
  14746. .past = 0,
  14747. .delta = 1e-5f,
  14748. .max_no_improvement = 0,
  14749. .print_forward_graph = true,
  14750. .print_backward_graph = true,
  14751. .lbfgs = {
  14752. .m = 6,
  14753. .n_iter = 100,
  14754. .max_linesearch = 20,
  14755. .eps = 1e-5f,
  14756. .ftol = 1e-4f,
  14757. .wolfe = 0.9f,
  14758. .min_step = 1e-20f,
  14759. .max_step = 1e+20f,
  14760. .linesearch = GGML_LINESEARCH_DEFAULT,
  14761. },
  14762. };
  14763. } break;
  14764. }
  14765. return result;
  14766. }
  14767. GGML_API void ggml_opt_init(
  14768. struct ggml_context * ctx,
  14769. struct ggml_opt_context * opt,
  14770. struct ggml_opt_params params,
  14771. int64_t nx) {
  14772. opt->ctx = ctx;
  14773. opt->params = params;
  14774. opt->iter = 0;
  14775. opt->nx = nx;
  14776. opt->just_initialized = true;
  14777. switch (opt->params.type) {
  14778. case GGML_OPT_ADAM:
  14779. {
  14780. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14781. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14782. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14783. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14784. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14785. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14786. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14787. opt->adam.pf = params.past > 0
  14788. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14789. : NULL;
  14790. ggml_set_zero(opt->adam.x);
  14791. ggml_set_zero(opt->adam.g1);
  14792. ggml_set_zero(opt->adam.g2);
  14793. ggml_set_zero(opt->adam.m);
  14794. ggml_set_zero(opt->adam.v);
  14795. ggml_set_zero(opt->adam.mh);
  14796. ggml_set_zero(opt->adam.vh);
  14797. if (opt->adam.pf) {
  14798. ggml_set_zero(opt->adam.pf);
  14799. }
  14800. } break;
  14801. case GGML_OPT_LBFGS:
  14802. {
  14803. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14804. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14805. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14806. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14807. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14808. opt->lbfgs.pf = params.past > 0
  14809. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14810. : NULL;
  14811. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14812. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14813. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14814. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14815. ggml_set_zero(opt->lbfgs.x);
  14816. ggml_set_zero(opt->lbfgs.xp);
  14817. ggml_set_zero(opt->lbfgs.g);
  14818. ggml_set_zero(opt->lbfgs.gp);
  14819. ggml_set_zero(opt->lbfgs.d);
  14820. if (opt->lbfgs.pf) {
  14821. ggml_set_zero(opt->lbfgs.pf);
  14822. }
  14823. ggml_set_zero(opt->lbfgs.lmal);
  14824. ggml_set_zero(opt->lbfgs.lmys);
  14825. ggml_set_zero(opt->lbfgs.lms);
  14826. ggml_set_zero(opt->lbfgs.lmy);
  14827. } break;
  14828. }
  14829. }
  14830. enum ggml_opt_result ggml_opt(
  14831. struct ggml_context * ctx,
  14832. struct ggml_opt_params params,
  14833. struct ggml_tensor * f) {
  14834. bool free_ctx = false;
  14835. if (ctx == NULL) {
  14836. struct ggml_init_params params_ctx = {
  14837. .mem_size = 16*1024*1024,
  14838. .mem_buffer = NULL,
  14839. .no_alloc = false,
  14840. };
  14841. ctx = ggml_init(params_ctx);
  14842. if (ctx == NULL) {
  14843. return GGML_OPT_NO_CONTEXT;
  14844. }
  14845. free_ctx = true;
  14846. }
  14847. enum ggml_opt_result result = GGML_OPT_OK;
  14848. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14849. ggml_opt_init(ctx, opt, params, 0);
  14850. result = ggml_opt_resume(ctx, opt, f);
  14851. if (free_ctx) {
  14852. ggml_free(ctx);
  14853. }
  14854. return result;
  14855. }
  14856. enum ggml_opt_result ggml_opt_resume(
  14857. struct ggml_context * ctx,
  14858. struct ggml_opt_context * opt,
  14859. struct ggml_tensor * f) {
  14860. // build forward + backward compute graphs
  14861. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14862. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14863. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14864. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14865. *gf = ggml_build_forward (f);
  14866. *gb = ggml_build_backward(ctx, gf, true);
  14867. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14868. }
  14869. enum ggml_opt_result ggml_opt_resume_g(
  14870. struct ggml_context * ctx,
  14871. struct ggml_opt_context * opt,
  14872. struct ggml_tensor * f,
  14873. struct ggml_cgraph * gf,
  14874. struct ggml_cgraph * gb) {
  14875. // build forward + backward compute graphs
  14876. enum ggml_opt_result result = GGML_OPT_OK;
  14877. switch (opt->params.type) {
  14878. case GGML_OPT_ADAM:
  14879. {
  14880. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14881. } break;
