123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495 |
- /**
- * llama.cpp - git 8183159cf3def112f6d1fe94815fce70e1bffa12
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #ifndef LLAMA_H
- #define LLAMA_H
- #include "ggml.h"
- #ifdef GGML_USE_CUBLAS
- #include "ggml-cuda.h"
- #define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
- #else
- #define LLAMA_MAX_DEVICES 1
- #endif // GGML_USE_CUBLAS
- #include <stddef.h>
- #include <stdint.h>
- #include <stdbool.h>
- #ifdef LLAMA_SHARED
- # if defined(_WIN32) && !defined(__MINGW32__)
- # ifdef LLAMA_BUILD
- # define LLAMA_API __declspec(dllexport)
- # else
- # define LLAMA_API __declspec(dllimport)
- # endif
- # else
- # define LLAMA_API __attribute__ ((visibility ("default")))
- # endif
- #else
- # define LLAMA_API
- #endif
- #ifdef __GNUC__
- # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
- #elif defined(_MSC_VER)
- # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
- #else
- # define DEPRECATED(func, hint) func
- #endif
- #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
- #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
- #define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
- #define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
- #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
- #define LLAMA_FILE_VERSION 3
- #define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
- #define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
- #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
- #define LLAMA_SESSION_VERSION 1
- #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
- #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
- // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
- #define LLAMA_SUPPORTS_GPU_OFFLOAD
- #endif
- #ifndef LLAMA_DEFAULT_RMS_EPS
- #define LLAMA_DEFAULT_RMS_EPS 5e-6f
- #endif
- #ifdef __cplusplus
- extern "C" {
- #endif
- //
- // C interface
- //
- // TODO: show sample usage
- //
- struct llama_model;
- struct llama_context;
- typedef int llama_token;
- typedef struct llama_token_data {
- llama_token id; // token id
- float logit; // log-odds of the token
- float p; // probability of the token
- } llama_token_data;
- typedef struct llama_token_data_array {
- llama_token_data * data;
- size_t size;
- bool sorted;
- } llama_token_data_array;
- typedef void (*llama_progress_callback)(float progress, void *ctx);
- struct llama_context_params {
- uint32_t seed; // RNG seed, -1 for random
- int32_t n_ctx; // text context
- int32_t n_batch; // prompt processing batch size
- int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
- float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
- int32_t n_gpu_layers; // number of layers to store in VRAM
- int32_t main_gpu; // the GPU that is used for scratch and small tensors
- const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
- // ref: https://github.com/ggerganov/llama.cpp/pull/2054
- float rope_freq_base; // RoPE base frequency
- float rope_freq_scale; // RoPE frequency scaling factor
- // called with a progress value between 0 and 1, pass NULL to disable
- llama_progress_callback progress_callback;
- // context pointer passed to the progress callback
- void * progress_callback_user_data;
- // Keep the booleans together to avoid misalignment during copy-by-value.
