ggml-metal.metal 231 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445
  1. /**
  2. * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define GGML_COMMON_DECL_METAL
  27. #define GGML_COMMON_IMPL_METAL
  28. #include "ggml-common.h"
  29. #include <metal_stdlib>
  30. using namespace metal;
  31. #define MAX(x, y) ((x) > (y) ? (x) : (y))
  32. #define MIN(x, y) ((x) < (y) ? (x) : (y))
  33. #define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
  34. #define N_SIMDWIDTH 32 // assuming SIMD group size is 32
  35. enum ggml_sort_order {
  36. GGML_SORT_ORDER_ASC,
  37. GGML_SORT_ORDER_DESC,
  38. };
  39. // general-purpose kernel for addition, subtraction, multiplication and division of two tensors
  40. // pros: works for non-contiguous tensors, supports broadcast across all dims
  41. // cons: not very efficient
  42. kernel void kernel_add(
  43. device const char * src0,
  44. device const char * src1,
  45. device char * dst,
  46. constant int64_t & ne00,
  47. constant int64_t & ne01,
  48. constant int64_t & ne02,
  49. constant int64_t & ne03,
  50. constant uint64_t & nb00,
  51. constant uint64_t & nb01,
  52. constant uint64_t & nb02,
  53. constant uint64_t & nb03,
  54. constant int64_t & ne10,
  55. constant int64_t & ne11,
  56. constant int64_t & ne12,
  57. constant int64_t & ne13,
  58. constant uint64_t & nb10,
  59. constant uint64_t & nb11,
  60. constant uint64_t & nb12,
  61. constant uint64_t & nb13,
  62. constant int64_t & ne0,
  63. constant int64_t & ne1,
  64. constant int64_t & ne2,
  65. constant int64_t & ne3,
  66. constant uint64_t & nb0,
  67. constant uint64_t & nb1,
  68. constant uint64_t & nb2,
  69. constant uint64_t & nb3,
  70. constant int64_t & offs,
  71. uint3 tgpig[[threadgroup_position_in_grid]],
  72. uint3 tpitg[[thread_position_in_threadgroup]],
  73. uint3 ntg[[threads_per_threadgroup]]) {
  74. const int64_t i03 = tgpig.z;
  75. const int64_t i02 = tgpig.y;
  76. const int64_t i01 = tgpig.x;
  77. const int64_t i13 = i03 % ne13;
  78. const int64_t i12 = i02 % ne12;
  79. const int64_t i11 = i01 % ne11;
  80. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
  81. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  82. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
  83. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  84. const int i10 = i0 % ne10;
  85. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) + *((device float *)(src1_ptr + i10*nb10));
  86. }
  87. }
  88. kernel void kernel_sub(
  89. device const char * src0,
  90. device const char * src1,
  91. device char * dst,
  92. constant int64_t & ne00,
  93. constant int64_t & ne01,
  94. constant int64_t & ne02,
  95. constant int64_t & ne03,
  96. constant uint64_t & nb00,
  97. constant uint64_t & nb01,
  98. constant uint64_t & nb02,
  99. constant uint64_t & nb03,
  100. constant int64_t & ne10,
  101. constant int64_t & ne11,
  102. constant int64_t & ne12,
  103. constant int64_t & ne13,
  104. constant uint64_t & nb10,
  105. constant uint64_t & nb11,
  106. constant uint64_t & nb12,
  107. constant uint64_t & nb13,
  108. constant int64_t & ne0,
  109. constant int64_t & ne1,
  110. constant int64_t & ne2,
  111. constant int64_t & ne3,
  112. constant uint64_t & nb0,
  113. constant uint64_t & nb1,
  114. constant uint64_t & nb2,
  115. constant uint64_t & nb3,
  116. constant int64_t & offs,
  117. uint3 tgpig[[threadgroup_position_in_grid]],
  118. uint3 tpitg[[thread_position_in_threadgroup]],
  119. uint3 ntg[[threads_per_threadgroup]]) {
  120. const int64_t i03 = tgpig.z;
  121. const int64_t i02 = tgpig.y;
  122. const int64_t i01 = tgpig.x;
  123. const int64_t i13 = i03 % ne13;
  124. const int64_t i12 = i02 % ne12;
  125. const int64_t i11 = i01 % ne11;
  126. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
  127. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  128. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
  129. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  130. const int i10 = i0 % ne10;
  131. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) - *((device float *)(src1_ptr + i10*nb10));
  132. }
  133. }
  134. kernel void kernel_mul(
  135. device const char * src0,
  136. device const char * src1,
  137. device char * dst,
  138. constant int64_t & ne00,
  139. constant int64_t & ne01,
  140. constant int64_t & ne02,
  141. constant int64_t & ne03,
  142. constant uint64_t & nb00,
  143. constant uint64_t & nb01,
  144. constant uint64_t & nb02,
  145. constant uint64_t & nb03,
  146. constant int64_t & ne10,
  147. constant int64_t & ne11,
  148. constant int64_t & ne12,
  149. constant int64_t & ne13,
  150. constant uint64_t & nb10,
  151. constant uint64_t & nb11,
  152. constant uint64_t & nb12,
  153. constant uint64_t & nb13,
  154. constant int64_t & ne0,
  155. constant int64_t & ne1,
  156. constant int64_t & ne2,
  157. constant int64_t & ne3,
  158. constant uint64_t & nb0,
  159. constant uint64_t & nb1,
  160. constant uint64_t & nb2,
  161. constant uint64_t & nb3,
  162. uint3 tgpig[[threadgroup_position_in_grid]],
  163. uint3 tpitg[[thread_position_in_threadgroup]],
  164. uint3 ntg[[threads_per_threadgroup]]) {
  165. const int64_t i03 = tgpig.z;
  166. const int64_t i02 = tgpig.y;
  167. const int64_t i01 = tgpig.x;
  168. const int64_t i13 = i03 % ne13;
  169. const int64_t i12 = i02 % ne12;
  170. const int64_t i11 = i01 % ne11;
  171. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  172. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  173. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
  174. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  175. const int i10 = i0 % ne10;
  176. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) * *((device float *)(src1_ptr + i10*nb10));
  177. }
  178. }
  179. kernel void kernel_div(
  180. device const char * src0,
  181. device const char * src1,
  182. device char * dst,
  183. constant int64_t & ne00,
  184. constant int64_t & ne01,
  185. constant int64_t & ne02,
  186. constant int64_t & ne03,
  187. constant uint64_t & nb00,
  188. constant uint64_t & nb01,
  189. constant uint64_t & nb02,
  190. constant uint64_t & nb03,
  191. constant int64_t & ne10,
  192. constant int64_t & ne11,
  193. constant int64_t & ne12,
  194. constant int64_t & ne13,
  195. constant uint64_t & nb10,
  196. constant uint64_t & nb11,
  197. constant uint64_t & nb12,
  198. constant uint64_t & nb13,
  199. constant int64_t & ne0,
  200. constant int64_t & ne1,
  201. constant int64_t & ne2,
  202. constant int64_t & ne3,
  203. constant uint64_t & nb0,
  204. constant uint64_t & nb1,
  205. constant uint64_t & nb2,
  206. constant uint64_t & nb3,
  207. uint3 tgpig[[threadgroup_position_in_grid]],
  208. uint3 tpitg[[thread_position_in_threadgroup]],
  209. uint3 ntg[[threads_per_threadgroup]]) {
  210. const int64_t i03 = tgpig.z;
  211. const int64_t i02 = tgpig.y;
  212. const int64_t i01 = tgpig.x;
  213. const int64_t i13 = i03 % ne13;
  214. const int64_t i12 = i02 % ne12;
  215. const int64_t i11 = i01 % ne11;
  216. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  217. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  218. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
  219. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  220. const int i10 = i0 % ne10;
  221. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) / *((device float *)(src1_ptr + i10*nb10));
  222. }
  223. }
  224. template<typename T>
  225. kernel void kernel_repeat(
  226. device const char * src0,
  227. device char * dst,
  228. constant int64_t & ne00,
  229. constant int64_t & ne01,
  230. constant int64_t & ne02,
  231. constant int64_t & ne03,
  232. constant uint64_t & nb00,
  233. constant uint64_t & nb01,
  234. constant uint64_t & nb02,
  235. constant uint64_t & nb03,
  236. constant int64_t & ne0,
  237. constant int64_t & ne1,
  238. constant int64_t & ne2,
  239. constant int64_t & ne3,
  240. constant uint64_t & nb0,
  241. constant uint64_t & nb1,
  242. constant uint64_t & nb2,
  243. constant uint64_t & nb3,
  244. uint3 tgpig[[threadgroup_position_in_grid]],
  245. uint3 tpitg[[thread_position_in_threadgroup]],
  246. uint3 ntg[[threads_per_threadgroup]]) {
  247. const int64_t i3 = tgpig.z;
  248. const int64_t i2 = tgpig.y;
  249. const int64_t i1 = tgpig.x;
  250. const int64_t i03 = i3 % ne03;
  251. const int64_t i02 = i2 % ne02;
  252. const int64_t i01 = i1 % ne01;
  253. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  254. device char * dst_ptr = dst + i3*nb3 + i2*nb2 + i1*nb1 ;
  255. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  256. const int i00 = i0 % ne00;
  257. *((device T *)(dst_ptr + i0*nb0)) = *((device T *)(src0_ptr + i00*nb00));
  258. }
  259. }
  260. typedef decltype(kernel_repeat<float>) kernel_repeat_t;
  261. template [[host_name("kernel_repeat_f32")]] kernel kernel_repeat_t kernel_repeat<float>;
  262. template [[host_name("kernel_repeat_f16")]] kernel kernel_repeat_t kernel_repeat<half>;
  263. template [[host_name("kernel_repeat_i32")]] kernel kernel_repeat_t kernel_repeat<int>;
  264. template [[host_name("kernel_repeat_i16")]] kernel kernel_repeat_t kernel_repeat<short>;
  265. // assumption: src1 is a row
  266. // broadcast src1 into src0
  267. kernel void kernel_add_row(
  268. device const float4 * src0,
  269. device const float4 * src1,
  270. device float4 * dst,
  271. constant uint64_t & nb [[buffer(28)]],
  272. uint tpig[[thread_position_in_grid]]) {
  273. dst[tpig] = src0[tpig] + src1[tpig % nb];
  274. }
  275. kernel void kernel_sub_row(
  276. device const float4 * src0,
  277. device const float4 * src1,
  278. device float4 * dst,
  279. constant uint64_t & nb [[buffer(28)]],
  280. uint tpig[[thread_position_in_grid]]) {
  281. dst[tpig] = src0[tpig] - src1[tpig % nb];
  282. }
  283. kernel void kernel_mul_row(
  284. device const float4 * src0,
  285. device const float4 * src1,
  286. device float4 * dst,
  287. constant uint64_t & nb [[buffer(28)]],
  288. uint tpig[[thread_position_in_grid]]) {
  289. dst[tpig] = src0[tpig] * src1[tpig % nb];
  290. }
  291. kernel void kernel_div_row(
  292. device const float4 * src0,
  293. device const float4 * src1,
  294. device float4 * dst,
  295. constant uint64_t & nb [[buffer(28)]],
  296. uint tpig[[thread_position_in_grid]]) {
  297. dst[tpig] = src0[tpig] / src1[tpig % nb];
  298. }
  299. kernel void kernel_scale(
  300. device const float * src0,
  301. device float * dst,
  302. constant float & scale,
  303. uint tpig[[thread_position_in_grid]]) {
  304. dst[tpig] = src0[tpig] * scale;
  305. }
  306. kernel void kernel_scale_4(
  307. device const float4 * src0,
  308. device float4 * dst,
  309. constant float & scale,
  310. uint tpig[[thread_position_in_grid]]) {
  311. dst[tpig] = src0[tpig] * scale;
  312. }
  313. kernel void kernel_clamp(
  314. device const float * src0,
  315. device float * dst,
  316. constant float & min,
  317. constant float & max,
  318. uint tpig[[thread_position_in_grid]]) {
  319. dst[tpig] = src0[tpig] < min ? min : (src0[tpig] > max ? max : src0[tpig]);
  320. }
  321. kernel void kernel_relu(
  322. device const float * src0,
  323. device float * dst,
  324. uint tpig[[thread_position_in_grid]]) {
  325. dst[tpig] = max(0.0f, src0[tpig]);
  326. }
  327. kernel void kernel_sigmoid(
  328. device const float * src0,
  329. device float * dst,
  330. uint tpig[[thread_position_in_grid]]) {
  331. dst[tpig] = 1.0f / (1.0f + exp(-src0[tpig]));
  332. }
  333. kernel void kernel_tanh(
  334. device const float * src0,
  335. device float * dst,
  336. uint tpig[[thread_position_in_grid]]) {
  337. device const float & x = src0[tpig];
  338. dst[tpig] = precise::tanh(x);
  339. }
  340. constant float GELU_COEF_A = 0.044715f;
  341. constant float GELU_QUICK_COEF = -1.702f;
  342. constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  343. kernel void kernel_gelu(
  344. device const float * src0,
  345. device float * dst,
  346. uint tpig[[thread_position_in_grid]]) {
  347. device const float & x = src0[tpig];
  348. dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  349. }
  350. kernel void kernel_gelu_4(
  351. device const float4 * src0,
  352. device float4 * dst,
  353. uint tpig[[thread_position_in_grid]]) {
  354. device const float4 & x = src0[tpig];
  355. // BEWARE !!!
  356. // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
  357. // This was observed with Falcon 7B and 40B models
  358. //
  359. dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  360. }
  361. kernel void kernel_gelu_quick(
  362. device const float * src0,
  363. device float * dst,
  364. uint tpig[[thread_position_in_grid]]) {
  365. device const float & x = src0[tpig];
  366. dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
  367. }
  368. kernel void kernel_gelu_quick_4(
  369. device const float4 * src0,
  370. device float4 * dst,
  371. uint tpig[[thread_position_in_grid]]) {
  372. device const float4 & x = src0[tpig];
  373. dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
  374. }
  375. kernel void kernel_silu(
  376. device const float * src0,
  377. device float * dst,
  378. uint tpig[[thread_position_in_grid]]) {
  379. device const float & x = src0[tpig];
  380. dst[tpig] = x / (1.0f + exp(-x));
  381. }
  382. kernel void kernel_silu_4(
  383. device const float4 * src0,
  384. device float4 * dst,
  385. uint tpig[[thread_position_in_grid]]) {
  386. device const float4 & x = src0[tpig];
  387. dst[tpig] = x / (1.0f + exp(-x));
  388. }
  389. kernel void kernel_sqr(
  390. device const float * src0,
  391. device float * dst,
  392. uint tpig[[thread_position_in_grid]]) {
  393. dst[tpig] = src0[tpig] * src0[tpig];
  394. }
  395. kernel void kernel_sqrt(
  396. device const float * src0,
  397. device float * dst,
  398. uint tpig[[thread_position_in_grid]]) {
  399. dst[tpig] = sqrt(src0[tpig]);
  400. }
  401. kernel void kernel_sin(
  402. device const float * src0,
  403. device float * dst,
  404. uint tpig[[thread_position_in_grid]]) {
  405. dst[tpig] = sin(src0[tpig]);
  406. }
  407. kernel void kernel_cos(
  408. device const float * src0,
  409. device float * dst,
  410. uint tpig[[thread_position_in_grid]]) {
  411. dst[tpig] = cos(src0[tpig]);
  412. }
  413. kernel void kernel_sum_rows(
  414. device const float * src0,
  415. device float * dst,
  416. constant int64_t & ne00,
  417. constant int64_t & ne01,
  418. constant int64_t & ne02,
  419. constant int64_t & ne03,
  420. constant uint64_t & nb00,
  421. constant uint64_t & nb01,
  422. constant uint64_t & nb02,
  423. constant uint64_t & nb03,
  424. constant int64_t & ne10,
  425. constant int64_t & ne11,
  426. constant int64_t & ne12,
  427. constant int64_t & ne13,
  428. constant uint64_t & nb10,
  429. constant uint64_t & nb11,
  430. constant uint64_t & nb12,
  431. constant uint64_t & nb13,
  432. constant int64_t & ne0,
  433. constant int64_t & ne1,
  434. constant int64_t & ne2,
  435. constant int64_t & ne3,
  436. constant uint64_t & nb0,
  437. constant uint64_t & nb1,
  438. constant uint64_t & nb2,
  439. constant uint64_t & nb3,
  440. uint3 tpig[[thread_position_in_grid]]) {
  441. int64_t i3 = tpig.z;
  442. int64_t i2 = tpig.y;
  443. int64_t i1 = tpig.x;
  444. if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
  445. return;
  446. }
  447. device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
  448. device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
  449. float row_sum = 0;
  450. for (int64_t i0 = 0; i0 < ne00; i0++) {
  451. row_sum += src_row[i0];
  452. }
  453. dst_row[0] = row_sum;
  454. }
  455. template<typename T>
  456. kernel void kernel_soft_max(
  457. device const char * src0,
  458. device const char * src1,
  459. device char * dst,
  460. constant int64_t & ne00,
  461. constant int64_t & ne01,
  462. constant int64_t & ne02,
  463. constant float & scale,
  464. constant float & max_bias,
  465. constant float & m0,
  466. constant float & m1,
  467. constant uint32_t & n_head_log2,
  468. threadgroup float * buf [[threadgroup(0)]],
  469. uint tgpig[[threadgroup_position_in_grid]],
  470. uint tpitg[[thread_position_in_threadgroup]],
  471. uint sgitg[[simdgroup_index_in_threadgroup]],
  472. uint tiisg[[thread_index_in_simdgroup]],
  473. uint ntg[[threads_per_threadgroup]]) {
  474. const int64_t i03 = (tgpig) / (ne02*ne01);
  475. const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
  476. const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
  477. device const float * psrc0 = (device const float *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
  478. device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00 : nullptr;
  479. device float * pdst = (device float *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
  480. float slope = 1.0f;
  481. // ALiBi
  482. if (max_bias > 0.0f) {
  483. const int64_t h = i02;
  484. const float base = h < n_head_log2 ? m0 : m1;
  485. const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
  486. slope = pow(base, exp);
  487. }
  488. // parallel max
  489. float lmax = -INFINITY;
  490. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  491. lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f));
  492. }
  493. // find the max value in the block
  494. float max_val = simd_max(lmax);
  495. if (ntg > N_SIMDWIDTH) {
  496. if (sgitg == 0) {
  497. buf[tiisg] = -INFINITY;
  498. }
  499. threadgroup_barrier(mem_flags::mem_threadgroup);
  500. if (tiisg == 0) {
  501. buf[sgitg] = max_val;
  502. }
  503. threadgroup_barrier(mem_flags::mem_threadgroup);
  504. max_val = buf[tiisg];
  505. max_val = simd_max(max_val);
  506. }
  507. // parallel sum
  508. float lsum = 0.0f;
  509. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  510. const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max_val);
  511. lsum += exp_psrc0;
  512. pdst[i00] = exp_psrc0;
  513. }
  514. // This barrier fixes a failing test
  515. // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
  516. threadgroup_barrier(mem_flags::mem_none);
  517. float sum = simd_sum(lsum);
  518. if (ntg > N_SIMDWIDTH) {
  519. if (sgitg == 0) {
  520. buf[tiisg] = 0.0f;
  521. }
  522. threadgroup_barrier(mem_flags::mem_threadgroup);
  523. if (tiisg == 0) {
  524. buf[sgitg] = sum;
  525. }
  526. threadgroup_barrier(mem_flags::mem_threadgroup);
  527. sum = buf[tiisg];
  528. sum = simd_sum(sum);
  529. }
  530. const float inv_sum = 1.0f/sum;
  531. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  532. pdst[i00] *= inv_sum;
  533. }
  534. }
  535. template<typename T>
  536. kernel void kernel_soft_max_4(
  537. device const char * src0,
  538. device const char * src1,
  539. device char * dst,
  540. constant int64_t & ne00,
  541. constant int64_t & ne01,
  542. constant int64_t & ne02,
  543. constant float & scale,
  544. constant float & max_bias,
  545. constant float & m0,
  546. constant float & m1,
  547. constant uint32_t & n_head_log2,
  548. threadgroup float * buf [[threadgroup(0)]],
  549. uint tgpig[[threadgroup_position_in_grid]],
  550. uint tpitg[[thread_position_in_threadgroup]],
  551. uint sgitg[[simdgroup_index_in_threadgroup]],
  552. uint tiisg[[thread_index_in_simdgroup]],
  553. uint ntg[[threads_per_threadgroup]]) {
  554. const int64_t i03 = (tgpig) / (ne02*ne01);
  555. const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
  556. const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
  557. device const float4 * psrc4 = (device const float4 *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4;
  558. device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00/4 : nullptr;
  559. device float4 * pdst4 = (device float4 *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4;
  560. float slope = 1.0f;
  561. if (max_bias > 0.0f) {
  562. const int64_t h = i02;
  563. const float base = h < n_head_log2 ? m0 : m1;
  564. const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
  565. slope = pow(base, exp);
  566. }
  567. // parallel max
  568. float4 lmax4 = -INFINITY;
  569. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  570. lmax4 = fmax(lmax4, psrc4[i00]*scale + (float4)((pmask ? slope*pmask[i00] : 0.0f)));
  571. }
  572. const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
  573. float max_val = simd_max(lmax);
  574. if (ntg > N_SIMDWIDTH) {
  575. if (sgitg == 0) {
  576. buf[tiisg] = -INFINITY;
  577. }
  578. threadgroup_barrier(mem_flags::mem_threadgroup);
  579. if (tiisg == 0) {
  580. buf[sgitg] = max_val;
  581. }
  582. threadgroup_barrier(mem_flags::mem_threadgroup);
  583. max_val = buf[tiisg];
  584. max_val = simd_max(max_val);
  585. }
  586. // parallel sum
  587. float4 lsum4 = 0.0f;
  588. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  589. const float4 exp_psrc4 = exp((psrc4[i00]*scale + (float4)((pmask ? slope*pmask[i00] : 0.0f))) - max_val);
  590. lsum4 += exp_psrc4;
  591. pdst4[i00] = exp_psrc4;
  592. }
  593. const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
  594. // This barrier fixes a failing test
  595. // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
  596. threadgroup_barrier(mem_flags::mem_none);
  597. float sum = simd_sum(lsum);
  598. if (ntg > N_SIMDWIDTH) {
  599. if (sgitg == 0) {
  600. buf[tiisg] = 0.0f;
  601. }
  602. threadgroup_barrier(mem_flags::mem_threadgroup);
  603. if (tiisg == 0) {
  604. buf[sgitg] = sum;
  605. }
  606. threadgroup_barrier(mem_flags::mem_threadgroup);
  607. sum = buf[tiisg];
  608. sum = simd_sum(sum);
  609. }
  610. const float inv_sum = 1.0f/sum;
  611. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  612. pdst4[i00] *= inv_sum;
  613. }
  614. }
  615. typedef decltype(kernel_soft_max<float>) kernel_soft_max_t;
  616. typedef decltype(kernel_soft_max_4<float4>) kernel_soft_max_4_t;
  617. template [[host_name("kernel_soft_max_f16")]] kernel kernel_soft_max_t kernel_soft_max<half>;
  618. template [[host_name("kernel_soft_max_f32")]] kernel kernel_soft_max_t kernel_soft_max<float>;
  619. template [[host_name("kernel_soft_max_f16_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4<half4>;
  620. template [[host_name("kernel_soft_max_f32_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4<float4>;
  621. kernel void kernel_diag_mask_inf(
  622. device const float * src0,
  623. device float * dst,
  624. constant int64_t & ne00,
  625. constant int64_t & ne01,
  626. constant int & n_past,
  627. uint3 tpig[[thread_position_in_grid]]) {
  628. const int64_t i02 = tpig[2];
  629. const int64_t i01 = tpig[1];
  630. const int64_t i00 = tpig[0];
  631. if (i00 > n_past + i01) {
  632. dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
  633. } else {
  634. dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
  635. }
  636. }
  637. kernel void kernel_diag_mask_inf_8(
  638. device const float4 * src0,
  639. device float4 * dst,
  640. constant int64_t & ne00,
  641. constant int64_t & ne01,
  642. constant int & n_past,
  643. uint3 tpig[[thread_position_in_grid]]) {
  644. const int64_t i = 2*tpig[0];
  645. dst[i+0] = src0[i+0];
  646. dst[i+1] = src0[i+1];
  647. int64_t i4 = 4*i;
  648. const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
  649. const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
  650. const int64_t i00 = i4;
  651. for (int k = 3; k >= 0; --k) {
  652. if (i00 + 4 + k <= n_past + i01) {
  653. break;
  654. }
  655. dst[i+1][k] = -INFINITY;
  656. if (i00 + k > n_past + i01) {
  657. dst[i][k] = -INFINITY;
  658. }
  659. }
  660. }
  661. // ref: ggml.c:ggml_compute_forward_ssm_conv_f32
  662. // TODO: optimize
  663. kernel void kernel_ssm_conv_f32(
  664. device const void * src0,
  665. device const void * src1,
  666. device float * dst,
  667. constant int64_t & ne00,
  668. constant int64_t & ne01,
  669. constant int64_t & ne02,
  670. constant uint64_t & nb00,
  671. constant uint64_t & nb01,
  672. constant uint64_t & nb02,
  673. constant int64_t & ne10,
  674. constant int64_t & ne11,
  675. constant uint64_t & nb10,
  676. constant uint64_t & nb11,
  677. constant int64_t & ne0,
  678. constant int64_t & ne1,
  679. constant int64_t & ne2,
  680. constant uint64_t & nb0,
  681. constant uint64_t & nb1,
  682. constant uint64_t & nb2,
  683. uint3 tgpig[[threadgroup_position_in_grid]],
  684. uint3 tpitg[[thread_position_in_threadgroup]],
  685. uint3 ntg[[threads_per_threadgroup]]) {
  686. const int64_t ir = tgpig.x;
  687. const int64_t i2 = tgpig.y;
  688. const int64_t i3 = tgpig.z;
  689. const int64_t nc = ne10;
  690. const int64_t ncs = ne00;
  691. const int64_t nr = ne01;
  692. const int64_t n_t = ne1;
  693. const int64_t n_s = ne2;
  694. device const float * s = (device const float *) ((device const char *) src0 + ir*nb01 + i2*nb00 + i3*nb02);
  695. device const float * c = (device const float *) ((device const char *) src1 + ir*nb11);
  696. device float * x = (device float *) ((device char *) dst + ir*nb0 + i2*nb1 + i3*nb2);
  697. float sumf = 0.0f;
  698. for (int64_t i0 = 0; i0 < nc; ++i0) {
  699. sumf += s[i0] * c[i0];
  700. }
  701. x[0] = sumf;
  702. }