  14882. case GGML_OPT_LBFGS:
  14883. {
  14884. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14885. } break;
  14886. }
  14887. if (opt->params.print_forward_graph) {
  14888. ggml_graph_print (gf);
  14889. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14890. }
  14891. if (opt->params.print_backward_graph) {
  14892. ggml_graph_print (gb);
  14893. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14894. }
  14895. return result;
  14896. }
  14897. ////////////////////////////////////////////////////////////////////////////////
  14898. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14899. assert(k % QK4_0 == 0);
  14900. const int nb = k / QK4_0;
  14901. for (int b = 0; b < n; b += k) {
  14902. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14903. quantize_row_q4_0_reference(src + b, y, k);
  14904. for (int i = 0; i < nb; i++) {
  14905. for (int j = 0; j < QK4_0; j += 2) {
  14906. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14907. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14908. hist[vi0]++;
  14909. hist[vi1]++;
  14910. }
  14911. }
  14912. }
  14913. return (n/QK4_0*sizeof(block_q4_0));
  14914. }
  14915. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14916. assert(k % QK4_1 == 0);
  14917. const int nb = k / QK4_1;
  14918. for (int b = 0; b < n; b += k) {
  14919. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14920. quantize_row_q4_1_reference(src + b, y, k);
  14921. for (int i = 0; i < nb; i++) {
  14922. for (int j = 0; j < QK4_1; j += 2) {
  14923. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14924. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14925. hist[vi0]++;
  14926. hist[vi1]++;
  14927. }
  14928. }
  14929. }
  14930. return (n/QK4_1*sizeof(block_q4_1));
  14931. }
  14932. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14933. assert(k % QK5_0 == 0);
  14934. const int nb = k / QK5_0;
  14935. for (int b = 0; b < n; b += k) {
  14936. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14937. quantize_row_q5_0_reference(src + b, y, k);
  14938. for (int i = 0; i < nb; i++) {
  14939. uint32_t qh;
  14940. memcpy(&qh, &y[i].qh, sizeof(qh));
  14941. for (int j = 0; j < QK5_0; j += 2) {
  14942. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14943. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14944. // cast to 16 bins
  14945. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14946. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14947. hist[vi0]++;
  14948. hist[vi1]++;
  14949. }
  14950. }
  14951. }
  14952. return (n/QK5_0*sizeof(block_q5_0));
  14953. }
  14954. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14955. assert(k % QK5_1 == 0);
  14956. const int nb = k / QK5_1;
  14957. for (int b = 0; b < n; b += k) {
  14958. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14959. quantize_row_q5_1_reference(src + b, y, k);
  14960. for (int i = 0; i < nb; i++) {
  14961. uint32_t qh;
  14962. memcpy(&qh, &y[i].qh, sizeof(qh));
  14963. for (int j = 0; j < QK5_1; j += 2) {
  14964. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14965. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14966. // cast to 16 bins
  14967. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14968. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14969. hist[vi0]++;
  14970. hist[vi1]++;
  14971. }
  14972. }
  14973. }
  14974. return (n/QK5_1*sizeof(block_q5_1));
  14975. }
  14976. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14977. assert(k % QK8_0 == 0);
  14978. const int nb = k / QK8_0;
  14979. for (int b = 0; b < n; b += k) {
  14980. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14981. quantize_row_q8_0_reference(src + b, y, k);
  14982. for (int i = 0; i < nb; i++) {
  14983. for (int j = 0; j < QK8_0; ++j) {
  14984. const int8_t vi = y[i].qs[j];
  14985. hist[vi/16 + 8]++;
  14986. }
  14987. }
  14988. }
  14989. return (n/QK8_0*sizeof(block_q8_0));
  14990. }
  14991. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14992. size_t result = 0;
  14993. switch (type) {
  14994. case GGML_TYPE_Q4_0:
  14995. {
  14996. GGML_ASSERT(start % QK4_0 == 0);
  14997. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14998. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14999. } break;
  15000. case GGML_TYPE_Q4_1:
  15001. {
  15002. GGML_ASSERT(start % QK4_1 == 0);
  15003. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15004. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15005. } break;
  15006. case GGML_TYPE_Q5_0:
  15007. {
  15008. GGML_ASSERT(start % QK5_0 == 0);
  15009. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15010. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15011. } break;
  15012. case GGML_TYPE_Q5_1:
  15013. {