- bool low_vram; // if true, reduce VRAM usage at the cost of performance
- bool mul_mat_q; // if true, use experimental mul_mat_q kernels
- bool f16_kv; // use fp16 for KV cache
- bool logits_all; // the llama_eval() call computes all logits, not just the last one
- bool vocab_only; // only load the vocabulary, no weights
- bool use_mmap; // use mmap if possible
- bool use_mlock; // force system to keep model in RAM
- bool embedding; // embedding mode only
- };
- // model file types
- enum llama_ftype {
- LLAMA_FTYPE_ALL_F32 = 0,
- LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
- // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
- // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
- LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
- };
- // model quantization parameters
- typedef struct llama_model_quantize_params {
- int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
- enum llama_ftype ftype; // quantize to this llama_ftype
- bool allow_requantize; // allow quantizing non-f32/f16 tensors
- bool quantize_output_tensor; // quantize output.weight
- } llama_model_quantize_params;
- // grammar types
- struct llama_grammar;
- // grammar element type
- enum llama_gretype {
- // end of rule definition
- LLAMA_GRETYPE_END = 0,
- // start of alternate definition for rule
- LLAMA_GRETYPE_ALT = 1,
- // non-terminal element: reference to rule
- LLAMA_GRETYPE_RULE_REF = 2,
- // terminal element: character (code point)
- LLAMA_GRETYPE_CHAR = 3,
- // inverse char(s) ([^a], [^a-b] [^abc])
- LLAMA_GRETYPE_CHAR_NOT = 4,
- // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
- // be an inclusive range ([a-z])
- LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
- // modifies a preceding LLAMA_GRETYPE_CHAR or
- // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
- LLAMA_GRETYPE_CHAR_ALT = 6,
- };
- typedef struct llama_grammar_element {
- enum llama_gretype type;
- uint32_t value; // Unicode code point or rule ID
- } llama_grammar_element;
- // performance timing information
- struct llama_timings {
- double t_start_ms;
- double t_end_ms;
- double t_load_ms;
- double t_sample_ms;
- double t_p_eval_ms;
- double t_eval_ms;
- int32_t n_sample;
- int32_t n_p_eval;
- int32_t n_eval;
- };
- LLAMA_API int llama_max_devices();
- LLAMA_API struct llama_context_params llama_context_default_params();
- LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
- LLAMA_API bool llama_mmap_supported();
- LLAMA_API bool llama_mlock_supported();
- // TODO: not great API - very likely to change
- // Initialize the llama + ggml backend
- // If numa is true, use NUMA optimizations
- // Call once at the start of the program
- LLAMA_API void llama_backend_init(bool numa);
- // Call once at the end of the program - currently only used for MPI
- LLAMA_API void llama_backend_free();
- LLAMA_API int64_t llama_time_us();
- LLAMA_API struct llama_model * llama_load_model_from_file(
- const char * path_model,
- struct llama_context_params params);
- LLAMA_API void llama_free_model(struct llama_model * model);
- LLAMA_API struct llama_context * llama_new_context_with_model(
- struct llama_model * model,
- struct llama_context_params params);
- // Various functions for loading a ggml llama model.
- // Allocate (almost) all memory needed for the model.
- // Return NULL on failure
- LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
- const char * path_model,
- struct llama_context_params params),
- "please use llama_load_model_from_file combined with llama_new_context_with_model instead");
- // Frees all allocated memory
- LLAMA_API void llama_free(struct llama_context * ctx);
- // Returns 0 on success
- LLAMA_API int llama_model_quantize(
- const char * fname_inp,
- const char * fname_out,
- const llama_model_quantize_params * params);
- // Apply a LoRA adapter to a loaded model
- // path_base_model is the path to a higher quality model to use as a base for
- // the layers modified by the adapter. Can be NULL to use the current loaded model.
- // The model needs to be reloaded before applying a new adapter, otherwise the adapter
- // will be applied on top of the previous one
- // Returns 0 on success
- LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
- struct llama_context * ctx,
- const char * path_lora,
- const char * path_base_model,
- int n_threads),
- "please use llama_model_apply_lora_from_file instead");
- LLAMA_API int llama_model_apply_lora_from_file(
- const struct llama_model * model,
- const char * path_lora,
- const char * path_base_model,
- int n_threads);
- // Returns the number of tokens in the KV cache
- LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
- // Sets the current rng seed.
- LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
- // Returns the maximum size in bytes of the state (rng, logits, embedding
- // and kv_cache) - will often be smaller after compacting tokens
- LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
- // Copies the state to the specified destination address.
- // Destination needs to have allocated enough memory.
- // Returns the number of bytes copied
- LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
- // Set the state reading from the specified address
- // Returns the number of bytes read
- LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
- // Save/load session file
- LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
- LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
- // Run the llama inference to obtain the logits and probabilities for the next token.