  703. // ref: ggml.c:ggml_compute_forward_ssm_scan_f32
  704. // TODO: optimize
  705. kernel void kernel_ssm_scan_f32(
  706. device const void * src0,
  707. device const void * src1,
  708. device const void * src2,
  709. device const void * src3,
  710. device const void * src4,
  711. device const void * src5,
  712. device float * dst,
  713. constant int64_t & d_state,
  714. constant int64_t & d_inner,
  715. constant int64_t & n_seq_tokens,
  716. constant int64_t & n_seqs,
  717. constant uint64_t & nb00,
  718. constant uint64_t & nb01,
  719. constant uint64_t & nb02,
  720. constant uint64_t & nb10,
  721. constant uint64_t & nb11,
  722. constant uint64_t & nb12,
  723. constant uint64_t & nb13,
  724. constant uint64_t & nb20,
  725. constant uint64_t & nb21,
  726. constant uint64_t & nb22,
  727. constant uint64_t & nb30,
  728. constant uint64_t & nb31,
  729. constant uint64_t & nb40,
  730. constant uint64_t & nb41,
  731. constant uint64_t & nb42,
  732. constant uint64_t & nb50,
  733. constant uint64_t & nb51,
  734. constant uint64_t & nb52,
  735. uint3 tgpig[[threadgroup_position_in_grid]],
  736. uint3 tpitg[[thread_position_in_threadgroup]],
  737. uint3 ntg[[threads_per_threadgroup]]) {
  738. const int64_t ir = tgpig.x;
  739. const int64_t i3 = tgpig.y;
  740. const int64_t nc = d_state;
  741. const int64_t nr = d_inner;
  742. const int64_t n_t = n_seq_tokens;
  743. const int64_t n_s = n_seqs;
  744. for (int64_t i2 = 0; i2 < n_t; ++i2) {
  745. device const float * s0 = (device const float *) ((device const char *) src0 + ir*nb01 + i3*nb02);
  746. device const float * x = (device const float *) ((device const char *) src1 + ir*nb10 + i2*nb11 + i3*nb12);
  747. device const float * dt = (device const float *) ((device const char *) src2 + ir*nb20 + i2*nb21 + i3*nb22);
  748. device const float * A = (device const float *) ((device const char *) src3 + ir*nb31);
  749. device const float * B = (device const float *) ((device const char *) src4 + i2*nb41 + i3*nb42);
  750. device const float * C = (device const float *) ((device const char *) src5 + i2*nb51 + i3*nb52);
  751. device float * y = (device float *) ((device char *) dst + ir*nb10 + i2*nb11 + i3*nb12); // TODO: do not use src1 strides
  752. device float * s = (device float *) ((device char *) dst + ir*nb01 + i3*nb02 + nb13);
  753. if (i2 > 0) {
  754. s0 = s;
  755. }
  756. // i1 == 0
  757. float dt_soft_plus = dt[0] <= 20.0f ? log(1.0f + exp(dt[0])) : dt[0];
  758. float x_dt = x[0] * dt_soft_plus;
  759. float sumf = 0.0f;
  760. for (int64_t i0 = 0; i0 < nc; ++i0) {
  761. int64_t i = i0;
  762. float state = (s0[i] * exp(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  763. sumf += state * C[i0];
  764. s[i] = state;
  765. }
  766. y[0] = sumf;
  767. }
  768. }
  769. kernel void kernel_norm(
  770. device const void * src0,
  771. device float * dst,
  772. constant int64_t & ne00,
  773. constant uint64_t & nb01,
  774. constant float & eps,
  775. threadgroup float * sum [[threadgroup(0)]],
  776. uint tgpig[[threadgroup_position_in_grid]],
  777. uint tpitg[[thread_position_in_threadgroup]],
  778. uint ntg[[threads_per_threadgroup]]) {
  779. device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
  780. // MEAN
  781. // parallel sum
  782. sum[tpitg] = 0.0f;
  783. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  784. sum[tpitg] += x[i00];
  785. }
  786. // reduce
  787. threadgroup_barrier(mem_flags::mem_threadgroup);
  788. for (uint i = ntg/2; i > 0; i /= 2) {
  789. if (tpitg < i) {
  790. sum[tpitg] += sum[tpitg + i];
  791. }
  792. threadgroup_barrier(mem_flags::mem_threadgroup);
  793. }
  794. const float mean = sum[0] / ne00;
  795. // recenter and VARIANCE
  796. threadgroup_barrier(mem_flags::mem_threadgroup);
  797. device float * y = dst + tgpig*ne00;
  798. sum[tpitg] = 0.0f;
  799. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  800. y[i00] = x[i00] - mean;
  801. sum[tpitg] += y[i00] * y[i00];
  802. }
  803. // reduce
  804. threadgroup_barrier(mem_flags::mem_threadgroup);
  805. for (uint i = ntg/2; i > 0; i /= 2) {
  806. if (tpitg < i) {
  807. sum[tpitg] += sum[tpitg + i];
  808. }
  809. threadgroup_barrier(mem_flags::mem_threadgroup);
  810. }
  811. const float variance = sum[0] / ne00;
  812. const float scale = 1.0f/sqrt(variance + eps);
  813. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  814. y[i00] = y[i00] * scale;
  815. }
  816. }
  817. kernel void kernel_rms_norm(
  818. device const void * src0,
  819. device float * dst,
  820. constant int64_t & ne00,
  821. constant uint64_t & nb01,
  822. constant float & eps,
  823. threadgroup float * buf [[threadgroup(0)]],
  824. uint tgpig[[threadgroup_position_in_grid]],
  825. uint tpitg[[thread_position_in_threadgroup]],
  826. uint sgitg[[simdgroup_index_in_threadgroup]],
  827. uint tiisg[[thread_index_in_simdgroup]],
  828. uint ntg[[threads_per_threadgroup]]) {
  829. device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
  830. float4 sumf = 0;
  831. float all_sum = 0;
  832. // parallel sum
  833. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  834. sumf += x[i00] * x[i00];
  835. }
  836. all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
  837. all_sum = simd_sum(all_sum);
  838. if (ntg > N_SIMDWIDTH) {
  839. if (sgitg == 0) {
  840. buf[tiisg] = 0.0f;
  841. }
  842. threadgroup_barrier(mem_flags::mem_threadgroup);
  843. if (tiisg == 0) {
  844. buf[sgitg] = all_sum;
  845. }
  846. threadgroup_barrier(mem_flags::mem_threadgroup);
  847. all_sum = buf[tiisg];
  848. all_sum = simd_sum(all_sum);
  849. }
  850. const float mean = all_sum/ne00;
  851. const float scale = 1.0f/sqrt(mean + eps);
  852. device float4 * y = (device float4 *) (dst + tgpig*ne00);
  853. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  854. y[i00] = x[i00] * scale;
  855. }
  856. }
  857. kernel void kernel_group_norm(
  858. device const float * src0,
  859. device float * dst,
  860. constant int64_t & ne00,
  861. constant int64_t & ne01,
  862. constant int64_t & ne02,
  863. constant uint64_t & nb00,
  864. constant uint64_t & nb01,
  865. constant uint64_t & nb02,
  866. constant int32_t & n_groups,
  867. constant float & eps,
  868. threadgroup float * buf [[threadgroup(0)]],
  869. uint tgpig[[threadgroup_position_in_grid]],
  870. uint tpitg[[thread_position_in_threadgroup]],
  871. uint sgitg[[simdgroup_index_in_threadgroup]],
  872. uint tiisg[[thread_index_in_simdgroup]],
  873. uint ntg[[threads_per_threadgroup]]) {
  874. const int64_t ne = ne00*ne01*ne02;
  875. const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups);
  876. int start = tgpig * gs;
  877. int end = start + gs;
  878. start += tpitg;
  879. if (end >= ne) {
  880. end = ne;
  881. }
  882. float tmp = 0.0f; // partial sum for thread in warp
  883. for (int j = start; j < end; j += ntg) {
  884. tmp += src0[j];
  885. }
  886. threadgroup_barrier(mem_flags::mem_threadgroup);
  887. tmp = simd_sum(tmp);
  888. if (ntg > N_SIMDWIDTH) {
  889. if (sgitg == 0) {
  890. buf[tiisg] = 0.0f;
  891. }
  892. threadgroup_barrier(mem_flags::mem_threadgroup);
  893. if (tiisg == 0) {
  894. buf[sgitg] = tmp;
  895. }
  896. threadgroup_barrier(mem_flags::mem_threadgroup);
  897. tmp = buf[tiisg];
  898. tmp = simd_sum(tmp);
  899. }
  900. const float mean = tmp / gs;
  901. tmp = 0.0f;
  902. for (int j = start; j < end; j += ntg) {
  903. float xi = src0[j] - mean;
  904. dst[j] = xi;
  905. tmp += xi * xi;
  906. }
  907. tmp = simd_sum(tmp);
  908. if (ntg > N_SIMDWIDTH) {
  909. if (sgitg == 0) {
  910. buf[tiisg] = 0.0f;
  911. }
  912. threadgroup_barrier(mem_flags::mem_threadgroup);
  913. if (tiisg == 0) {
  914. buf[sgitg] = tmp;
  915. }
  916. threadgroup_barrier(mem_flags::mem_threadgroup);
  917. tmp = buf[tiisg];
  918. tmp = simd_sum(tmp);
  919. }
  920. const float variance = tmp / gs;
  921. const float scale = 1.0f/sqrt(variance + eps);
  922. for (int j = start; j < end; j += ntg) {
  923. dst[j] *= scale;
  924. }
  925. }
  926. // function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
  927. // il indicates where the q4 quants begin (0 or QK4_0/4)
  928. // we assume that the yl's have been multiplied with the appropriate scale factor
  929. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  930. inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
  931. float d = qb_curr->d;
  932. float2 acc = 0.f;
  933. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
  934. for (int i = 0; i < 8; i+=2) {
  935. acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
  936. + yl[i + 1] * (qs[i / 2] & 0x0F00);
  937. acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
  938. + yl[i + 9] * (qs[i / 2] & 0xF000);
  939. }
  940. return d * (sumy * -8.f + acc[0] + acc[1]);
  941. }
  942. // function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
  943. // il indicates where the q4 quants begin (0 or QK4_0/4)
  944. // we assume that the yl's have been multiplied with the appropriate scale factor
  945. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  946. inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
  947. float d = qb_curr->d;
  948. float m = qb_curr->m;
  949. float2 acc = 0.f;
  950. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
  951. for (int i = 0; i < 8; i+=2) {
  952. acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
  953. + yl[i + 1] * (qs[i / 2] & 0x0F00);
  954. acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
  955. + yl[i + 9] * (qs[i / 2] & 0xF000);
  956. }
  957. return d * (acc[0] + acc[1]) + sumy * m;
  958. }
  959. // function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
  960. // il indicates where the q5 quants begin (0 or QK5_0/4)
  961. // we assume that the yl's have been multiplied with the appropriate scale factor
  962. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  963. inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
  964. float d = qb_curr->d;
  965. float2 acc = 0.f;
  966. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
  967. const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
  968. for (int i = 0; i < 8; i+=2) {
  969. acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
  970. + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
  971. acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
  972. + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
  973. }
  974. return d * (sumy * -16.f + acc[0] + acc[1]);
  975. }
  976. // function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
  977. // il indicates where the q5 quants begin (0 or QK5_1/4)
  978. // we assume that the yl's have been multiplied with the appropriate scale factor
  979. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  980. inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
  981. float d = qb_curr->d;
  982. float m = qb_curr->m;
  983. float2 acc = 0.f;
  984. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
  985. const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
  986. for (int i = 0; i < 8; i+=2) {
  987. acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
  988. + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
  989. acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
  990. + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
  991. }
  992. return d * (acc[0] + acc[1]) + sumy * m;
  993. }
  994. // putting them in the kernel cause a significant performance penalty
  995. #define N_DST 4 // each SIMD group works on 4 rows
  996. #define N_SIMDGROUP 2 // number of SIMD groups in a thread group
  997. //Note: This is a template, but strictly speaking it only applies to
  998. // quantizations where the block size is 32. It also does not
  999. // guard against the number of rows not being divisible by
  1000. // N_DST, so this is another explicit assumption of the implementation.
  1001. template<typename block_q_type, int nr, int nsg, int nw>
  1002. void mul_vec_q_n_f32_impl(
  1003. device const void * src0,
  1004. device const float * src1,
  1005. device float * dst,
  1006. int64_t ne00,
  1007. int64_t ne01,
  1008. int64_t ne02,
  1009. int64_t ne10,
  1010. int64_t ne12,
  1011. int64_t ne0,
  1012. int64_t ne1,
  1013. uint r2,
  1014. uint r3,
  1015. threadgroup int8_t * shared_values,
  1016. uint3 tgpig, uint tiisg, uint sgitg) {
  1017. const int nb = ne00/QK4_0;
  1018. const int r0 = tgpig.x;
  1019. const int r1 = tgpig.y;
  1020. const int im = tgpig.z;
  1021. const int first_row = (r0 * nsg + sgitg) * nr;
  1022. const uint i12 = im%ne12;
  1023. const uint i13 = im/ne12;
  1024. const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  1025. device const block_q_type * x = (device const block_q_type *) src0 + offset0;
  1026. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  1027. float yl[16]; // src1 vector cache
  1028. float sumf[nr] = {0.f};
  1029. const int ix = (tiisg/2);
  1030. const int il = (tiisg%2)*8;
  1031. device const float * yb = y + ix * QK4_0 + il;
  1032. // each thread in a SIMD group deals with half a block.
  1033. for (int ib = ix; ib < nb; ib += nw/2) {
  1034. float sumy = 0;
  1035. for (int i = 0; i < 8; i += 2) {
  1036. sumy += yb[i] + yb[i+1];
  1037. yl[i+0] = yb[i+ 0];
  1038. yl[i+1] = yb[i+ 1]/256.f;
  1039. sumy += yb[i+16] + yb[i+17];
  1040. yl[i+8] = yb[i+16]/16.f;
  1041. yl[i+9] = yb[i+17]/4096.f;
  1042. }
  1043. for (int row = 0; row < nr; row++) {
  1044. sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
  1045. }
  1046. yb += QK4_0 * 16;
  1047. }
  1048. for (int row = 0; row < nr; ++row) {
  1049. const float tot = simd_sum(sumf[row]);
  1050. if (tiisg == 0 && first_row + row < ne01) {
  1051. dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot;
  1052. }
  1053. }
  1054. }
  1055. kernel void kernel_mul_mv_q4_0_f32(
  1056. device const void * src0,
  1057. device const float * src1,
  1058. device float * dst,
  1059. constant int64_t & ne00,
  1060. constant int64_t & ne01,
  1061. constant int64_t & ne02,
  1062. constant uint64_t & nb00,
  1063. constant uint64_t & nb01,
  1064. constant uint64_t & nb02,
  1065. constant int64_t & ne10,
  1066. constant int64_t & ne11,
  1067. constant int64_t & ne12,
  1068. constant uint64_t & nb10,
  1069. constant uint64_t & nb11,
  1070. constant uint64_t & nb12,
  1071. constant int64_t & ne0,
  1072. constant int64_t & ne1,
  1073. constant uint & r2,
  1074. constant uint & r3,
  1075. uint3 tgpig[[threadgroup_position_in_grid]],
  1076. uint tiisg[[thread_index_in_simdgroup]],
  1077. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  1078. mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
  1079. }
  1080. kernel void kernel_mul_mv_q4_1_f32(
  1081. device const void * src0,
  1082. device const float * src1,
  1083. device float * dst,
  1084. constant int64_t & ne00,
  1085. constant int64_t & ne01,
  1086. constant int64_t & ne02,
  1087. constant uint64_t & nb00,
  1088. constant uint64_t & nb01,
  1089. constant uint64_t & nb02,
  1090. constant int64_t & ne10,
  1091. constant int64_t & ne11,
  1092. constant int64_t & ne12,
  1093. constant uint64_t & nb10,
  1094. constant uint64_t & nb11,
  1095. constant uint64_t & nb12,
  1096. constant int64_t & ne0,
  1097. constant int64_t & ne1,
  1098. constant uint & r2,
  1099. constant uint & r3,
  1100. uint3 tgpig[[threadgroup_position_in_grid]],
  1101. uint tiisg[[thread_index_in_simdgroup]],
  1102. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  1103. mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
  1104. }
  1105. kernel void kernel_mul_mv_q5_0_f32(
  1106. device const void * src0,
  1107. device const float * src1,
  1108. device float * dst,
  1109. constant int64_t & ne00,
  1110. constant int64_t & ne01,
  1111. constant int64_t & ne02,
  1112. constant uint64_t & nb00,
  1113. constant uint64_t & nb01,
  1114. constant uint64_t & nb02,
  1115. constant int64_t & ne10,
  1116. constant int64_t & ne11,
  1117. constant int64_t & ne12,
  1118. constant uint64_t & nb10,
  1119. constant uint64_t & nb11,
  1120. constant uint64_t & nb12,
  1121. constant int64_t & ne0,
  1122. constant int64_t & ne1,
  1123. constant uint & r2,
  1124. constant uint & r3,
  1125. uint3 tgpig[[threadgroup_position_in_grid]],
  1126. uint tiisg[[thread_index_in_simdgroup]],
  1127. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  1128. mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
  1129. }
  1130. kernel void kernel_mul_mv_q5_1_f32(
  1131. device const void * src0,
  1132. device const float * src1,
  1133. device float * dst,
  1134. constant int64_t & ne00,
  1135. constant int64_t & ne01,
  1136. constant int64_t & ne02,
  1137. constant uint64_t & nb00,
  1138. constant uint64_t & nb01,
  1139. constant uint64_t & nb02,
  1140. constant int64_t & ne10,
  1141. constant int64_t & ne11,
  1142. constant int64_t & ne12,
  1143. constant uint64_t & nb10,
  1144. constant uint64_t & nb11,
  1145. constant uint64_t & nb12,
  1146. constant int64_t & ne0,
  1147. constant int64_t & ne1,
  1148. constant uint & r2,
  1149. constant uint & r3,
  1150. uint3 tgpig[[threadgroup_position_in_grid]],
  1151. uint tiisg[[thread_index_in_simdgroup]],
  1152. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  1153. mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
  1154. }
  1155. #define NB_Q8_0 8
  1156. void kernel_mul_mv_q8_0_f32_impl(
  1157. device const void * src0,
  1158. device const float * src1,
  1159. device float * dst,
  1160. int64_t ne00,
  1161. int64_t ne01,
  1162. int64_t ne02,
  1163. int64_t ne10,
  1164. int64_t ne12,
  1165. int64_t ne0,
  1166. int64_t ne1,
  1167. uint r2,
  1168. uint r3,
  1169. threadgroup int8_t * shared_values,
  1170. uint3 tgpig,
  1171. uint tiisg,
  1172. uint sgitg) {
  1173. const int nr = N_DST;
  1174. const int nsg = N_SIMDGROUP;
  1175. const int nw = N_SIMDWIDTH;
  1176. const int nb = ne00/QK8_0;
  1177. const int r0 = tgpig.x;
  1178. const int r1 = tgpig.y;
  1179. const int im = tgpig.z;
  1180. const int first_row = (r0 * nsg + sgitg) * nr;
  1181. const uint i12 = im%ne12;
  1182. const uint i13 = im/ne12;
  1183. const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  1184. device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
  1185. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  1186. float yl[NB_Q8_0];
  1187. float sumf[nr]={0.f};
  1188. const int ix = tiisg/4;
  1189. const int il = tiisg%4;
  1190. device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;
  1191. // each thread in a SIMD group deals with NB_Q8_0 quants at a time
  1192. for (int ib = ix; ib < nb; ib += nw/4) {
  1193. for (int i = 0; i < NB_Q8_0; ++i) {
  1194. yl[i] = yb[i];
  1195. }
  1196. for (int row = 0; row < nr; row++) {
  1197. device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il;
  1198. float sumq = 0.f;
  1199. for (int iq = 0; iq < NB_Q8_0; ++iq) {
  1200. sumq += qs[iq] * yl[iq];
  1201. }
  1202. sumf[row] += sumq*x[ib+row*nb].d;
  1203. }
  1204. yb += NB_Q8_0 * nw;
  1205. }
  1206. for (int row = 0; row < nr; ++row) {
  1207. const float tot = simd_sum(sumf[row]);
  1208. if (tiisg == 0 && first_row + row < ne01) {
  1209. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
  1210. }
  1211. }
  1212. }
  1213. [[host_name("kernel_mul_mv_q8_0_f32")]]
  1214. kernel void kernel_mul_mv_q8_0_f32(
  1215. device const void * src0,
  1216. device const float * src1,
  1217. device float * dst,
  1218. constant int64_t & ne00,
  1219. constant int64_t & ne01,
  1220. constant int64_t & ne02,
  1221. constant uint64_t & nb00,
  1222. constant uint64_t & nb01,
  1223. constant uint64_t & nb02,
  1224. constant int64_t & ne10,
  1225. constant int64_t & ne11,
  1226. constant int64_t & ne12,
  1227. constant uint64_t & nb10,
  1228. constant uint64_t & nb11,
  1229. constant uint64_t & nb12,
  1230. constant int64_t & ne0,
  1231. constant int64_t & ne1,
  1232. constant uint & r2,
  1233. constant uint & r3,
  1234. uint3 tgpig[[threadgroup_position_in_grid]],
  1235. uint tiisg[[thread_index_in_simdgroup]],
  1236. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  1237. kernel_mul_mv_q8_0_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
  1238. }
  1239. #define N_MV_T_T 4
  1240. template<typename T0, typename T04, typename T1, typename T14>
  1241. void kernel_mul_mv_impl(
  1242. device const char * src0,
  1243. device const char * src1,
  1244. device float * dst,
  1245. int64_t ne00,
  1246. int64_t ne01,
  1247. int64_t ne02,
  1248. uint64_t nb00,
  1249. uint64_t nb01,
  1250. uint64_t nb02,
  1251. int64_t ne10,
  1252. int64_t ne11,
  1253. int64_t ne12,
  1254. uint64_t nb10,
  1255. uint64_t nb11,
  1256. uint64_t nb12,
  1257. int64_t ne0,
  1258. int64_t ne1,
  1259. uint r2,
  1260. uint r3,
  1261. uint3 tgpig,
  1262. uint tiisg) {
  1263. const int64_t r0 = tgpig.x;
  1264. const int64_t rb = tgpig.y*N_MV_T_T;
  1265. const int64_t im = tgpig.z;
  1266. const uint i12 = im%ne12;
  1267. const uint i13 = im/ne12;
  1268. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1269. device const T0 * x = (device const T0 *) (src0 + offset0);
  1270. if (ne00 < 128) {
  1271. for (int row = 0; row < N_MV_T_T; ++row) {
  1272. int r1 = rb + row;
  1273. if (r1 >= ne11) {
  1274. break;
  1275. }
  1276. device const T1 * y = (device const T1 *) (src1 + r1*nb11 + im*nb12);
  1277. float sumf = 0;
  1278. for (int i = tiisg; i < ne00; i += 32) {
  1279. sumf += (T0) x[i] * (T1) y[i];
  1280. }
  1281. float all_sum = simd_sum(sumf);
  1282. if (tiisg == 0) {
  1283. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1284. }
  1285. }
  1286. } else {
  1287. device const T04 * x4 = (device const T04 *) x;
  1288. for (int row = 0; row < N_MV_T_T; ++row) {
  1289. int r1 = rb + row;
  1290. if (r1 >= ne11) {
  1291. break;
  1292. }
  1293. device const T1 * y = (device const T1 *) (src1 + r1*nb11 + im*nb12);
  1294. device const T14 * y4 = (device const T14 *) y;
  1295. float sumf = 0;
  1296. for (int i = tiisg; i < ne00/4; i += 32) {
  1297. for (int k = 0; k < 4; ++k) sumf += (float) (x4[i][k] * y4[i][k]);
  1298. }
  1299. float all_sum = simd_sum(sumf);
  1300. if (tiisg == 0) {
  1301. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) (x[i] * y[i]);
  1302. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1303. }
  1304. }
  1305. }
  1306. }
  1307. template<typename T0, typename T04, typename T1, typename T14>
  1308. kernel void kernel_mul_mv(
  1309. device const char * src0,
  1310. device const char * src1,
  1311. device float * dst,
  1312. constant int64_t & ne00,
  1313. constant int64_t & ne01,
  1314. constant int64_t & ne02,
  1315. constant uint64_t & nb00,
  1316. constant uint64_t & nb01,
  1317. constant uint64_t & nb02,
  1318. constant int64_t & ne10,
  1319. constant int64_t & ne11,
  1320. constant int64_t & ne12,
  1321. constant uint64_t & nb10,
  1322. constant uint64_t & nb11,
  1323. constant uint64_t & nb12,
  1324. constant int64_t & ne0,
  1325. constant int64_t & ne1,
  1326. constant uint & r2,
  1327. constant uint & r3,
  1328. uint3 tgpig[[threadgroup_position_in_grid]],
  1329. uint tiisg[[thread_index_in_simdgroup]]) {
  1330. kernel_mul_mv_impl<T0, T04, T1, T14>(
  1331. src0,
  1332. src1,
  1333. dst,
  1334. ne00,
  1335. ne01,
  1336. ne02,
  1337. nb00,
  1338. nb01,
  1339. nb02,
  1340. ne10,
  1341. ne11,
  1342. ne12,
  1343. nb10,
  1344. nb11,
  1345. nb12,
  1346. ne0,
  1347. ne1,
  1348. r2,
  1349. r3,
  1350. tgpig,
  1351. tiisg);
  1352. }
  1353. typedef decltype(kernel_mul_mv<half, half4, half, half4>) mul_mv_t;
  1354. template [[host_name("kernel_mul_mv_f32_f32")]] kernel mul_mv_t kernel_mul_mv<float, float4, float, float4>;
  1355. template [[host_name("kernel_mul_mv_f16_f32")]] kernel mul_mv_t kernel_mul_mv<half, half4, float, float4>;
  1356. template [[host_name("kernel_mul_mv_f16_f16")]] kernel mul_mv_t kernel_mul_mv<half, half4, half, half4>;
  1357. template<typename T, typename T4>
  1358. kernel void kernel_mul_mv_1row(
  1359. device const char * src0,
  1360. device const char * src1,
  1361. device float * dst,
  1362. constant int64_t & ne00,
  1363. constant int64_t & ne01,
  1364. constant int64_t & ne02,
  1365. constant uint64_t & nb00,
  1366. constant uint64_t & nb01,
  1367. constant uint64_t & nb02,
  1368. constant int64_t & ne10,
  1369. constant int64_t & ne11,
  1370. constant int64_t & ne12,
  1371. constant uint64_t & nb10,
  1372. constant uint64_t & nb11,
  1373. constant uint64_t & nb12,
  1374. constant int64_t & ne0,
  1375. constant int64_t & ne1,
  1376. constant uint & r2,
  1377. constant uint & r3,
  1378. uint3 tgpig[[threadgroup_position_in_grid]],
  1379. uint tiisg[[thread_index_in_simdgroup]]) {
  1380. const int64_t r0 = tgpig.x;
  1381. const int64_t r1 = tgpig.y;
  1382. const int64_t im = tgpig.z;
  1383. const uint i12 = im%ne12;
  1384. const uint i13 = im/ne12;
  1385. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1386. device const T * x = (device const T *) (src0 + offset0);
  1387. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1388. float sumf = 0;
  1389. if (ne00 < 128) {
