123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414 |
- package llama
- /*
- #cgo CPPFLAGS: -O3 -Wall -Wextra -Wno-unused-function -Wno-unused-variable -DNDEBUG -DGGML_USE_K_QUANTS
- #cgo CXXFLAGS: -std=gnu++11
- #cgo darwin CPPFLAGS: -DGGML_USE_ACCELERATE
- #cgo darwin,arm64 CPPFLAGS: -DGGML_USE_METAL -DGGML_METAL_NDEBUG
- #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
- #include <stdlib.h>
- #include "llama.h"
- struct llama_sample_options
- {
- float repeat_penalty;
- float frequency_penalty;
- float presence_penalty;
- float temperature;
- int32_t top_k;
- float top_p;
- float tfs_z;
- float typical_p;
- int mirostat;
- float mirostat_tau;
- float mirostat_eta;
- bool penalize_newline;
- };
- llama_token llama_sample(
- struct llama_context *ctx,
- struct llama_token_data *candidates,
- size_t n_candidates,
- const llama_token *last_tokens,
- size_t n_last_tokens,
- struct llama_sample_options *opts)
- {
- llama_token_data_array candidates_p = {
- candidates,
- n_candidates,
- false,
- };
- struct llama_token_data newline = candidates_p.data[llama_token_nl()];
- llama_sample_repetition_penalty(
- ctx, &candidates_p,
- last_tokens, n_last_tokens,
- opts->repeat_penalty);
- llama_sample_frequency_and_presence_penalties(
- ctx, &candidates_p,
- last_tokens, n_last_tokens,
- opts->frequency_penalty, opts->presence_penalty);
- if (!opts->penalize_newline) {
- candidates_p.data[llama_token_nl()] = newline;
- }
- if (opts->temperature <= 0) {
- return llama_sample_token_greedy(ctx, &candidates_p);
- }
- if (opts->mirostat == 1) {
- int mirostat_m = 100;
- float mirostat_mu = 2.0f * opts->mirostat_tau;
- llama_sample_temperature(ctx, &candidates_p, opts->temperature);
- return llama_sample_token_mirostat(
- ctx, &candidates_p,
- opts->mirostat_tau, opts->mirostat_eta,
- mirostat_m, &mirostat_mu);
- } else if (opts->mirostat == 2) {
- float mirostat_mu = 2.0f * opts->mirostat_tau;
- llama_sample_temperature(ctx, &candidates_p, opts->temperature);
- return llama_sample_token_mirostat_v2(
- ctx, &candidates_p,
- opts->mirostat_tau, opts->mirostat_eta,
- &mirostat_mu);
- } else {
- llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
- llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
- llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
- llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
- llama_sample_temperature(ctx, &candidates_p, opts->temperature);
- return llama_sample_token(ctx, &candidates_p);
- }
- }
- */
- import "C"
- import (
- "bytes"
- "embed"
- "errors"
- "fmt"
- "io"
- "log"
- "os"
- "strings"
- "sync"
- "unicode/utf8"
- "unsafe"
- "github.com/jmorganca/ollama/api"
- )
- //go:embed ggml-metal.metal
- var fs embed.FS
- type LLM struct {
- params *C.struct_llama_context_params
- model *C.struct_llama_model
- ctx *C.struct_llama_context
- last []C.llama_token
- embd []C.llama_token
- cursor int
- mu sync.Mutex
- gc bool
- api.Options
- }
- func New(model string, opts api.Options) (*LLM, error) {
- if _, err := os.Stat(model); err != nil {
- return nil, err
- }
- llm := LLM{Options: opts}
- C.llama_backend_init(C.bool(llm.UseNUMA))
- params := C.llama_context_default_params()
- params.seed = C.uint(llm.Seed)
- params.n_ctx = C.int(llm.NumCtx)
- params.n_batch = C.int(llm.NumBatch)
- params.n_gqa = C.int(llm.NumGQA)
- params.n_gpu_layers = C.int(llm.NumGPU)
