ggml.h 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595
  1. /**
  2. * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #pragma once
  27. //
  28. // GGML Tensor Library
  29. //
  30. // This documentation is still a work in progress.
  31. // If you wish some specific topics to be covered, feel free to drop a comment:
  32. //
  33. // https://github.com/ggerganov/whisper.cpp/issues/40
  34. //
  35. // ## Overview
  36. //
  37. // This library implements:
  38. //
  39. // - a set of tensor operations
  40. // - automatic differentiation
  41. // - basic optimization algorithms
  42. //
  43. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  44. // but is not limited to, the following:
  45. //
  46. // - linear regression
  47. // - support vector machines
  48. // - neural networks
  49. //
  50. // The library allows the user to define a certain function using the available tensor operations. This function
  51. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  52. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  53. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  54. // using one of the available optimization algorithms.
  55. //
  56. // For example, here we define the function: f(x) = a*x^2 + b
  57. //
  58. // {
  59. // struct ggml_init_params params = {
  60. // .mem_size = 16*1024*1024,
  61. // .mem_buffer = NULL,
  62. // };
  63. //
  64. // // memory allocation happens here
  65. // struct ggml_context * ctx = ggml_init(params);
  66. //
  67. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  68. //
  69. // ggml_set_param(ctx, x); // x is an input variable
  70. //
  71. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  72. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  73. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  74. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  75. //
  76. // ...
  77. // }
  78. //
  79. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  80. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  81. //
  82. // {
  83. // ...
  84. //
  85. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  86. // ggml_build_forward_expand(gf, f);
  87. //
  88. // // set the input variable and parameter values
  89. // ggml_set_f32(x, 2.0f);
  90. // ggml_set_f32(a, 3.0f);
  91. // ggml_set_f32(b, 4.0f);
  92. //
  93. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  94. //
  95. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  96. //
  97. // ...
  98. // }
  99. //
  100. // The actual computation is performed in the ggml_graph_compute() function.
  101. //
  102. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  103. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  104. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  105. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  106. // actually needed.
  107. //
  108. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  109. // differentiation and optimization algorithms.
  110. //
  111. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  112. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  113. // the user can avoid the memory allocation overhead at runtime.
  114. //
  115. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  116. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  117. //
  118. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  119. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  120. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  121. // yet, but a few examples are demonstrated in the following operations:
  122. //
  123. // - ggml_permute()
  124. // - ggml_conv_1d_1s()
  125. // - ggml_conv_1d_2s()
  126. //
  127. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  128. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  129. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  130. // calculus class, or watch the following video:
  131. //
  132. // What is Automatic Differentiation?
  133. // https://www.youtube.com/watch?v=wG_nF1awSSY
  134. //
  135. //
  136. // ## Tensor data (struct ggml_tensor)
  137. //
  138. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  139. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  140. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  141. //
  142. // {
  143. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  144. //
  145. // assert(c->src[0] == a);
  146. // assert(c->src[1] == b);
  147. // }
  148. //
  149. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  150. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  151. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  152. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  153. // contiguous in memory.
  154. //
  155. // The data of the tensor is accessed via the "data" pointer. For example:
  156. //
  157. // {
  158. // const int nx = 2;
  159. // const int ny = 3;
  160. //
  161. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  162. //
  163. // for (int y = 0; y < ny; y++) {
  164. // for (int x = 0; x < nx; x++) {
  165. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  166. // }
  167. // }
  168. //
  169. // ...
  170. // }
  171. //
  172. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  173. //
  174. // ## The matrix multiplication operator (ggml_mul_mat)
  175. //
  176. // TODO
  177. //
  178. //
  179. // ## Multi-threading
  180. //
  181. // TODO
  182. //
  183. //
  184. // ## Overview of ggml.c
  185. //
  186. // TODO
  187. //
  188. //
  189. // ## SIMD optimizations
  190. //
  191. // TODO
  192. //
  193. //
  194. // ## Debugging ggml
  195. //
  196. // TODO
  197. //
  198. //
  199. #ifdef GGML_SHARED
  200. # if defined(_WIN32) && !defined(__MINGW32__)
  201. # ifdef GGML_BUILD
  202. # define GGML_API __declspec(dllexport)
  203. # else
  204. # define GGML_API __declspec(dllimport)
  205. # endif
  206. # else
  207. # define GGML_API __attribute__ ((visibility ("default")))
  208. # endif
  209. #else
  210. # define GGML_API
  211. #endif
  212. #ifdef GGML_MULTIPLATFORM
  213. # if defined(_WIN32)
  214. # define GGML_CALL
  215. # else
  216. # define GGML_CALL __attribute__((__ms_abi__))
  217. # endif
  218. #else
  219. # define GGML_CALL
  220. #endif
  221. // TODO: support for clang
  222. #ifdef __GNUC__
  223. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  224. #elif defined(_MSC_VER)
  225. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  226. #else
  227. # define GGML_DEPRECATED(func, hint) func
  228. #endif
  229. #ifndef __GNUC__
  230. # define GGML_ATTRIBUTE_FORMAT(...)
  231. #elif defined(__MINGW32__)
  232. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  233. #else
  234. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  235. #endif
  236. #include <stdbool.h>
  237. #include <stddef.h>
  238. #include <stdint.h>
  239. #include <stdio.h>
  240. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  241. #define GGML_FILE_VERSION 2
  242. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  243. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  244. #define GGML_MAX_DIMS 4
  245. #define GGML_MAX_PARAMS 2048
  246. #define GGML_MAX_CONTEXTS 64
  247. #define GGML_MAX_SRC 10
  248. #define GGML_MAX_N_THREADS 512
  249. #define GGML_MAX_OP_PARAMS 64
  250. #ifndef GGML_MAX_NAME
  251. # define GGML_MAX_NAME 64
  252. #endif
  253. #define GGML_DEFAULT_N_THREADS 4
  254. #define GGML_DEFAULT_GRAPH_SIZE 2048
  255. #if UINTPTR_MAX == 0xFFFFFFFF
  256. #define GGML_MEM_ALIGN 4
  257. #else
  258. #define GGML_MEM_ALIGN 16
  259. #endif
  260. #define GGML_EXIT_SUCCESS 0
  261. #define GGML_EXIT_ABORTED 1
  262. #define GGML_ROPE_TYPE_NEOX 2
  263. #define GGUF_MAGIC "GGUF"
  264. #define GGUF_VERSION 3
  265. #define GGUF_DEFAULT_ALIGNMENT 32
  266. #define GGML_UNUSED(x) (void)(x)
  267. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  268. #ifndef NDEBUG
  269. # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  270. #elif defined(__GNUC__)
  271. # define GGML_UNREACHABLE() __builtin_unreachable()
  272. #elif defined(_MSC_VER)
  273. # define GGML_UNREACHABLE() __assume(0)
  274. #else
  275. # define GGML_UNREACHABLE() ((void) 0)
  276. #endif
  277. #ifdef __cplusplus
  278. # define GGML_NORETURN [[noreturn]]
  279. #elif defined(_MSC_VER)
  280. # define GGML_NORETURN __declspec(noreturn)
  281. #else
  282. # define GGML_NORETURN _Noreturn
  283. #endif
  284. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  285. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  286. // used to copy the number of elements and stride in bytes of tensors into local variables.
  287. // main purpose is to reduce code duplication and improve readability.