  1390. for (int i = tiisg; i < ne00; i += 32) {
  1391. sumf += (float) x[i] * (float) y[i];
  1392. }
  1393. float all_sum = simd_sum(sumf);
  1394. if (tiisg == 0) {
  1395. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1396. }
  1397. } else {
  1398. device const T4 * x4 = (device const T4 *) x;
  1399. device const float4 * y4 = (device const float4 *) y;
  1400. for (int i = tiisg; i < ne00/4; i += 32) {
  1401. for (int k = 0; k < 4; ++k) sumf += (float) (x4[i][k] * y4[i][k]);
  1402. }
  1403. float all_sum = simd_sum(sumf);
  1404. if (tiisg == 0) {
  1405. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) (x[i] * y[i]);
  1406. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1407. }
  1408. }
  1409. }
  1410. typedef decltype(kernel_mul_mv_1row<half, half4>) mul_mv_1row_t;
  1411. template [[host_name("kernel_mul_mv_f16_f32_1row")]] kernel mul_mv_1row_t kernel_mul_mv_1row<half, half4>;
  1412. // Assumes row size (ne00) is a multiple of 4
  1413. template<typename T, typename T4>
  1414. kernel void kernel_mul_mv_l4(
  1415. device const char * src0,
  1416. device const char * src1,
  1417. device float * dst,
  1418. constant int64_t & ne00,
  1419. constant int64_t & ne01,
  1420. constant int64_t & ne02,
  1421. constant uint64_t & nb00,
  1422. constant uint64_t & nb01,
  1423. constant uint64_t & nb02,
  1424. constant int64_t & ne10,
  1425. constant int64_t & ne11,
  1426. constant int64_t & ne12,
  1427. constant uint64_t & nb10,
  1428. constant uint64_t & nb11,
  1429. constant uint64_t & nb12,
  1430. constant int64_t & ne0,
  1431. constant int64_t & ne1,
  1432. constant uint & r2,
  1433. constant uint & r3,
  1434. uint3 tgpig[[threadgroup_position_in_grid]],
  1435. uint tiisg[[thread_index_in_simdgroup]]) {
  1436. const int nrows = ne11;
  1437. const int64_t r0 = tgpig.x;
  1438. const int64_t im = tgpig.z;
  1439. const uint i12 = im%ne12;
  1440. const uint i13 = im/ne12;
  1441. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1442. device const T4 * x4 = (device const T4 *) (src0 + offset0);
  1443. for (int r1 = 0; r1 < nrows; ++r1) {
  1444. device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12);
  1445. float sumf = 0;
  1446. for (int i = tiisg; i < ne00/4; i += 32) {
  1447. for (int k = 0; k < 4; ++k) sumf += (float) (x4[i][k] * y4[i][k]);
  1448. }
  1449. float all_sum = simd_sum(sumf);
  1450. if (tiisg == 0) {
  1451. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1452. }
  1453. }
  1454. }
  1455. typedef decltype(kernel_mul_mv_l4<half, half4>) mul_mv_l4_t;
  1456. template [[host_name("kernel_mul_mv_f16_f32_l4")]] kernel mul_mv_l4_t kernel_mul_mv_l4<half, half4>;
  1457. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  1458. const float y = (i0 / 2 - low) / max(0.001f, high - low);
  1459. return 1.0f - min(1.0f, max(0.0f, y));
  1460. }
  1461. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  1462. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  1463. static void rope_yarn(
  1464. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  1465. thread float * cos_theta, thread float * sin_theta) {
  1466. // Get n-d rotational scaling corrected for extrapolation
  1467. float theta_interp = freq_scale * theta_extrap;
  1468. float theta = theta_interp;
  1469. if (ext_factor != 0.0f) {
  1470. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  1471. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  1472. // Get n-d magnitude scaling corrected for interpolation
  1473. mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
  1474. }
  1475. *cos_theta = cos(theta) * mscale;
  1476. *sin_theta = sin(theta) * mscale;
  1477. }
  1478. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  1479. // `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  1480. static float rope_yarn_corr_factor(int n_dims, int n_ctx_orig, float n_rot, float base) {
  1481. return n_dims * log(n_ctx_orig / (n_rot * 2 * M_PI_F)) / (2 * log(base));
  1482. }
  1483. static void rope_yarn_corr_dims(
  1484. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  1485. ) {
  1486. // start and end correction dims
  1487. dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_fast, freq_base)));
  1488. dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_slow, freq_base)));
  1489. }
  1490. template<typename T>
  1491. kernel void kernel_rope_norm(
  1492. device const void * src0,
  1493. device const int32_t * src1,
  1494. device const float * src2,
  1495. device float * dst,
  1496. constant int64_t & ne00,
  1497. constant int64_t & ne01,
  1498. constant int64_t & ne02,
  1499. constant int64_t & ne03,
  1500. constant uint64_t & nb00,
  1501. constant uint64_t & nb01,
  1502. constant uint64_t & nb02,
  1503. constant uint64_t & nb03,
  1504. constant int64_t & ne0,
  1505. constant int64_t & ne1,
  1506. constant int64_t & ne2,
  1507. constant int64_t & ne3,
  1508. constant uint64_t & nb0,
  1509. constant uint64_t & nb1,
  1510. constant uint64_t & nb2,
  1511. constant uint64_t & nb3,
  1512. constant int & n_past,
  1513. constant int & n_dims,
  1514. constant int & n_ctx_orig,
  1515. constant float & freq_base,
  1516. constant float & freq_scale,
  1517. constant float & ext_factor,
  1518. constant float & attn_factor,
  1519. constant float & beta_fast,
  1520. constant float & beta_slow,
  1521. uint tiitg[[thread_index_in_threadgroup]],
  1522. uint3 tptg[[threads_per_threadgroup]],
  1523. uint3 tgpig[[threadgroup_position_in_grid]]) {
  1524. const int64_t i3 = tgpig[2];
  1525. const int64_t i2 = tgpig[1];
  1526. const int64_t i1 = tgpig[0];
  1527. float corr_dims[2];
  1528. rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  1529. device const int32_t * pos = src1;
  1530. const float theta_base = (float) pos[i2];
  1531. const float inv_ndims = -1.f/n_dims;
  1532. float cos_theta;
  1533. float sin_theta;
  1534. for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
  1535. if (i0 < n_dims) {
  1536. const int64_t ic = i0/2;
  1537. const float theta = theta_base * pow(freq_base, inv_ndims*i0);
  1538. const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
  1539. rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
  1540. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1541. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1542. const float x0 = src[0];
  1543. const float x1 = src[1];
  1544. dst_data[0] = x0*cos_theta - x1*sin_theta;
  1545. dst_data[1] = x0*sin_theta + x1*cos_theta;
  1546. } else {
  1547. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1548. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1549. dst_data[0] = src[0];
  1550. dst_data[1] = src[1];
  1551. }
  1552. }
  1553. }
  1554. template<typename T>
  1555. kernel void kernel_rope_neox(
  1556. device const void * src0,
  1557. device const int32_t * src1,
  1558. device const float * src2,
  1559. device float * dst,
  1560. constant int64_t & ne00,
  1561. constant int64_t & ne01,
  1562. constant int64_t & ne02,
  1563. constant int64_t & ne03,
  1564. constant uint64_t & nb00,
  1565. constant uint64_t & nb01,
  1566. constant uint64_t & nb02,
  1567. constant uint64_t & nb03,
  1568. constant int64_t & ne0,
  1569. constant int64_t & ne1,
  1570. constant int64_t & ne2,
  1571. constant int64_t & ne3,
  1572. constant uint64_t & nb0,
  1573. constant uint64_t & nb1,
  1574. constant uint64_t & nb2,
  1575. constant uint64_t & nb3,
  1576. constant int & n_past,
  1577. constant int & n_dims,
  1578. constant int & n_ctx_orig,
  1579. constant float & freq_base,
  1580. constant float & freq_scale,
  1581. constant float & ext_factor,
  1582. constant float & attn_factor,
  1583. constant float & beta_fast,
  1584. constant float & beta_slow,
  1585. uint tiitg[[thread_index_in_threadgroup]],
  1586. uint3 tptg[[threads_per_threadgroup]],
  1587. uint3 tgpig[[threadgroup_position_in_grid]]) {
  1588. const int64_t i3 = tgpig[2];
  1589. const int64_t i2 = tgpig[1];
  1590. const int64_t i1 = tgpig[0];
  1591. float corr_dims[2];
  1592. rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  1593. device const int32_t * pos = src1;
  1594. const float theta_base = (float) pos[i2];
  1595. const float inv_ndims = -1.f/n_dims;
  1596. float cos_theta;
  1597. float sin_theta;
  1598. for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
  1599. if (i0 < n_dims) {
  1600. const int64_t ic = i0/2;
  1601. const float theta = theta_base * pow(freq_base, inv_ndims*i0);
  1602. const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
  1603. rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
  1604. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  1605. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  1606. const float x0 = src[0];
  1607. const float x1 = src[n_dims/2];
  1608. dst_data[0] = x0*cos_theta - x1*sin_theta;
  1609. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  1610. } else {
  1611. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1612. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1613. dst_data[0] = src[0];
  1614. dst_data[1] = src[1];
  1615. }
  1616. }
  1617. }
  1618. typedef decltype(kernel_rope_norm<float>) kernel_rope_norm_t;
  1619. typedef decltype(kernel_rope_neox<float>) kernel_rope_neox_t;
  1620. template [[host_name("kernel_rope_norm_f32")]] kernel kernel_rope_norm_t kernel_rope_norm<float>;
  1621. template [[host_name("kernel_rope_norm_f16")]] kernel kernel_rope_norm_t kernel_rope_norm<half>;
  1622. template [[host_name("kernel_rope_neox_f32")]] kernel kernel_rope_neox_t kernel_rope_neox<float>;
  1623. template [[host_name("kernel_rope_neox_f16")]] kernel kernel_rope_neox_t kernel_rope_neox<half>;
  1624. typedef void (im2col_t)(
  1625. device const float * x,
  1626. device char * dst,
  1627. constant int32_t & ofs0,
  1628. constant int32_t & ofs1,
  1629. constant int32_t & IW,
  1630. constant int32_t & IH,
  1631. constant int32_t & CHW,
  1632. constant int32_t & s0,
  1633. constant int32_t & s1,
  1634. constant int32_t & p0,
  1635. constant int32_t & p1,
  1636. constant int32_t & d0,
  1637. constant int32_t & d1,
  1638. uint3 tgpig[[threadgroup_position_in_grid]],
  1639. uint3 tgpg[[threadgroups_per_grid]],
  1640. uint3 tpitg[[thread_position_in_threadgroup]],
  1641. uint3 ntg[[threads_per_threadgroup]]);
  1642. template <typename T>
  1643. kernel void kernel_im2col(
  1644. device const float * x,
  1645. device char * dst,
  1646. constant int32_t & ofs0,
  1647. constant int32_t & ofs1,
  1648. constant int32_t & IW,
  1649. constant int32_t & IH,
  1650. constant int32_t & CHW,
  1651. constant int32_t & s0,
  1652. constant int32_t & s1,
  1653. constant int32_t & p0,
  1654. constant int32_t & p1,
  1655. constant int32_t & d0,
  1656. constant int32_t & d1,
  1657. uint3 tgpig[[threadgroup_position_in_grid]],
  1658. uint3 tgpg[[threadgroups_per_grid]],
  1659. uint3 tpitg[[thread_position_in_threadgroup]],
  1660. uint3 ntg[[threads_per_threadgroup]]) {
  1661. const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
  1662. const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
  1663. const int32_t offset_dst =
  1664. (tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
  1665. (tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
  1666. device T * pdst = (device T *) (dst);
  1667. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  1668. pdst[offset_dst] = 0.0f;
  1669. } else {
  1670. const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
  1671. pdst[offset_dst] = x[offset_src + iih * IW + iiw];
  1672. }
  1673. }
  1674. template [[host_name("kernel_im2col_f32")]] kernel im2col_t kernel_im2col<float>;
  1675. template [[host_name("kernel_im2col_f16")]] kernel im2col_t kernel_im2col<half>;
  1676. kernel void kernel_upscale_f32(
  1677. device const char * src0,
  1678. device char * dst,
  1679. constant int64_t & ne00,
  1680. constant int64_t & ne01,
  1681. constant int64_t & ne02,
  1682. constant int64_t & ne03,
  1683. constant uint64_t & nb00,
  1684. constant uint64_t & nb01,
  1685. constant uint64_t & nb02,
  1686. constant uint64_t & nb03,
  1687. constant int64_t & ne0,
  1688. constant int64_t & ne1,
  1689. constant int64_t & ne2,
  1690. constant int64_t & ne3,
  1691. constant uint64_t & nb0,
  1692. constant uint64_t & nb1,
  1693. constant uint64_t & nb2,
  1694. constant uint64_t & nb3,
  1695. constant float & sf0,
  1696. constant float & sf1,
  1697. constant float & sf2,
  1698. constant float & sf3,
  1699. uint3 tgpig[[threadgroup_position_in_grid]],
  1700. uint3 tpitg[[thread_position_in_threadgroup]],
  1701. uint3 ntg[[threads_per_threadgroup]]) {
  1702. const int64_t i3 = tgpig.z;
  1703. const int64_t i2 = tgpig.y;
  1704. const int64_t i1 = tgpig.x;
  1705. const int64_t i03 = i3/sf3;
  1706. const int64_t i02 = i2/sf2;
  1707. const int64_t i01 = i1/sf1;
  1708. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1709. const int64_t i00 = i0/sf0;
  1710. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1711. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1712. dst_ptr[0] = src0_ptr[0];
  1713. }
  1714. }
  1715. kernel void kernel_pad_f32(
  1716. device const char * src0,
  1717. device char * dst,
  1718. constant int64_t & ne00,
  1719. constant int64_t & ne01,
  1720. constant int64_t & ne02,
  1721. constant int64_t & ne03,
  1722. constant uint64_t & nb00,
  1723. constant uint64_t & nb01,
  1724. constant uint64_t & nb02,
  1725. constant uint64_t & nb03,
  1726. constant int64_t & ne0,
  1727. constant int64_t & ne1,
  1728. constant int64_t & ne2,
  1729. constant int64_t & ne3,
  1730. constant uint64_t & nb0,
  1731. constant uint64_t & nb1,
  1732. constant uint64_t & nb2,
  1733. constant uint64_t & nb3,
  1734. uint3 tgpig[[threadgroup_position_in_grid]],
  1735. uint3 tpitg[[thread_position_in_threadgroup]],
  1736. uint3 ntg[[threads_per_threadgroup]]) {
  1737. const int64_t i3 = tgpig.z;
  1738. const int64_t i2 = tgpig.y;
  1739. const int64_t i1 = tgpig.x;
  1740. const int64_t i03 = i3;
  1741. const int64_t i02 = i2;
  1742. const int64_t i01 = i1;
  1743. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
  1744. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
  1745. if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
  1746. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1747. if (i0 < ne00) {
  1748. dst_ptr[i0] = src0_ptr[i0];
  1749. } else {
  1750. dst_ptr[i0] = 0.0f;
  1751. }
  1752. }
  1753. return;
  1754. }
  1755. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1756. dst_ptr[i0] = 0.0f;
  1757. }
  1758. }
  1759. kernel void kernel_unpad_f32(
  1760. device const char * src0,
  1761. device char * dst,
  1762. constant int64_t & ne00,
  1763. constant int64_t & ne01,
  1764. constant int64_t & ne02,
  1765. constant int64_t & ne03,
  1766. constant uint64_t & nb00,
  1767. constant uint64_t & nb01,
  1768. constant uint64_t & nb02,
  1769. constant uint64_t & nb03,
  1770. constant int64_t & ne0,
  1771. constant int64_t & ne1,
  1772. constant int64_t & ne2,
  1773. constant int64_t & ne3,
  1774. constant uint64_t & nb0,
  1775. constant uint64_t & nb1,
  1776. constant uint64_t & nb2,
  1777. constant uint64_t & nb3,
  1778. uint3 tgpig[[threadgroup_position_in_grid]],
  1779. uint3 tpitg[[thread_position_in_threadgroup]],
  1780. uint3 ntg[[threads_per_threadgroup]]) {
  1781. const int64_t i3 = tgpig.z;
  1782. const int64_t i2 = tgpig.y;
  1783. const int64_t i1 = tgpig.x;
  1784. const int64_t i03 = i3;
  1785. const int64_t i02 = i2;
  1786. const int64_t i01 = i1;
  1787. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
  1788. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
  1789. if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
  1790. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1791. if (i0 < ne00) {
  1792. dst_ptr[i0] = src0_ptr[i0];
  1793. }
  1794. }
  1795. return;
  1796. }
  1797. }
  1798. kernel void kernel_arange_f32(
  1799. device char * dst,
  1800. constant int64_t & ne0,
  1801. constant float & start,
  1802. constant float & step,
  1803. uint3 tgpig[[threadgroup_position_in_grid]],
  1804. uint3 tpitg[[thread_position_in_threadgroup]],
  1805. uint3 ntg[[threads_per_threadgroup]]) {
  1806. device float * dst_ptr = (device float *) dst;
  1807. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1808. dst_ptr[i0] = start + step * i0;
  1809. }
  1810. }
  1811. kernel void kernel_timestep_embedding_f32(
  1812. device const char * src0,
  1813. device char * dst,
  1814. constant uint64_t & nb1,
  1815. constant int & dim,
  1816. constant int & max_period,
  1817. uint3 tgpig[[threadgroup_position_in_grid]],
  1818. uint3 tpitg[[thread_position_in_threadgroup]],
  1819. uint3 ntg[[threads_per_threadgroup]]) {
  1820. int i = tgpig.x;
  1821. device float * embed_data = (device float *)(dst + i*nb1);
  1822. int half_ = dim / 2;
  1823. for (int j = tpitg.x; j < half_; j += ntg.x) {
  1824. float timestep = ((device float *)src0)[i];
  1825. float freq = (float)exp(-log((float)max_period) * j / half_);
  1826. float arg = timestep * freq;
  1827. embed_data[j ] = cos(arg);
  1828. embed_data[j + half_] = sin(arg);
  1829. }
  1830. if (dim % 2 != 0 && tpitg.x == 0) {
  1831. embed_data[dim] = 0.f;
  1832. }
  1833. }
  1834. // bitonic sort implementation following the CUDA kernels as reference
  1835. typedef void (argsort_t)(
  1836. device const float * x,
  1837. device int32_t * dst,
  1838. constant int64_t & ncols,
  1839. constant int64_t & ncols_pad,
  1840. threadgroup int32_t * shared_values [[threadgroup(0)]],
  1841. uint3 tgpig[[threadgroup_position_in_grid]],
  1842. uint3 tpitg[[thread_position_in_threadgroup]]);
  1843. template<ggml_sort_order order>
  1844. kernel void kernel_argsort_f32_i32(
  1845. device const float * x,
  1846. device int32_t * dst,
  1847. constant int64_t & ncols,
  1848. constant int64_t & ncols_pad,
  1849. threadgroup int32_t * shared_values [[threadgroup(0)]],
  1850. uint3 tgpig[[threadgroup_position_in_grid]],
  1851. uint3 tpitg[[thread_position_in_threadgroup]]) {
  1852. // bitonic sort
  1853. int col = tpitg[0];
  1854. int row = tgpig[1];
  1855. if (col >= ncols_pad) return;
  1856. device const float * x_row = x + row * ncols;
  1857. threadgroup int32_t * dst_row = shared_values;
  1858. // initialize indices
  1859. dst_row[col] = col;
  1860. threadgroup_barrier(mem_flags::mem_threadgroup);
  1861. for (int k = 2; k <= ncols_pad; k *= 2) {
  1862. for (int j = k / 2; j > 0; j /= 2) {
  1863. int ixj = col ^ j;
  1864. if (ixj > col) {
  1865. if ((col & k) == 0) {
  1866. if (dst_row[col] >= ncols ||
  1867. (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
  1868. x_row[dst_row[col]] > x_row[dst_row[ixj]] :
  1869. x_row[dst_row[col]] < x_row[dst_row[ixj]]))
  1870. ) {
  1871. SWAP(dst_row[col], dst_row[ixj]);
  1872. }
  1873. } else {
  1874. if (dst_row[ixj] >= ncols ||
  1875. (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
  1876. x_row[dst_row[col]] < x_row[dst_row[ixj]] :
  1877. x_row[dst_row[col]] > x_row[dst_row[ixj]]))
  1878. ) {
  1879. SWAP(dst_row[col], dst_row[ixj]);
  1880. }
  1881. }
  1882. }
  1883. threadgroup_barrier(mem_flags::mem_threadgroup);
  1884. }
  1885. }
  1886. // copy the result to dst without the padding
  1887. if (col < ncols) {
  1888. dst[row * ncols + col] = dst_row[col];
  1889. }
  1890. }
  1891. template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ORDER_ASC>;
  1892. template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ORDER_DESC>;
  1893. kernel void kernel_leaky_relu_f32(
  1894. device const float * src0,
  1895. device float * dst,
  1896. constant float & slope,
  1897. uint tpig[[thread_position_in_grid]]) {
  1898. dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope;
  1899. }
  1900. typedef void (flash_attn_ext_f16_t)(
  1901. device const char * q,
  1902. device const char * k,
  1903. device const char * v,
  1904. device const char * mask,
  1905. device float * dst,
  1906. constant int64_t & ne01,
  1907. constant int64_t & ne02,
  1908. constant int64_t & ne03,
  1909. constant uint64_t & nb01,
  1910. constant uint64_t & nb02,
  1911. constant uint64_t & nb03,
  1912. constant int64_t & ne11,
  1913. constant int64_t & ne12,
  1914. constant int64_t & ne13,
  1915. constant uint64_t & nb11,
  1916. constant uint64_t & nb12,
  1917. constant uint64_t & nb13,
  1918. constant uint64_t & nb21,
  1919. constant uint64_t & nb22,
  1920. constant uint64_t & nb23,
  1921. constant uint64_t & nb31,
  1922. constant int64_t & ne1,
  1923. constant int64_t & ne2,
  1924. constant float & scale,
  1925. constant float & max_bias,
  1926. constant float & m0,
  1927. constant float & m1,
  1928. constant uint32_t & n_head_log2,
  1929. constant float & logit_softcap,
  1930. threadgroup half * shared,
  1931. uint3 tgpig[[threadgroup_position_in_grid]],
  1932. uint3 tpitg[[thread_position_in_threadgroup]],
  1933. uint3 ntg[[threads_per_threadgroup]],
  1934. ushort tiisg[[thread_index_in_simdgroup]],
  1935. ushort sgitg[[simdgroup_index_in_threadgroup]]);
  1936. // ref: https://arxiv.org/pdf/2307.08691.pdf
  1937. template<int64_t D, int64_t Q = 8, int64_t C = 32> // head size, queries per threadgroup, cache items per threadgroup
  1938. kernel void kernel_flash_attn_ext_f16(
  1939. device const char * q,
  1940. device const char * k,
  1941. device const char * v,
  1942. device const char * mask,
  1943. device float * dst,
  1944. constant int64_t & ne01,
  1945. constant int64_t & ne02,
  1946. constant int64_t & ne03,
  1947. constant uint64_t & nb01,
  1948. constant uint64_t & nb02,
  1949. constant uint64_t & nb03,
  1950. constant int64_t & ne11,
  1951. constant int64_t & ne12,
  1952. constant int64_t & ne13,
  1953. constant uint64_t & nb11,
  1954. constant uint64_t & nb12,
  1955. constant uint64_t & nb13,
  1956. constant uint64_t & nb21,
  1957. constant uint64_t & nb22,
  1958. constant uint64_t & nb23,
  1959. constant uint64_t & nb31,
  1960. constant int64_t & ne1,
  1961. constant int64_t & ne2,
  1962. constant float & scale,
  1963. constant float & max_bias,
  1964. constant float & m0,
  1965. constant float & m1,
  1966. constant uint32_t & n_head_log2,
  1967. constant float & logit_softcap,
  1968. threadgroup half * shared [[threadgroup(0)]],
  1969. uint3 tgpig[[threadgroup_position_in_grid]],
  1970. uint3 tpitg[[thread_position_in_threadgroup]],
  1971. uint3 ntg[[threads_per_threadgroup]],
  1972. ushort tiisg[[thread_index_in_simdgroup]],
  1973. ushort sgitg[[simdgroup_index_in_threadgroup]]) {
  1974. const short nsg = ntg.y; // number of simdgroups
  1975. const short iq3 = tgpig[2];
  1976. const short iq2 = tgpig[1];
  1977. const short iq1 = tgpig[0]*Q;
  1978. const short D4 = D/4;
  1979. const short D8 = D/8;
  1980. //const short Q8 = Q/8;
  1981. const short NW = N_SIMDWIDTH;
  1982. const short SH = (C + Q); // shared memory per simdgroup in (half)
  1983. const short T = D + 2*nsg*SH; // shared memory size per query in (half)
  1984. const short TF = T/2; // shared memory size per query in (float)
  1985. const short T4 = T/4; // shared memory size per query in (half4)
  1986. threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data
  1987. threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4
  1988. threadgroup float * ss = (threadgroup float *) (shared + 2*sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix
  1989. // store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper)
  1990. simdgroup_half8x8 lo[D8];
  1991. // load heads from Q to shared memory
  1992. for (short j = sgitg; j < Q; j += nsg) {
  1993. device const float4 * q4 = (device const float4 *) ((device const char *) q + ((iq1 + j)*nb01 + iq2*nb02 + iq3*nb03));
  1994. for (short i = tiisg; i < D4; i += NW) {
  1995. if (iq1 + j < ne01) {
  1996. sq4[j*T4 + i] = (half4) q4[i];
  1997. } else {
  1998. sq4[j*T4 + i] = 0.0h;
  1999. }
  2000. }
  2001. }
  2002. // zero out lo
  2003. for (short i = 0; i < D8; ++i) {
  2004. lo[i] = make_filled_simdgroup_matrix<half, 8>(0.0h);
  2005. }
  2006. // zero out shared memory SH
  2007. for (short j = 0; j < Q; ++j) {
  2008. for (short i = tiisg; i < SH; i += NW) {
  2009. ss[j*TF + i] = 0.0f;
  2010. }
  2011. }
  2012. threadgroup_barrier(mem_flags::mem_threadgroup);
  2013. {
  2014. float S[Q] = { [0 ... Q-1] = 0.0h };
  2015. float M[Q] = { [0 ... Q-1] = -FLT_MAX/2 };
  2016. // assume K and V are same shape
  2017. const short ne22 = ne12;
  2018. const short ne23 = ne13;
  2019. // broadcast
  2020. const short rk2 = ne02/ne12;
  2021. const short rk3 = ne03/ne13;
  2022. const short rv2 = ne02/ne22;
  2023. const short rv3 = ne03/ne23;
  2024. // k indices
  2025. const short ik2 = iq2/rk2;
  2026. const short ik3 = iq3/rk3;
  2027. // v indices
  2028. const short iv2 = iq2/rv2;
  2029. const short iv3 = iq3/rv3;
  2030. // load the queries from shared memory into local memory
  2031. simdgroup_half8x8 mq[D8];
  2032. for (short i = 0; i < D8; ++i) {
  2033. simdgroup_load(mq[i], sq + i*8, T);
  2034. }
  2035. // pointer to the mask