- params.main_gpu = C.int(llm.MainGPU)
- params.low_vram = C.bool(llm.LowVRAM)
- params.f16_kv = C.bool(llm.F16KV)
- params.logits_all = C.bool(llm.LogitsAll)
- params.vocab_only = C.bool(llm.VocabOnly)
- params.use_mmap = C.bool(llm.UseMMap)
- params.use_mlock = C.bool(llm.UseMLock)
- params.embedding = C.bool(llm.EmbeddingOnly)
- llm.params = ¶ms
- cModel := C.CString(model)
- defer C.free(unsafe.Pointer(cModel))
- llm.model = C.llama_load_model_from_file(cModel, params)
- if llm.model == nil {
- return nil, errors.New("failed to load model")
- }
- llm.ctx = C.llama_new_context_with_model(llm.model, params)
- if llm.ctx == nil {
- return nil, errors.New("failed to create context")
- }
- // warm up the model
- bos := []C.llama_token{C.llama_token_bos()}
- C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
- C.llama_reset_timings(llm.ctx)
- return &llm, nil
- }
- func (llm *LLM) Close() {
- llm.gc = true
- llm.mu.Lock()
- defer llm.mu.Unlock()
- defer C.llama_free_model(llm.model)
- defer C.llama_free(llm.ctx)
- C.llama_print_timings(llm.ctx)
- }
- var errNeedMoreData = errors.New("need more data")
- func (llm *LLM) Predict(ctx []int, prompt string, fn func(api.GenerateResponse)) error {
- C.llama_reset_timings(llm.ctx)
- tokens := make([]C.llama_token, len(ctx))
- for i := range tokens {
- tokens[i] = C.llama_token(ctx[i])
- }
- if len(tokens) == 0 {
- tokens = llm.tokenize(" ")
- }
- llm.marshalPrompt(tokens, prompt)
- C.llama_set_rng_seed(llm.ctx, C.uint(llm.Seed))
- var b bytes.Buffer
- for {
- token, err := llm.next()
- if llm.gc {
- return nil
- } else if errors.Is(err, io.EOF) {
- break
- } else if err != nil {
- return err
- }
- b.WriteString(llm.detokenize(token))
- if err := llm.checkStopConditions(b); err != nil {
- if errors.Is(err, io.EOF) {
- break
- } else if errors.Is(err, errNeedMoreData) {
- continue
- }
- return err
- }
- if utf8.Valid(b.Bytes()) || b.Len() >= utf8.UTFMax {
- fn(api.GenerateResponse{Response: b.String()})
- b.Reset()
- }
- }
- last := make([]int, 0, len(llm.last))
- for _, i := range llm.last {
- if i != 0 {
- last = append(last, int(i))
- }
- }
- timings := C.llama_get_timings(llm.ctx)
- fn(api.GenerateResponse{
- Done: true,
- Context: last,
- SampleCount: int(timings.n_sample),
- SampleDuration: parseDurationMs(float64(timings.t_sample_ms)),
- PromptEvalCount: int(timings.n_p_eval),
- PromptEvalDuration: parseDurationMs(float64(timings.t_p_eval_ms)),
- EvalCount: int(timings.n_eval),
- EvalDuration: parseDurationMs(float64(timings.t_eval_ms)),
- })
- return nil
- }
- func (llm *LLM) checkStopConditions(b bytes.Buffer) error {
- for _, stopCondition := range llm.Stop {
- if stopCondition == b.String() {
- return io.EOF
- } else if strings.HasPrefix(stopCondition, b.String()) {
- return errNeedMoreData
- }
- }
- return nil
- }
- func (llm *LLM) marshalPrompt(ctx []C.llama_token, prompt string) []C.llama_token {
- tokens := append(ctx, llm.tokenize(prompt)...)
- if llm.NumKeep < 0 {
- llm.NumKeep = len(tokens)
- }
- // min(llm.NumCtx - 4, llm.NumKeep)
- if llm.NumCtx-4 < llm.NumKeep {
- llm.NumKeep = llm.NumCtx - 4
- }
- if len(tokens) >= llm.NumCtx {
- // truncate input
- numLeft := (llm.NumCtx - llm.NumKeep) / 2
- truncated := tokens[:llm.NumKeep]
- erasedBlocks := (len(tokens) - llm.NumKeep - numLeft - 1) / numLeft
- truncated = append(truncated, tokens[llm.NumKeep+erasedBlocks*numLeft:]...)