  288. //
  289. // example:
  290. //
  291. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  292. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  293. //
  294. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  295. const type prefix##0 = (pointer)->array[0]; \
  296. GGML_UNUSED(prefix##0);
  297. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  298. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  299. const type prefix##1 = (pointer)->array[1]; \
  300. GGML_UNUSED(prefix##1);
  301. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  302. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  303. const type prefix##2 = (pointer)->array[2]; \
  304. GGML_UNUSED(prefix##2);
  305. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  306. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  307. const type prefix##3 = (pointer)->array[3]; \
  308. GGML_UNUSED(prefix##3);
  309. #define GGML_TENSOR_UNARY_OP_LOCALS \
  310. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  311. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  312. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  313. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  314. #define GGML_TENSOR_BINARY_OP_LOCALS \
  315. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  316. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  317. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  318. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  319. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  320. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  321. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  322. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  323. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  324. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  325. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  326. #ifdef __cplusplus
  327. extern "C" {
  328. #endif
  329. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  330. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  331. enum ggml_status {
  332. GGML_STATUS_ALLOC_FAILED = -2,
  333. GGML_STATUS_FAILED = -1,
  334. GGML_STATUS_SUCCESS = 0,
  335. GGML_STATUS_ABORTED = 1,
  336. };
  337. // get ggml_status name string
  338. GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
  339. // ieee 754-2008 half-precision float16
  340. // todo: make this not an integral type
  341. typedef uint16_t ggml_fp16_t;
  342. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  343. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  344. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  345. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  346. // google brain half-precision bfloat16
  347. typedef struct { uint16_t bits; } ggml_bf16_t;
  348. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  349. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  350. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  351. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  352. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  353. struct ggml_object;
  354. struct ggml_context;
  355. struct ggml_cgraph;
  356. // NOTE: always add types at the end of the enum to keep backward compatibility
  357. enum ggml_type {
  358. GGML_TYPE_F32 = 0,
  359. GGML_TYPE_F16 = 1,
  360. GGML_TYPE_Q4_0 = 2,
  361. GGML_TYPE_Q4_1 = 3,
  362. // GGML_TYPE_Q4_2 = 4, support has been removed
  363. // GGML_TYPE_Q4_3 = 5, support has been removed
  364. GGML_TYPE_Q5_0 = 6,
  365. GGML_TYPE_Q5_1 = 7,
  366. GGML_TYPE_Q8_0 = 8,
  367. GGML_TYPE_Q8_1 = 9,
  368. GGML_TYPE_Q2_K = 10,
  369. GGML_TYPE_Q3_K = 11,
  370. GGML_TYPE_Q4_K = 12,
  371. GGML_TYPE_Q5_K = 13,
  372. GGML_TYPE_Q6_K = 14,
  373. GGML_TYPE_Q8_K = 15,
  374. GGML_TYPE_IQ2_XXS = 16,
  375. GGML_TYPE_IQ2_XS = 17,
  376. GGML_TYPE_IQ3_XXS = 18,
  377. GGML_TYPE_IQ1_S = 19,
  378. GGML_TYPE_IQ4_NL = 20,
  379. GGML_TYPE_IQ3_S = 21,
  380. GGML_TYPE_IQ2_S = 22,
  381. GGML_TYPE_IQ4_XS = 23,
  382. GGML_TYPE_I8 = 24,
  383. GGML_TYPE_I16 = 25,
  384. GGML_TYPE_I32 = 26,
  385. GGML_TYPE_I64 = 27,
  386. GGML_TYPE_F64 = 28,
  387. GGML_TYPE_IQ1_M = 29,
  388. GGML_TYPE_BF16 = 30,
  389. GGML_TYPE_Q4_0_4_4 = 31,
  390. GGML_TYPE_Q4_0_4_8 = 32,
  391. GGML_TYPE_Q4_0_8_8 = 33,
  392. GGML_TYPE_TQ1_0 = 34,
  393. GGML_TYPE_TQ2_0 = 35,
  394. GGML_TYPE_COUNT,
  395. };
  396. // precision
  397. enum ggml_prec {
  398. GGML_PREC_DEFAULT,
  399. GGML_PREC_F32,
  400. };
  401. enum ggml_backend_type {
  402. GGML_BACKEND_TYPE_CPU = 0,
  403. GGML_BACKEND_TYPE_GPU = 10,
  404. GGML_BACKEND_TYPE_GPU_SPLIT = 20,
  405. };
  406. // model file types
  407. enum ggml_ftype {
  408. GGML_FTYPE_UNKNOWN = -1,
  409. GGML_FTYPE_ALL_F32 = 0,
  410. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  411. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  412. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  413. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  414. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  415. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  416. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  417. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  418. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  419. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  420. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  421. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  422. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  423. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  424. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  425. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  426. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  427. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  428. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  429. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  430. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  431. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  432. GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors
  433. GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors
  434. GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors
  435. };
  436. // available tensor operations:
  437. enum ggml_op {
  438. GGML_OP_NONE = 0,
  439. GGML_OP_DUP,
  440. GGML_OP_ADD,
  441. GGML_OP_ADD1,
  442. GGML_OP_ACC,
  443. GGML_OP_SUB,
  444. GGML_OP_MUL,
  445. GGML_OP_DIV,
  446. GGML_OP_SQR,
  447. GGML_OP_SQRT,
  448. GGML_OP_LOG,
  449. GGML_OP_SIN,
  450. GGML_OP_COS,
  451. GGML_OP_SUM,
  452. GGML_OP_SUM_ROWS,
  453. GGML_OP_MEAN,
  454. GGML_OP_ARGMAX,
  455. GGML_OP_REPEAT,
  456. GGML_OP_REPEAT_BACK,
  457. GGML_OP_CONCAT,
  458. GGML_OP_SILU_BACK,
  459. GGML_OP_NORM, // normalize
  460. GGML_OP_RMS_NORM,
  461. GGML_OP_RMS_NORM_BACK,
  462. GGML_OP_GROUP_NORM,
  463. GGML_OP_MUL_MAT,
  464. GGML_OP_MUL_MAT_ID,
  465. GGML_OP_OUT_PROD,
  466. GGML_OP_SCALE,
  467. GGML_OP_SET,
  468. GGML_OP_CPY,
  469. GGML_OP_CONT,
  470. GGML_OP_RESHAPE,
  471. GGML_OP_VIEW,
  472. GGML_OP_PERMUTE,
  473. GGML_OP_TRANSPOSE,
  474. GGML_OP_GET_ROWS,
  475. GGML_OP_GET_ROWS_BACK,
  476. GGML_OP_DIAG,
  477. GGML_OP_DIAG_MASK_INF,
  478. GGML_OP_DIAG_MASK_ZERO,
  479. GGML_OP_SOFT_MAX,
  480. GGML_OP_SOFT_MAX_BACK,
  481. GGML_OP_ROPE,
  482. GGML_OP_ROPE_BACK,
  483. GGML_OP_CLAMP,
  484. GGML_OP_CONV_TRANSPOSE_1D,
  485. GGML_OP_IM2COL,
  486. GGML_OP_IM2COL_BACK,
  487. GGML_OP_CONV_TRANSPOSE_2D,
  488. GGML_OP_POOL_1D,
  489. GGML_OP_POOL_2D,
  490. GGML_OP_POOL_2D_BACK,
  491. GGML_OP_UPSCALE, // nearest interpolate
  492. GGML_OP_PAD,
  493. GGML_OP_UNPAD,
  494. GGML_OP_ARANGE,
  495. GGML_OP_TIMESTEP_EMBEDDING,
  496. GGML_OP_ARGSORT,
  497. GGML_OP_LEAKY_RELU,
  498. GGML_OP_FLASH_ATTN_EXT,
  499. GGML_OP_FLASH_ATTN_BACK,
  500. GGML_OP_SSM_CONV,
  501. GGML_OP_SSM_SCAN,
  502. GGML_OP_WIN_PART,
  503. GGML_OP_WIN_UNPART,
  504. GGML_OP_GET_REL_POS,
  505. GGML_OP_ADD_REL_POS,
  506. GGML_OP_RWKV_WKV,
  507. GGML_OP_UNARY,
  508. GGML_OP_MAP_UNARY,
  509. GGML_OP_MAP_BINARY,
  510. GGML_OP_MAP_CUSTOM1_F32,
  511. GGML_OP_MAP_CUSTOM2_F32,
  512. GGML_OP_MAP_CUSTOM3_F32,
  513. GGML_OP_MAP_CUSTOM1,
  514. GGML_OP_MAP_CUSTOM2,
  515. GGML_OP_MAP_CUSTOM3,
  516. GGML_OP_CROSS_ENTROPY_LOSS,
  517. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  518. GGML_OP_OPT_STEP_ADAMW,
  519. GGML_OP_COUNT,
  520. };
  521. enum ggml_unary_op {
  522. GGML_UNARY_OP_ABS,
  523. GGML_UNARY_OP_SGN,
  524. GGML_UNARY_OP_NEG,
  525. GGML_UNARY_OP_STEP,
  526. GGML_UNARY_OP_TANH,
  527. GGML_UNARY_OP_ELU,
  528. GGML_UNARY_OP_RELU,
  529. GGML_UNARY_OP_SIGMOID,
  530. GGML_UNARY_OP_GELU,
  531. GGML_UNARY_OP_GELU_QUICK,
  532. GGML_UNARY_OP_SILU,
  533. GGML_UNARY_OP_HARDSWISH,
  534. GGML_UNARY_OP_HARDSIGMOID,
  535. GGML_UNARY_OP_EXP,
  536. GGML_UNARY_OP_COUNT,
  537. };
  538. enum ggml_object_type {
  539. GGML_OBJECT_TYPE_TENSOR,
  540. GGML_OBJECT_TYPE_GRAPH,
  541. GGML_OBJECT_TYPE_WORK_BUFFER
  542. };
  543. enum ggml_log_level {
  544. GGML_LOG_LEVEL_NONE = 0,
  545. GGML_LOG_LEVEL_INFO = 1,
  546. GGML_LOG_LEVEL_WARN = 2,
  547. GGML_LOG_LEVEL_ERROR = 3,
  548. GGML_LOG_LEVEL_DEBUG = 4,
  549. GGML_LOG_LEVEL_CONT = 5, // continue previous log
  550. };
  551. // this tensor...