  2036. device const half * mp = (device const half *) (mask + iq1*nb31);
  2037. float slope = 1.0f;
  2038. // ALiBi
  2039. if (max_bias > 0.0f) {
  2040. const uint32_t h = iq2;
  2041. const float base = h < n_head_log2 ? m0 : m1;
  2042. const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
  2043. slope = pow(base, exph);
  2044. }
  2045. // loop over the KV cache
  2046. // each simdgroup handles blocks of Q rows and C columns
  2047. for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) {
  2048. const int ic = ic0 + C*sgitg;
  2049. if (ic >= ne11) {
  2050. break;
  2051. }
  2052. // Q*K^T
  2053. {
  2054. for (short cc = 0; cc < C/8; ++cc) {
  2055. simdgroup_float8x8 mqk = make_filled_simdgroup_matrix<float, 8>(0.h);
  2056. device const half * pk = (device const half *) ((device const char *) k + ((ic + 8*cc)*nb11 + ik2*nb12 + ik3*nb13));
  2057. for (short i = 0; i < D8; ++i) {
  2058. simdgroup_half8x8 mk;
  2059. simdgroup_load(mk, pk + i*8, nb11/sizeof(half), 0, true); // transpose
  2060. simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk);
  2061. }
  2062. simdgroup_store(mqk, ss + 8*cc, TF, 0, false);
  2063. }
  2064. }
  2065. // used to detect blocks full of -INF
  2066. float smax = -INFINITY;
  2067. // online softmax
  2068. {
  2069. float ms[Q];
  2070. for (short j = 0; j < Q; ++j) {
  2071. const float m = M[j];
  2072. // scale and apply the logitcap / mask
  2073. float s = ss[j*TF + tiisg]*scale;
  2074. if (logit_softcap != 0.0f) {
  2075. s = logit_softcap*precise::tanh(s);
  2076. }
  2077. if (mask != q) {
  2078. // mqk = mqk + mask*slope
  2079. s += slope*mp[ic + j*nb31/sizeof(half) + tiisg];
  2080. }
  2081. smax = simd_max(max(smax, s));
  2082. M[j] = simd_max(max(M[j], s));
  2083. ms[j] = exp(m - M[j]);
  2084. const float vs = exp(s - M[j]);
  2085. S[j] = S[j]*ms[j] + simd_sum(vs);
  2086. // the P matrix from the paper (Q rows, C columns)
  2087. ss[j*TF + tiisg] = vs;
  2088. }
  2089. // create a QxQ diagonal matrix for rescaling the output
  2090. if (tiisg < Q) {
  2091. ss[tiisg*TF + C + tiisg] = ms[tiisg];
  2092. }
  2093. }
  2094. // skip -INF blocks
  2095. if (smax == -INFINITY) {
  2096. continue;
  2097. }
  2098. // O = diag(ms)*O
  2099. {
  2100. simdgroup_float8x8 mm;
  2101. simdgroup_load(mm, ss + C, TF, 0, false);
  2102. for (short i = 0; i < D8; ++i) {
  2103. simdgroup_multiply(lo[i], mm, lo[i]);
  2104. }
  2105. }
  2106. // O = O + (Q*K^T)*V
  2107. {
  2108. for (short cc = 0; cc < C/8; ++cc) {
  2109. device const half * pv = (device const half *) ((device const char *) v + ((ic + 8*cc)*nb21 + iv2*nb22 + iv3*nb23));
  2110. for (short i = 0; i < D8; ++i) {
  2111. simdgroup_half8x8 mk;
  2112. simdgroup_load(mk, pv + i*8, nb21/sizeof(half), 0, false);
  2113. simdgroup_float8x8 mv;
  2114. simdgroup_load(mv, ss + 8*cc, TF, 0, false);
  2115. simdgroup_multiply_accumulate(lo[i], mv, mk, lo[i]);
  2116. }
  2117. }
  2118. }
  2119. }
  2120. // these are needed for reducing the results from the simdgroups (reuse the ss buffer)
  2121. for (short j = 0; j < Q; ++j) {
  2122. if (tiisg == 0) {
  2123. ss[j*TF + 0] = S[j];
  2124. ss[j*TF + 1] = M[j];
  2125. }
  2126. }
  2127. }
  2128. // reduce the warps sequentially
  2129. for (short sg = 1; sg < nsg; ++sg) {
  2130. float S = { 0.0h };
  2131. float M = { -FLT_MAX/2 };
  2132. threadgroup_barrier(mem_flags::mem_threadgroup);
  2133. // each simdgroup stores its output to shared memory, reusing sq
  2134. if (sgitg == sg) {
  2135. for (short i = 0; i < D8; ++i) {
  2136. simdgroup_store(lo[i], sq + i*8, T, 0, false);
  2137. }
  2138. }
  2139. threadgroup_barrier(mem_flags::mem_threadgroup);
  2140. // the first simdgroup accumulates the results from the other simdgroups
  2141. if (sgitg == 0) {
  2142. for (short j = 0; j < Q; ++j) {
  2143. const float S0 = ss[j*TF + 0];
  2144. const float S1 = ss[j*TF + sg*SH + 0];
  2145. const float M0 = ss[j*TF + 1];
  2146. const float M1 = ss[j*TF + sg*SH + 1];
  2147. M = max(M0, M1);
  2148. const float ms0 = exp(M0 - M);
  2149. const float ms1 = exp(M1 - M);
  2150. S = S0*ms0 + S1*ms1;
  2151. if (tiisg == 0) {
  2152. ss[j*TF + 0] = S;
  2153. ss[j*TF + 1] = M;
  2154. ss[j*TF + C + j ] = ms0;
  2155. ss[j*TF + C + j + sg*SH] = ms1;
  2156. }
  2157. }
  2158. // O_0 = diag(ms0)*O_0 + diag(ms1)*O_1
  2159. {
  2160. simdgroup_half8x8 t;
  2161. simdgroup_float8x8 ms0;
  2162. simdgroup_float8x8 ms1;
  2163. simdgroup_load(ms0, ss + C, TF, 0, false);
  2164. simdgroup_load(ms1, ss + C + sg*SH, TF, 0, false);
  2165. for (short i = 0; i < D8; ++i) {
  2166. simdgroup_load (t, sq + i*8, T, 0, false);
  2167. simdgroup_multiply(t, ms1, t);
  2168. simdgroup_multiply_accumulate(lo[i], ms0, lo[i], t);
  2169. }
  2170. }
  2171. }
  2172. }
  2173. // store result to shared memory (reuse sq)
  2174. if (sgitg == 0) {
  2175. for (short i = 0; i < D8; ++i) {
  2176. simdgroup_store(lo[i], sq + i*8, T, 0, false);
  2177. }
  2178. }
  2179. device float4 * dst4 = (device float4 *) dst;
  2180. // final rescale with 1/S and store to global memory
  2181. if (sgitg == 0) {
  2182. for (short j = 0; j < Q && iq1 + j < ne01; ++j) {
  2183. const float S = ss[j*TF + 0];
  2184. for (short i = tiisg; i < D4; i += NW) {
  2185. dst4[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D4 + i] = (float4) sq4[j*T4 + i]/S;
  2186. }
  2187. }
  2188. }
  2189. }
  2190. template [[host_name("kernel_flash_attn_ext_f16_h64" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<64>;
  2191. template [[host_name("kernel_flash_attn_ext_f16_h80" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<80>;
  2192. template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<96>;
  2193. template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<112>;
  2194. template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<128>;
  2195. //template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<256>;
  2196. template<int64_t D, int64_t Q = 1, int64_t C = 32> // head size, queries per threadgroup, cache items per threadgroup
  2197. kernel void kernel_flash_attn_ext_vec_f16(
  2198. device const char * q,
  2199. device const char * k,
  2200. device const char * v,
  2201. device const char * mask,
  2202. device float * dst,
  2203. constant int64_t & ne01,
  2204. constant int64_t & ne02,
  2205. constant int64_t & ne03,
  2206. constant uint64_t & nb01,
  2207. constant uint64_t & nb02,
  2208. constant uint64_t & nb03,
  2209. constant int64_t & ne11,
  2210. constant int64_t & ne12,
  2211. constant int64_t & ne13,
  2212. constant uint64_t & nb11,
  2213. constant uint64_t & nb12,
  2214. constant uint64_t & nb13,
  2215. constant uint64_t & nb21,
  2216. constant uint64_t & nb22,
  2217. constant uint64_t & nb23,
  2218. constant uint64_t & nb31,
  2219. constant int64_t & ne1,
  2220. constant int64_t & ne2,
  2221. constant float & scale,
  2222. constant float & max_bias,
  2223. constant float & m0,
  2224. constant float & m1,
  2225. constant uint32_t & n_head_log2,
  2226. constant float & logit_softcap,
  2227. threadgroup half * shared [[threadgroup(0)]],
  2228. uint3 tgpig[[threadgroup_position_in_grid]],
  2229. uint3 tpitg[[thread_position_in_threadgroup]],
  2230. uint3 ntg[[threads_per_threadgroup]],
  2231. ushort tiisg[[thread_index_in_simdgroup]],
  2232. ushort sgitg[[simdgroup_index_in_threadgroup]]) {
  2233. const short nsg = ntg.y; // number of simdgroups
  2234. const short iq3 = tgpig[2];
  2235. const short iq2 = tgpig[1];
  2236. const short iq1 = tgpig[0];
  2237. const short D4 = D/4;
  2238. const short NW = N_SIMDWIDTH;
  2239. const short SH = (C + Q); // shared memory per simdgroup in (half)
  2240. const short T = D + 2*nsg*SH; // shared memory size per query in (half)
  2241. float slope = 1.0f;
  2242. // ALiBi
  2243. if (max_bias > 0.0f) {
  2244. const uint32_t h = iq2;
  2245. const float base = h < n_head_log2 ? m0 : m1;
  2246. const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
  2247. slope = pow(base, exp);
  2248. }
  2249. //threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data
  2250. threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4
  2251. threadgroup float * ss = (threadgroup float *) (shared + 2*sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix
  2252. threadgroup float4 * ss4 = (threadgroup float4 *) (shared + 2*sgitg*SH + 1*D); // same as above but in half4
  2253. threadgroup half4 * sr4 = (threadgroup half4 *) (shared + sgitg*D + 1*T); // scratch buffer for the results
  2254. // store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper)
  2255. half4 lo[D4/NW];
  2256. // load heads from Q to shared memory
  2257. device const float4 * q4 = (device const float4 *) ((device const char *) q + (iq1*nb01 + iq2*nb02 + iq3*nb03));
  2258. for (short i = tiisg; i < D4; i += NW) {
  2259. if (iq1 < ne01) {
  2260. sq4[i] = (half4) q4[i];
  2261. } else {
  2262. sq4[i] = 0.0h;
  2263. }
  2264. }
  2265. // zero out lo
  2266. for (short i = tiisg; i < D4; i += NW) {
  2267. lo[i/NW] = 0.0h;
  2268. }
  2269. // zero out shared memory SH
  2270. for (short i = tiisg; i < SH/4; i += NW) {
  2271. ss4[i] = 0.0h;
  2272. }
  2273. threadgroup_barrier(mem_flags::mem_threadgroup);
  2274. {
  2275. float S = { 0.0h };
  2276. float M = { -FLT_MAX/2 };
  2277. // assume K and V are same shape
  2278. const short ne22 = ne12;
  2279. const short ne23 = ne13;
  2280. // broadcast
  2281. const short rk2 = ne02/ne12;
  2282. const short rk3 = ne03/ne13;
  2283. const short rv2 = ne02/ne22;
  2284. const short rv3 = ne03/ne23;
  2285. // k indices
  2286. const short ik2 = iq2 / rk2;
  2287. const short ik3 = iq3 / rk3;
  2288. // v indices
  2289. const short iv2 = iq2 / rv2;
  2290. const short iv3 = iq3 / rv3;
  2291. // load the queries from shared memory into local memory
  2292. float4 mq[D4];
  2293. for (short ii = 0; ii < D4; ii += NW) {
  2294. short i = ii + tiisg;
  2295. mq[i] = (float4) sq4[i];
  2296. }
  2297. // pointer to the mask
  2298. device const half4 * mp4 = (device const half4 *) (mask + iq1*nb31);
  2299. // loop over the KV cache
  2300. // each simdgroup handles blocks of Q rows and C columns
  2301. for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) {
  2302. const int ic = ic0 + C*sgitg;
  2303. if (ic >= ne11) {
  2304. break;
  2305. }
  2306. // Q*K^T
  2307. {
  2308. #pragma unroll
  2309. for (short cc = 0; cc < C/4; ++cc) {
  2310. float4 mqk = { 0.0h };
  2311. device const half4 * pk4 = (device const half4 *) ((device const char *) k + ((ic + 4*cc)*nb11 + ik2*nb12 + ik3*nb13));
  2312. #pragma unroll
  2313. for (short ii = 0; ii < D4; ii += NW) {
  2314. const short i = ii + tiisg;
  2315. float4x4 mk;
  2316. mk[0] = (float4) pk4[i + 0*(nb11/8)];
  2317. mk[1] = (float4) pk4[i + 1*(nb11/8)];
  2318. mk[2] = (float4) pk4[i + 2*(nb11/8)];
  2319. mk[3] = (float4) pk4[i + 3*(nb11/8)];
  2320. mqk += (float4) (mq[i] * mk);
  2321. }
  2322. // reduce the results from the threads in the simdgroup
  2323. mqk += simd_shuffle_down(mqk, 16);
  2324. mqk += simd_shuffle_down(mqk, 8);
  2325. mqk += simd_shuffle_down(mqk, 4);
  2326. mqk += simd_shuffle_down(mqk, 2);
  2327. mqk += simd_shuffle_down(mqk, 1);
  2328. // mqk = mqk*scale + mask*slope
  2329. if (tiisg == 0) {
  2330. mqk *= scale;
  2331. if (logit_softcap != 0.0f) {
  2332. mqk = logit_softcap*precise::tanh(mqk);
  2333. }
  2334. mqk += (mask != q) ? ((float4) mp4[ic/4 + cc])*slope : (float4) 0.0f;
  2335. ss4[cc] = mqk;
  2336. }
  2337. }
  2338. }
  2339. // online softmax
  2340. {
  2341. const short p = tiisg;
  2342. const float m = M;
  2343. const float s = ss[p];
  2344. M = simd_max(max(M, s));
  2345. const float ms = exp(m - M);
  2346. const float vs = exp(s - M);
  2347. S = S*ms + simd_sum(vs);
  2348. // the P matrix from the paper (Q rows, C columns)
  2349. ss[p] = vs;
  2350. // O = diag(ms)*O
  2351. #pragma unroll
  2352. for (short ii = 0; ii < D4; ii += NW) {
  2353. const short i = ii + tiisg;
  2354. lo[i/NW] *= ms;
  2355. }
  2356. }
  2357. // O = O + (Q*K^T)*V
  2358. {
  2359. #pragma unroll
  2360. for (short cc = 0; cc < C/4; ++cc) {
  2361. device const half4 * pv4 = (device const half4 *) ((device const char *) v + ((ic + 4*cc)*nb21 + iv2*nb22 + iv3*nb23));
  2362. #pragma unroll
  2363. for (short ii = 0; ii < D4; ii += NW) {
  2364. const short i = ii + tiisg;
  2365. lo[i/NW] += pv4[i + 0*(nb21/8)] * ss[4*cc + 0];
  2366. lo[i/NW] += pv4[i + 1*(nb21/8)] * ss[4*cc + 1];
  2367. lo[i/NW] += pv4[i + 2*(nb21/8)] * ss[4*cc + 2];
  2368. lo[i/NW] += pv4[i + 3*(nb21/8)] * ss[4*cc + 3];
  2369. }
  2370. }
  2371. }
  2372. }
  2373. // these are needed for reducing the results from the simdgroups (reuse the ss buffer)
  2374. if (tiisg == 0) {
  2375. ss[0] = S;
  2376. ss[1] = M;
  2377. }
  2378. }
  2379. // store results to shared memory
  2380. for (short ii = 0; ii < D4; ii += NW) {
  2381. short i = ii + tiisg;
  2382. sr4[i] = lo[ii/NW];
  2383. }
  2384. threadgroup_barrier(mem_flags::mem_threadgroup);
  2385. // parallel reduce
  2386. for (short r = nsg/2; r > 0; r >>= 1) {
  2387. if (sgitg < r) {
  2388. const float S0 = ss[ 0];
  2389. const float S1 = ss[r*SH + 0];
  2390. const float M0 = ss[ 1];
  2391. const float M1 = ss[r*SH + 1];
  2392. const float M = max(M0, M1);
  2393. const float ms0 = exp(M0 - M);
  2394. const float ms1 = exp(M1 - M);
  2395. const float S = S0*ms0 + S1*ms1;
  2396. if (tiisg == 0) {
  2397. ss[0] = S;
  2398. ss[1] = M;
  2399. }
  2400. // O_0 = diag(ms0)*O_0 + diag(ms1)*O_1
  2401. for (short ii = 0; ii < D4; ii += NW) {
  2402. short i = ii + tiisg;
  2403. sr4[i] = sr4[i]*ms0 + sr4[i + r*D4]*ms1;
  2404. }
  2405. }
  2406. threadgroup_barrier(mem_flags::mem_threadgroup);
  2407. }
  2408. device float4 * dst4 = (device float4 *) dst;
  2409. // final rescale with 1/S and store to global memory
  2410. if (sgitg == 0) {
  2411. const float S = ss[0];
  2412. for (short ii = 0; ii < D4; ii += NW) {
  2413. short i = ii + tiisg;
  2414. dst4[(iq3*ne2*ne1 + iq2 + (iq1)*ne1)*D4 + i] = (float4) sr4[i]/S;
  2415. }
  2416. }
  2417. }
  2418. template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<128>;
  2419. //template [[host_name("kernel_flash_attn_ext_vec_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<256>;
  2420. template<typename T0, typename T1>
  2421. kernel void kernel_cpy(
  2422. device const void * src0,
  2423. device void * dst,
  2424. constant int64_t & ne00,
  2425. constant int64_t & ne01,
  2426. constant int64_t & ne02,
  2427. constant int64_t & ne03,
  2428. constant uint64_t & nb00,
  2429. constant uint64_t & nb01,
  2430. constant uint64_t & nb02,
  2431. constant uint64_t & nb03,
  2432. constant int64_t & ne0,
  2433. constant int64_t & ne1,
  2434. constant int64_t & ne2,
  2435. constant int64_t & ne3,
  2436. constant uint64_t & nb0,
  2437. constant uint64_t & nb1,
  2438. constant uint64_t & nb2,
  2439. constant uint64_t & nb3,
  2440. uint3 tgpig[[threadgroup_position_in_grid]],
  2441. uint3 tpitg[[thread_position_in_threadgroup]],
  2442. uint3 ntg[[threads_per_threadgroup]]) {
  2443. const int64_t i03 = tgpig[2];
  2444. const int64_t i02 = tgpig[1];
  2445. const int64_t i01 = tgpig[0];
  2446. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  2447. const int64_t i3 = n / (ne2*ne1*ne0);
  2448. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  2449. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  2450. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  2451. device T1 * dst_data = (device T1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  2452. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  2453. device const T0 * src = (device T0 *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  2454. dst_data[i00] = (T1) src[0];
  2455. }
  2456. }
  2457. typedef decltype(kernel_cpy<float, float>) kernel_cpy_t;
  2458. template [[host_name("kernel_cpy_f32_f32")]] kernel kernel_cpy_t kernel_cpy<float, float>;
  2459. template [[host_name("kernel_cpy_f32_f16")]] kernel kernel_cpy_t kernel_cpy<float, half>;
  2460. template [[host_name("kernel_cpy_f16_f16")]] kernel kernel_cpy_t kernel_cpy<half, half>;
  2461. template [[host_name("kernel_cpy_f16_f32")]] kernel kernel_cpy_t kernel_cpy<half, float>;
  2462. kernel void kernel_cpy_f32_q8_0(
  2463. device const float * src0,
  2464. device void * dst,
  2465. constant int64_t & ne00,
  2466. constant int64_t & ne01,
  2467. constant int64_t & ne02,
  2468. constant int64_t & ne03,
  2469. constant uint64_t & nb00,
  2470. constant uint64_t & nb01,
  2471. constant uint64_t & nb02,
  2472. constant uint64_t & nb03,
  2473. constant int64_t & ne0,
  2474. constant int64_t & ne1,
  2475. constant int64_t & ne2,
  2476. constant int64_t & ne3,
  2477. constant uint64_t & nb0,
  2478. constant uint64_t & nb1,
  2479. constant uint64_t & nb2,
  2480. constant uint64_t & nb3,
  2481. uint3 tgpig[[threadgroup_position_in_grid]],
  2482. uint3 tpitg[[thread_position_in_threadgroup]],
  2483. uint3 ntg[[threads_per_threadgroup]]) {
  2484. const int64_t i03 = tgpig[2];
  2485. const int64_t i02 = tgpig[1];
  2486. const int64_t i01 = tgpig[0];
  2487. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  2488. const int64_t i3 = n / (ne2*ne1*ne0);
  2489. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  2490. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  2491. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK8_0;
  2492. device block_q8_0 * dst_data = (device block_q8_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  2493. for (int64_t i00 = tpitg.x*QK8_0; i00 < ne00; i00 += ntg.x*QK8_0) {
  2494. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  2495. float amax = 0.0f; // absolute max
  2496. for (int j = 0; j < QK8_0; j++) {
  2497. const float v = src[j];
  2498. amax = MAX(amax, fabs(v));
  2499. }
  2500. const float d = amax / ((1 << 7) - 1);
  2501. const float id = d ? 1.0f/d : 0.0f;
  2502. dst_data[i00/QK8_0].d = d;
  2503. for (int j = 0; j < QK8_0; ++j) {
  2504. const float x0 = src[j]*id;
  2505. dst_data[i00/QK8_0].qs[j] = round(x0);
  2506. }
  2507. }
  2508. }
  2509. kernel void kernel_cpy_f32_q4_0(
  2510. device const float * src0,
  2511. device void * dst,
  2512. constant int64_t & ne00,
  2513. constant int64_t & ne01,
  2514. constant int64_t & ne02,
  2515. constant int64_t & ne03,
  2516. constant uint64_t & nb00,
  2517. constant uint64_t & nb01,
  2518. constant uint64_t & nb02,
  2519. constant uint64_t & nb03,
  2520. constant int64_t & ne0,
  2521. constant int64_t & ne1,
  2522. constant int64_t & ne2,
  2523. constant int64_t & ne3,
  2524. constant uint64_t & nb0,
  2525. constant uint64_t & nb1,
  2526. constant uint64_t & nb2,
  2527. constant uint64_t & nb3,
  2528. uint3 tgpig[[threadgroup_position_in_grid]],
  2529. uint3 tpitg[[thread_position_in_threadgroup]],
  2530. uint3 ntg[[threads_per_threadgroup]]) {
  2531. const int64_t i03 = tgpig[2];
  2532. const int64_t i02 = tgpig[1];
  2533. const int64_t i01 = tgpig[0];
  2534. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  2535. const int64_t i3 = n / (ne2*ne1*ne0);
  2536. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  2537. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  2538. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_0;
  2539. device block_q4_0 * dst_data = (device block_q4_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  2540. for (int64_t i00 = tpitg.x*QK4_0; i00 < ne00; i00 += ntg.x*QK4_0) {
  2541. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  2542. float amax = 0.0f; // absolute max
  2543. float max = 0.0f;
  2544. for (int j = 0; j < QK4_0; j++) {
  2545. const float v = src[j];
  2546. if (amax < fabs(v)) {
  2547. amax = fabs(v);
  2548. max = v;
  2549. }
  2550. }
  2551. const float d = max / -8;
  2552. const float id = d ? 1.0f/d : 0.0f;
  2553. dst_data[i00/QK4_0].d = d;
  2554. for (int j = 0; j < QK4_0/2; ++j) {
  2555. const float x0 = src[0 + j]*id;
  2556. const float x1 = src[QK4_0/2 + j]*id;
  2557. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  2558. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  2559. dst_data[i00/QK4_0].qs[j] = xi0;
  2560. dst_data[i00/QK4_0].qs[j] |= xi1 << 4;
  2561. }
  2562. }
  2563. }
  2564. kernel void kernel_cpy_f32_q4_1(
  2565. device const float * src0,
  2566. device void * dst,
  2567. constant int64_t & ne00,
  2568. constant int64_t & ne01,
  2569. constant int64_t & ne02,
  2570. constant int64_t & ne03,
  2571. constant uint64_t & nb00,
  2572. constant uint64_t & nb01,
  2573. constant uint64_t & nb02,
  2574. constant uint64_t & nb03,
  2575. constant int64_t & ne0,
  2576. constant int64_t & ne1,
  2577. constant int64_t & ne2,
  2578. constant int64_t & ne3,
  2579. constant uint64_t & nb0,
  2580. constant uint64_t & nb1,
  2581. constant uint64_t & nb2,
  2582. constant uint64_t & nb3,
  2583. uint3 tgpig[[threadgroup_position_in_grid]],
  2584. uint3 tpitg[[thread_position_in_threadgroup]],
  2585. uint3 ntg[[threads_per_threadgroup]]) {
  2586. const int64_t i03 = tgpig[2];
  2587. const int64_t i02 = tgpig[1];
  2588. const int64_t i01 = tgpig[0];
  2589. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  2590. const int64_t i3 = n / (ne2*ne1*ne0);
  2591. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  2592. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  2593. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_1;
  2594. device block_q4_1 * dst_data = (device block_q4_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  2595. for (int64_t i00 = tpitg.x*QK4_1; i00 < ne00; i00 += ntg.x*QK4_1) {
  2596. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  2597. float min = FLT_MAX;
  2598. float max = -FLT_MAX;
  2599. for (int j = 0; j < QK4_1; j++) {
  2600. const float v = src[j];
  2601. if (min > v) min = v;
  2602. if (max < v) max = v;
  2603. }
  2604. const float d = (max - min) / ((1 << 4) - 1);
  2605. const float id = d ? 1.0f/d : 0.0f;
  2606. dst_data[i00/QK4_1].d = d;
  2607. dst_data[i00/QK4_1].m = min;
  2608. for (int j = 0; j < QK4_1/2; ++j) {
  2609. const float x0 = (src[0 + j] - min)*id;
  2610. const float x1 = (src[QK4_1/2 + j] - min)*id;
  2611. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  2612. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  2613. dst_data[i00/QK4_1].qs[j] = xi0;
  2614. dst_data[i00/QK4_1].qs[j] |= xi1 << 4;
  2615. }
  2616. }
  2617. }
  2618. kernel void kernel_cpy_f32_q5_0(
  2619. device const float * src0,
  2620. device void * dst,
  2621. constant int64_t & ne00,
  2622. constant int64_t & ne01,
  2623. constant int64_t & ne02,
  2624. constant int64_t & ne03,
  2625. constant uint64_t & nb00,
  2626. constant uint64_t & nb01,
  2627. constant uint64_t & nb02,
  2628. constant uint64_t & nb03,
  2629. constant int64_t & ne0,
  2630. constant int64_t & ne1,
  2631. constant int64_t & ne2,
  2632. constant int64_t & ne3,
  2633. constant uint64_t & nb0,
  2634. constant uint64_t & nb1,
  2635. constant uint64_t & nb2,
  2636. constant uint64_t & nb3,
  2637. uint3 tgpig[[threadgroup_position_in_grid]],
  2638. uint3 tpitg[[thread_position_in_threadgroup]],
  2639. uint3 ntg[[threads_per_threadgroup]]) {
  2640. const int64_t i03 = tgpig[2];
  2641. const int64_t i02 = tgpig[1];
  2642. const int64_t i01 = tgpig[0];
  2643. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  2644. const int64_t i3 = n / (ne2*ne1*ne0);
  2645. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  2646. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  2647. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_0;
  2648. device block_q5_0 * dst_data = (device block_q5_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  2649. for (int64_t i00 = tpitg.x*QK5_0; i00 < ne00; i00 += ntg.x*QK5_0) {
  2650. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  2651. float amax = 0.0f; // absolute max
  2652. float max = 0.0f;
  2653. for (int j = 0; j < QK5_0; j++) {
  2654. const float v = src[j];
  2655. if (amax < fabs(v)) {
  2656. amax = fabs(v);
  2657. max = v;
  2658. }
  2659. }
  2660. const float d = max / -16;
  2661. const float id = d ? 1.0f/d : 0.0f;
  2662. dst_data[i00/QK5_0].d = d;
  2663. uint32_t qh = 0;
  2664. for (int j = 0; j < QK5_0/2; ++j) {
  2665. const float x0 = src[0 + j]*id;
  2666. const float x1 = src[QK5_0/2 + j]*id;
  2667. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  2668. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  2669. dst_data[i00/QK5_0].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
  2670. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2671. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2672. }
  2673. thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
  2674. for (int j = 0; j < 4; ++j) {
  2675. dst_data[i00/QK5_0].qh[j] = qh8[j];
  2676. }
  2677. }
  2678. }
  2679. kernel void kernel_cpy_f32_q5_1(
  2680. device const float * src0,
  2681. device void * dst,
  2682. constant int64_t & ne00,
  2683. constant int64_t & ne01,
  2684. constant int64_t & ne02,
  2685. constant int64_t & ne03,
  2686. constant uint64_t & nb00,
  2687. constant uint64_t & nb01,
  2688. constant uint64_t & nb02,