  15014. GGML_ASSERT(start % QK5_1 == 0);
  15015. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15016. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15017. } break;
  15018. case GGML_TYPE_Q8_0:
  15019. {
  15020. GGML_ASSERT(start % QK8_0 == 0);
  15021. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15022. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15023. } break;
  15024. #ifdef GGML_USE_K_QUANTS
  15025. case GGML_TYPE_Q2_K:
  15026. {
  15027. GGML_ASSERT(start % QK_K == 0);
  15028. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15029. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15030. } break;
  15031. case GGML_TYPE_Q3_K:
  15032. {
  15033. GGML_ASSERT(start % QK_K == 0);
  15034. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15035. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15036. } break;
  15037. case GGML_TYPE_Q4_K:
  15038. {
  15039. GGML_ASSERT(start % QK_K == 0);
  15040. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15041. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15042. } break;
  15043. case GGML_TYPE_Q5_K:
  15044. {
  15045. GGML_ASSERT(start % QK_K == 0);
  15046. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15047. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15048. } break;
  15049. case GGML_TYPE_Q6_K:
  15050. {
  15051. GGML_ASSERT(start % QK_K == 0);
  15052. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15053. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15054. } break;
  15055. #endif
  15056. case GGML_TYPE_F16:
  15057. {
  15058. int elemsize = sizeof(ggml_fp16_t);
  15059. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15060. result = n * elemsize;
  15061. } break;
  15062. case GGML_TYPE_F32:
  15063. {
  15064. int elemsize = sizeof(float);
  15065. result = n * elemsize;
  15066. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15067. } break;
  15068. default:
  15069. assert(false);
  15070. }
  15071. return result;
  15072. }
  15073. ////////////////////////////////////////////////////////////////////////////////
  15074. int ggml_cpu_has_avx(void) {
  15075. #if defined(__AVX__)
  15076. return 1;
  15077. #else
  15078. return 0;
  15079. #endif
  15080. }
  15081. int ggml_cpu_has_avx2(void) {
  15082. #if defined(__AVX2__)
  15083. return 1;
  15084. #else
  15085. return 0;
  15086. #endif
  15087. }
  15088. int ggml_cpu_has_avx512(void) {
  15089. #if defined(__AVX512F__)
  15090. return 1;
  15091. #else
  15092. return 0;
  15093. #endif
  15094. }
  15095. int ggml_cpu_has_avx512_vbmi(void) {
  15096. #if defined(__AVX512VBMI__)
  15097. return 1;
  15098. #else
  15099. return 0;
  15100. #endif
  15101. }
  15102. int ggml_cpu_has_avx512_vnni(void) {
  15103. #if defined(__AVX512VNNI__)
  15104. return 1;
  15105. #else
  15106. return 0;
  15107. #endif
  15108. }
  15109. int ggml_cpu_has_fma(void) {
  15110. #if defined(__FMA__)
  15111. return 1;
  15112. #else
  15113. return 0;
  15114. #endif
  15115. }
  15116. int ggml_cpu_has_neon(void) {
  15117. #if defined(__ARM_NEON)
  15118. return 1;
  15119. #else
  15120. return 0;
  15121. #endif
  15122. }
  15123. int ggml_cpu_has_arm_fma(void) {
  15124. #if defined(__ARM_FEATURE_FMA)
  15125. return 1;
  15126. #else
  15127. return 0;
  15128. #endif
  15129. }
  15130. int ggml_cpu_has_f16c(void) {
  15131. #if defined(__F16C__)
  15132. return 1;
  15133. #else
  15134. return 0;
  15135. #endif
  15136. }
  15137. int ggml_cpu_has_fp16_va(void) {
  15138. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15139. return 1;
  15140. #else
  15141. return 0;
  15142. #endif
  15143. }
  15144. int ggml_cpu_has_wasm_simd(void) {
  15145. #if defined(__wasm_simd128__)
  15146. return 1;
  15147. #else
  15148. return 0;
  15149. #endif
  15150. }
  15151. int ggml_cpu_has_blas(void) {
  15152. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15153. return 1;
  15154. #else
  15155. return 0;
  15156. #endif
  15157. }
  15158. int ggml_cpu_has_cublas(void) {
  15159. #if defined(GGML_USE_CUBLAS)
  15160. return 1;
  15161. #else
  15162. return 0;
  15163. #endif
  15164. }
  15165. int ggml_cpu_has_clblast(void) {
  15166. #if defined(GGML_USE_CLBLAST)
  15167. return 1;
  15168. #else
  15169. return 0;
  15170. #endif
  15171. }
  15172. int ggml_cpu_has_gpublas(void) {
  15173. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15174. }
  15175. int ggml_cpu_has_sse3(void) {
  15176. #if defined(__SSE3__)
  15177. return 1;
  15178. #else
  15179. return 0;
  15180. #endif
  15181. }
  15182. int ggml_cpu_has_vsx(void) {
  15183. #if defined(__POWER9_VECTOR__)
  15184. return 1;
  15185. #else
  15186. return 0;
  15187. #endif
  15188. }
  15189. ////////////////////////////////////////////////////////////////////////////////