  552. enum ggml_tensor_flag {
  553. GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
  554. GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
  555. GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
  556. GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
  557. };
  558. // n-dimensional tensor
  559. struct ggml_tensor {
  560. enum ggml_type type;
  561. GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
  562. struct ggml_backend_buffer * buffer;
  563. int64_t ne[GGML_MAX_DIMS]; // number of elements
  564. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  565. // nb[0] = ggml_type_size(type)
  566. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  567. // nb[i] = nb[i-1] * ne[i-1]
  568. // compute data
  569. enum ggml_op op;
  570. // op params - allocated as int32_t for alignment
  571. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  572. int32_t flags;
  573. struct ggml_tensor * grad;
  574. struct ggml_tensor * src[GGML_MAX_SRC];
  575. // source tensor and offset for views
  576. struct ggml_tensor * view_src;
  577. size_t view_offs;
  578. void * data;
  579. char name[GGML_MAX_NAME];
  580. void * extra; // extra things e.g. for ggml-cuda.cu
  581. // char padding[4];
  582. };
  583. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  584. // Abort callback
  585. // If not NULL, called before ggml computation
  586. // If it returns true, the computation is aborted
  587. typedef bool (*ggml_abort_callback)(void * data);
  588. // Scheduling priorities
  589. enum ggml_sched_priority {
  590. GGML_SCHED_PRIO_NORMAL,
  591. GGML_SCHED_PRIO_MEDIUM,
  592. GGML_SCHED_PRIO_HIGH,
  593. GGML_SCHED_PRIO_REALTIME
  594. };
  595. // Threadpool params
  596. // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
  597. struct ggml_threadpool_params {
  598. bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
  599. int n_threads; // number of threads
  600. enum ggml_sched_priority prio; // thread priority
  601. uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
  602. bool strict_cpu; // strict cpu placement
  603. bool paused; // start in paused state
  604. };
  605. struct ggml_threadpool; // forward declaration, see ggml.c
  606. typedef struct ggml_threadpool * ggml_threadpool_t;
  607. // the compute plan that needs to be prepared for ggml_graph_compute()
  608. // since https://github.com/ggerganov/ggml/issues/287
  609. struct ggml_cplan {
  610. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  611. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  612. int n_threads;
  613. struct ggml_threadpool * threadpool;
  614. // abort ggml_graph_compute when true
  615. ggml_abort_callback abort_callback;
  616. void * abort_callback_data;
  617. };
  618. // scratch buffer
  619. struct ggml_scratch {
  620. size_t offs;
  621. size_t size;
  622. void * data;
  623. };
  624. struct ggml_init_params {
  625. // memory pool
  626. size_t mem_size; // bytes
  627. void * mem_buffer; // if NULL, memory will be allocated internally
  628. bool no_alloc; // don't allocate memory for the tensor data
  629. };
  630. // numa strategies
  631. enum ggml_numa_strategy {
  632. GGML_NUMA_STRATEGY_DISABLED = 0,
  633. GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
  634. GGML_NUMA_STRATEGY_ISOLATE = 2,
  635. GGML_NUMA_STRATEGY_NUMACTL = 3,
  636. GGML_NUMA_STRATEGY_MIRROR = 4,
  637. GGML_NUMA_STRATEGY_COUNT
  638. };
  639. //
  640. // GUID
  641. //
  642. // GUID types
  643. typedef uint8_t ggml_guid[16];
  644. typedef ggml_guid * ggml_guid_t;
  645. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  646. // misc
  647. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  648. GGML_API int64_t ggml_time_ms(void);
  649. GGML_API int64_t ggml_time_us(void);
  650. GGML_API int64_t ggml_cycles(void);
  651. GGML_API int64_t ggml_cycles_per_ms(void);
  652. // accepts a UTF-8 path, even on Windows
  653. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  654. GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
  655. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  656. GGML_API void ggml_print_object (const struct ggml_object * obj);
  657. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  658. GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
  659. GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
  660. GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
  661. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  662. GGML_API GGML_CALL int64_t ggml_blck_size(enum ggml_type type);
  663. GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  664. GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  665. GGML_DEPRECATED(
  666. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  667. "use ggml_row_size() instead");
  668. GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
  669. GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
  670. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  671. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  672. GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  673. GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
  674. GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
  675. // TODO: temporary until model loading of ggml examples is refactored
  676. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  677. GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
  678. GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
  679. GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
  680. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  681. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  682. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  683. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  684. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  685. GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  686. GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  687. GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  688. GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  689. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  690. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  691. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  692. // use this to compute the memory overhead of a tensor
  693. GGML_API size_t ggml_tensor_overhead(void);
  694. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  695. // main
  696. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  697. GGML_API void ggml_free(struct ggml_context * ctx);
  698. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  699. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  700. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  701. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  702. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  703. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  704. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  705. GGML_API struct ggml_tensor * ggml_new_tensor(
  706. struct ggml_context * ctx,
  707. enum ggml_type type,
  708. int n_dims,
  709. const int64_t *ne);
  710. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  711. struct ggml_context * ctx,
  712. enum ggml_type type,
  713. int64_t ne0);
  714. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  715. struct ggml_context * ctx,
  716. enum ggml_type type,
  717. int64_t ne0,
  718. int64_t ne1);
  719. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  720. struct ggml_context * ctx,
  721. enum ggml_type type,
  722. int64_t ne0,
  723. int64_t ne1,
  724. int64_t ne2);
  725. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  726. struct ggml_context * ctx,
  727. enum ggml_type type,
  728. int64_t ne0,
  729. int64_t ne1,
  730. int64_t ne2,
  731. int64_t ne3);
  732. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  733. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  734. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  735. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  736. // Context tensor enumeration and lookup
  737. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  738. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  739. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  740. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  741. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  742. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  743. // Converts a flat index into coordinates
  744. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  745. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  746. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  747. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  748. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  749. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  750. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  751. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  752. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  753. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  754. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  755. GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  756. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  757. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  758. GGML_ATTRIBUTE_FORMAT(2, 3)
  759. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  760. //
  761. // operations on tensors with backpropagation
  762. //
  763. GGML_API struct ggml_tensor * ggml_dup(
  764. struct ggml_context * ctx,
  765. struct ggml_tensor * a);
  766. // in-place, returns view(a)
  767. GGML_API struct ggml_tensor * ggml_dup_inplace(
  768. struct ggml_context * ctx,
  769. struct ggml_tensor * a);
  770. GGML_API struct ggml_tensor * ggml_add(
  771. struct ggml_context * ctx,
  772. struct ggml_tensor * a,
  773. struct ggml_tensor * b);
  774. GGML_API struct ggml_tensor * ggml_add_inplace(
  775. struct ggml_context * ctx,
  776. struct ggml_tensor * a,
  777. struct ggml_tensor * b);
  778. GGML_API struct ggml_tensor * ggml_add_cast(
  779. struct ggml_context * ctx,
  780. struct ggml_tensor * a,
  781. struct ggml_tensor * b,
  782. enum ggml_type type);
  783. GGML_API struct ggml_tensor * ggml_add1(
  784. struct ggml_context * ctx,
  785. struct ggml_tensor * a,
  786. struct ggml_tensor * b);
  787. GGML_API struct ggml_tensor * ggml_add1_inplace(
  788. struct ggml_context * ctx,
  789. struct ggml_tensor * a,
  790. struct ggml_tensor * b);
  791. // dst = a
  792. // view(dst, nb1, nb2, nb3, offset) += b
  793. // return dst
  794. GGML_API struct ggml_tensor * ggml_acc(
  795. struct ggml_context * ctx,
  796. struct ggml_tensor * a,
  797. struct ggml_tensor * b,
  798. size_t nb1,