  2689. constant uint64_t & nb03,
  2690. constant int64_t & ne0,
  2691. constant int64_t & ne1,
  2692. constant int64_t & ne2,
  2693. constant int64_t & ne3,
  2694. constant uint64_t & nb0,
  2695. constant uint64_t & nb1,
  2696. constant uint64_t & nb2,
  2697. constant uint64_t & nb3,
  2698. uint3 tgpig[[threadgroup_position_in_grid]],
  2699. uint3 tpitg[[thread_position_in_threadgroup]],
  2700. uint3 ntg[[threads_per_threadgroup]]) {
  2701. const int64_t i03 = tgpig[2];
  2702. const int64_t i02 = tgpig[1];
  2703. const int64_t i01 = tgpig[0];
  2704. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  2705. const int64_t i3 = n / (ne2*ne1*ne0);
  2706. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  2707. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  2708. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_1;
  2709. device block_q5_1 * dst_data = (device block_q5_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  2710. for (int64_t i00 = tpitg.x*QK5_1; i00 < ne00; i00 += ntg.x*QK5_1) {
  2711. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  2712. float max = src[0];
  2713. float min = src[0];
  2714. for (int j = 1; j < QK5_1; j++) {
  2715. const float v = src[j];
  2716. min = v < min ? v : min;
  2717. max = v > max ? v : max;
  2718. }
  2719. const float d = (max - min) / 31;
  2720. const float id = d ? 1.0f/d : 0.0f;
  2721. dst_data[i00/QK5_1].d = d;
  2722. dst_data[i00/QK5_1].m = min;
  2723. uint32_t qh = 0;
  2724. for (int j = 0; j < QK5_1/2; ++j) {
  2725. const float x0 = (src[0 + j] - min)*id;
  2726. const float x1 = (src[QK5_1/2 + j] - min)*id;
  2727. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  2728. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  2729. dst_data[i00/QK5_1].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
  2730. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2731. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
  2732. }
  2733. thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
  2734. for (int j = 0; j < 4; ++j) {
  2735. dst_data[i00/QK5_1].qh[j] = qh8[j];
  2736. }
  2737. }
  2738. }
  2739. static inline int best_index_int8(int n, constant float * val, float x) {
  2740. if (x <= val[0]) return 0;
  2741. if (x >= val[n-1]) return n-1;
  2742. int ml = 0, mu = n-1;
  2743. while (mu-ml > 1) {
  2744. int mav = (ml+mu)/2;
  2745. if (x < val[mav]) mu = mav; else ml = mav;
  2746. }
  2747. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  2748. }
  2749. constexpr constant static float kvalues_iq4nl_f[16] = {
  2750. -127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
  2751. };
  2752. kernel void kernel_cpy_f32_iq4_nl(
  2753. device const float * src0,
  2754. device void * dst,
  2755. constant int64_t & ne00,
  2756. constant int64_t & ne01,
  2757. constant int64_t & ne02,
  2758. constant int64_t & ne03,
  2759. constant uint64_t & nb00,
  2760. constant uint64_t & nb01,
  2761. constant uint64_t & nb02,
  2762. constant uint64_t & nb03,
  2763. constant int64_t & ne0,
  2764. constant int64_t & ne1,
  2765. constant int64_t & ne2,
  2766. constant int64_t & ne3,
  2767. constant uint64_t & nb0,
  2768. constant uint64_t & nb1,
  2769. constant uint64_t & nb2,
  2770. constant uint64_t & nb3,
  2771. uint3 tgpig[[threadgroup_position_in_grid]],
  2772. uint3 tpitg[[thread_position_in_threadgroup]],
  2773. uint3 ntg[[threads_per_threadgroup]]) {
  2774. const int64_t i03 = tgpig[2];
  2775. const int64_t i02 = tgpig[1];
  2776. const int64_t i01 = tgpig[0];
  2777. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  2778. const int64_t i3 = n / (ne2*ne1*ne0);
  2779. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  2780. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  2781. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_NL;
  2782. device block_iq4_nl * dst_data = (device block_iq4_nl *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  2783. for (int64_t i00 = tpitg.x*QK4_NL; i00 < ne00; i00 += ntg.x*QK4_NL) {
  2784. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  2785. float amax = 0.0f; // absolute max
  2786. float max = 0.0f;
  2787. for (int j = 0; j < QK4_0; j++) {
  2788. const float v = src[j];
  2789. if (amax < fabs(v)) {
  2790. amax = fabs(v);
  2791. max = v;
  2792. }
  2793. }
  2794. const float d = max / kvalues_iq4nl_f[0];
  2795. const float id = d ? 1.0f/d : 0.0f;
  2796. float sumqx = 0, sumq2 = 0;
  2797. for (int j = 0; j < QK4_NL/2; ++j) {
  2798. const float x0 = src[0 + j]*id;
  2799. const float x1 = src[QK4_NL/2 + j]*id;
  2800. const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl_f, x0);
  2801. const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl_f, x1);
  2802. dst_data[i00/QK4_NL].qs[j] = xi0 | (xi1 << 4);
  2803. const float v0 = kvalues_iq4nl_f[xi0];
  2804. const float v1 = kvalues_iq4nl_f[xi1];
  2805. const float w0 = src[0 + j]*src[0 + j];
  2806. const float w1 = src[QK4_NL/2 + j]*src[QK4_NL/2 + j];
  2807. sumqx += w0*v0*src[j] + w1*v1*src[QK4_NL/2 + j];
  2808. sumq2 += w0*v0*v0 + w1*v1*v1;
  2809. }
  2810. dst_data[i00/QK4_NL].d = sumq2 > 0 ? sumqx/sumq2 : d;
  2811. }
  2812. }
  2813. kernel void kernel_concat(
  2814. device const char * src0,
  2815. device const char * src1,
  2816. device char * dst,
  2817. constant int64_t & ne00,
  2818. constant int64_t & ne01,
  2819. constant int64_t & ne02,
  2820. constant int64_t & ne03,
  2821. constant uint64_t & nb00,
  2822. constant uint64_t & nb01,
  2823. constant uint64_t & nb02,
  2824. constant uint64_t & nb03,
  2825. constant int64_t & ne10,
  2826. constant int64_t & ne11,
  2827. constant int64_t & ne12,
  2828. constant int64_t & ne13,
  2829. constant uint64_t & nb10,
  2830. constant uint64_t & nb11,
  2831. constant uint64_t & nb12,
  2832. constant uint64_t & nb13,
  2833. constant int64_t & ne0,
  2834. constant int64_t & ne1,
  2835. constant int64_t & ne2,
  2836. constant int64_t & ne3,
  2837. constant uint64_t & nb0,
  2838. constant uint64_t & nb1,
  2839. constant uint64_t & nb2,
  2840. constant uint64_t & nb3,
  2841. constant int32_t & dim,
  2842. uint3 tgpig[[threadgroup_position_in_grid]],
  2843. uint3 tpitg[[thread_position_in_threadgroup]],
  2844. uint3 ntg[[threads_per_threadgroup]]) {
  2845. const int64_t i3 = tgpig.z;
  2846. const int64_t i2 = tgpig.y;
  2847. const int64_t i1 = tgpig.x;
  2848. int64_t o[4] = {0, 0, 0, 0};
  2849. o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
  2850. device const float * x;
  2851. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  2852. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2853. x = (device const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
  2854. } else {
  2855. x = (device const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
  2856. }
  2857. device float * y = (device float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  2858. *y = *x;
  2859. }
  2860. }
  2861. void kernel_mul_mv_q2_K_f32_impl(
  2862. device const void * src0,
  2863. device const float * src1,
  2864. device float * dst,
  2865. int64_t ne00,
  2866. int64_t ne01,
  2867. int64_t ne02,
  2868. int64_t ne10,
  2869. int64_t ne12,
  2870. int64_t ne0,
  2871. int64_t ne1,
  2872. uint r2,
  2873. uint r3,
  2874. threadgroup int8_t * shared_values,
  2875. uint3 tgpig,
  2876. uint tiisg,
  2877. uint sgitg) {
  2878. const int nb = ne00/QK_K;
  2879. const int r0 = tgpig.x;
  2880. const int r1 = tgpig.y;
  2881. const int im = tgpig.z;
  2882. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  2883. const int ib_row = first_row * nb;
  2884. const uint i12 = im%ne12;
  2885. const uint i13 = im/ne12;
  2886. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2887. device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row + offset0;
  2888. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2889. float yl[32];
  2890. float sumf[N_DST]={0.f}, all_sum;
  2891. const int step = sizeof(block_q2_K) * nb;
  2892. const int ix = tiisg/8; // 0...3
  2893. const int it = tiisg%8; // 0...7
  2894. const int iq = it/4; // 0 or 1
  2895. const int ir = it%4; // 0...3
  2896. const int is = (8*ir)/16;// 0 or 1
  2897. device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir;
  2898. for (int ib = ix; ib < nb; ib += 4) {
  2899. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2900. for (int i = 0; i < 8; ++i) {
  2901. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  2902. yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
  2903. yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
  2904. yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
  2905. }
  2906. device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is;
  2907. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
  2908. device const half * dh = &x[ib].d;
  2909. for (int row = 0; row < N_DST; row++) {
  2910. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2911. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2912. for (int i = 0; i < 8; i += 2) {
  2913. acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
  2914. acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
  2915. acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
  2916. acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
  2917. acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
  2918. acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
  2919. acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
  2920. acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
  2921. }
  2922. float dall = dh[0];
  2923. float dmin = dh[1] * 1.f/16.f;
  2924. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
  2925. (acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
  2926. (acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
  2927. (acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
  2928. dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
  2929. qs += step/2;
  2930. sc += step;
  2931. dh += step/2;
  2932. }
  2933. y4 += 4 * QK_K;
  2934. }
  2935. for (int row = 0; row < N_DST; ++row) {
  2936. all_sum = simd_sum(sumf[row]);
  2937. if (tiisg == 0) {
  2938. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2939. }
  2940. }
  2941. }
  2942. [[host_name("kernel_mul_mv_q2_K_f32")]]
  2943. kernel void kernel_mul_mv_q2_K_f32(
  2944. device const void * src0,
  2945. device const float * src1,
  2946. device float * dst,
  2947. constant int64_t & ne00,
  2948. constant int64_t & ne01,
  2949. constant int64_t & ne02,
  2950. constant uint64_t & nb00,
  2951. constant uint64_t & nb01,
  2952. constant uint64_t & nb02,
  2953. constant int64_t & ne10,
  2954. constant int64_t & ne11,
  2955. constant int64_t & ne12,
  2956. constant uint64_t & nb10,
  2957. constant uint64_t & nb11,
  2958. constant uint64_t & nb12,
  2959. constant int64_t & ne0,
  2960. constant int64_t & ne1,
  2961. constant uint & r2,
  2962. constant uint & r3,
  2963. uint3 tgpig[[threadgroup_position_in_grid]],
  2964. uint tiisg[[thread_index_in_simdgroup]],
  2965. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2966. kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  2967. }
  2968. void kernel_mul_mv_q3_K_f32_impl(
  2969. device const void * src0,
  2970. device const float * src1,
  2971. device float * dst,
  2972. int64_t ne00,
  2973. int64_t ne01,
  2974. int64_t ne02,
  2975. int64_t ne10,
  2976. int64_t ne12,
  2977. int64_t ne0,
  2978. int64_t ne1,
  2979. uint r2,
  2980. uint r3,
  2981. threadgroup int8_t * shared_values,
  2982. uint3 tgpig,
  2983. uint tiisg,
  2984. uint sgitg) {
  2985. const int nb = ne00/QK_K;
  2986. const int64_t r0 = tgpig.x;
  2987. const int64_t r1 = tgpig.y;
  2988. const int64_t im = tgpig.z;
  2989. const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
  2990. const uint i12 = im%ne12;
  2991. const uint i13 = im/ne12;
  2992. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2993. device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
  2994. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2995. float yl[32];
  2996. //const uint16_t kmask1 = 0x3030;
  2997. //const uint16_t kmask2 = 0x0f0f;
  2998. const int tid = tiisg/4;
  2999. const int ix = tiisg%4;
  3000. const int ip = tid/4; // 0 or 1
  3001. const int il = 2*((tid%4)/2); // 0 or 2
  3002. const int ir = tid%2;
  3003. const int n = 8;
  3004. const int l0 = n*ir;
  3005. // One would think that the Metal compiler would figure out that ip and il can only have
  3006. // 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
  3007. // with these two tales.
  3008. //
  3009. // Possible masks for the high bit
  3010. const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
  3011. {0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
  3012. {0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
  3013. {0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
  3014. // Possible masks for the low 2 bits
  3015. const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
  3016. const ushort4 hm = mm[2*ip + il/2];
  3017. const int shift = 2*il;
  3018. const float v1 = il == 0 ? 4.f : 64.f;
  3019. const float v2 = 4.f * v1;
  3020. const uint16_t s_shift1 = 4*ip;
  3021. const uint16_t s_shift2 = s_shift1 + il;
  3022. const int q_offset = 32*ip + l0;
  3023. const int y_offset = 128*ip + 32*il + l0;
  3024. const int step = sizeof(block_q3_K) * nb / 2;
  3025. device const float * y1 = yy + ix*QK_K + y_offset;
  3026. uint32_t scales32, aux32;
  3027. thread uint16_t * scales16 = (thread uint16_t *)&scales32;
  3028. thread const int8_t * scales = (thread const int8_t *)&scales32;
  3029. float sumf1[2] = {0.f};
  3030. float sumf2[2] = {0.f};
  3031. for (int i = ix; i < nb; i += 4) {
  3032. for (int l = 0; l < 8; ++l) {
  3033. yl[l+ 0] = y1[l+ 0];
  3034. yl[l+ 8] = y1[l+16];
  3035. yl[l+16] = y1[l+32];
  3036. yl[l+24] = y1[l+48];
  3037. }
  3038. device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
  3039. device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
  3040. device const uint16_t * a = (device const uint16_t *)(x[i].scales);
  3041. device const half * dh = &x[i].d;
  3042. for (int row = 0; row < 2; ++row) {
  3043. const float d_all = (float)dh[0];
  3044. scales16[0] = a[4];
  3045. scales16[1] = a[5];
  3046. aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
  3047. scales16[0] = a[il+0];
  3048. scales16[1] = a[il+1];
  3049. scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
  3050. float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
  3051. for (int l = 0; l < n; l += 2) {
  3052. const int32_t qs = q[l/2];
  3053. s1 += yl[l+0] * (qs & qm[il/2][0]);
  3054. s2 += yl[l+1] * (qs & qm[il/2][1]);
  3055. s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
  3056. s4 += yl[l+16] * (qs & qm[il/2][2]);
  3057. s5 += yl[l+17] * (qs & qm[il/2][3]);
  3058. s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
  3059. }
  3060. float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
  3061. float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
  3062. sumf1[row] += d1 * (scales[0] - 32);
  3063. sumf2[row] += d2 * (scales[2] - 32);
  3064. s1 = s2 = s3 = s4 = s5 = s6 = 0;
  3065. for (int l = 0; l < n; l += 2) {
  3066. const int32_t qs = q[l/2+8];
  3067. s1 += yl[l+8] * (qs & qm[il/2][0]);
  3068. s2 += yl[l+9] * (qs & qm[il/2][1]);
  3069. s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
  3070. s4 += yl[l+24] * (qs & qm[il/2][2]);
  3071. s5 += yl[l+25] * (qs & qm[il/2][3]);
  3072. s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
  3073. }
  3074. d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
  3075. d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
  3076. sumf1[row] += d1 * (scales[1] - 32);
  3077. sumf2[row] += d2 * (scales[3] - 32);
  3078. q += step;
  3079. h += step;
  3080. a += step;
  3081. dh += step;
  3082. }
  3083. y1 += 4 * QK_K;
  3084. }
  3085. for (int row = 0; row < 2; ++row) {
  3086. const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
  3087. sumf1[row] = simd_sum(sumf);
  3088. }
  3089. if (tiisg == 0) {
  3090. for (int row = 0; row < 2; ++row) {
  3091. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = sumf1[row];
  3092. }
  3093. }
  3094. }
  3095. [[host_name("kernel_mul_mv_q3_K_f32")]]
  3096. kernel void kernel_mul_mv_q3_K_f32(
  3097. device const void * src0,
  3098. device const float * src1,
  3099. device float * dst,
  3100. constant int64_t & ne00,
  3101. constant int64_t & ne01,
  3102. constant int64_t & ne02,
  3103. constant uint64_t & nb00,
  3104. constant uint64_t & nb01,
  3105. constant uint64_t & nb02,
  3106. constant int64_t & ne10,
  3107. constant int64_t & ne11,
  3108. constant int64_t & ne12,
  3109. constant uint64_t & nb10,
  3110. constant uint64_t & nb11,
  3111. constant uint64_t & nb12,
  3112. constant int64_t & ne0,
  3113. constant int64_t & ne1,
  3114. constant uint & r2,
  3115. constant uint & r3,
  3116. uint3 tgpig[[threadgroup_position_in_grid]],
  3117. uint tiisg[[thread_index_in_simdgroup]],
  3118. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3119. kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  3120. }
  3121. void kernel_mul_mv_q4_K_f32_impl(
  3122. device const void * src0,
  3123. device const float * src1,
  3124. device float * dst,
  3125. int64_t ne00,
  3126. int64_t ne01,
  3127. int64_t ne02,
  3128. int64_t ne10,
  3129. int64_t ne12,
  3130. int64_t ne0,
  3131. int64_t ne1,
  3132. uint r2,
  3133. uint r3,
  3134. threadgroup int8_t * shared_values,
  3135. uint3 tgpig,
  3136. uint tiisg,
  3137. uint sgitg) {
  3138. const uint16_t kmask1 = 0x3f3f;
  3139. const uint16_t kmask2 = 0x0f0f;
  3140. const uint16_t kmask3 = 0xc0c0;
  3141. const int ix = tiisg/8; // 0...3
  3142. const int it = tiisg%8; // 0...7
  3143. const int iq = it/4; // 0 or 1
  3144. const int ir = it%4; // 0...3
  3145. const int nb = ne00/QK_K;
  3146. const int r0 = tgpig.x;
  3147. const int r1 = tgpig.y;
  3148. const int im = tgpig.z;
  3149. //const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3150. const int first_row = r0 * N_DST;
  3151. const int ib_row = first_row * nb;
  3152. const uint i12 = im%ne12;
  3153. const uint i13 = im/ne12;
  3154. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3155. device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
  3156. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3157. float yl[16];
  3158. float yh[16];
  3159. float sumf[N_DST]={0.f}, all_sum;
  3160. const int step = sizeof(block_q4_K) * nb / 2;
  3161. device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir;
  3162. uint16_t sc16[4];
  3163. thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
  3164. for (int ib = ix; ib < nb; ib += 4) {
  3165. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  3166. for (int i = 0; i < 8; ++i) {
  3167. yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
  3168. yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
  3169. yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
  3170. yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
  3171. }
  3172. device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq;
  3173. device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
  3174. device const half * dh = &x[ib].d;
  3175. for (int row = 0; row < N_DST; row++) {
  3176. sc16[0] = sc[0] & kmask1;
  3177. sc16[1] = sc[2] & kmask1;
  3178. sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
  3179. sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
  3180. device const uint16_t * q2 = q1 + 32;
  3181. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  3182. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  3183. for (int i = 0; i < 8; i += 2) {
  3184. acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
  3185. acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
  3186. acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
  3187. acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
  3188. acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
  3189. acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
  3190. acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
  3191. acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
  3192. }
  3193. float dall = dh[0];
  3194. float dmin = dh[1];
  3195. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
  3196. (acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
  3197. (acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
  3198. (acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
  3199. dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
  3200. q1 += step;
  3201. sc += step;
  3202. dh += step;
  3203. }
  3204. y4 += 4 * QK_K;
  3205. }
  3206. for (int row = 0; row < N_DST; ++row) {
  3207. all_sum = simd_sum(sumf[row]);
  3208. if (tiisg == 0) {
  3209. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  3210. }
  3211. }
  3212. }
  3213. [[host_name("kernel_mul_mv_q4_K_f32")]]
  3214. kernel void kernel_mul_mv_q4_K_f32(
  3215. device const void * src0,
  3216. device const float * src1,
  3217. device float * dst,
  3218. constant int64_t & ne00,
  3219. constant int64_t & ne01,
  3220. constant int64_t & ne02,
  3221. constant uint64_t & nb00,
  3222. constant uint64_t & nb01,
  3223. constant uint64_t & nb02,
  3224. constant int64_t & ne10,
  3225. constant int64_t & ne11,
  3226. constant int64_t & ne12,
  3227. constant uint64_t & nb10,
  3228. constant uint64_t & nb11,
  3229. constant uint64_t & nb12,
  3230. constant int64_t & ne0,
  3231. constant int64_t & ne1,
  3232. constant uint & r2,
  3233. constant uint & r3,
  3234. uint3 tgpig[[threadgroup_position_in_grid]],
  3235. uint tiisg[[thread_index_in_simdgroup]],
  3236. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3237. kernel_mul_mv_q4_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  3238. }
  3239. void kernel_mul_mv_q5_K_f32_impl(
  3240. device const void * src0,
  3241. device const float * src1,
  3242. device float * dst,
  3243. int64_t ne00,
  3244. int64_t ne01,
  3245. int64_t ne02,
  3246. int64_t ne10,
  3247. int64_t ne12,
  3248. int64_t ne0,
  3249. int64_t ne1,
  3250. uint r2,
  3251. uint r3,
  3252. threadgroup int8_t * shared_values,
  3253. uint3 tgpig,
  3254. uint tiisg,
  3255. uint sgitg) {
  3256. const int nb = ne00/QK_K;
  3257. const int64_t r0 = tgpig.x;
  3258. const int64_t r1 = tgpig.y;
  3259. const int im = tgpig.z;
  3260. const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
  3261. const uint i12 = im%ne12;
  3262. const uint i13 = im/ne12;
  3263. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3264. device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb + offset0;
  3265. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3266. float sumf[2]={0.f};
  3267. const int step = sizeof(block_q5_K) * nb;
  3268. float yl[16], yh[16];
  3269. const uint16_t kmask1 = 0x3f3f;
  3270. const uint16_t kmask2 = 0x0f0f;
  3271. const uint16_t kmask3 = 0xc0c0;
  3272. const int tid = tiisg/4;
  3273. const int ix = tiisg%4;
  3274. const int iq = tid/4;
  3275. const int ir = tid%4;
  3276. const int n = 8;
  3277. const int l0 = n*ir;
  3278. const int q_offset = 32*iq + l0;
  3279. const int y_offset = 64*iq + l0;
  3280. const uint8_t hm1 = 1u << (2*iq);
  3281. const uint8_t hm2 = hm1 << 1;
  3282. const uint8_t hm3 = hm1 << 4;
  3283. const uint8_t hm4 = hm2 << 4;
  3284. uint16_t sc16[4];
  3285. thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
  3286. device const float * y1 = yy + ix*QK_K + y_offset;
  3287. for (int i = ix; i < nb; i += 4) {
  3288. device const uint8_t * q1 = x[i].qs + q_offset;
  3289. device const uint8_t * qh = x[i].qh + l0;
  3290. device const half * dh = &x[i].d;
  3291. device const uint16_t * a = (device const uint16_t *)x[i].scales + iq;
  3292. device const float * y2 = y1 + 128;
  3293. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  3294. for (int l = 0; l < 8; ++l) {
  3295. yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
  3296. yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
  3297. yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
  3298. yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
  3299. }
  3300. for (int row = 0; row < 2; ++row) {
  3301. device const uint8_t * q2 = q1 + 64;
  3302. sc16[0] = a[0] & kmask1;
  3303. sc16[1] = a[2] & kmask1;
  3304. sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
  3305. sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
  3306. float4 acc1 = {0.f};
  3307. float4 acc2 = {0.f};
  3308. for (int l = 0; l < n; ++l) {
  3309. uint8_t h = qh[l];
  3310. acc1[0] += yl[l+0] * (q1[l] & 0x0F);
  3311. acc1[1] += yl[l+8] * (q1[l] & 0xF0);
  3312. acc1[2] += yh[l+0] * (q2[l] & 0x0F);
  3313. acc1[3] += yh[l+8] * (q2[l] & 0xF0);
  3314. acc2[0] += h & hm1 ? yl[l+0] : 0.f;
  3315. acc2[1] += h & hm2 ? yl[l+8] : 0.f;
  3316. acc2[2] += h & hm3 ? yh[l+0] : 0.f;
  3317. acc2[3] += h & hm4 ? yh[l+8] : 0.f;
  3318. }
  3319. const float dall = dh[0];
  3320. const float dmin = dh[1];
  3321. sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
  3322. sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