- copy(llm.last, tokens[len(tokens)-llm.NumCtx:])
- tokens = truncated
- log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated))
- } else {
- llm.last = make([]C.llama_token, llm.NumCtx-len(tokens))
- llm.last = append(llm.last, tokens...)
- }
- var i int
- for i = 0; i < len(llm.embd) && i < len(tokens) && llm.embd[i] == tokens[i]; i++ {
- // noop
- }
- llm.embd = tokens
- if i == len(tokens) {
- // evaluate at least one token to generate logits
- i--
- }
- llm.cursor = i
- log.Printf("prompt: num_past=%d cached=%v eval=%v", i, len(llm.embd[:i]), len(llm.embd[i:]))
- return tokens
- }
- func (llm *LLM) tokenize(prompt string) []C.llama_token {
- cPrompt := C.CString(prompt)
- defer C.free(unsafe.Pointer(cPrompt))
- tokens := make([]C.llama_token, len(prompt)+1)
- if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(tokens), C.int(len(tokens)), true); n > 0 {
- return tokens[:n]
- }
- return nil
- }
- func (llm *LLM) detokenize(tokens ...C.llama_token) string {
- var sb strings.Builder
- for _, token := range tokens {
- sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, token)))
- }
- return sb.String()
- }
- func (llm *LLM) next() (C.llama_token, error) {
- llm.mu.Lock()
- defer llm.mu.Unlock()
- if len(llm.embd) >= llm.NumCtx {
- numLeft := (llm.NumCtx - llm.NumKeep) / 2
- truncated := llm.embd[:llm.NumKeep]
- truncated = append(truncated, llm.embd[len(llm.embd)-numLeft:]...)
- llm.embd = truncated
- llm.cursor = llm.NumKeep
- log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d cursor=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated), llm.cursor)
- }
- for {
- if llm.gc {
- return 0, io.EOF
- }
- if llm.cursor >= len(llm.embd) {
- break
- }
- numEval := len(llm.embd) - llm.cursor
- if numEval > llm.NumBatch {
- numEval = llm.NumBatch
- }
- if retval := C.llama_eval(llm.ctx, unsafe.SliceData(llm.embd[llm.cursor:]), C.int(numEval), C.int(llm.cursor), C.int(llm.NumThread)); retval != 0 {
- return 0, fmt.Errorf("llama_eval: %d", retval)
- }
- llm.cursor += numEval
- }
- var sampleOpts C.struct_llama_sample_options
- sampleOpts.repeat_penalty = C.float(llm.RepeatPenalty)
- sampleOpts.frequency_penalty = C.float(llm.FrequencyPenalty)
- sampleOpts.presence_penalty = C.float(llm.PresencePenalty)
- sampleOpts.temperature = C.float(llm.Temperature)
- sampleOpts.top_k = C.int(llm.TopK)
- sampleOpts.top_p = C.float(llm.TopP)
- sampleOpts.tfs_z = C.float(llm.TFSZ)
- sampleOpts.typical_p = C.float(llm.TypicalP)
- sampleOpts.mirostat = C.int(llm.Mirostat)
- sampleOpts.mirostat_tau = C.float(llm.MirostatTau)
- sampleOpts.mirostat_eta = C.float(llm.MirostatEta)
- sampleOpts.penalize_newline = C.bool(llm.PenalizeNewline)
- numVocab := C.llama_n_vocab(llm.ctx)
- logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
- // TODO: logit bias
- candidates := make([]C.llama_token_data, numVocab)
- for i := range logits {
- candidates[i] = C.llama_token_data{
- id: C.int(i),
- logit: logits[i],
- p: 0,
- }
- }
- repeatLastN := llm.RepeatLastN
- if len(llm.last) < repeatLastN {
- repeatLastN = len(llm.last)
- }
- if llm.NumCtx < repeatLastN {
- repeatLastN = llm.NumCtx
- }
- lastN := llm.last[len(llm.last)-repeatLastN:]
- token := C.llama_sample(
- llm.ctx,
- unsafe.SliceData(candidates), C.size_t(len(candidates)),
- unsafe.SliceData(lastN), C.size_t(len(lastN)),
- &sampleOpts,
- )
- llm.last = append(llm.last, token)
- llm.embd = append(llm.embd, token)
- if token == C.llama_token_eos() {
- return 0, io.EOF
- }
- return token, nil
- }
|