  799. size_t nb2,
  800. size_t nb3,
  801. size_t offset);
  802. GGML_API struct ggml_tensor * ggml_acc_inplace(
  803. struct ggml_context * ctx,
  804. struct ggml_tensor * a,
  805. struct ggml_tensor * b,
  806. size_t nb1,
  807. size_t nb2,
  808. size_t nb3,
  809. size_t offset);
  810. GGML_API struct ggml_tensor * ggml_sub(
  811. struct ggml_context * ctx,
  812. struct ggml_tensor * a,
  813. struct ggml_tensor * b);
  814. GGML_API struct ggml_tensor * ggml_sub_inplace(
  815. struct ggml_context * ctx,
  816. struct ggml_tensor * a,
  817. struct ggml_tensor * b);
  818. GGML_API struct ggml_tensor * ggml_mul(
  819. struct ggml_context * ctx,
  820. struct ggml_tensor * a,
  821. struct ggml_tensor * b);
  822. GGML_API struct ggml_tensor * ggml_mul_inplace(
  823. struct ggml_context * ctx,
  824. struct ggml_tensor * a,
  825. struct ggml_tensor * b);
  826. GGML_API struct ggml_tensor * ggml_div(
  827. struct ggml_context * ctx,
  828. struct ggml_tensor * a,
  829. struct ggml_tensor * b);
  830. GGML_API struct ggml_tensor * ggml_div_inplace(
  831. struct ggml_context * ctx,
  832. struct ggml_tensor * a,
  833. struct ggml_tensor * b);
  834. GGML_API struct ggml_tensor * ggml_sqr(
  835. struct ggml_context * ctx,
  836. struct ggml_tensor * a);
  837. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  838. struct ggml_context * ctx,
  839. struct ggml_tensor * a);
  840. GGML_API struct ggml_tensor * ggml_sqrt(
  841. struct ggml_context * ctx,
  842. struct ggml_tensor * a);
  843. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  844. struct ggml_context * ctx,
  845. struct ggml_tensor * a);
  846. GGML_API struct ggml_tensor * ggml_log(
  847. struct ggml_context * ctx,
  848. struct ggml_tensor * a);
  849. GGML_API struct ggml_tensor * ggml_log_inplace(
  850. struct ggml_context * ctx,
  851. struct ggml_tensor * a);
  852. GGML_API struct ggml_tensor * ggml_sin(
  853. struct ggml_context * ctx,
  854. struct ggml_tensor * a);
  855. GGML_API struct ggml_tensor * ggml_sin_inplace(
  856. struct ggml_context * ctx,
  857. struct ggml_tensor * a);
  858. GGML_API struct ggml_tensor * ggml_cos(
  859. struct ggml_context * ctx,
  860. struct ggml_tensor * a);
  861. GGML_API struct ggml_tensor * ggml_cos_inplace(
  862. struct ggml_context * ctx,
  863. struct ggml_tensor * a);
  864. // return scalar
  865. GGML_API struct ggml_tensor * ggml_sum(
  866. struct ggml_context * ctx,
  867. struct ggml_tensor * a);
  868. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  869. GGML_API struct ggml_tensor * ggml_sum_rows(
  870. struct ggml_context * ctx,
  871. struct ggml_tensor * a);
  872. // mean along rows
  873. GGML_API struct ggml_tensor * ggml_mean(
  874. struct ggml_context * ctx,
  875. struct ggml_tensor * a);
  876. // argmax along rows
  877. GGML_API struct ggml_tensor * ggml_argmax(
  878. struct ggml_context * ctx,
  879. struct ggml_tensor * a);
  880. // if a is the same shape as b, and a is not parameter, return a
  881. // otherwise, return a new tensor: repeat(a) to fit in b
  882. GGML_API struct ggml_tensor * ggml_repeat(
  883. struct ggml_context * ctx,
  884. struct ggml_tensor * a,
  885. struct ggml_tensor * b);
  886. // sums repetitions in a into shape of b
  887. GGML_API struct ggml_tensor * ggml_repeat_back(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a,
  890. struct ggml_tensor * b);
  891. // concat a and b along dim
  892. // used in stable-diffusion
  893. GGML_API struct ggml_tensor * ggml_concat(
  894. struct ggml_context * ctx,
  895. struct ggml_tensor * a,
  896. struct ggml_tensor * b,
  897. int dim);
  898. GGML_API struct ggml_tensor * ggml_abs(
  899. struct ggml_context * ctx,
  900. struct ggml_tensor * a);
  901. GGML_API struct ggml_tensor * ggml_abs_inplace(
  902. struct ggml_context * ctx,
  903. struct ggml_tensor * a);
  904. GGML_API struct ggml_tensor * ggml_sgn(
  905. struct ggml_context * ctx,
  906. struct ggml_tensor * a);
  907. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  908. struct ggml_context * ctx,
  909. struct ggml_tensor * a);
  910. GGML_API struct ggml_tensor * ggml_neg(
  911. struct ggml_context * ctx,
  912. struct ggml_tensor * a);
  913. GGML_API struct ggml_tensor * ggml_neg_inplace(
  914. struct ggml_context * ctx,
  915. struct ggml_tensor * a);
  916. GGML_API struct ggml_tensor * ggml_step(
  917. struct ggml_context * ctx,
  918. struct ggml_tensor * a);
  919. GGML_API struct ggml_tensor * ggml_step_inplace(
  920. struct ggml_context * ctx,
  921. struct ggml_tensor * a);
  922. GGML_API struct ggml_tensor * ggml_tanh(
  923. struct ggml_context * ctx,
  924. struct ggml_tensor * a);
  925. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  926. struct ggml_context * ctx,
  927. struct ggml_tensor * a);
  928. GGML_API struct ggml_tensor * ggml_elu(
  929. struct ggml_context * ctx,
  930. struct ggml_tensor * a);
  931. GGML_API struct ggml_tensor * ggml_elu_inplace(
  932. struct ggml_context * ctx,
  933. struct ggml_tensor * a);
  934. GGML_API struct ggml_tensor * ggml_relu(
  935. struct ggml_context * ctx,
  936. struct ggml_tensor * a);
  937. GGML_API struct ggml_tensor * ggml_leaky_relu(
  938. struct ggml_context * ctx,
  939. struct ggml_tensor * a, float negative_slope, bool inplace);
  940. GGML_API struct ggml_tensor * ggml_relu_inplace(
  941. struct ggml_context * ctx,
  942. struct ggml_tensor * a);
  943. GGML_API struct ggml_tensor * ggml_sigmoid(
  944. struct ggml_context * ctx,
  945. struct ggml_tensor * a);
  946. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  947. struct ggml_context * ctx,
  948. struct ggml_tensor * a);
  949. GGML_API struct ggml_tensor * ggml_gelu(
  950. struct ggml_context * ctx,
  951. struct ggml_tensor * a);
  952. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  953. struct ggml_context * ctx,
  954. struct ggml_tensor * a);
  955. GGML_API struct ggml_tensor * ggml_gelu_quick(
  956. struct ggml_context * ctx,
  957. struct ggml_tensor * a);
  958. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  959. struct ggml_context * ctx,
  960. struct ggml_tensor * a);
  961. GGML_API struct ggml_tensor * ggml_silu(
  962. struct ggml_context * ctx,
  963. struct ggml_tensor * a);
  964. GGML_API struct ggml_tensor * ggml_silu_inplace(
  965. struct ggml_context * ctx,
  966. struct ggml_tensor * a);
  967. // a - x
  968. // b - dy
  969. GGML_API struct ggml_tensor * ggml_silu_back(
  970. struct ggml_context * ctx,
  971. struct ggml_tensor * a,
  972. struct ggml_tensor * b);
  973. // hardswish(x) = x * relu6(x + 3) / 6
  974. GGML_API struct ggml_tensor * ggml_hardswish(
  975. struct ggml_context * ctx,
  976. struct ggml_tensor * a);
  977. // hardsigmoid(x) = relu6(x + 3) / 6
  978. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  979. struct ggml_context * ctx,
  980. struct ggml_tensor * a);
  981. GGML_API struct ggml_tensor * ggml_exp(
  982. struct ggml_context * ctx,
  983. struct ggml_tensor * a);
  984. GGML_API struct ggml_tensor * ggml_exp_inplace(
  985. struct ggml_context * ctx,
  986. struct ggml_tensor * a);
  987. // normalize along rows
  988. GGML_API struct ggml_tensor * ggml_norm(
  989. struct ggml_context * ctx,
  990. struct ggml_tensor * a,
  991. float eps);
  992. GGML_API struct ggml_tensor * ggml_norm_inplace(
  993. struct ggml_context * ctx,
  994. struct ggml_tensor * a,
  995. float eps);
  996. GGML_API struct ggml_tensor * ggml_rms_norm(
  997. struct ggml_context * ctx,
  998. struct ggml_tensor * a,
  999. float eps);
  1000. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  1001. struct ggml_context * ctx,
  1002. struct ggml_tensor * a,
  1003. float eps);
  1004. // group normalize along ne0*ne1*n_groups
  1005. // used in stable-diffusion
  1006. GGML_API struct ggml_tensor * ggml_group_norm(
  1007. struct ggml_context * ctx,
  1008. struct ggml_tensor * a,
  1009. int n_groups,
  1010. float eps);
  1011. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  1012. struct ggml_context * ctx,
  1013. struct ggml_tensor * a,
  1014. int n_groups,
  1015. float eps);
  1016. // a - x
  1017. // b - dy
  1018. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  1019. struct ggml_context * ctx,
  1020. struct ggml_tensor * a,
  1021. struct ggml_tensor * b,
  1022. float eps);
  1023. // A: k columns, n rows => [ne03, ne02, n, k]
  1024. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  1025. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  1026. GGML_API struct ggml_tensor * ggml_mul_mat(
  1027. struct ggml_context * ctx,
  1028. struct ggml_tensor * a,
  1029. struct ggml_tensor * b);
  1030. // change the precision of a matrix multiplication
  1031. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  1032. GGML_API void ggml_mul_mat_set_prec(
  1033. struct ggml_tensor * a,
  1034. enum ggml_prec prec);
  1035. // indirect matrix multiplication
  1036. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  1037. struct ggml_context * ctx,
  1038. struct ggml_tensor * as,
  1039. struct ggml_tensor * b,
  1040. struct ggml_tensor * ids);
  1041. // A: m columns, n rows,
  1042. // B: p columns, n rows,
  1043. // result is m columns, p rows
  1044. GGML_API struct ggml_tensor * ggml_out_prod(
  1045. struct ggml_context * ctx,
  1046. struct ggml_tensor * a,
  1047. struct ggml_tensor * b);
  1048. //
  1049. // operations on tensors without backpropagation
  1050. //
  1051. GGML_API struct ggml_tensor * ggml_scale(
  1052. struct ggml_context * ctx,
  1053. struct ggml_tensor * a,
  1054. float s);
  1055. // in-place, returns view(a)
  1056. GGML_API struct ggml_tensor * ggml_scale_inplace(
  1057. struct ggml_context * ctx,
  1058. struct ggml_tensor * a,
  1059. float s);
  1060. // b -> view(a,offset,nb1,nb2,3), return modified a
  1061. GGML_API struct ggml_tensor * ggml_set(
  1062. struct ggml_context * ctx,
  1063. struct ggml_tensor * a,
  1064. struct ggml_tensor * b,
  1065. size_t nb1,
  1066. size_t nb2,
  1067. size_t nb3,
  1068. size_t offset); // in bytes
  1069. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1070. GGML_API struct ggml_tensor * ggml_set_inplace(
  1071. struct ggml_context * ctx,
  1072. struct ggml_tensor * a,
  1073. struct ggml_tensor * b,
  1074. size_t nb1,
  1075. size_t nb2,
  1076. size_t nb3,
  1077. size_t offset); // in bytes
  1078. GGML_API struct ggml_tensor * ggml_set_1d(
  1079. struct ggml_context * ctx,
  1080. struct ggml_tensor * a,
  1081. struct ggml_tensor * b,
  1082. size_t offset); // in bytes
  1083. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1084. struct ggml_context * ctx,
  1085. struct ggml_tensor * a,
  1086. struct ggml_tensor * b,