  3323. sc8[4] * (acc1[2] + 16.f*acc2[2]) +
  3324. sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
  3325. dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
  3326. q1 += step;
  3327. qh += step;
  3328. dh += step/2;
  3329. a += step/2;
  3330. }
  3331. y1 += 4 * QK_K;
  3332. }
  3333. for (int row = 0; row < 2; ++row) {
  3334. const float tot = simd_sum(sumf[row]);
  3335. if (tiisg == 0) {
  3336. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
  3337. }
  3338. }
  3339. }
  3340. [[host_name("kernel_mul_mv_q5_K_f32")]]
  3341. kernel void kernel_mul_mv_q5_K_f32(
  3342. device const void * src0,
  3343. device const float * src1,
  3344. device float * dst,
  3345. constant int64_t & ne00,
  3346. constant int64_t & ne01,
  3347. constant int64_t & ne02,
  3348. constant uint64_t & nb00,
  3349. constant uint64_t & nb01,
  3350. constant uint64_t & nb02,
  3351. constant int64_t & ne10,
  3352. constant int64_t & ne11,
  3353. constant int64_t & ne12,
  3354. constant uint64_t & nb10,
  3355. constant uint64_t & nb11,
  3356. constant uint64_t & nb12,
  3357. constant int64_t & ne0,
  3358. constant int64_t & ne1,
  3359. constant uint & r2,
  3360. constant uint & r3,
  3361. uint3 tgpig[[threadgroup_position_in_grid]],
  3362. uint tiisg[[thread_index_in_simdgroup]],
  3363. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3364. kernel_mul_mv_q5_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  3365. }
  3366. void kernel_mul_mv_q6_K_f32_impl(
  3367. device const void * src0,
  3368. device const float * src1,
  3369. device float * dst,
  3370. int64_t ne00,
  3371. int64_t ne01,
  3372. int64_t ne02,
  3373. int64_t ne10,
  3374. int64_t ne12,
  3375. int64_t ne0,
  3376. int64_t ne1,
  3377. uint r2,
  3378. uint r3,
  3379. threadgroup int8_t * shared_values,
  3380. uint3 tgpig,
  3381. uint tiisg,
  3382. uint sgitg) {
  3383. const uint8_t kmask1 = 0x03;
  3384. const uint8_t kmask2 = 0x0C;
  3385. const uint8_t kmask3 = 0x30;
  3386. const uint8_t kmask4 = 0xC0;
  3387. const int nb = ne00/QK_K;
  3388. const int64_t r0 = tgpig.x;
  3389. const int64_t r1 = tgpig.y;
  3390. const int im = tgpig.z;
  3391. const int row = 2 * r0 + sgitg;
  3392. const uint i12 = im%ne12;
  3393. const uint i13 = im/ne12;
  3394. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3395. device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb + offset0;
  3396. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3397. float sumf = 0;
  3398. const int tid = tiisg/2;
  3399. const int ix = tiisg%2;
  3400. const int ip = tid/8; // 0 or 1
  3401. const int il = tid%8;
  3402. const int n = 4;
  3403. const int l0 = n*il;
  3404. const int is = 8*ip + l0/16;
  3405. const int y_offset = 128*ip + l0;
  3406. const int q_offset_l = 64*ip + l0;
  3407. const int q_offset_h = 32*ip + l0;
  3408. for (int i = ix; i < nb; i += 2) {
  3409. device const uint8_t * q1 = x[i].ql + q_offset_l;
  3410. device const uint8_t * q2 = q1 + 32;
  3411. device const uint8_t * qh = x[i].qh + q_offset_h;
  3412. device const int8_t * sc = x[i].scales + is;
  3413. device const float * y = yy + i * QK_K + y_offset;
  3414. const float dall = x[i].d;
  3415. float4 sums = {0.f, 0.f, 0.f, 0.f};
  3416. for (int l = 0; l < n; ++l) {
  3417. sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  3418. sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  3419. sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
  3420. sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  3421. }
  3422. sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
  3423. }
  3424. const float tot = simd_sum(sumf);
  3425. if (tiisg == 0) {
  3426. dst[r1*ne0 + im*ne0*ne1 + row] = tot;
  3427. }
  3428. }
  3429. [[host_name("kernel_mul_mv_q6_K_f32")]]
  3430. kernel void kernel_mul_mv_q6_K_f32(
  3431. device const void * src0,
  3432. device const float * src1,
  3433. device float * dst,
  3434. constant int64_t & ne00,
  3435. constant int64_t & ne01,
  3436. constant int64_t & ne02,
  3437. constant uint64_t & nb00,
  3438. constant uint64_t & nb01,
  3439. constant uint64_t & nb02,
  3440. constant int64_t & ne10,
  3441. constant int64_t & ne11,
  3442. constant int64_t & ne12,
  3443. constant uint64_t & nb10,
  3444. constant uint64_t & nb11,
  3445. constant uint64_t & nb12,
  3446. constant int64_t & ne0,
  3447. constant int64_t & ne1,
  3448. constant uint & r2,
  3449. constant uint & r3,
  3450. uint3 tgpig[[threadgroup_position_in_grid]],
  3451. uint tiisg[[thread_index_in_simdgroup]],
  3452. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3453. kernel_mul_mv_q6_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  3454. }
  3455. // ======================= "True" 2-bit
  3456. void kernel_mul_mv_iq2_xxs_f32_impl(
  3457. device const void * src0,
  3458. device const float * src1,
  3459. device float * dst,
  3460. int64_t ne00,
  3461. int64_t ne01,
  3462. int64_t ne02,
  3463. int64_t ne10,
  3464. int64_t ne12,
  3465. int64_t ne0,
  3466. int64_t ne1,
  3467. uint r2,
  3468. uint r3,
  3469. threadgroup int8_t * shared_values,
  3470. uint3 tgpig,
  3471. uint tiisg,
  3472. uint sgitg) {
  3473. const int nb = ne00/QK_K;
  3474. const int r0 = tgpig.x;
  3475. const int r1 = tgpig.y;
  3476. const int im = tgpig.z;
  3477. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3478. const int ib_row = first_row * nb;
  3479. const uint i12 = im%ne12;
  3480. const uint i13 = im/ne12;
  3481. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3482. device const block_iq2_xxs * x = (device const block_iq2_xxs *) src0 + ib_row + offset0;
  3483. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3484. float yl[32];
  3485. float sumf[N_DST]={0.f}, all_sum;
  3486. const int nb32 = nb * (QK_K / 32);
  3487. threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values;
  3488. threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256);
  3489. {
  3490. int nval = 4;
  3491. int pos = (32*sgitg + tiisg)*nval;
  3492. for (int i = 0; i < nval; ++i) values[pos + i] = iq2xxs_grid[pos + i];
  3493. nval = 2;
  3494. pos = (32*sgitg + tiisg)*nval;
  3495. for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
  3496. threadgroup_barrier(mem_flags::mem_threadgroup);
  3497. }
  3498. const int ix = tiisg;
  3499. device const float * y4 = y + 32 * ix;
  3500. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3501. for (int i = 0; i < 32; ++i) {
  3502. yl[i] = y4[i];
  3503. }
  3504. const int ibl = ib32 / (QK_K / 32);
  3505. const int ib = ib32 % (QK_K / 32);
  3506. device const block_iq2_xxs * xr = x + ibl;
  3507. device const uint16_t * q2 = xr->qs + 4 * ib;
  3508. device const half * dh = &xr->d;
  3509. for (int row = 0; row < N_DST; row++) {
  3510. const float db = dh[0];
  3511. device const uint8_t * aux8 = (device const uint8_t *)q2;
  3512. const uint32_t aux32 = q2[2] | (q2[3] << 16);
  3513. const float d = db * (0.5f + (aux32 >> 28));
  3514. float sum = 0;
  3515. for (int l = 0; l < 4; ++l) {
  3516. const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + aux8[l]);
  3517. const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127];
  3518. for (int j = 0; j < 8; ++j) {
  3519. sum += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3520. }
  3521. }
  3522. sumf[row] += d * sum;
  3523. dh += nb*sizeof(block_iq2_xxs)/2;
  3524. q2 += nb*sizeof(block_iq2_xxs)/2;
  3525. }
  3526. y4 += 32 * 32;
  3527. }
  3528. for (int row = 0; row < N_DST; ++row) {
  3529. all_sum = simd_sum(sumf[row]);
  3530. if (tiisg == 0) {
  3531. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f;
  3532. }
  3533. }
  3534. }
  3535. [[host_name("kernel_mul_mv_iq2_xxs_f32")]]
  3536. kernel void kernel_mul_mv_iq2_xxs_f32(
  3537. device const void * src0,
  3538. device const float * src1,
  3539. device float * dst,
  3540. constant int64_t & ne00,
  3541. constant int64_t & ne01,
  3542. constant int64_t & ne02,
  3543. constant uint64_t & nb00,
  3544. constant uint64_t & nb01,
  3545. constant uint64_t & nb02,
  3546. constant int64_t & ne10,
  3547. constant int64_t & ne11,
  3548. constant int64_t & ne12,
  3549. constant uint64_t & nb10,
  3550. constant uint64_t & nb11,
  3551. constant uint64_t & nb12,
  3552. constant int64_t & ne0,
  3553. constant int64_t & ne1,
  3554. constant uint & r2,
  3555. constant uint & r3,
  3556. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3557. uint3 tgpig[[threadgroup_position_in_grid]],
  3558. uint tiisg[[thread_index_in_simdgroup]],
  3559. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3560. kernel_mul_mv_iq2_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  3561. }
  3562. void kernel_mul_mv_iq2_xs_f32_impl(
  3563. device const void * src0,
  3564. device const float * src1,
  3565. device float * dst,
  3566. int64_t ne00,
  3567. int64_t ne01,
  3568. int64_t ne02,
  3569. int64_t ne10,
  3570. int64_t ne12,
  3571. int64_t ne0,
  3572. int64_t ne1,
  3573. uint r2,
  3574. uint r3,
  3575. threadgroup int8_t * shared_values,
  3576. uint3 tgpig,
  3577. uint tiisg,
  3578. uint sgitg) {
  3579. const int nb = ne00/QK_K;
  3580. const int r0 = tgpig.x;
  3581. const int r1 = tgpig.y;
  3582. const int im = tgpig.z;
  3583. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3584. const int ib_row = first_row * nb;
  3585. const uint i12 = im%ne12;
  3586. const uint i13 = im/ne12;
  3587. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3588. device const block_iq2_xs * x = (device const block_iq2_xs *) src0 + ib_row + offset0;
  3589. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3590. float yl[32];
  3591. float sumf[N_DST]={0.f}, all_sum;
  3592. const int nb32 = nb * (QK_K / 32);
  3593. threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values;
  3594. threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 512);
  3595. {
  3596. int nval = 8;
  3597. int pos = (32*sgitg + tiisg)*nval;
  3598. for (int i = 0; i < nval; ++i) values[pos + i] = iq2xs_grid[pos + i];
  3599. nval = 2;
  3600. pos = (32*sgitg + tiisg)*nval;
  3601. for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
  3602. threadgroup_barrier(mem_flags::mem_threadgroup);
  3603. }
  3604. const int ix = tiisg;
  3605. device const float * y4 = y + 32 * ix;
  3606. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3607. for (int i = 0; i < 32; ++i) {
  3608. yl[i] = y4[i];
  3609. }
  3610. const int ibl = ib32 / (QK_K / 32);
  3611. const int ib = ib32 % (QK_K / 32);
  3612. device const block_iq2_xs * xr = x + ibl;
  3613. device const uint16_t * q2 = xr->qs + 4 * ib;
  3614. device const uint8_t * sc = xr->scales + ib;
  3615. device const half * dh = &xr->d;
  3616. for (int row = 0; row < N_DST; row++) {
  3617. const float db = dh[0];
  3618. const uint8_t ls1 = sc[0] & 0xf;
  3619. const uint8_t ls2 = sc[0] >> 4;
  3620. const float d1 = db * (0.5f + ls1);
  3621. const float d2 = db * (0.5f + ls2);
  3622. float sum1 = 0, sum2 = 0;
  3623. for (int l = 0; l < 2; ++l) {
  3624. const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + (q2[l] & 511));
  3625. const uint8_t signs = shared_signs[(q2[l] >> 9)];
  3626. for (int j = 0; j < 8; ++j) {
  3627. sum1 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3628. }
  3629. }
  3630. for (int l = 2; l < 4; ++l) {
  3631. const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + (q2[l] & 511));
  3632. const uint8_t signs = shared_signs[(q2[l] >> 9)];
  3633. for (int j = 0; j < 8; ++j) {
  3634. sum2 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3635. }
  3636. }
  3637. sumf[row] += d1 * sum1 + d2 * sum2;
  3638. dh += nb*sizeof(block_iq2_xs)/2;
  3639. q2 += nb*sizeof(block_iq2_xs)/2;
  3640. sc += nb*sizeof(block_iq2_xs);
  3641. }
  3642. y4 += 32 * 32;
  3643. }
  3644. for (int row = 0; row < N_DST; ++row) {
  3645. all_sum = simd_sum(sumf[row]);
  3646. if (tiisg == 0) {
  3647. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f;
  3648. }
  3649. }
  3650. }
  3651. [[host_name("kernel_mul_mv_iq2_xs_f32")]]
  3652. kernel void kernel_mul_mv_iq2_xs_f32(
  3653. device const void * src0,
  3654. device const float * src1,
  3655. device float * dst,
  3656. constant int64_t & ne00,
  3657. constant int64_t & ne01,
  3658. constant int64_t & ne02,
  3659. constant uint64_t & nb00,
  3660. constant uint64_t & nb01,
  3661. constant uint64_t & nb02,
  3662. constant int64_t & ne10,
  3663. constant int64_t & ne11,
  3664. constant int64_t & ne12,
  3665. constant uint64_t & nb10,
  3666. constant uint64_t & nb11,
  3667. constant uint64_t & nb12,
  3668. constant int64_t & ne0,
  3669. constant int64_t & ne1,
  3670. constant uint & r2,
  3671. constant uint & r3,
  3672. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3673. uint3 tgpig[[threadgroup_position_in_grid]],
  3674. uint tiisg[[thread_index_in_simdgroup]],
  3675. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3676. kernel_mul_mv_iq2_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  3677. }
  3678. void kernel_mul_mv_iq3_xxs_f32_impl(
  3679. device const void * src0,
  3680. device const float * src1,
  3681. device float * dst,
  3682. int64_t ne00,
  3683. int64_t ne01,
  3684. int64_t ne02,
  3685. int64_t ne10,
  3686. int64_t ne12,
  3687. int64_t ne0,
  3688. int64_t ne1,
  3689. uint r2,
  3690. uint r3,
  3691. threadgroup int8_t * shared_values,
  3692. uint3 tgpig,
  3693. uint tiisg,
  3694. uint sgitg) {
  3695. const int nb = ne00/QK_K;
  3696. const int r0 = tgpig.x;
  3697. const int r1 = tgpig.y;
  3698. const int im = tgpig.z;
  3699. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3700. const int ib_row = first_row * nb;
  3701. const uint i12 = im%ne12;
  3702. const uint i13 = im/ne12;
  3703. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3704. device const block_iq3_xxs * x = (device const block_iq3_xxs *) src0 + ib_row + offset0;
  3705. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3706. float yl[32];
  3707. float sumf[N_DST]={0.f}, all_sum;
  3708. const int nb32 = nb * (QK_K / 32);
  3709. threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values;
  3710. threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256);
  3711. {
  3712. int nval = 4;
  3713. int pos = (32*sgitg + tiisg)*nval;
  3714. for (int i = 0; i < nval; ++i) values[pos + i] = iq3xxs_grid[pos + i];
  3715. nval = 2;
  3716. pos = (32*sgitg + tiisg)*nval;
  3717. for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
  3718. threadgroup_barrier(mem_flags::mem_threadgroup);
  3719. }
  3720. const int ix = tiisg;
  3721. device const float * y4 = y + 32 * ix;
  3722. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3723. for (int i = 0; i < 32; ++i) {
  3724. yl[i] = y4[i];
  3725. }
  3726. const int ibl = ib32 / (QK_K / 32);
  3727. const int ib = ib32 % (QK_K / 32);
  3728. device const block_iq3_xxs * xr = x + ibl;
  3729. device const uint8_t * q3 = xr->qs + 8 * ib;
  3730. device const uint16_t * gas = (device const uint16_t *)(xr->qs + QK_K/4) + 2 * ib;
  3731. device const half * dh = &xr->d;
  3732. for (int row = 0; row < N_DST; row++) {
  3733. const float db = dh[0];
  3734. const uint32_t aux32 = gas[0] | (gas[1] << 16);
  3735. const float d = db * (0.5f + (aux32 >> 28));
  3736. float2 sum = {0};
  3737. for (int l = 0; l < 4; ++l) {
  3738. const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + q3[2*l+0]);
  3739. const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + q3[2*l+1]);
  3740. const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127];
  3741. for (int j = 0; j < 4; ++j) {
  3742. sum[0] += yl[8*l + j + 0] * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3743. sum[1] += yl[8*l + j + 4] * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3744. }
  3745. }
  3746. sumf[row] += d * (sum[0] + sum[1]);
  3747. dh += nb*sizeof(block_iq3_xxs)/2;
  3748. q3 += nb*sizeof(block_iq3_xxs);
  3749. gas += nb*sizeof(block_iq3_xxs)/2;
  3750. }
  3751. y4 += 32 * 32;
  3752. }
  3753. for (int row = 0; row < N_DST; ++row) {
  3754. all_sum = simd_sum(sumf[row]);
  3755. if (tiisg == 0) {
  3756. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.5f;
  3757. }
  3758. }
  3759. }
  3760. [[host_name("kernel_mul_mv_iq3_xxs_f32")]]
  3761. kernel void kernel_mul_mv_iq3_xxs_f32(
  3762. device const void * src0,
  3763. device const float * src1,
  3764. device float * dst,
  3765. constant int64_t & ne00,
  3766. constant int64_t & ne01,
  3767. constant int64_t & ne02,
  3768. constant uint64_t & nb00,
  3769. constant uint64_t & nb01,
  3770. constant uint64_t & nb02,
  3771. constant int64_t & ne10,
  3772. constant int64_t & ne11,
  3773. constant int64_t & ne12,
  3774. constant uint64_t & nb10,
  3775. constant uint64_t & nb11,
  3776. constant uint64_t & nb12,
  3777. constant int64_t & ne0,
  3778. constant int64_t & ne1,
  3779. constant uint & r2,
  3780. constant uint & r3,
  3781. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3782. uint3 tgpig[[threadgroup_position_in_grid]],
  3783. uint tiisg[[thread_index_in_simdgroup]],
  3784. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3785. kernel_mul_mv_iq3_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  3786. }
  3787. void kernel_mul_mv_iq3_s_f32_impl(
  3788. device const void * src0,
  3789. device const float * src1,
  3790. device float * dst,
  3791. int64_t ne00,
  3792. int64_t ne01,
  3793. int64_t ne02,
  3794. int64_t ne10,
  3795. int64_t ne12,
  3796. int64_t ne0,
  3797. int64_t ne1,
  3798. uint r2,
  3799. uint r3,
  3800. threadgroup int8_t * shared_values,
  3801. uint3 tgpig,
  3802. uint tiisg,
  3803. uint sgitg) {
  3804. const int nb = ne00/QK_K;
  3805. const int r0 = tgpig.x;
  3806. const int r1 = tgpig.y;
  3807. const int im = tgpig.z;
  3808. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3809. const int ib_row = first_row * nb;
  3810. const uint i12 = im%ne12;
  3811. const uint i13 = im/ne12;
  3812. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3813. device const block_iq3_s * x = (device const block_iq3_s *) src0 + ib_row + offset0;
  3814. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3815. float yl[32];
  3816. float sumf[N_DST]={0.f}, all_sum;
  3817. const int nb32 = nb * (QK_K / 32);
  3818. threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values;
  3819. {
  3820. int nval = 8;
  3821. int pos = (32*sgitg + tiisg)*nval;
  3822. for (int i = 0; i < nval; ++i) values[pos + i] = iq3s_grid[pos + i];
  3823. threadgroup_barrier(mem_flags::mem_threadgroup);
  3824. }
  3825. const int ix = tiisg;
  3826. device const float * y4 = y + 32 * ix;
  3827. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3828. for (int i = 0; i < 32; ++i) {
  3829. yl[i] = y4[i];
  3830. }
  3831. const int ibl = ib32 / (QK_K / 32);
  3832. const int ib = ib32 % (QK_K / 32);
  3833. device const block_iq3_s * xr = x + ibl;
  3834. device const uint8_t * qs = xr->qs + 8 * ib;
  3835. device const uint8_t * qh = xr->qh + ib;
  3836. device const uint8_t * sc = xr->scales + (ib/2);
  3837. device const uint8_t * signs = xr->signs + 4 * ib;
  3838. device const half * dh = &xr->d;
  3839. for (int row = 0; row < N_DST; row++) {
  3840. const float db = dh[0];
  3841. const float d = db * (1 + 2*((sc[0] >> 4*(ib%2)) & 0xf));
  3842. float2 sum = {0};
  3843. for (int l = 0; l < 4; ++l) {
  3844. const threadgroup uint32_t * table1 = qh[0] & kmask_iq2xs[2*l+0] ? values + 256 : values;
  3845. const threadgroup uint32_t * table2 = qh[0] & kmask_iq2xs[2*l+1] ? values + 256 : values;
  3846. const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(table1 + qs[2*l+0]);
  3847. const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(table2 + qs[2*l+1]);
  3848. for (int j = 0; j < 4; ++j) {
  3849. sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l] & kmask_iq2xs[j+0]);
  3850. sum[1] += yl[8*l + j + 4] * grid2[j] * select(1, -1, signs[l] & kmask_iq2xs[j+4]);
  3851. }
  3852. }
  3853. sumf[row] += d * (sum[0] + sum[1]);
  3854. dh += nb*sizeof(block_iq3_s)/2;
  3855. qs += nb*sizeof(block_iq3_s);
  3856. qh += nb*sizeof(block_iq3_s);
  3857. sc += nb*sizeof(block_iq3_s);
  3858. signs += nb*sizeof(block_iq3_s);
  3859. }
  3860. y4 += 32 * 32;
  3861. }
  3862. for (int row = 0; row < N_DST; ++row) {
  3863. all_sum = simd_sum(sumf[row]);
  3864. if (tiisg == 0) {
  3865. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  3866. }
  3867. }
  3868. }
  3869. [[host_name("kernel_mul_mv_iq3_s_f32")]]
  3870. kernel void kernel_mul_mv_iq3_s_f32(
  3871. device const void * src0,
  3872. device const float * src1,
  3873. device float * dst,
  3874. constant int64_t & ne00,
  3875. constant int64_t & ne01,
  3876. constant int64_t & ne02,
  3877. constant uint64_t & nb00,
  3878. constant uint64_t & nb01,
  3879. constant uint64_t & nb02,
  3880. constant int64_t & ne10,
  3881. constant int64_t & ne11,
  3882. constant int64_t & ne12,
  3883. constant uint64_t & nb10,
  3884. constant uint64_t & nb11,
  3885. constant uint64_t & nb12,
  3886. constant int64_t & ne0,
  3887. constant int64_t & ne1,
  3888. constant uint & r2,
  3889. constant uint & r3,
  3890. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3891. uint3 tgpig[[threadgroup_position_in_grid]],
  3892. uint tiisg[[thread_index_in_simdgroup]],
  3893. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3894. kernel_mul_mv_iq3_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  3895. }
  3896. void kernel_mul_mv_iq2_s_f32_impl(
  3897. device const void * src0,
  3898. device const float * src1,
  3899. device float * dst,
  3900. int64_t ne00,
  3901. int64_t ne01,
  3902. int64_t ne02,
  3903. int64_t ne10,
  3904. int64_t ne12,
  3905. int64_t ne0,
  3906. int64_t ne1,
  3907. uint r2,
  3908. uint r3,
  3909. threadgroup int8_t * shared_values,
  3910. uint3 tgpig,
  3911. uint tiisg,
  3912. uint sgitg) {
  3913. const int nb = ne00/QK_K;
  3914. const int r0 = tgpig.x;
  3915. const int r1 = tgpig.y;
  3916. const int im = tgpig.z;
  3917. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3918. const int ib_row = first_row * nb;
  3919. const uint i12 = im%ne12;
  3920. const uint i13 = im/ne12;
  3921. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3922. device const block_iq2_s * x = (device const block_iq2_s *) src0 + ib_row + offset0;
  3923. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3924. float yl[32];
  3925. float sumf[N_DST]={0.f}, all_sum;
  3926. const int nb32 = nb * (QK_K / 32);
  3927. //threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values;
  3928. //{
  3929. // int nval = 32;
  3930. // int pos = (32*sgitg + tiisg)*nval;
  3931. // for (int i = 0; i < nval; ++i) values[pos + i] = iq2s_grid[pos + i];
  3932. // threadgroup_barrier(mem_flags::mem_threadgroup);
  3933. //}
  3934. const int ix = tiisg;
  3935. device const float * y4 = y + 32 * ix;
  3936. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3937. for (int i = 0; i < 32; ++i) {
  3938. yl[i] = y4[i];
  3939. }
  3940. const int ibl = ib32 / (QK_K / 32);
  3941. const int ib = ib32 % (QK_K / 32);
  3942. device const block_iq2_s * xr = x + ibl;
  3943. device const uint8_t * qs = xr->qs + 4 * ib;
  3944. device const uint8_t * qh = xr->qh + ib;
  3945. device const uint8_t * sc = xr->scales + ib;
  3946. device const uint8_t * signs = qs + QK_K/8;
  3947. device const half * dh = &xr->d;
  3948. for (int row = 0; row < N_DST; row++) {
  3949. const float db = dh[0];
  3950. const float d1 = db * (0.5f + (sc[0] & 0xf));
  3951. const float d2 = db * (0.5f + (sc[0] >> 4));
  3952. float2 sum = {0};
  3953. for (int l = 0; l < 2; ++l) {
  3954. //const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300)));
  3955. //const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300)));
  3956. constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300)));
  3957. constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300)));
  3958. for (int j = 0; j < 8; ++j) {
  3959. sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l+0] & kmask_iq2xs[j]);
  3960. sum[1] += yl[8*l + j + 16] * grid2[j] * select(1, -1, signs[l+2] & kmask_iq2xs[j]);
  3961. }
  3962. }
  3963. sumf[row] += d1 * sum[0] + d2 * sum[1];
  3964. dh += nb*sizeof(block_iq2_s)/2;
  3965. qs += nb*sizeof(block_iq2_s);
  3966. qh += nb*sizeof(block_iq2_s);
  3967. sc += nb*sizeof(block_iq2_s);
  3968. signs += nb*sizeof(block_iq2_s);
  3969. }
  3970. y4 += 32 * 32;
  3971. }
  3972. for (int row = 0; row < N_DST; ++row) {
  3973. all_sum = simd_sum(sumf[row]);
  3974. if (tiisg == 0) {
  3975. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f;
  3976. }
  3977. }
  3978. }
  3979. [[host_name("kernel_mul_mv_iq2_s_f32")]]
  3980. kernel void kernel_mul_mv_iq2_s_f32(
  3981. device const void * src0,
  3982. device const float * src1,
  3983. device float * dst,
  3984. constant int64_t & ne00,
  3985. constant int64_t & ne01,
  3986. constant int64_t & ne02,
  3987. constant uint64_t & nb00,
  3988. constant uint64_t & nb01,
  3989. constant uint64_t & nb02,
  3990. constant int64_t & ne10,
  3991. constant int64_t & ne11,
  3992. constant int64_t & ne12,
  3993. constant uint64_t & nb10,
  3994. constant uint64_t & nb11,