- // tokens + n_tokens is the provided batch of new tokens to process
- // n_past is the number of tokens to use from previous eval calls
- // Returns 0 on success
- LLAMA_API int llama_eval(
- struct llama_context * ctx,
- const llama_token * tokens,
- int n_tokens,
- int n_past,
- int n_threads);
- // Same as llama_eval, but use float matrix input directly.
- LLAMA_API int llama_eval_embd(
- struct llama_context * ctx,
- const float * embd,
- int n_tokens,
- int n_past,
- int n_threads);
- // Export a static computation graph for context of 511 and batch size of 1
- // NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
- // parameters here to keep things simple
- // IMPORTANT: do not use for anything else other than debugging and testing!
- LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
- // Convert the provided text into tokens.
- // The tokens pointer must be large enough to hold the resulting tokens.
- // Returns the number of tokens on success, no more than n_max_tokens
- // Returns a negative number on failure - the number of tokens that would have been returned
- // TODO: not sure if correct
- LLAMA_API int llama_tokenize(
- struct llama_context * ctx,
- const char * text,
- llama_token * tokens,
- int n_max_tokens,
- bool add_bos);
- LLAMA_API int llama_tokenize_with_model(
- const struct llama_model * model,
- const char * text,
- llama_token * tokens,
- int n_max_tokens,
- bool add_bos);
- LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
- LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
- LLAMA_API int llama_n_embd (const struct llama_context * ctx);
- LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
- LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
- LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
- // Get the vocabulary as output parameters.
- // Returns number of results.
- LLAMA_API int llama_get_vocab(
- const struct llama_context * ctx,
- const char * * strings,
- float * scores,
- int capacity);
- LLAMA_API int llama_get_vocab_from_model(
- const struct llama_model * model,
- const char * * strings,
- float * scores,
- int capacity);
- // Token logits obtained from the last call to llama_eval()
- // The logits for the last token are stored in the last row
- // Can be mutated in order to change the probabilities of the next token
- // Rows: n_tokens
- // Cols: n_vocab
- LLAMA_API float * llama_get_logits(struct llama_context * ctx);
- // Get the embeddings for the input
- // shape: [n_embd] (1-dimensional)
- LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
- // Token Id -> String. Uses the vocabulary in the provided context
- LLAMA_API const char * llama_token_to_str(
- const struct llama_context * ctx,
- llama_token token);
- LLAMA_API const char * llama_token_to_str_with_model(
- const struct llama_model * model,
- llama_token token);
- // Special tokens
- LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
- LLAMA_API llama_token llama_token_eos(); // end-of-sentence
- LLAMA_API llama_token llama_token_nl(); // next-line
- // Grammar
- //
- LLAMA_API struct llama_grammar * llama_grammar_init(
- const llama_grammar_element ** rules,
- size_t n_rules,
- size_t start_rule_index);
- LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
- // Sampling functions
- /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
- LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
- /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
- LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
- /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
- /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
- /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
- /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
- LLAMA_API void llama_sample_classifier_free_guidance(
- struct llama_context * ctx,
- llama_token_data_array * candidates,
- struct llama_context * guidance_ctx,
- float scale);
- /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
- LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
- /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
- LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
- /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
- LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
- /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
- LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
- /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
- LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
- LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
- /// @details Apply constraints from grammar
- LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar);
- /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
- /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
- /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
- /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
- /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
- /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
- LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
- /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
- /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
- /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
- /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
- /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
- LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
- /// @details Selects the token with the highest probability.
- LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
- /// @details Randomly selects a token from the candidates based on their probabilities.
- LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
- /// @details Accepts the sampled token into the grammar
- LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
- // Performance information
- LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
- LLAMA_API void llama_print_timings(struct llama_context * ctx);
- LLAMA_API void llama_reset_timings(struct llama_context * ctx);
- // Print system information
- LLAMA_API const char * llama_print_system_info(void);
- #ifdef __cplusplus
- }
- #endif
- // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
- #ifdef LLAMA_API_INTERNAL
- #include <vector>
- #include <string>
- struct ggml_tensor;
- const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
- #endif
- #endif // LLAMA_H
|