  1087. size_t offset); // in bytes
  1088. // b -> view(a,offset,nb1,nb2,3), return modified a
  1089. GGML_API struct ggml_tensor * ggml_set_2d(
  1090. struct ggml_context * ctx,
  1091. struct ggml_tensor * a,
  1092. struct ggml_tensor * b,
  1093. size_t nb1,
  1094. size_t offset); // in bytes
  1095. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1096. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1097. struct ggml_context * ctx,
  1098. struct ggml_tensor * a,
  1099. struct ggml_tensor * b,
  1100. size_t nb1,
  1101. size_t offset); // in bytes
  1102. // a -> b, return view(b)
  1103. GGML_API struct ggml_tensor * ggml_cpy(
  1104. struct ggml_context * ctx,
  1105. struct ggml_tensor * a,
  1106. struct ggml_tensor * b);
  1107. GGML_API struct ggml_tensor * ggml_cast(
  1108. struct ggml_context * ctx,
  1109. struct ggml_tensor * a,
  1110. enum ggml_type type);
  1111. // make contiguous
  1112. GGML_API struct ggml_tensor * ggml_cont(
  1113. struct ggml_context * ctx,
  1114. struct ggml_tensor * a);
  1115. // make contiguous, with new shape
  1116. GGML_API struct ggml_tensor * ggml_cont_1d(
  1117. struct ggml_context * ctx,
  1118. struct ggml_tensor * a,
  1119. int64_t ne0);
  1120. GGML_API struct ggml_tensor * ggml_cont_2d(
  1121. struct ggml_context * ctx,
  1122. struct ggml_tensor * a,
  1123. int64_t ne0,
  1124. int64_t ne1);
  1125. GGML_API struct ggml_tensor * ggml_cont_3d(
  1126. struct ggml_context * ctx,
  1127. struct ggml_tensor * a,
  1128. int64_t ne0,
  1129. int64_t ne1,
  1130. int64_t ne2);
  1131. GGML_API struct ggml_tensor * ggml_cont_4d(
  1132. struct ggml_context * ctx,
  1133. struct ggml_tensor * a,
  1134. int64_t ne0,
  1135. int64_t ne1,
  1136. int64_t ne2,
  1137. int64_t ne3);
  1138. // return view(a), b specifies the new shape
  1139. // TODO: when we start computing gradient, make a copy instead of view
  1140. GGML_API struct ggml_tensor * ggml_reshape(
  1141. struct ggml_context * ctx,
  1142. struct ggml_tensor * a,
  1143. struct ggml_tensor * b);
  1144. // return view(a)
  1145. // TODO: when we start computing gradient, make a copy instead of view
  1146. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1147. struct ggml_context * ctx,
  1148. struct ggml_tensor * a,
  1149. int64_t ne0);
  1150. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1151. struct ggml_context * ctx,
  1152. struct ggml_tensor * a,
  1153. int64_t ne0,
  1154. int64_t ne1);
  1155. // return view(a)
  1156. // TODO: when we start computing gradient, make a copy instead of view
  1157. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1158. struct ggml_context * ctx,
  1159. struct ggml_tensor * a,
  1160. int64_t ne0,
  1161. int64_t ne1,
  1162. int64_t ne2);
  1163. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1164. struct ggml_context * ctx,
  1165. struct ggml_tensor * a,
  1166. int64_t ne0,
  1167. int64_t ne1,
  1168. int64_t ne2,
  1169. int64_t ne3);
  1170. // offset in bytes
  1171. GGML_API struct ggml_tensor * ggml_view_1d(
  1172. struct ggml_context * ctx,
  1173. struct ggml_tensor * a,
  1174. int64_t ne0,
  1175. size_t offset);
  1176. GGML_API struct ggml_tensor * ggml_view_2d(
  1177. struct ggml_context * ctx,
  1178. struct ggml_tensor * a,
  1179. int64_t ne0,
  1180. int64_t ne1,
  1181. size_t nb1, // row stride in bytes
  1182. size_t offset);
  1183. GGML_API struct ggml_tensor * ggml_view_3d(
  1184. struct ggml_context * ctx,
  1185. struct ggml_tensor * a,
  1186. int64_t ne0,
  1187. int64_t ne1,
  1188. int64_t ne2,
  1189. size_t nb1, // row stride in bytes
  1190. size_t nb2, // slice stride in bytes
  1191. size_t offset);
  1192. GGML_API struct ggml_tensor * ggml_view_4d(
  1193. struct ggml_context * ctx,
  1194. struct ggml_tensor * a,
  1195. int64_t ne0,
  1196. int64_t ne1,
  1197. int64_t ne2,
  1198. int64_t ne3,
  1199. size_t nb1, // row stride in bytes
  1200. size_t nb2, // slice stride in bytes
  1201. size_t nb3,
  1202. size_t offset);
  1203. GGML_API struct ggml_tensor * ggml_permute(
  1204. struct ggml_context * ctx,
  1205. struct ggml_tensor * a,
  1206. int axis0,
  1207. int axis1,
  1208. int axis2,
  1209. int axis3);
  1210. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1211. GGML_API struct ggml_tensor * ggml_transpose(
  1212. struct ggml_context * ctx,
  1213. struct ggml_tensor * a);
  1214. // supports 3D: a->ne[2] == b->ne[1]
  1215. GGML_API struct ggml_tensor * ggml_get_rows(
  1216. struct ggml_context * ctx,
  1217. struct ggml_tensor * a, // data
  1218. struct ggml_tensor * b); // row indices
  1219. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1220. struct ggml_context * ctx,
  1221. struct ggml_tensor * a, // gradients of ggml_get_rows result
  1222. struct ggml_tensor * b, // row indices
  1223. struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
  1224. GGML_API struct ggml_tensor * ggml_diag(
  1225. struct ggml_context * ctx,
  1226. struct ggml_tensor * a);
  1227. // set elements above the diagonal to -INF
  1228. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1229. struct ggml_context * ctx,
  1230. struct ggml_tensor * a,
  1231. int n_past);
  1232. // in-place, returns view(a)
  1233. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1234. struct ggml_context * ctx,
  1235. struct ggml_tensor * a,
  1236. int n_past);
  1237. // set elements above the diagonal to 0
  1238. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1239. struct ggml_context * ctx,
  1240. struct ggml_tensor * a,
  1241. int n_past);
  1242. // in-place, returns view(a)
  1243. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1244. struct ggml_context * ctx,
  1245. struct ggml_tensor * a,
  1246. int n_past);
  1247. GGML_API struct ggml_tensor * ggml_soft_max(
  1248. struct ggml_context * ctx,
  1249. struct ggml_tensor * a);
  1250. // in-place, returns view(a)
  1251. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1252. struct ggml_context * ctx,
  1253. struct ggml_tensor * a);
  1254. // fused soft_max(a*scale + mask*(ALiBi slope))
  1255. // mask is optional
  1256. // max_bias = 0.0f for no ALiBi
  1257. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1258. struct ggml_context * ctx,
  1259. struct ggml_tensor * a,
  1260. struct ggml_tensor * mask,
  1261. float scale,
  1262. float max_bias);
  1263. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1264. struct ggml_context * ctx,
  1265. struct ggml_tensor * a,
  1266. struct ggml_tensor * b);
  1267. // in-place, returns view(a)
  1268. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1269. struct ggml_context * ctx,
  1270. struct ggml_tensor * a,
  1271. struct ggml_tensor * b);
  1272. // rotary position embedding
  1273. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1274. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1275. //
  1276. // b is an int32 vector with size a->ne[2], it contains the positions
  1277. GGML_API struct ggml_tensor * ggml_rope(
  1278. struct ggml_context * ctx,
  1279. struct ggml_tensor * a,
  1280. struct ggml_tensor * b,
  1281. int n_dims,
  1282. int mode);
  1283. // in-place, returns view(a)
  1284. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1285. struct ggml_context * ctx,
  1286. struct ggml_tensor * a,
  1287. struct ggml_tensor * b,
  1288. int n_dims,
  1289. int mode);
  1290. // custom RoPE
  1291. // c is freq factors (e.g. phi3-128k), (optional)
  1292. GGML_API struct ggml_tensor * ggml_rope_ext(
  1293. struct ggml_context * ctx,
  1294. struct ggml_tensor * a,
  1295. struct ggml_tensor * b,
  1296. struct ggml_tensor * c,
  1297. int n_dims,
  1298. int mode,
  1299. int n_ctx_orig,
  1300. float freq_base,
  1301. float freq_scale,
  1302. float ext_factor,
  1303. float attn_factor,
  1304. float beta_fast,
  1305. float beta_slow);
  1306. // in-place, returns view(a)
  1307. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1308. struct ggml_context * ctx,
  1309. struct ggml_tensor * a,
  1310. struct ggml_tensor * b,
  1311. struct ggml_tensor * c,
  1312. int n_dims,
  1313. int mode,
  1314. int n_ctx_orig,
  1315. float freq_base,
  1316. float freq_scale,
  1317. float ext_factor,
  1318. float attn_factor,
  1319. float beta_fast,
  1320. float beta_slow);
  1321. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1322. struct ggml_context * ctx,
  1323. struct ggml_tensor * a,
  1324. struct ggml_tensor * b,
  1325. int n_dims,
  1326. int mode,
  1327. int n_ctx_orig,
  1328. float freq_base,
  1329. float freq_scale,
  1330. float ext_factor,
  1331. float attn_factor,
  1332. float beta_fast,
  1333. float beta_slow),
  1334. "use ggml_rope_ext instead");
  1335. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1336. struct ggml_context * ctx,
  1337. struct ggml_tensor * a,
  1338. struct ggml_tensor * b,
  1339. int n_dims,
  1340. int mode,
  1341. int n_ctx_orig,
  1342. float freq_base,
  1343. float freq_scale,
  1344. float ext_factor,
  1345. float attn_factor,
  1346. float beta_fast,
  1347. float beta_slow),
  1348. "use ggml_rope_ext_inplace instead");
  1349. // compute correction dims for YaRN RoPE scaling
  1350. GGML_CALL void ggml_rope_yarn_corr_dims(
  1351. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1352. // rotary position embedding backward, i.e compute dx from dy
  1353. // a - dy
  1354. GGML_API struct ggml_tensor * ggml_rope_back(
  1355. struct ggml_context * ctx,
  1356. struct ggml_tensor * a, // gradients of ggml_rope result
  1357. struct ggml_tensor * b, // positions
  1358. struct ggml_tensor * c, // freq factors
  1359. int n_dims,
  1360. int mode,
  1361. int n_ctx_orig,
  1362. float freq_base,
  1363. float freq_scale,
  1364. float ext_factor,
  1365. float attn_factor,
  1366. float beta_fast,
  1367. float beta_slow);
  1368. // clamp
  1369. // in-place, returns view(a)
  1370. GGML_API struct ggml_tensor * ggml_clamp(
  1371. struct ggml_context * ctx,
  1372. struct ggml_tensor * a,
  1373. float min,
  1374. float max);
  1375. // im2col
  1376. // converts data into a format that effectively results in a convolution when combined with matrix multiplication
  1377. GGML_API struct ggml_tensor * ggml_im2col(
  1378. struct ggml_context * ctx,
  1379. struct ggml_tensor * a, // convolution kernel
  1380. struct ggml_tensor * b, // data
  1381. int s0, // stride dimension 0
  1382. int s1, // stride dimension 1
  1383. int p0, // padding dimension 0
  1384. int p1, // padding dimension 1
  1385. int d0, // dilation dimension 0
  1386. int d1, // dilation dimension 1
  1387. bool is_2D,
  1388. enum ggml_type dst_type);
  1389. GGML_API struct ggml_tensor * ggml_im2col_back(
  1390. struct ggml_context * ctx,
  1391. struct ggml_tensor * a, // convolution kernel