  3995. constant uint64_t & nb12,
  3996. constant int64_t & ne0,
  3997. constant int64_t & ne1,
  3998. constant uint & r2,
  3999. constant uint & r3,
  4000. threadgroup int8_t * shared_values [[threadgroup(0)]],
  4001. uint3 tgpig[[threadgroup_position_in_grid]],
  4002. uint tiisg[[thread_index_in_simdgroup]],
  4003. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4004. kernel_mul_mv_iq2_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  4005. }
  4006. void kernel_mul_mv_iq1_s_f32_impl(
  4007. device const void * src0,
  4008. device const float * src1,
  4009. device float * dst,
  4010. int64_t ne00,
  4011. int64_t ne01,
  4012. int64_t ne02,
  4013. int64_t ne10,
  4014. int64_t ne12,
  4015. int64_t ne0,
  4016. int64_t ne1,
  4017. uint r2,
  4018. uint r3,
  4019. threadgroup int8_t * shared_value,
  4020. uint3 tgpig,
  4021. uint tiisg,
  4022. uint sgitg) {
  4023. const int nb = ne00/QK_K;
  4024. const int r0 = tgpig.x;
  4025. const int r1 = tgpig.y;
  4026. const int im = tgpig.z;
  4027. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  4028. const int ib_row = first_row * nb;
  4029. const uint i12 = im%ne12;
  4030. const uint i13 = im/ne12;
  4031. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  4032. device const block_iq1_s * x = (device const block_iq1_s *) src0 + ib_row + offset0;
  4033. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  4034. float yl[32];
  4035. float sumf[N_DST]={0.f}, all_sum;
  4036. const int nb32 = nb * (QK_K / 32);
  4037. const int ix = tiisg;
  4038. device const float * y4 = y + 32 * ix;
  4039. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  4040. float sumy = 0;
  4041. for (int i = 0; i < 32; ++i) {
  4042. yl[i] = y4[i];
  4043. sumy += yl[i];
  4044. }
  4045. const int ibl = ib32 / (QK_K / 32);
  4046. const int ib = ib32 % (QK_K / 32);
  4047. device const block_iq1_s * xr = x + ibl;
  4048. device const uint8_t * qs = xr->qs + 4 * ib;
  4049. device const uint16_t * qh = xr->qh + ib;
  4050. device const half * dh = &xr->d;
  4051. for (int row = 0; row < N_DST; row++) {
  4052. constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
  4053. constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 5) & 0x700)));
  4054. constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[0] << 2) & 0x700)));
  4055. constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[0] >> 1) & 0x700)));
  4056. float sum = 0;
  4057. for (int j = 0; j < 4; ++j) {
  4058. sum += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4)
  4059. + yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4)
  4060. + yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4)
  4061. + yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4);
  4062. }
  4063. sumf[row] += (float)dh[0] * (sum + sumy * (qh[0] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA)) * (2*((qh[0] >> 12) & 7) + 1);
  4064. dh += nb*sizeof(block_iq1_s)/2;
  4065. qs += nb*sizeof(block_iq1_s);
  4066. qh += nb*sizeof(block_iq1_s)/2;
  4067. }
  4068. y4 += 32 * 32;
  4069. }
  4070. for (int row = 0; row < N_DST; ++row) {
  4071. all_sum = simd_sum(sumf[row]);
  4072. if (tiisg == 0) {
  4073. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  4074. }
  4075. }
  4076. }
  4077. void kernel_mul_mv_iq1_m_f32_impl(
  4078. device const void * src0,
  4079. device const float * src1,
  4080. device float * dst,
  4081. int64_t ne00,
  4082. int64_t ne01,
  4083. int64_t ne02,
  4084. int64_t ne10,
  4085. int64_t ne12,
  4086. int64_t ne0,
  4087. int64_t ne1,
  4088. uint r2,
  4089. uint r3,
  4090. threadgroup int8_t * shared_value,
  4091. uint3 tgpig,
  4092. uint tiisg,
  4093. uint sgitg) {
  4094. const int nb = ne00/QK_K;
  4095. const int r0 = tgpig.x;
  4096. const int r1 = tgpig.y;
  4097. const int im = tgpig.z;
  4098. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  4099. const int ib_row = first_row * nb;
  4100. const uint i12 = im%ne12;
  4101. const uint i13 = im/ne12;
  4102. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  4103. device const block_iq1_m * x = (device const block_iq1_m *) src0 + ib_row + offset0;
  4104. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  4105. float yl[32];
  4106. float sumf[N_DST]={0.f}, all_sum;
  4107. const int nb32 = nb * (QK_K / 32);
  4108. const int ix = tiisg;
  4109. device const float * y4 = y + 32 * ix;
  4110. iq1m_scale_t scale;
  4111. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  4112. float4 sumy = {0.f};
  4113. for (int i = 0; i < 8; ++i) {
  4114. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  4115. yl[i+ 8] = y4[i+ 8]; sumy[1] += yl[i+ 8];
  4116. yl[i+16] = y4[i+16]; sumy[2] += yl[i+16];
  4117. yl[i+24] = y4[i+24]; sumy[3] += yl[i+24];
  4118. }
  4119. const int ibl = ib32 / (QK_K / 32);
  4120. const int ib = ib32 % (QK_K / 32);
  4121. device const block_iq1_m * xr = x + ibl;
  4122. device const uint8_t * qs = xr->qs + 4 * ib;
  4123. device const uint8_t * qh = xr->qh + 2 * ib;
  4124. device const uint16_t * sc = (device const uint16_t *)xr->scales;
  4125. for (int row = 0; row < N_DST; row++) {
  4126. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  4127. constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
  4128. constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
  4129. constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[1] << 8) & 0x700)));
  4130. constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[1] << 4) & 0x700)));
  4131. float2 sum = {0.f};
  4132. for (int j = 0; j < 4; ++j) {
  4133. sum[0] += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4)
  4134. + yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4);
  4135. sum[1] += yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4)
  4136. + yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4);
  4137. }
  4138. const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
  4139. const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
  4140. sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) +
  4141. (sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1));
  4142. sc += nb*sizeof(block_iq1_m)/2;
  4143. qs += nb*sizeof(block_iq1_m);
  4144. qh += nb*sizeof(block_iq1_m);
  4145. }
  4146. y4 += 32 * 32;
  4147. }
  4148. for (int row = 0; row < N_DST; ++row) {
  4149. all_sum = simd_sum(sumf[row]);
  4150. if (tiisg == 0) {
  4151. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  4152. }
  4153. }
  4154. }
  4155. void kernel_mul_mv_iq4_nl_f32_impl(
  4156. device const void * src0,
  4157. device const float * src1,
  4158. device float * dst,
  4159. int64_t ne00,
  4160. int64_t ne01,
  4161. int64_t ne02,
  4162. int64_t ne10,
  4163. int64_t ne12,
  4164. int64_t ne0,
  4165. int64_t ne1,
  4166. uint r2,
  4167. uint r3,
  4168. threadgroup int8_t * shared_values_i8,
  4169. uint3 tgpig,
  4170. uint tiisg,
  4171. uint sgitg) {
  4172. threadgroup float * shared_values = (threadgroup float *)shared_values_i8;
  4173. const int nb = ne00/QK4_NL;
  4174. const int r0 = tgpig.x;
  4175. const int r1 = tgpig.y;
  4176. const int im = tgpig.z;
  4177. const int first_row = (r0 * 2 + sgitg) * 2;
  4178. const int ib_row = first_row * nb;
  4179. const uint i12 = im%ne12;
  4180. const uint i13 = im/ne12;
  4181. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  4182. device const block_iq4_nl * x = (device const block_iq4_nl *) src0 + ib_row + offset0;
  4183. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  4184. const int ix = tiisg/2; // 0...15
  4185. const int it = tiisg%2; // 0 or 1
  4186. shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16];
  4187. threadgroup_barrier(mem_flags::mem_threadgroup);
  4188. float4 yl[4];
  4189. float sumf[2]={0.f}, all_sum;
  4190. device const float * yb = y + ix * QK4_NL + it * 8;
  4191. uint32_t aux32[2];
  4192. thread const uint8_t * q8 = (thread const uint8_t *)aux32;
  4193. float4 qf1, qf2;
  4194. for (int ib = ix; ib < nb; ib += 16) {
  4195. device const float4 * y4 = (device const float4 *)yb;
  4196. yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5];
  4197. for (int row = 0; row < 2 && first_row + row < ne01; ++row) {
  4198. device const block_iq4_nl & xb = x[row*nb + ib];
  4199. device const uint16_t * q4 = (device const uint16_t *)(xb.qs + 8*it);
  4200. float4 acc1 = {0.f}, acc2 = {0.f};
  4201. aux32[0] = q4[0] | (q4[1] << 16);
  4202. aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f;
  4203. aux32[0] &= 0x0f0f0f0f;
  4204. qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
  4205. qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
  4206. acc1 += yl[0] * qf1;
  4207. acc2 += yl[1] * qf2;
  4208. aux32[0] = q4[2] | (q4[3] << 16);
  4209. aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f;
  4210. aux32[0] &= 0x0f0f0f0f;
  4211. qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
  4212. qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
  4213. acc1 += yl[2] * qf1;
  4214. acc2 += yl[3] * qf2;
  4215. acc1 += acc2;
  4216. sumf[row] += (float)xb.d * (acc1[0] + acc1[1] + acc1[2] + acc1[3]);
  4217. }
  4218. yb += 16 * QK4_NL;
  4219. }
  4220. for (int row = 0; row < 2 && first_row + row < ne01; ++row) {
  4221. all_sum = simd_sum(sumf[row]);
  4222. if (tiisg == 0) {
  4223. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  4224. }
  4225. }
  4226. }
  4227. void kernel_mul_mv_iq4_xs_f32_impl(
  4228. device const void * src0,
  4229. device const float * src1,
  4230. device float * dst,
  4231. int64_t ne00,
  4232. int64_t ne01,
  4233. int64_t ne02,
  4234. int64_t ne10,
  4235. int64_t ne12,
  4236. int64_t ne0,
  4237. int64_t ne1,
  4238. uint r2,
  4239. uint r3,
  4240. threadgroup int8_t * shared_values_i8,
  4241. uint3 tgpig,
  4242. uint tiisg,
  4243. uint sgitg) {
  4244. threadgroup float * shared_values = (threadgroup float *)shared_values_i8;
  4245. const int nb = ne00/QK_K;
  4246. const int r0 = tgpig.x;
  4247. const int r1 = tgpig.y;
  4248. const int im = tgpig.z;
  4249. const int first_row = (r0 * 2 + sgitg) * 2;
  4250. const int ib_row = first_row * nb;
  4251. const uint i12 = im%ne12;
  4252. const uint i13 = im/ne12;
  4253. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  4254. device const block_iq4_xs * x = (device const block_iq4_xs *) src0 + ib_row + offset0;
  4255. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  4256. const int ix = tiisg/16; // 0 or 1
  4257. const int it = tiisg%16; // 0...15
  4258. const int ib = it/2;
  4259. const int il = it%2;
  4260. shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16];
  4261. threadgroup_barrier(mem_flags::mem_threadgroup);
  4262. float4 yl[4];
  4263. float sumf[2]={0.f}, all_sum;
  4264. device const float * yb = y + ix * QK_K + ib * 32 + il * 8;
  4265. uint32_t aux32[2];
  4266. thread const uint8_t * q8 = (thread const uint8_t *)aux32;
  4267. float4 qf1, qf2;
  4268. for (int ibl = ix; ibl < nb; ibl += 2) {
  4269. device const float4 * y4 = (device const float4 *)yb;
  4270. yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5];
  4271. for (int row = 0; row < 2; ++row) {
  4272. device const block_iq4_xs & xb = x[row*nb + ibl];
  4273. device const uint32_t * q4 = (device const uint32_t *)(xb.qs + 16*ib + 8*il);
  4274. float4 acc1 = {0.f}, acc2 = {0.f};
  4275. aux32[0] = q4[0] & 0x0f0f0f0f;
  4276. aux32[1] = (q4[0] >> 4) & 0x0f0f0f0f;
  4277. qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
  4278. qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
  4279. acc1 += yl[0] * qf1;
  4280. acc2 += yl[1] * qf2;
  4281. aux32[0] = q4[1] & 0x0f0f0f0f;
  4282. aux32[1] = (q4[1] >> 4) & 0x0f0f0f0f;
  4283. qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
  4284. qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
  4285. acc1 += yl[2] * qf1;
  4286. acc2 += yl[3] * qf2;
  4287. acc1 += acc2;
  4288. const int ls = (((xb.scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((xb.scales_h >> 2*ib) & 3) << 4)) - 32;
  4289. sumf[row] += (float)xb.d * ls * (acc1[0] + acc1[1] + acc1[2] + acc1[3]);
  4290. }
  4291. yb += 2 * QK_K;
  4292. }
  4293. for (int row = 0; row < 2; ++row) {
  4294. all_sum = simd_sum(sumf[row]);
  4295. if (tiisg == 0) {
  4296. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  4297. }
  4298. }
  4299. }
  4300. [[host_name("kernel_mul_mv_iq1_s_f32")]]
  4301. kernel void kernel_mul_mv_iq1_s_f32(
  4302. device const void * src0,
  4303. device const float * src1,
  4304. device float * dst,
  4305. constant int64_t & ne00,
  4306. constant int64_t & ne01,
  4307. constant int64_t & ne02,
  4308. constant uint64_t & nb00,
  4309. constant uint64_t & nb01,
  4310. constant uint64_t & nb02,
  4311. constant int64_t & ne10,
  4312. constant int64_t & ne11,
  4313. constant int64_t & ne12,
  4314. constant uint64_t & nb10,
  4315. constant uint64_t & nb11,
  4316. constant uint64_t & nb12,
  4317. constant int64_t & ne0,
  4318. constant int64_t & ne1,
  4319. constant uint & r2,
  4320. constant uint & r3,
  4321. uint3 tgpig[[threadgroup_position_in_grid]],
  4322. uint tiisg[[thread_index_in_simdgroup]],
  4323. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4324. kernel_mul_mv_iq1_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  4325. }
  4326. [[host_name("kernel_mul_mv_iq1_m_f32")]]
  4327. kernel void kernel_mul_mv_iq1_m_f32(
  4328. device const void * src0,
  4329. device const float * src1,
  4330. device float * dst,
  4331. constant int64_t & ne00,
  4332. constant int64_t & ne01,
  4333. constant int64_t & ne02,
  4334. constant uint64_t & nb00,
  4335. constant uint64_t & nb01,
  4336. constant uint64_t & nb02,
  4337. constant int64_t & ne10,
  4338. constant int64_t & ne11,
  4339. constant int64_t & ne12,
  4340. constant uint64_t & nb10,
  4341. constant uint64_t & nb11,
  4342. constant uint64_t & nb12,
  4343. constant int64_t & ne0,
  4344. constant int64_t & ne1,
  4345. constant uint & r2,
  4346. constant uint & r3,
  4347. uint3 tgpig[[threadgroup_position_in_grid]],
  4348. uint tiisg[[thread_index_in_simdgroup]],
  4349. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4350. kernel_mul_mv_iq1_m_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  4351. }
  4352. [[host_name("kernel_mul_mv_iq4_nl_f32")]]
  4353. kernel void kernel_mul_mv_iq4_nl_f32(
  4354. device const void * src0,
  4355. device const float * src1,
  4356. device float * dst,
  4357. constant int64_t & ne00,
  4358. constant int64_t & ne01,
  4359. constant int64_t & ne02,
  4360. constant uint64_t & nb00,
  4361. constant uint64_t & nb01,
  4362. constant uint64_t & nb02,
  4363. constant int64_t & ne10,
  4364. constant int64_t & ne11,
  4365. constant int64_t & ne12,
  4366. constant uint64_t & nb10,
  4367. constant uint64_t & nb11,
  4368. constant uint64_t & nb12,
  4369. constant int64_t & ne0,
  4370. constant int64_t & ne1,
  4371. constant uint & r2,
  4372. constant uint & r3,
  4373. threadgroup int8_t * shared_values [[threadgroup(0)]],
  4374. uint3 tgpig[[threadgroup_position_in_grid]],
  4375. uint tiisg[[thread_index_in_simdgroup]],
  4376. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4377. kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  4378. }
  4379. [[host_name("kernel_mul_mv_iq4_xs_f32")]]
  4380. kernel void kernel_mul_mv_iq4_xs_f32(
  4381. device const void * src0,
  4382. device const float * src1,
  4383. device float * dst,
  4384. constant int64_t & ne00,
  4385. constant int64_t & ne01,
  4386. constant int64_t & ne02,
  4387. constant uint64_t & nb00,
  4388. constant uint64_t & nb01,
  4389. constant uint64_t & nb02,
  4390. constant int64_t & ne10,
  4391. constant int64_t & ne11,
  4392. constant int64_t & ne12,
  4393. constant uint64_t & nb10,
  4394. constant uint64_t & nb11,
  4395. constant uint64_t & nb12,
  4396. constant int64_t & ne0,
  4397. constant int64_t & ne1,
  4398. constant uint & r2,
  4399. constant uint & r3,
  4400. threadgroup int8_t * shared_values [[threadgroup(0)]],
  4401. uint3 tgpig[[threadgroup_position_in_grid]],
  4402. uint tiisg[[thread_index_in_simdgroup]],
  4403. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4404. kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  4405. }
  4406. //============================= templates and their specializations =============================
  4407. // NOTE: this is not dequantizing - we are simply fitting the template
  4408. template <typename type4x4>
  4409. void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
  4410. float4x4 temp = *(((device float4x4 *)src));
  4411. for (int i = 0; i < 16; i++){
  4412. reg[i/4][i%4] = temp[i/4][i%4];
  4413. }
  4414. }
  4415. template <typename type4x4>
  4416. void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
  4417. half4x4 temp = *(((device half4x4 *)src));
  4418. for (int i = 0; i < 16; i++){
  4419. reg[i/4][i%4] = temp[i/4][i%4];
  4420. }
  4421. }
  4422. template <typename type4x4>
  4423. void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
  4424. device const uint16_t * qs = ((device const uint16_t *)xb + 1);
  4425. const float d1 = il ? (xb->d / 16.h) : xb->d;
  4426. const float d2 = d1 / 256.f;
  4427. const float md = -8.h * xb->d;
  4428. const ushort mask0 = il ? 0x00F0 : 0x000F;
  4429. const ushort mask1 = mask0 << 8;
  4430. for (int i=0;i<8;i++) {
  4431. reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
  4432. reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
  4433. }
  4434. }
  4435. template <typename type4x4>
  4436. void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
  4437. device const uint16_t * qs = ((device const uint16_t *)xb + 2);
  4438. const float d1 = il ? (xb->d / 16.h) : xb->d;
  4439. const float d2 = d1 / 256.f;
  4440. const float m = xb->m;
  4441. const ushort mask0 = il ? 0x00F0 : 0x000F;
  4442. const ushort mask1 = mask0 << 8;
  4443. for (int i=0;i<8;i++) {
  4444. reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
  4445. reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
  4446. }
  4447. }
  4448. template <typename type4x4>
  4449. void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
  4450. device const uint16_t * qs = ((device const uint16_t *)xb + 3);
  4451. const float d = xb->d;
  4452. const float md = -16.h * xb->d;
  4453. const ushort mask = il ? 0x00F0 : 0x000F;
  4454. const uint32_t qh = *((device const uint32_t *)xb->qh);
  4455. const int x_mv = il ? 4 : 0;
  4456. const int gh_mv = il ? 12 : 0;
  4457. const int gh_bk = il ? 0 : 4;
  4458. for (int i = 0; i < 8; i++) {
  4459. // extract the 5-th bits for x0 and x1
  4460. const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
  4461. const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
  4462. // combine the 4-bits from qs with the 5th bit
  4463. const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
  4464. const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
  4465. reg[i/2][2*(i%2)+0] = d * x0 + md;
  4466. reg[i/2][2*(i%2)+1] = d * x1 + md;
  4467. }
  4468. }
  4469. template <typename type4x4>
  4470. void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
  4471. device const uint16_t * qs = ((device const uint16_t *)xb + 4);
  4472. const float d = xb->d;
  4473. const float m = xb->m;
  4474. const ushort mask = il ? 0x00F0 : 0x000F;
  4475. const uint32_t qh = *((device const uint32_t *)xb->qh);
  4476. const int x_mv = il ? 4 : 0;
  4477. const int gh_mv = il ? 12 : 0;
  4478. const int gh_bk = il ? 0 : 4;
  4479. for (int i = 0; i < 8; i++) {
  4480. // extract the 5-th bits for x0 and x1
  4481. const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
  4482. const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
  4483. // combine the 4-bits from qs with the 5th bit
  4484. const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
  4485. const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
  4486. reg[i/2][2*(i%2)+0] = d * x0 + m;
  4487. reg[i/2][2*(i%2)+1] = d * x1 + m;
  4488. }
  4489. }
  4490. template <typename type4x4>
  4491. void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
  4492. device const int8_t * qs = ((device const int8_t *)xb->qs);
  4493. const half d = xb->d;
  4494. for (int i = 0; i < 16; i++) {
  4495. reg[i/4][i%4] = (qs[i + 16*il] * d);
  4496. }
  4497. }
  4498. template <typename type4x4>
  4499. void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
  4500. const float d = xb->d;
  4501. const float min = xb->dmin;
  4502. device const uint8_t * q = (device const uint8_t *)xb->qs;
  4503. float dl, ml;
  4504. uint8_t sc = xb->scales[il];
  4505. q = q + 32*(il/8) + 16*(il&1);
  4506. il = (il/2)%4;
  4507. half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  4508. uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  4509. dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
  4510. for (int i = 0; i < 16; ++i) {
  4511. reg[i/4][i%4] = dl * (q[i] & mask) - ml;
  4512. }
  4513. }
  4514. template <typename type4x4>
  4515. void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
  4516. const half d_all = xb->d;
  4517. device const uint8_t * q = (device const uint8_t *)xb->qs;
  4518. device const uint8_t * h = (device const uint8_t *)xb->hmask;
  4519. device const int8_t * scales = (device const int8_t *)xb->scales;
  4520. q = q + 32 * (il/8) + 16 * (il&1);
  4521. h = h + 16 * (il&1);
  4522. uint8_t m = 1 << (il/2);
  4523. uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
  4524. ((il/4)>0 ? 12 : 3);
  4525. uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
  4526. uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
  4527. int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
  4528. : (scale_2&kmask2) | ((scale_1&kmask1) << 4);
  4529. float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f);
  4530. const float ml = 4.f * dl;
  4531. il = (il/2) & 3;
  4532. const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  4533. const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  4534. dl *= coef;
  4535. for (int i = 0; i < 16; ++i) {
  4536. reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
  4537. }
  4538. }
  4539. static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
  4540. return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
  4541. : uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
  4542. }
  4543. template <typename type4x4>
  4544. void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
  4545. device const uchar * q = xb->qs;
  4546. short is = (il/4) * 2;
  4547. q = q + (il/4) * 32 + 16 * (il&1);
  4548. il = il & 3;
  4549. const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
  4550. const float d = il < 2 ? xb->d : xb->d / 16.h;
  4551. const float min = xb->dmin;
  4552. const float dl = d * sc[0];
  4553. const float ml = min * sc[1];
  4554. const ushort mask = il<2 ? 0x0F : 0xF0;
  4555. for (int i = 0; i < 16; ++i) {
  4556. reg[i/4][i%4] = dl * (q[i] & mask) - ml;
  4557. }
  4558. }
  4559. template <typename type4x4>
  4560. void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
  4561. device const uint8_t * q = xb->qs;
  4562. device const uint8_t * qh = xb->qh;
  4563. short is = (il/4) * 2;
  4564. q = q + 32 * (il/4) + 16 * (il&1);
  4565. qh = qh + 16 * (il&1);
  4566. uint8_t ul = 1 << (il/2);
  4567. il = il & 3;
  4568. const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
  4569. const float d = il < 2 ? xb->d : xb->d / 16.f;
  4570. const float min = xb->dmin;
  4571. const float dl = d * sc[0];
  4572. const float ml = min * sc[1];
  4573. const ushort mask = il<2 ? 0x0F : 0xF0;
  4574. const float qh_val = il<2 ? 16.f : 256.f;
  4575. for (int i = 0; i < 16; ++i) {
  4576. reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
  4577. }
  4578. }
  4579. template <typename type4x4>
  4580. void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
  4581. const half d_all = xb->d;
  4582. device const uint8_t * ql = (device const uint8_t *)xb->ql;
  4583. device const uint8_t * qh = (device const uint8_t *)xb->qh;
  4584. device const int8_t * scales = (device const int8_t *)xb->scales;
  4585. ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
  4586. qh = qh + 32*(il/8) + 16*(il&1);
  4587. float sc = scales[(il%2) + 2 * ((il/2))];
  4588. il = (il/2) & 3;
  4589. const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  4590. const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
  4591. const float coef = il>1 ? 1.f/16.f : 1.f;
  4592. const float ml = d_all * sc * 32.f;
  4593. const float dl = d_all * sc * coef;
  4594. for (int i = 0; i < 16; ++i) {
  4595. const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
  4596. : ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
  4597. reg[i/4][i%4] = dl * q - ml;
  4598. }
  4599. }
  4600. template <typename type4x4>
  4601. void dequantize_iq2_xxs(device const block_iq2_xxs * xb, short il, thread type4x4 & reg) {
  4602. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4603. const float d = xb->d;
  4604. const int ib32 = il/2;
  4605. il = il%2;
  4606. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  4607. // each block of 32 needs 2 uint32_t's for the quants & scale, so 4 uint16_t's.