  1392. struct ggml_tensor * b, // gradient of im2col output
  1393. int64_t * ne, // shape of im2col input
  1394. int s0, // stride dimension 0
  1395. int s1, // stride dimension 1
  1396. int p0, // padding dimension 0
  1397. int p1, // padding dimension 1
  1398. int d0, // dilation dimension 0
  1399. int d1, // dilation dimension 1
  1400. bool is_2D);
  1401. GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
  1402. struct ggml_context * ctx,
  1403. struct ggml_tensor * a, // convolution kernel
  1404. struct ggml_tensor * b, // data
  1405. int s0, // stride dimension 0
  1406. int s1, // stride dimension 1
  1407. int p0, // padding dimension 0
  1408. int p1, // padding dimension 1
  1409. int d0, // dilation dimension 0
  1410. int d1); // dilation dimension 1
  1411. GGML_API struct ggml_tensor * ggml_conv_1d(
  1412. struct ggml_context * ctx,
  1413. struct ggml_tensor * a, // convolution kernel
  1414. struct ggml_tensor * b, // data
  1415. int s0, // stride
  1416. int p0, // padding
  1417. int d0); // dilation
  1418. // conv_1d with padding = half
  1419. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1420. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1421. struct ggml_context * ctx,
  1422. struct ggml_tensor * a, // convolution kernel
  1423. struct ggml_tensor * b, // data
  1424. int s, // stride
  1425. int d); // dilation
  1426. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1427. struct ggml_context * ctx,
  1428. struct ggml_tensor * a, // convolution kernel
  1429. struct ggml_tensor * b, // data
  1430. int s0, // stride
  1431. int p0, // padding
  1432. int d0); // dilation
  1433. GGML_API struct ggml_tensor * ggml_conv_2d(
  1434. struct ggml_context * ctx,
  1435. struct ggml_tensor * a, // convolution kernel
  1436. struct ggml_tensor * b, // data
  1437. int s0, // stride dimension 0
  1438. int s1, // stride dimension 1
  1439. int p0, // padding dimension 0
  1440. int p1, // padding dimension 1
  1441. int d0, // dilation dimension 0
  1442. int d1); // dilation dimension 1
  1443. // kernel size is a->ne[0] x a->ne[1]
  1444. // stride is equal to kernel size
  1445. // padding is zero
  1446. // example:
  1447. // a: 16 16 3 768
  1448. // b: 1024 1024 3 1
  1449. // res: 64 64 768 1
  1450. // used in sam
  1451. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1452. struct ggml_context * ctx,
  1453. struct ggml_tensor * a,
  1454. struct ggml_tensor * b);
  1455. // kernel size is a->ne[0] x a->ne[1]
  1456. // stride is 1
  1457. // padding is half
  1458. // example:
  1459. // a: 3 3 256 256
  1460. // b: 64 64 256 1
  1461. // res: 64 64 256 1
  1462. // used in sam
  1463. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1464. struct ggml_context * ctx,
  1465. struct ggml_tensor * a,
  1466. struct ggml_tensor * b);
  1467. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1468. struct ggml_context * ctx,
  1469. struct ggml_tensor * a,
  1470. struct ggml_tensor * b,
  1471. int stride);
  1472. enum ggml_op_pool {
  1473. GGML_OP_POOL_MAX,
  1474. GGML_OP_POOL_AVG,
  1475. GGML_OP_POOL_COUNT,
  1476. };
  1477. GGML_API struct ggml_tensor * ggml_pool_1d(
  1478. struct ggml_context * ctx,
  1479. struct ggml_tensor * a,
  1480. enum ggml_op_pool op,
  1481. int k0, // kernel size
  1482. int s0, // stride
  1483. int p0); // padding
  1484. // the result will have 2*p0 padding for the first dimension
  1485. // and 2*p1 padding for the second dimension
  1486. GGML_API struct ggml_tensor * ggml_pool_2d(
  1487. struct ggml_context * ctx,
  1488. struct ggml_tensor * a,
  1489. enum ggml_op_pool op,
  1490. int k0,
  1491. int k1,
  1492. int s0,
  1493. int s1,
  1494. float p0,
  1495. float p1);
  1496. GGML_API struct ggml_tensor * ggml_pool_2d_back(
  1497. struct ggml_context * ctx,
  1498. struct ggml_tensor * a,
  1499. struct ggml_tensor * af, // "a"/input used in forward pass
  1500. enum ggml_op_pool op,
  1501. int k0,
  1502. int k1,
  1503. int s0,
  1504. int s1,
  1505. float p0,
  1506. float p1);
  1507. // nearest interpolate
  1508. // multiplies ne0 and ne1 by scale factor
  1509. // used in stable-diffusion
  1510. GGML_API struct ggml_tensor * ggml_upscale(
  1511. struct ggml_context * ctx,
  1512. struct ggml_tensor * a,
  1513. int scale_factor);
  1514. // nearest interpolate
  1515. // nearest interpolate to specified dimensions
  1516. // used in tortoise.cpp
  1517. GGML_API struct ggml_tensor * ggml_upscale_ext(
  1518. struct ggml_context * ctx,
  1519. struct ggml_tensor * a,
  1520. int ne0,
  1521. int ne1,
  1522. int ne2,
  1523. int ne3);
  1524. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1525. GGML_API struct ggml_tensor * ggml_pad(
  1526. struct ggml_context * ctx,
  1527. struct ggml_tensor * a,
  1528. int p0,
  1529. int p1,
  1530. int p2,
  1531. int p3);
  1532. // unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
  1533. GGML_API struct ggml_tensor * ggml_unpad(
  1534. struct ggml_context * ctx,
  1535. struct ggml_tensor * a,
  1536. int p0,
  1537. int p1,
  1538. int p2,
  1539. int p3);
  1540. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1541. // timesteps: [N,]
  1542. // return: [N, dim]
  1543. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1544. struct ggml_context * ctx,
  1545. struct ggml_tensor * timesteps,
  1546. int dim,
  1547. int max_period);
  1548. // sort rows
  1549. enum ggml_sort_order {
  1550. GGML_SORT_ORDER_ASC,
  1551. GGML_SORT_ORDER_DESC,
  1552. };
  1553. GGML_API struct ggml_tensor * ggml_argsort(
  1554. struct ggml_context * ctx,
  1555. struct ggml_tensor * a,
  1556. enum ggml_sort_order order);
  1557. GGML_API struct ggml_tensor * ggml_arange(
  1558. struct ggml_context * ctx,
  1559. float start,
  1560. float stop,
  1561. float step);
  1562. // top k elements per row
  1563. GGML_API struct ggml_tensor * ggml_top_k(
  1564. struct ggml_context * ctx,
  1565. struct ggml_tensor * a,
  1566. int k);
  1567. #define GGML_KQ_MASK_PAD 32
  1568. // q: [n_embd, n_batch, n_head, 1]
  1569. // k: [n_embd, n_kv, n_head_kv, 1]
  1570. // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
  1571. // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1572. // res: [n_embd, n_head, n_batch, 1] !! permuted !!
  1573. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1574. struct ggml_context * ctx,
  1575. struct ggml_tensor * q,
  1576. struct ggml_tensor * k,
  1577. struct ggml_tensor * v,
  1578. struct ggml_tensor * mask,
  1579. float scale,
  1580. float max_bias,
  1581. float logit_softcap);
  1582. GGML_API void ggml_flash_attn_ext_set_prec(
  1583. struct ggml_tensor * a,
  1584. enum ggml_prec prec);
  1585. // TODO: needs to be adapted to ggml_flash_attn_ext
  1586. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1587. struct ggml_context * ctx,
  1588. struct ggml_tensor * q,
  1589. struct ggml_tensor * k,
  1590. struct ggml_tensor * v,
  1591. struct ggml_tensor * d,
  1592. bool masked);
  1593. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1594. struct ggml_context * ctx,
  1595. struct ggml_tensor * sx,
  1596. struct ggml_tensor * c);
  1597. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1598. struct ggml_context * ctx,
  1599. struct ggml_tensor * s,
  1600. struct ggml_tensor * x,
  1601. struct ggml_tensor * dt,
  1602. struct ggml_tensor * A,
  1603. struct ggml_tensor * B,
  1604. struct ggml_tensor * C);
  1605. // partition into non-overlapping windows with padding if needed
  1606. // example:
  1607. // a: 768 64 64 1
  1608. // w: 14
  1609. // res: 768 14 14 25
  1610. // used in sam
  1611. GGML_API struct ggml_tensor * ggml_win_part(
  1612. struct ggml_context * ctx,
  1613. struct ggml_tensor * a,
  1614. int w);
  1615. // reverse of ggml_win_part
  1616. // used in sam
  1617. GGML_API struct ggml_tensor * ggml_win_unpart(
  1618. struct ggml_context * ctx,
  1619. struct ggml_tensor * a,
  1620. int w0,
  1621. int h0,
  1622. int w);
  1623. GGML_API struct ggml_tensor * ggml_unary(
  1624. struct ggml_context * ctx,
  1625. struct ggml_tensor * a,
  1626. enum ggml_unary_op op);
  1627. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1628. struct ggml_context * ctx,
  1629. struct ggml_tensor * a,
  1630. enum ggml_unary_op op);
  1631. // used in sam
  1632. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1633. struct ggml_context * ctx,
  1634. struct ggml_tensor * a,
  1635. int qh,
  1636. int kh);
  1637. // used in sam
  1638. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1639. struct ggml_context * ctx,
  1640. struct ggml_tensor * a,
  1641. struct ggml_tensor * pw,
  1642. struct ggml_tensor * ph);
  1643. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1644. struct ggml_context * ctx,
  1645. struct ggml_tensor * a,
  1646. struct ggml_tensor * pw,
  1647. struct ggml_tensor * ph);
  1648. GGML_API struct ggml_tensor * ggml_rwkv_wkv(
  1649. struct ggml_context * ctx,
  1650. struct ggml_tensor * k,
  1651. struct ggml_tensor * v,
  1652. struct ggml_tensor * r,
  1653. struct ggml_tensor * tf,
  1654. struct ggml_tensor * td,
  1655. struct ggml_tensor * state);
  1656. // custom operators
  1657. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1658. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1659. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1660. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1661. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1662. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1663. struct ggml_context * ctx,
  1664. struct ggml_tensor * a,
  1665. ggml_unary_op_f32_t fun),
  1666. "use ggml_map_custom1 instead");
  1667. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1668. struct ggml_context * ctx,
  1669. struct ggml_tensor * a,
  1670. ggml_unary_op_f32_t fun),
  1671. "use ggml_map_custom1_inplace instead");
  1672. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1673. struct ggml_context * ctx,
  1674. struct ggml_tensor * a,
  1675. struct ggml_tensor * b,
  1676. ggml_binary_op_f32_t fun),
  1677. "use ggml_map_custom2 instead");
  1678. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1679. struct ggml_context * ctx,
  1680. struct ggml_tensor * a,
  1681. struct ggml_tensor * b,
  1682. ggml_binary_op_f32_t fun),
  1683. "use ggml_map_custom2_inplace instead");
  1684. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1685. struct ggml_context * ctx,
  1686. struct ggml_tensor * a,
  1687. ggml_custom1_op_f32_t fun),
  1688. "use ggml_map_custom1 instead");
  1689. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1690. struct ggml_context * ctx,
  1691. struct ggml_tensor * a,
  1692. ggml_custom1_op_f32_t fun),
  1693. "use ggml_map_custom1_inplace instead");
  1694. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1695. struct ggml_context * ctx,
  1696. struct ggml_tensor * a,
  1697. struct ggml_tensor * b,
  1698. ggml_custom2_op_f32_t fun),
  1699. "use ggml_map_custom2 instead");
  1700. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1701. struct ggml_context * ctx,
  1702. struct ggml_tensor * a,
  1703. struct ggml_tensor * b,
  1704. ggml_custom2_op_f32_t fun),
  1705. "use ggml_map_custom2_inplace instead");
  1706. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1707. struct ggml_context * ctx,
  1708. struct ggml_tensor * a,
  1709. struct ggml_tensor * b,
  1710. struct ggml_tensor * c,
  1711. ggml_custom3_op_f32_t fun),
  1712. "use ggml_map_custom3 instead");
  1713. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1714. struct ggml_context * ctx,
  1715. struct ggml_tensor * a,
  1716. struct ggml_tensor * b,
  1717. struct ggml_tensor * c,
  1718. ggml_custom3_op_f32_t fun),
  1719. "use ggml_map_custom3_inplace instead");
  1720. // custom operators v2
  1721. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1722. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1723. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1724. #define GGML_N_TASKS_MAX (-1)
  1725. // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
  1726. GGML_API struct ggml_tensor * ggml_map_custom1(
  1727. struct ggml_context * ctx,
  1728. struct ggml_tensor * a,
  1729. ggml_custom1_op_t fun,
  1730. int n_tasks,
  1731. void * userdata);
  1732. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1733. struct ggml_context * ctx,
  1734. struct ggml_tensor * a,
  1735. ggml_custom1_op_t fun,
  1736. int n_tasks,
  1737. void * userdata);
  1738. GGML_API struct ggml_tensor * ggml_map_custom2(
  1739. struct ggml_context * ctx,
  1740. struct ggml_tensor * a,
  1741. struct ggml_tensor * b,
  1742. ggml_custom2_op_t fun,
  1743. int n_tasks,
  1744. void * userdata);
  1745. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1746. struct ggml_context * ctx,
  1747. struct ggml_tensor * a,
  1748. struct ggml_tensor * b,
  1749. ggml_custom2_op_t fun,
  1750. int n_tasks,
  1751. void * userdata);
  1752. GGML_API struct ggml_tensor * ggml_map_custom3(
  1753. struct ggml_context * ctx,
  1754. struct ggml_tensor * a,
  1755. struct ggml_tensor * b,
  1756. struct ggml_tensor * c,
  1757. ggml_custom3_op_t fun,
  1758. int n_tasks,
  1759. void * userdata);
  1760. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1761. struct ggml_context * ctx,
  1762. struct ggml_tensor * a,
  1763. struct ggml_tensor * b,
  1764. struct ggml_tensor * c,
  1765. ggml_custom3_op_t fun,
  1766. int n_tasks,
  1767. void * userdata);
  1768. // loss function
  1769. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1770. struct ggml_context * ctx,
  1771. struct ggml_tensor * a, // logits
  1772. struct ggml_tensor * b); // labels
  1773. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1774. struct ggml_context * ctx,
  1775. struct ggml_tensor * a, // logits
  1776. struct ggml_tensor * b, // labels
  1777. struct ggml_tensor * c); // gradients of cross_entropy_loss result
  1778. // AdamW optimizer step
  1779. // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
  1780. // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
  1781. GGML_API struct ggml_tensor * ggml_opt_step_adamw(
  1782. struct ggml_context * ctx,
  1783. struct ggml_tensor * a,
  1784. struct ggml_tensor * grad,
  1785. float alpha,
  1786. float beta1,
  1787. float beta2,
  1788. float eps,
  1789. float wd); // weight decay
  1790. //
  1791. // automatic differentiation
  1792. //
  1793. GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
  1794. GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
  1795. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1796. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate);
  1797. GGML_API void ggml_build_opt_adamw(
  1798. struct ggml_context * ctx,
  1799. struct ggml_cgraph * gf,
  1800. struct ggml_cgraph * gb,
  1801. float alpha,
  1802. float beta1,
  1803. float beta2,
  1804. float eps,
  1805. float wd); // weight decay
  1806. // graph allocation in a context
  1807. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1808. GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
  1809. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1810. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1811. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
  1812. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1813. GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
  1814. GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
  1815. GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
  1816. GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
  1817. GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1818. GGML_API size_t ggml_graph_overhead(void);
  1819. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1820. GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
  1821. GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
  1822. GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
  1823. GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
  1824. GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
  1825. GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
  1826. GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
  1827. GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
  1828. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1829. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1830. GGML_API struct ggml_cplan ggml_graph_plan(
  1831. const struct ggml_cgraph * cgraph,
  1832. int n_threads, /* = GGML_DEFAULT_N_THREADS */
  1833. struct ggml_threadpool * threadpool /* = NULL */ );
  1834. GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1835. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1836. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1837. GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1838. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1839. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1840. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1841. // print info and performance information for the graph
  1842. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1843. // dump the graph into a file using the dot format
  1844. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1845. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1846. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1847. // but without the second forward pass nodes.
  1848. GGML_API void ggml_build_backward_gradient_checkpointing(
  1849. struct ggml_context * ctx,
  1850. struct ggml_cgraph * gf,
  1851. struct ggml_cgraph * gb,
  1852. struct ggml_cgraph * gb_tmp,
  1853. struct ggml_tensor * * checkpoints,
  1854. int n_checkpoints);
  1855. //
  1856. // optimization
  1857. //
  1858. // optimization methods
  1859. enum ggml_opt_type {
  1860. GGML_OPT_TYPE_ADAM,
  1861. GGML_OPT_TYPE_LBFGS,
  1862. };
  1863. // linesearch methods
  1864. enum ggml_linesearch {
  1865. GGML_LINESEARCH_DEFAULT = 1,
  1866. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1867. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1868. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1869. };
  1870. // optimization return values
  1871. enum ggml_opt_result {
  1872. GGML_OPT_RESULT_OK = 0,
  1873. GGML_OPT_RESULT_DID_NOT_CONVERGE,
  1874. GGML_OPT_RESULT_NO_CONTEXT,
  1875. GGML_OPT_RESULT_INVALID_WOLFE,
  1876. GGML_OPT_RESULT_FAIL,
  1877. GGML_OPT_RESULT_CANCEL,
  1878. GGML_LINESEARCH_FAIL = -128,
  1879. GGML_LINESEARCH_MINIMUM_STEP,
  1880. GGML_LINESEARCH_MAXIMUM_STEP,
  1881. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1882. GGML_LINESEARCH_INVALID_PARAMETERS,
  1883. };
  1884. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1885. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1886. // optimization parameters
  1887. //
  1888. // see ggml.c (ggml_opt_default_params) for default values
  1889. //
  1890. struct ggml_opt_params {
  1891. enum ggml_opt_type type;
  1892. size_t graph_size;
  1893. int n_threads;
  1894. // delta-based convergence test
  1895. //
  1896. // if past == 0 - disabled
  1897. // if past > 0:
  1898. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1899. //
  1900. int past;
  1901. float delta;
  1902. // maximum number of iterations without improvement
  1903. //
  1904. // if 0 - disabled
  1905. // if > 0:
  1906. // assume convergence if no cost improvement in this number of iterations
  1907. //
  1908. int max_no_improvement;
  1909. bool print_forward_graph;
  1910. bool print_backward_graph;
  1911. int n_gradient_accumulation;
  1912. // ADAM parameters
  1913. struct {
  1914. int n_iter;
  1915. float sched; // schedule multiplier (fixed, decay or warmup)
  1916. float decay; // weight decay for AdamW, use 0.0f to disable
  1917. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1918. float alpha; // learning rate
  1919. float beta1;
  1920. float beta2;
  1921. float eps; // epsilon for numerical stability
  1922. float eps_f; // epsilon for convergence test
  1923. float eps_g; // epsilon for convergence test
  1924. float gclip; // gradient clipping
  1925. } adam;
  1926. // LBFGS parameters
  1927. struct {
  1928. int m; // number of corrections to approximate the inv. Hessian
  1929. int n_iter;
  1930. int max_linesearch;
  1931. float eps; // convergence tolerance
  1932. float ftol; // line search tolerance
  1933. float wolfe;
  1934. float min_step;
  1935. float max_step;
  1936. enum ggml_linesearch linesearch;
  1937. } lbfgs;
  1938. };
  1939. struct ggml_opt_context {
  1940. struct ggml_context * ctx;
  1941. struct ggml_opt_params params;
  1942. int iter;
  1943. int64_t nx; // number of parameter elements
  1944. bool just_initialized;
  1945. float loss_before;
  1946. float loss_after;
  1947. struct {
  1948. struct ggml_tensor * g; // current gradient
  1949. struct ggml_tensor * m; // first moment
  1950. struct ggml_tensor * v; // second moment
  1951. struct ggml_tensor * pf; // past function values
  1952. float fx_best;
  1953. float fx_prev;
  1954. int n_no_improvement;
  1955. } adam;
  1956. struct {
  1957. struct ggml_tensor * x; // current parameters
  1958. struct ggml_tensor * xp; // previous parameters
  1959. struct ggml_tensor * g; // current gradient
  1960. struct ggml_tensor * gp; // previous gradient
  1961. struct ggml_tensor * d; // search direction
  1962. struct ggml_tensor * pf; // past function values
  1963. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1964. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1965. struct ggml_tensor * lms; // the L-BFGS memory s