  4608. device const uint16_t * q2 = xb->qs + 4*ib32;
  4609. const uint32_t aux32_g = q2[0] | (q2[1] << 16);
  4610. const uint32_t aux32_s = q2[2] | (q2[3] << 16);
  4611. thread const uint8_t * aux8 = (thread const uint8_t *)&aux32_g;
  4612. const float dl = d * (0.5f + (aux32_s >> 28)) * 0.25f;
  4613. constant uint8_t * grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
  4614. uint8_t signs = ksigns_iq2xs[(aux32_s >> 14*il) & 127];
  4615. for (int i = 0; i < 8; ++i) {
  4616. reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
  4617. }
  4618. grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
  4619. signs = ksigns_iq2xs[(aux32_s >> (14*il+7)) & 127];
  4620. for (int i = 0; i < 8; ++i) {
  4621. reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
  4622. }
  4623. }
  4624. template <typename type4x4>
  4625. void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4 & reg) {
  4626. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4627. const float d = xb->d;
  4628. const int ib32 = il/2;
  4629. il = il%2;
  4630. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  4631. device const uint16_t * q2 = xb->qs + 4*ib32;
  4632. const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f;
  4633. constant uint8_t * grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+0] & 511));
  4634. uint8_t signs = ksigns_iq2xs[q2[2*il+0] >> 9];
  4635. for (int i = 0; i < 8; ++i) {
  4636. reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
  4637. }
  4638. grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+1] & 511));
  4639. signs = ksigns_iq2xs[q2[2*il+1] >> 9];
  4640. for (int i = 0; i < 8; ++i) {
  4641. reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
  4642. }
  4643. }
  4644. template <typename type4x4>
  4645. void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x4 & reg) {
  4646. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4647. const float d = xb->d;
  4648. const int ib32 = il/2;
  4649. il = il%2;
  4650. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  4651. device const uint8_t * q3 = xb->qs + 8*ib32;
  4652. device const uint16_t * gas = (device const uint16_t *)(xb->qs + QK_K/4) + 2*ib32;
  4653. const uint32_t aux32 = gas[0] | (gas[1] << 16);
  4654. const float dl = d * (0.5f + (aux32 >> 28)) * 0.5f;
  4655. constant uint8_t * grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+0]);
  4656. constant uint8_t * grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+1]);
  4657. uint8_t signs = ksigns_iq2xs[(aux32 >> 14*il) & 127];
  4658. for (int i = 0; i < 4; ++i) {
  4659. reg[0][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
  4660. reg[1][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
  4661. }
  4662. grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+2]);
  4663. grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+3]);
  4664. signs = ksigns_iq2xs[(aux32 >> (14*il+7)) & 127];
  4665. for (int i = 0; i < 4; ++i) {
  4666. reg[2][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
  4667. reg[3][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
  4668. }
  4669. }
  4670. template <typename type4x4>
  4671. void dequantize_iq3_s(device const block_iq3_s * xb, short il, thread type4x4 & reg) {
  4672. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4673. const float d = xb->d;
  4674. const int ib32 = il/2;
  4675. il = il%2;
  4676. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  4677. device const uint8_t * qs = xb->qs + 8*ib32;
  4678. device const uint8_t * signs = xb->signs + 4*ib32 + 2*il;
  4679. const uint8_t qh = xb->qh[ib32] >> 4*il;
  4680. const float dl = d * (1 + 2*((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf));
  4681. constant uint8_t * grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+0] | ((qh << 8) & 256)));
  4682. constant uint8_t * grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+1] | ((qh << 7) & 256)));
  4683. for (int i = 0; i < 4; ++i) {
  4684. reg[0][i] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i+0]);
  4685. reg[1][i] = dl * grid2[i] * select(1, -1, signs[0] & kmask_iq2xs[i+4]);
  4686. }
  4687. grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+2] | ((qh << 6) & 256)));
  4688. grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+3] | ((qh << 5) & 256)));
  4689. for (int i = 0; i < 4; ++i) {
  4690. reg[2][i] = dl * grid1[i] * select(1, -1, signs[1] & kmask_iq2xs[i+0]);
  4691. reg[3][i] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i+4]);
  4692. }
  4693. }
  4694. template <typename type4x4>
  4695. void dequantize_iq2_s(device const block_iq2_s * xb, short il, thread type4x4 & reg) {
  4696. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4697. const float d = xb->d;
  4698. const int ib32 = il/2;
  4699. il = il%2;
  4700. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  4701. device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
  4702. device const uint8_t * signs = qs + QK_K/8;
  4703. const uint8_t qh = xb->qh[ib32] >> 4*il;
  4704. const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f;
  4705. constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[0] | ((qh << 8) & 0x300)));
  4706. constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[1] | ((qh << 6) & 0x300)));
  4707. for (int i = 0; i < 8; ++i) {
  4708. reg[i/4+0][i%4] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i]);
  4709. reg[i/4+2][i%4] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i]);
  4710. }
  4711. }
  4712. template <typename type4x4>
  4713. void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 & reg) {
  4714. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4715. const int ib32 = il/2;
  4716. il = il%2;
  4717. const float d = xb->d;
  4718. device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
  4719. device const uint16_t * qh = xb->qh;
  4720. const float dl = d * (2*((qh[ib32] >> 12) & 7) + 1);
  4721. const float ml = dl * (qh[ib32] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA);
  4722. const uint16_t h = qh[ib32] >> 6*il;
  4723. constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((h << 8) & 0x700)));
  4724. constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((h << 5) & 0x700)));
  4725. for (int i = 0; i < 4; ++i) {
  4726. reg[0][i] = dl * (grid1[i] & 0xf) + ml;
  4727. reg[1][i] = dl * (grid1[i] >> 4) + ml;
  4728. reg[2][i] = dl * (grid2[i] & 0xf) + ml;
  4729. reg[3][i] = dl * (grid2[i] >> 4) + ml;
  4730. }
  4731. }
  4732. template <typename type4x4>
  4733. void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 & reg) {
  4734. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4735. const int ib32 = il/2;
  4736. il = il%2;
  4737. device const uint16_t * sc = (device const uint16_t *)xb->scales;
  4738. iq1m_scale_t scale;
  4739. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  4740. const float d = scale.f16;
  4741. device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
  4742. device const uint8_t * qh = xb->qh + 2*ib32 + il;
  4743. const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1);
  4744. const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
  4745. const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
  4746. constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
  4747. constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
  4748. for (int i = 0; i < 4; ++i) {
  4749. reg[0][i] = dl * (grid1[i] & 0xf) + ml1;
  4750. reg[1][i] = dl * (grid1[i] >> 4) + ml1;
  4751. reg[2][i] = dl * (grid2[i] & 0xf) + ml2;
  4752. reg[3][i] = dl * (grid2[i] >> 4) + ml2;
  4753. }
  4754. }
  4755. template <typename type4x4>
  4756. void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) {
  4757. device const uint16_t * q4 = (device const uint16_t *)xb->qs;
  4758. const float d = xb->d;
  4759. uint32_t aux32;
  4760. thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
  4761. for (int i = 0; i < 4; ++i) {
  4762. aux32 = ((q4[2*i] | (q4[2*i+1] << 16)) >> 4*il) & 0x0f0f0f0f;
  4763. reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
  4764. reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
  4765. reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
  4766. reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
  4767. }
  4768. }
  4769. template <typename type4x4>
  4770. void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) {
  4771. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4772. const int ib32 = il/2;
  4773. il = il%2;
  4774. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  4775. device const uint32_t * q4 = (device const uint32_t *)xb->qs + 4*ib32;
  4776. const int ls = ((xb->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((xb->scales_h >> 2*ib32) & 3) << 4);
  4777. const float d = (float)xb->d * (ls - 32);
  4778. uint32_t aux32;
  4779. thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
  4780. for (int i = 0; i < 4; ++i) {
  4781. aux32 = (q4[i] >> 4*il) & 0x0f0f0f0f;
  4782. reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
  4783. reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
  4784. reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
  4785. reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
  4786. }
  4787. }
  4788. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
  4789. kernel void kernel_get_rows_q(
  4790. device const void * src0,
  4791. device const void * src1,
  4792. device float * dst,
  4793. constant int64_t & ne00,
  4794. constant uint64_t & nb01,
  4795. constant uint64_t & nb02,
  4796. constant int64_t & ne10,
  4797. constant uint64_t & nb10,
  4798. constant uint64_t & nb11,
  4799. constant uint64_t & nb1,
  4800. constant uint64_t & nb2,
  4801. uint3 tgpig[[threadgroup_position_in_grid]],
  4802. uint tiitg[[thread_index_in_threadgroup]],
  4803. uint3 tptg [[threads_per_threadgroup]]) {
  4804. const int64_t i10 = tgpig.x;
  4805. const int64_t i11 = tgpig.y;
  4806. const int64_t r = ((const device int32_t *) ((const device char *) src1 + i11*nb11 + i10*nb10))[0];
  4807. const int64_t i02 = i11;
  4808. for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) {
  4809. float4x4 temp;
  4810. dequantize_func(((device const block_q *) ((const device char *) src0 + r*nb01 + i02*nb02)) + ind/nl, ind%nl, temp);
  4811. *(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp;
  4812. }
  4813. }
  4814. template<typename T>
  4815. kernel void kernel_get_rows_f(
  4816. device const void * src0,
  4817. device const void * src1,
  4818. device float * dst,
  4819. constant int64_t & ne00,
  4820. constant uint64_t & nb01,
  4821. constant uint64_t & nb02,
  4822. constant int64_t & ne10,
  4823. constant uint64_t & nb10,
  4824. constant uint64_t & nb11,
  4825. constant uint64_t & nb1,
  4826. constant uint64_t & nb2,
  4827. uint3 tgpig[[threadgroup_position_in_grid]],
  4828. uint tiitg[[thread_index_in_threadgroup]],
  4829. uint3 tptg [[threads_per_threadgroup]]) {
  4830. const int64_t i10 = tgpig.x;
  4831. const int64_t i11 = tgpig.y;
  4832. const int64_t r = ((const device int32_t *) ((const device char *) src1 + i11*nb11 + i10*nb10))[0];
  4833. const int64_t i02 = i11;
  4834. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  4835. (( device float *) (( device char *) dst + i11*nb2 + i10*nb1))[ind] =
  4836. ((const device T *) ((const device char *) src0 + i02*nb02 + r*nb01))[ind];
  4837. }
  4838. }
  4839. kernel void kernel_get_rows_i32(
  4840. device const void * src0,
  4841. device const void * src1,
  4842. device int32_t * dst,
  4843. constant int64_t & ne00,
  4844. constant uint64_t & nb01,
  4845. constant uint64_t & nb02,
  4846. constant int64_t & ne10,
  4847. constant uint64_t & nb10,
  4848. constant uint64_t & nb11,
  4849. constant uint64_t & nb1,
  4850. constant uint64_t & nb2,
  4851. uint3 tgpig[[threadgroup_position_in_grid]],
  4852. uint tiitg[[thread_index_in_threadgroup]],
  4853. uint3 tptg [[threads_per_threadgroup]]) {
  4854. const int64_t i10 = tgpig.x;
  4855. const int64_t i11 = tgpig.y;
  4856. const int64_t r = ((const device int32_t *) ((const device char *) src1 + i11*nb11 + i10*nb10))[0];
  4857. const int64_t i02 = i11;
  4858. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  4859. (( device int32_t *) (( device char *) dst + i11*nb2 + i10*nb1))[ind] =
  4860. ((const device int32_t *) ((const device char *) src0 + i02*nb02 + r*nb01))[ind];
  4861. }
  4862. }
  4863. #define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
  4864. #define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
  4865. #define BLOCK_SIZE_K 32
  4866. #define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
  4867. #define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
  4868. #define THREAD_PER_BLOCK 128
  4869. #define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
  4870. #define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
  4871. #define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
  4872. #define SG_MAT_ROW 8
  4873. // each block_q contains 16*nl weights
  4874. template<typename T, typename T4x4, typename simdgroup_T8x8, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread T4x4 &)>
  4875. kernel void kernel_mul_mm(device const uchar * src0,
  4876. device const uchar * src1,
  4877. device float * dst,
  4878. constant int64_t & ne00,
  4879. constant int64_t & ne02,
  4880. constant uint64_t & nb01,
  4881. constant uint64_t & nb02,
  4882. constant int64_t & ne12,
  4883. constant uint64_t & nb10,
  4884. constant uint64_t & nb11,
  4885. constant uint64_t & nb12,
  4886. constant int64_t & ne0,
  4887. constant int64_t & ne1,
  4888. constant uint & r2,
  4889. constant uint & r3,
  4890. threadgroup uchar * shared_memory [[threadgroup(0)]],
  4891. uint3 tgpig[[threadgroup_position_in_grid]],
  4892. uint tiitg[[thread_index_in_threadgroup]],
  4893. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4894. threadgroup T * sa = (threadgroup T *)(shared_memory);
  4895. threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
  4896. const uint r0 = tgpig.y;
  4897. const uint r1 = tgpig.x;
  4898. const uint im = tgpig.z;
  4899. // if this block is of 64x32 shape or smaller
  4900. short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
  4901. short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
  4902. // a thread shouldn't load data outside of the matrix
  4903. short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
  4904. short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
  4905. simdgroup_T8x8 ma[4];
  4906. simdgroup_float8x8 mb[2];
  4907. simdgroup_float8x8 c_res[8];
  4908. for (int i = 0; i < 8; i++){
  4909. c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
  4910. }
  4911. short il = (tiitg % THREAD_PER_ROW);
  4912. const uint i12 = im%ne12;
  4913. const uint i13 = im/ne12;
  4914. uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
  4915. ushort offset1 = il/nl;
  4916. device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
  4917. device const float * y = (device const float *)(src1
  4918. + nb12 * im
  4919. + nb11 * (r1 * BLOCK_SIZE_N + thread_col)
  4920. + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
  4921. for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
  4922. // load data and store to threadgroup memory
  4923. T4x4 temp_a;
  4924. dequantize_func(x, il, temp_a);
  4925. threadgroup_barrier(mem_flags::mem_threadgroup);
  4926. #pragma unroll(16)
  4927. for (int i = 0; i < 16; i++) {
  4928. *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
  4929. + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
  4930. + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
  4931. }
  4932. *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
  4933. il = (il + 2 < nl) ? il + 2 : il % 2;
  4934. x = (il < 2) ? x + (2+nl-1)/nl : x;
  4935. y += BLOCK_SIZE_K;
  4936. threadgroup_barrier(mem_flags::mem_threadgroup);
  4937. // load matrices from threadgroup memory and conduct outer products
  4938. threadgroup T * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
  4939. threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
  4940. #pragma unroll(4)
  4941. for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
  4942. #pragma unroll(4)
  4943. for (int i = 0; i < 4; i++) {
  4944. simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
  4945. }
  4946. simdgroup_barrier(mem_flags::mem_none);
  4947. #pragma unroll(2)
  4948. for (int i = 0; i < 2; i++) {
  4949. simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
  4950. }
  4951. lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
  4952. lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
  4953. #pragma unroll(8)
  4954. for (int i = 0; i < 8; i++){
  4955. simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
  4956. }
  4957. }
  4958. }
  4959. if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
  4960. device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \
  4961. + (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0;
  4962. for (int i = 0; i < 8; i++) {
  4963. simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
  4964. }
  4965. } else {
  4966. // block is smaller than 64x32, we should avoid writing data outside of the matrix
  4967. threadgroup_barrier(mem_flags::mem_threadgroup);
  4968. threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
  4969. + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
  4970. for (int i = 0; i < 8; i++) {
  4971. simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
  4972. }
  4973. threadgroup_barrier(mem_flags::mem_threadgroup);
  4974. device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
  4975. if (sgitg == 0) {
  4976. for (int i = 0; i < n_rows; i++) {
  4977. for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
  4978. *(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
  4979. }
  4980. }
  4981. }
  4982. }
  4983. }
  4984. // same as kernel_mul_mm_impl, but src1 and dst are accessed via indices stored in rowids
  4985. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  4986. void kernel_mul_mm_id_impl(
  4987. device const uchar * src0,
  4988. device const uchar * src1,
  4989. threadgroup ushort2 * rowids,
  4990. device float * dst,
  4991. constant int64_t & ne00,
  4992. constant int64_t & ne02,
  4993. constant uint64_t & nb01,
  4994. constant uint64_t & nb02,
  4995. constant int64_t & ne11,
  4996. constant int64_t & ne12,
  4997. constant uint64_t & nb10,
  4998. constant uint64_t & nb11,
  4999. constant uint64_t & nb12,
  5000. constant int64_t & ne0,
  5001. int64_t ne1,
  5002. int64_t ne0ne1,
  5003. threadgroup uchar * shared_memory,
  5004. uint3 tgpig[[threadgroup_position_in_grid]],
  5005. uint tiitg[[thread_index_in_threadgroup]],
  5006. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  5007. threadgroup half * sa = (threadgroup half *)(shared_memory);
  5008. threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
  5009. const uint r0 = tgpig.y;
  5010. const uint r1 = tgpig.x;
  5011. if (r1 * BLOCK_SIZE_N >= ne1) return;
  5012. // if this block is of 64x32 shape or smaller
  5013. short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
  5014. short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
  5015. // a thread shouldn't load data outside of the matrix
  5016. short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
  5017. short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
  5018. simdgroup_half8x8 ma[4];
  5019. simdgroup_float8x8 mb[2];
  5020. simdgroup_float8x8 c_res[8];
  5021. for (int i = 0; i < 8; i++){
  5022. c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
  5023. }
  5024. short il = (tiitg % THREAD_PER_ROW);
  5025. ushort offset1 = il/nl;
  5026. threadgroup const auto & id = rowids[r1 * BLOCK_SIZE_N + thread_col];
  5027. device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01) + offset1;
  5028. device const float * y = (device const float *)(src1
  5029. + nb12 * id[1]
  5030. + nb11 * (id[0] % ne11)
  5031. + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
  5032. for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
  5033. // load data and store to threadgroup memory
  5034. half4x4 temp_a;
  5035. dequantize_func(x, il, temp_a);
  5036. threadgroup_barrier(mem_flags::mem_threadgroup);
  5037. for (int i = 0; i < 16; i++) {
  5038. *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
  5039. + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
  5040. + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
  5041. }
  5042. *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
  5043. il = (il + 2 < nl) ? il + 2 : il % 2;
  5044. x = (il < 2) ? x + (2+nl-1)/nl : x;
  5045. y += BLOCK_SIZE_K;
  5046. threadgroup_barrier(mem_flags::mem_threadgroup);
  5047. // load matrices from threadgroup memory and conduct outer products
  5048. threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
  5049. threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
  5050. for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
  5051. for (int i = 0; i < 4; i++) {
  5052. simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i);
  5053. }
  5054. simdgroup_barrier(mem_flags::mem_none);
  5055. for (int i = 0; i < 2; i++) {
  5056. simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i);
  5057. }
  5058. lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
  5059. lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
  5060. for (int i = 0; i < 8; i++){
  5061. simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
  5062. }
  5063. }
  5064. }
  5065. {
  5066. threadgroup_barrier(mem_flags::mem_threadgroup);
  5067. threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
  5068. + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
  5069. for (int i = 0; i < 8; i++) {
  5070. simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
  5071. }
  5072. threadgroup_barrier(mem_flags::mem_threadgroup);
  5073. device float * C = dst + (BLOCK_SIZE_M * r0);
  5074. if (sgitg == 0) {
  5075. for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
  5076. threadgroup const auto & jid = rowids[r1 * BLOCK_SIZE_N + j];
  5077. int joff = jid[0] * ne0 + jid[1] * ne0ne1;
  5078. for (int i = 0; i < n_rows; i++) {
  5079. *(C + i + joff) = *(temp_str + i + j * BLOCK_SIZE_M);
  5080. }
  5081. }
  5082. }
  5083. }
  5084. }
  5085. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  5086. kernel void kernel_mul_mm_id(
  5087. device const uchar * src0s,
  5088. device const uchar * src1,
  5089. device float * dst,
  5090. device const uchar * ids,
  5091. constant int64_t & nei0,
  5092. constant int64_t & nei1,
  5093. constant uint64_t & nbi1,
  5094. constant int64_t & ne00,
  5095. constant int64_t & ne02,
  5096. constant uint64_t & nb01,
  5097. constant uint64_t & nb02,
  5098. constant int64_t & ne11,
  5099. constant int64_t & ne12,
  5100. constant int64_t & ne13,
  5101. constant uint64_t & nb10,
  5102. constant uint64_t & nb11,
  5103. constant uint64_t & nb12,
  5104. constant int64_t & ne0,
  5105. constant int64_t & ne1,
  5106. constant uint64_t & nb1,
  5107. threadgroup uchar * shared_memory [[threadgroup(0)]],
  5108. uint3 tgpig[[threadgroup_position_in_grid]],
  5109. uint tiitg[[thread_index_in_threadgroup]],
  5110. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  5111. const int32_t i02 = tgpig.z;
  5112. tgpig.z = 0;
  5113. device const uchar * src0 = src0s + i02*nb02;
  5114. // row indices
  5115. threadgroup ushort2 * rowids = (threadgroup ushort2 *)(shared_memory + 8192);
  5116. // TODO: parallelize this loop
  5117. int64_t _ne1 = 0;
  5118. for (ushort ii1 = 0; ii1 < nei1; ii1++) {
  5119. for (ushort ii0 = 0; ii0 < nei0; ii0++) {
  5120. int32_t id = ((device int32_t *) (ids + ii1*nbi1))[ii0];
  5121. if (id == i02) {
  5122. //if (tiitg == 0) {
  5123. rowids[_ne1] = ushort2(ii0, ii1);
  5124. //}
  5125. _ne1++;
  5126. }
  5127. }
  5128. }
  5129. threadgroup_barrier(mem_flags::mem_threadgroup);
  5130. kernel_mul_mm_id_impl<block_q, nl, dequantize_func>(
  5131. src0,
  5132. src1,
  5133. rowids,
  5134. dst,
  5135. ne00,
  5136. ne02,
  5137. nb01,
  5138. nb02,
  5139. ne11,
  5140. ne12,
  5141. nb10,
  5142. nb11,
  5143. nb12,
  5144. ne0,
  5145. _ne1,
  5146. ne0*ne1,
  5147. shared_memory,
  5148. tgpig,
  5149. tiitg,
  5150. sgitg);
  5151. }
  5152. #define QK_NL 16
  5153. //
  5154. // get rows
  5155. //
  5156. typedef decltype(kernel_get_rows_f<float>) get_rows_f_t;
  5157. template [[host_name("kernel_get_rows_f32")]] kernel get_rows_f_t kernel_get_rows_f<float>;
  5158. template [[host_name("kernel_get_rows_f16")]] kernel get_rows_f_t kernel_get_rows_f<half>;
  5159. typedef decltype(kernel_get_rows_q<block_q4_0, 2, dequantize_q4_0>) get_rows_q_t;
  5160. template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q4_0, 2, dequantize_q4_0>;
  5161. template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_q_t kernel_get_rows_q<block_q4_1, 2, dequantize_q4_1>;
  5162. template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_0, 2, dequantize_q5_0>;
  5163. template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_1, 2, dequantize_q5_1>;
  5164. template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q8_0, 2, dequantize_q8_0>;
  5165. template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q2_K, QK_NL, dequantize_q2_K>;
  5166. template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q3_K, QK_NL, dequantize_q3_K>;
  5167. template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q4_K, QK_NL, dequantize_q4_K>;
  5168. template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_K, QK_NL, dequantize_q5_K>;
  5169. template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q6_K, QK_NL, dequantize_q6_K>;
  5170. template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
  5171. template [[host_name("kernel_get_rows_iq2_xs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
  5172. template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
  5173. template [[host_name("kernel_get_rows_iq3_s")]] kernel get_rows_q_t kernel_get_rows_q<block_iq3_s, QK_NL, dequantize_iq3_s>;
  5174. template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_q_t kernel_get_rows_q<block_iq2_s, QK_NL, dequantize_iq2_s>;
  5175. template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_q_t kernel_get_rows_q<block_iq1_s, QK_NL, dequantize_iq1_s>;
  5176. template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_q_t kernel_get_rows_q<block_iq1_m, QK_NL, dequantize_iq1_m>;
  5177. template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_q_t kernel_get_rows_q<block_iq4_nl, 2, dequantize_iq4_nl>;
  5178. template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
  5179. //
  5180. // matrix-matrix multiplication
  5181. //
  5182. typedef decltype(kernel_mul_mm<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>) mat_mm_t;
  5183. template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>;
  5184. template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half4x4, 1, dequantize_f16>;
  5185. template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0>;
  5186. template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1>;
  5187. template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0>;
  5188. template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1>;
  5189. template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0>;
  5190. template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K>;
  5191. template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K>;
  5192. template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K>;
  5193. template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_K, QK_NL, dequantize_q5_K>;
  5194. template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q6_K, QK_NL, dequantize_q6_K>;
  5195. template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
  5196. template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_xs, QK_NL, dequantize_iq2_xs>;
  5197. template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
  5198. template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq3_s, QK_NL, dequantize_iq3_s>;
  5199. template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_s, QK_NL, dequantize_iq2_s>;
  5200. template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq1_s, QK_NL, dequantize_iq1_s>;
  5201. template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq1_m, QK_NL, dequantize_iq1_m>;
  5202. template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq4_nl, 2, dequantize_iq4_nl>;
  5203. template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq4_xs, QK_NL, dequantize_iq4_xs>;
  5204. //
  5205. // indirect matrix-matrix multiplication
  5206. //
  5207. typedef decltype(kernel_mul_mm_id<float4x4, 1, dequantize_f32>) mat_mm_id_t;
  5208. template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>;
  5209. template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>;
  5210. template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>;
  5211. template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>;
  5212. template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>;
  5213. template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>;
  5214. template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>;
  5215. template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>;
  5216. template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>;
  5217. template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>;
  5218. template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>;
  5219. template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
  5220. template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
  5221. template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
  5222. template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
  5223. template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_s, QK_NL, dequantize_iq3_s>;
  5224. template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_s, QK_NL, dequantize_iq2_s>;
  5225. template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>;
  5226. template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_m, QK_NL, dequantize_iq1_m>;
  5227. template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl, 2, dequantize_iq4_nl>;
  5228. template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
  5229. //
  5230. // matrix-vector multiplication
  5231. //
  5232. typedef void (kernel_mul_mv_impl_t)(
  5233. device const char * src0,
  5234. device const char * src1,
  5235. device float * dst,
  5236. int64_t ne00,
  5237. int64_t ne01,
  5238. int64_t ne02,
  5239. uint64_t nb00,
  5240. uint64_t nb01,
  5241. uint64_t nb02,
  5242. int64_t ne10,
  5243. int64_t ne11,
  5244. int64_t ne12,
  5245. uint64_t nb10,
  5246. uint64_t nb11,
  5247. uint64_t nb12,
  5248. int64_t ne0,
  5249. int64_t ne1,
  5250. uint r2,
  5251. uint r3,
  5252. uint3 tgpig,
  5253. uint tiisg);
  5254. typedef void (kernel_mul_mv2_impl_t)(
  5255. device const void * src0,
  5256. device const float * src1,
  5257. device float * dst,
  5258. int64_t ne00,
  5259. int64_t ne01,
  5260. int64_t ne02,
  5261. int64_t ne10,
  5262. int64_t ne12,
  5263. int64_t ne0,
  5264. int64_t ne1,
  5265. uint r2,
  5266. uint r3,
  5267. threadgroup int8_t * shared_values,
  5268. uint3 tgpig,
  5269. uint tiisg,
  5270. uint sgitg);
  5271. template<kernel_mul_mv_impl_t impl_fn>
  5272. void mmv_fn(
  5273. device const char * src0,
  5274. device const char * src1,
  5275. device float * dst,
  5276. int64_t ne00,
  5277. int64_t ne01,
  5278. int64_t ne02,
  5279. uint64_t nb00,
  5280. uint64_t nb01,
  5281. uint64_t nb02,
  5282. int64_t ne10,
  5283. int64_t ne11,
  5284. int64_t ne12,
  5285. int64_t ne13,
  5286. uint64_t nb10,
  5287. uint64_t nb11,
  5288. uint64_t nb12,
  5289. int64_t ne0,
  5290. int64_t ne1,
  5291. uint64_t nb1,
  5292. uint r2,
  5293. uint r3,
  5294. threadgroup int8_t * shared_values,
  5295. uint3 tgpig,
  5296. uint tiitg,
  5297. uint tiisg,
  5298. uint sgitg) {
  5299. impl_fn(src0,src1,dst,ne00,ne01,ne02,nb00,nb01,nb02,ne10,ne11,ne12,nb10,nb11,nb12,ne0,ne1,r2,r3,tgpig,tiisg);
  5300. }
  5301. template<kernel_mul_mv2_impl_t impl_fn>
  5302. void mmv_fn(
  5303. device const char * src0,
  5304. device const char * src1,
  5305. device float * dst,
  5306. int64_t ne00,
  5307. int64_t ne01,
  5308. int64_t ne02,
  5309. uint64_t nb00,
  5310. uint64_t nb01,
  5311. uint64_t nb02,
  5312. int64_t ne10,
  5313. int64_t ne11,
  5314. int64_t ne12,
  5315. int64_t ne13,
  5316. uint64_t nb10,
  5317. uint64_t nb11,
  5318. uint64_t nb12,
  5319. int64_t ne0,
  5320. int64_t ne1,
  5321. uint64_t nb1,
  5322. uint r2,
  5323. uint r3,
  5324. threadgroup int8_t * shared_values,
  5325. uint3 tgpig,
  5326. uint tiitg,
  5327. uint tiisg,
  5328. uint sgitg) {
  5329. impl_fn(src0,(const device float *)src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,shared_values,tgpig,tiisg,sgitg);
  5330. }
  5331. typedef decltype(mmv_fn<kernel_mul_mv_impl<half, half4, half, half4>>) mul_mv_impl_fn_t;
  5332. template<mul_mv_impl_fn_t impl_fn>
  5333. kernel void kernel_mul_mv_id(
  5334. device const char * src0s,
  5335. device const char * src1,
  5336. device float * dst,
  5337. device const char * ids,
  5338. constant int64_t & nei0,
  5339. constant int64_t & nei1,
  5340. constant uint64_t & nbi1,
  5341. constant int64_t & ne00,
  5342. constant int64_t & ne01,
  5343. constant int64_t & ne02,
  5344. constant uint64_t & nb00,
  5345. constant uint64_t & nb01,
  5346. constant uint64_t & nb02,
  5347. constant int64_t & ne10,
  5348. constant int64_t & ne11,
  5349. constant int64_t & ne12,
  5350. constant int64_t & ne13,
  5351. constant uint64_t & nb10,
  5352. constant uint64_t & nb11,
  5353. constant uint64_t & nb12,
  5354. constant int64_t & ne0,
  5355. constant int64_t & ne1,
  5356. constant uint64_t & nb1,
  5357. threadgroup int8_t * shared_values [[threadgroup(0)]],
  5358. uint3 tgpig[[threadgroup_position_in_grid]],
  5359. uint tiitg[[thread_index_in_threadgroup]],
  5360. uint tiisg[[thread_index_in_simdgroup]],
  5361. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  5362. const int iid1 = tgpig.z/nei0;
  5363. const int idx = tgpig.z%nei0;
  5364. tgpig.z = 0;
  5365. const int32_t i02 = ((device const int32_t *) (ids + iid1*nbi1))[idx];
  5366. const int64_t i11 = idx % ne11;
  5367. const int64_t i12 = iid1;
  5368. const int64_t i1 = idx;
  5369. const int64_t i2 = i12;
  5370. device const char * src0_cur = src0s + i02*nb02;
  5371. device const char * src1_cur = src1 + i11*nb11 + i12*nb12;
  5372. device float * dst_cur = dst + i1*ne0 + i2*ne1*ne0;
  5373. impl_fn(
  5374. /* src0 */ src0_cur,
  5375. /* src1 */ src1_cur,
  5376. /* dst */ dst_cur,
  5377. /* ne00 */ ne00,
  5378. /* ne01 */ ne01,
  5379. /* ne02 */ 1,//ne02,
  5380. /* nb00 */ nb00,
  5381. /* nb01 */ nb01,
  5382. /* nb02 */ nb02,
  5383. /* ne10 */ ne10,
  5384. /* ne11 */ 1,//ne11,
  5385. /* ne12 */ 1,//ne12,
  5386. /* ne13 */ 1,//ne13,
  5387. /* nb10 */ nb10,
  5388. /* nb11 */ nb11,
  5389. /* nb12 */ nb12,
  5390. /* ne0 */ ne0,
  5391. /* ne1 */ 1,//ne1,
  5392. /* nb1 */ nb1,
  5393. /* r2 */ 1,
  5394. /* r3 */ 1,
  5395. shared_values,
  5396. tgpig,
  5397. tiitg,
  5398. tiisg,
  5399. sgitg);
  5400. }
  5401. typedef decltype(kernel_mul_mv_id<mmv_fn<kernel_mul_mv_impl<float, float4, float, float4>>>) kernel_mul_mv_id_t;
  5402. template [[host_name("kernel_mul_mv_id_f32_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_impl<float, float4, float, float4>>>;
  5403. template [[host_name("kernel_mul_mv_id_f16_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_impl<half, half4, float, float4>>>;
  5404. template [[host_name("kernel_mul_mv_id_q8_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q8_0_f32_impl>>;
  5405. template [[host_name("kernel_mul_mv_id_q4_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>>>;
  5406. template [[host_name("kernel_mul_mv_id_q4_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>>>;
  5407. template [[host_name("kernel_mul_mv_id_q5_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>>>;
  5408. template [[host_name("kernel_mul_mv_id_q5_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>>>;
  5409. template [[host_name("kernel_mul_mv_id_q2_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q2_K_f32_impl>>;
  5410. template [[host_name("kernel_mul_mv_id_q3_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q3_K_f32_impl>>;
  5411. template [[host_name("kernel_mul_mv_id_q4_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q4_K_f32_impl>>;
  5412. template [[host_name("kernel_mul_mv_id_q5_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q5_K_f32_impl>>;
  5413. template [[host_name("kernel_mul_mv_id_q6_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q6_K_f32_impl>>;
  5414. template [[host_name("kernel_mul_mv_id_iq1_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq1_s_f32_impl>>;
  5415. template [[host_name("kernel_mul_mv_id_iq1_m_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq1_m_f32_impl>>;
  5416. template [[host_name("kernel_mul_mv_id_iq2_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_xxs_f32_impl>>;
  5417. template [[host_name("kernel_mul_mv_id_iq2_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_xs_f32_impl>>;
  5418. template [[host_name("kernel_mul_mv_id_iq3_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_xxs_f32_impl>>;
  5419. template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_s_f32_impl>>;
  5420. template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_s_f32_impl>>;
  5421. template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_nl_f32_impl>>;
  5422. template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl>>;