  1966. struct ggml_tensor * lmy; // the L-BFGS memory y
  1967. float fx_best;
  1968. float step;
  1969. int j;
  1970. int k;
  1971. int end;
  1972. int n_no_improvement;
  1973. } lbfgs;
  1974. };
  1975. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1976. // optimize the function defined by the tensor f
  1977. GGML_API enum ggml_opt_result ggml_opt(
  1978. struct ggml_context * ctx,
  1979. struct ggml_opt_params params,
  1980. struct ggml_tensor * f);
  1981. // initialize optimizer context
  1982. GGML_API void ggml_opt_init(
  1983. struct ggml_context * ctx,
  1984. struct ggml_opt_context * opt,
  1985. struct ggml_opt_params params,
  1986. int64_t nx);
  1987. // continue optimizing the function defined by the tensor f
  1988. GGML_API enum ggml_opt_result ggml_opt_resume(
  1989. struct ggml_context * ctx,
  1990. struct ggml_opt_context * opt,
  1991. struct ggml_tensor * f);
  1992. // continue optimizing the function defined by the tensor f
  1993. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1994. struct ggml_context * ctx,
  1995. struct ggml_opt_context * opt,
  1996. struct ggml_tensor * f,
  1997. struct ggml_cgraph * gf,
  1998. struct ggml_cgraph * gb,
  1999. ggml_opt_callback callback,
  2000. void * callback_data);
  2001. //
  2002. // tensor flags
  2003. //
  2004. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  2005. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  2006. //
  2007. // quantization
  2008. //
  2009. // - ggml_quantize_init can be called multiple times with the same type
  2010. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  2011. // automatically called by ggml_quantize_chunk for convenience
  2012. //
  2013. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  2014. // call this at the end of the program to avoid memory leaks
  2015. //
  2016. // note: these are thread-safe
  2017. //
  2018. GGML_API void ggml_quantize_init(enum ggml_type type);
  2019. GGML_API void ggml_quantize_free(void);
  2020. // some quantization type cannot be used without an importance matrix
  2021. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  2022. // calls ggml_quantize_init internally (i.e. can allocate memory)
  2023. GGML_API size_t ggml_quantize_chunk(
  2024. enum ggml_type type,
  2025. const float * src,
  2026. void * dst,
  2027. int64_t start,
  2028. int64_t nrows,
  2029. int64_t n_per_row,
  2030. const float * imatrix);
  2031. //
  2032. // gguf
  2033. //
  2034. enum gguf_type {
  2035. GGUF_TYPE_UINT8 = 0,
  2036. GGUF_TYPE_INT8 = 1,
  2037. GGUF_TYPE_UINT16 = 2,
  2038. GGUF_TYPE_INT16 = 3,
  2039. GGUF_TYPE_UINT32 = 4,
  2040. GGUF_TYPE_INT32 = 5,
  2041. GGUF_TYPE_FLOAT32 = 6,
  2042. GGUF_TYPE_BOOL = 7,
  2043. GGUF_TYPE_STRING = 8,
  2044. GGUF_TYPE_ARRAY = 9,
  2045. GGUF_TYPE_UINT64 = 10,
  2046. GGUF_TYPE_INT64 = 11,
  2047. GGUF_TYPE_FLOAT64 = 12,
  2048. GGUF_TYPE_COUNT, // marks the end of the enum
  2049. };
  2050. struct gguf_context;
  2051. struct gguf_init_params {
  2052. bool no_alloc;
  2053. // if not NULL, create a ggml_context and allocate the tensor data in it
  2054. struct ggml_context ** ctx;
  2055. };
  2056. GGML_API struct gguf_context * gguf_init_empty(void);
  2057. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  2058. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  2059. GGML_API void gguf_free(struct gguf_context * ctx);
  2060. GGML_API const char * gguf_type_name(enum gguf_type type);
  2061. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  2062. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  2063. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  2064. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  2065. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  2066. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  2067. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  2068. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  2069. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  2070. // will abort if the wrong type is used for the key
  2071. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  2072. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  2073. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  2074. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  2075. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  2076. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  2077. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  2078. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  2079. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  2080. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  2081. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  2082. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  2083. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  2084. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  2085. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  2086. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  2087. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  2088. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  2089. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  2090. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  2091. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  2092. // removes key if it exists
  2093. GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
  2094. // overrides existing values or adds a new one
  2095. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  2096. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  2097. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  2098. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  2099. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  2100. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  2101. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  2102. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  2103. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  2104. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  2105. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  2106. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  2107. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  2108. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  2109. // set or add KV pairs from another context
  2110. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  2111. // manage tensor info
  2112. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  2113. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  2114. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  2115. // writing gguf files can be done in 2 ways:
  2116. //
  2117. // - write the entire gguf_context to a binary file in a single pass:
  2118. //
  2119. // gguf_write_to_file(ctx, fname);
  2120. //
  2121. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  2122. //
  2123. // FILE * f = fopen(fname, "wb");
  2124. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  2125. // fwrite(f, ...);
  2126. // void * data = gguf_meta_get_meta_data(ctx);
  2127. // fseek(f, 0, SEEK_SET);
  2128. // fwrite(f, data, gguf_get_meta_size(ctx));
  2129. // free(data);
  2130. // fclose(f);
  2131. //
  2132. // write the entire context to a binary file
  2133. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  2134. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  2135. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  2136. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  2137. //
  2138. // system info
  2139. //
  2140. GGML_API int ggml_cpu_has_avx (void);
  2141. GGML_API int ggml_cpu_has_avx_vnni (void);
  2142. GGML_API int ggml_cpu_has_avx2 (void);
  2143. GGML_API int ggml_cpu_has_avx512 (void);
  2144. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  2145. GGML_API int ggml_cpu_has_avx512_vnni(void);
  2146. GGML_API int ggml_cpu_has_avx512_bf16(void);
  2147. GGML_API int ggml_cpu_has_fma (void);
  2148. GGML_API int ggml_cpu_has_neon (void);
  2149. GGML_API int ggml_cpu_has_sve (void);
  2150. GGML_API int ggml_cpu_has_arm_fma (void);
  2151. GGML_API int ggml_cpu_has_metal (void);
  2152. GGML_API int ggml_cpu_has_f16c (void);
  2153. GGML_API int ggml_cpu_has_fp16_va (void);
  2154. GGML_API int ggml_cpu_has_wasm_simd (void);
  2155. GGML_API int ggml_cpu_has_blas (void);
  2156. GGML_API int ggml_cpu_has_cuda (void);
  2157. GGML_API int ggml_cpu_has_vulkan (void);
  2158. GGML_API int ggml_cpu_has_kompute (void);
  2159. GGML_API int ggml_cpu_has_gpublas (void);
  2160. GGML_API int ggml_cpu_has_sse3 (void);
  2161. GGML_API int ggml_cpu_has_ssse3 (void);
  2162. GGML_API int ggml_cpu_has_riscv_v (void);
  2163. GGML_API int ggml_cpu_has_sycl (void);
  2164. GGML_API int ggml_cpu_has_rpc (void);
  2165. GGML_API int ggml_cpu_has_vsx (void);
  2166. GGML_API int ggml_cpu_has_matmul_int8(void);
  2167. GGML_API int ggml_cpu_has_cann (void);
  2168. GGML_API int ggml_cpu_has_llamafile (void);
  2169. // get the sve vector length in bytes
  2170. GGML_API int ggml_cpu_get_sve_cnt(void);
  2171. //
  2172. // Internal types and functions exposed for tests and benchmarks
  2173. //
  2174. #ifdef __cplusplus
  2175. // restrict not standard in C++
  2176. #define GGML_RESTRICT
  2177. #else
  2178. #define GGML_RESTRICT restrict
  2179. #endif
  2180. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  2181. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  2182. typedef void (*ggml_from_float_to_mat_t)
  2183. (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
  2184. typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
  2185. const void * GGML_RESTRICT y, size_t by, int nrc);
  2186. typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
  2187. const void * GGML_RESTRICT y, int nr, int nc);
  2188. typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
  2189. const void * GGML_RESTRICT y, int nr, int nc);
  2190. typedef struct {
  2191. const char * type_name;
  2192. int64_t blck_size;
  2193. int64_t blck_size_interleave; // interleave elements in blocks
  2194. size_t type_size;
  2195. bool is_quantized;
  2196. ggml_to_float_t to_float;
  2197. ggml_from_float_t from_float;
  2198. ggml_from_float_t from_float_ref;
  2199. ggml_from_float_to_mat_t from_float_to_mat;
  2200. ggml_vec_dot_t vec_dot;
  2201. enum ggml_type vec_dot_type;
  2202. int64_t nrows; // number of rows to process simultaneously
  2203. int64_t ncols; // number of columns to process simultaneously
  2204. ggml_gemv_t gemv;
  2205. ggml_gemm_t gemm;
  2206. } ggml_type_traits_t;
  2207. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  2208. #ifdef __cplusplus
  2209. }
  2210. #endif