123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597 |
- package llama
- /*
- #cgo CFLAGS: -O2 -std=c11 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE
- #cgo CXXFLAGS: -O2 -std=c++11 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE
- #cgo amd64,avx CFLAGS: -mavx
- #cgo amd64,avx CXXFLAGS: -mavx
- #cgo amd64,avx2 CFLAGS: -mavx2 -mfma
- #cgo amd64,avx2 CXXFLAGS: -mavx2 -mfma
- #cgo amd64,f16c CFLAGS: -mf16c
- #cgo amd64,f16c CXXFLAGS: -mf16c
- #cgo amd64,fma CFLAGS: -mfma
- #cgo amd64,fma CXXFLAGS: -mfma
- #cgo avx CFLAGS: -mavx
- #cgo avx CXXFLAGS: -mavx
- #cgo avx2 CFLAGS: -mavx2 -mfma -mf16c
- #cgo avx2 CXXFLAGS: -mavx2 -mfma -mf16c
- #cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
- #cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
- #cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
- #cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
- #cgo cuda_v11 LDFLAGS: -lggml_cuda_v11 -L/usr/local/cuda-11/lib64
- #cgo cuda_v12 LDFLAGS: -lggml_cuda_v12 -L/usr/local/cuda-12/lib64
- #cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
- #cgo darwin,amd64 CXXFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
- #cgo darwin,amd64 LDFLAGS: -framework Foundation
- #cgo darwin,amd64,avx2 CFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
- #cgo darwin,amd64,avx2 CXXFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
- #cgo darwin,amd64,avx2 LDFLAGS: -framework Accelerate
- #cgo darwin,arm64 CFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_BLAS
- #cgo darwin,arm64 CXXFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_BLAS
- #cgo darwin,arm64 LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework Accelerate
- #cgo linux CFLAGS: -D_GNU_SOURCE
- #cgo linux CXXFLAGS: -D_GNU_SOURCE
- #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
- #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
- #cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
- #cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
- #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/Linux/arm64
- #cgo linux,arm64,sve CFLAGS: -march=armv8.6-a+sve
- #cgo linux,arm64,sve CXXFLAGS: -march=armv8.6-a+sve
- #cgo linux,cuda LDFLAGS: -lcuda -lcudart -lcublas -lcublasLt -lpthread -ldl -lrt -lresolv
- #cgo linux,rocm LDFLAGS: -L/opt/rocm/lib -lpthread -ldl -lrt -lresolv
- #cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
- #cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
- #cgo rocm LDFLAGS: -L${SRCDIR} -lggml_rocm -lhipblas -lamdhip64 -lrocblas
- #cgo windows CFLAGS: -Wno-discarded-qualifiers
- #cgo windows CFLAGS: -Wno-discarded-qualifiers
- #cgo windows LDFLAGS: -lmsvcrt
- #cgo windows LDFLAGS: -lmsvcrt -static-libstdc++ -static-libgcc -static
- #cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64
- #cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64
- #cgo windows,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
- #cgo windows,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
- #cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/Windows/arm64
- #cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/Windows/arm64
- #cgo windows,cuda LDFLAGS: -lcuda -lcudart -lcublas -lcublasLt
- #cgo windows,rocm LDFLAGS: -lggml_rocm -lhipblas -lamdhip64 -lrocblas
- #include <stdlib.h>
- #include "llama.h"
- #include "clip.h"
- #include "ggml.h"
- #include "llava.h"
- #include "mllama.h"
- #include "sampling_ext.h"
- bool llamaProgressCallback(float progress, void *user_data);
- */
- import "C"
- import (
- _ "embed"
- "errors"
- "fmt"
- "runtime"
- "runtime/cgo"
- "strings"
- "unsafe"
- )
- var CpuFeatures = ""
- func BackendInit() {
- C.llama_backend_init()
- }
- func PrintSystemInfo() string {
- return C.GoString(C.llama_print_system_info())
- }
- type ContextParams struct {
- c C.struct_llama_context_params
- }
- func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool) ContextParams {
- params := C.llama_context_default_params()
- params.n_ctx = C.uint(numCtx)
- params.n_batch = C.uint(batchSize)
- params.n_seq_max = C.uint(numSeqMax)
- params.n_threads = C.int(threads)
- params.n_threads_batch = params.n_threads
- params.embeddings = C.bool(true)
- params.flash_attn = C.bool(flashAttention)
- return ContextParams{c: params}
- }
- type Context struct {
- c *C.struct_llama_context
- numThreads int
- }
- func (c *Context) KvCacheClear() {
- C.llama_kv_cache_clear(c.c)
- }
- func (c *Context) Decode(batch *Batch) error {
- // Positive return values does not mean a fatal error, but rather a warning.
- // 0 - success
- // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
- // < 0 - error
- code := int(C.llama_decode(c.c, batch.c))
- if code < 0 {
- return fmt.Errorf("llama_decode failed with code %d", code)
- }
- if code > 0 {
- return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d", code)
- }
- return nil
- }
- func (c *Context) Model() *Model {
- return &Model{c: C.llama_get_model(c.c)}
- }
- func (c *Context) GetLogitsIth(i int) []float32 {
- return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_logits_ith(c.c, C.int(i)))), c.Model().NumVocab())
- }
- func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
- C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
- }
- func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
- return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
- }
- func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
- C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
- }
- // Get the embeddings for a sequence id
- func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
- embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
- if embeddings == nil {
- return nil
- }
- return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
- }
- func (c *Context) GetEmbeddingsIth(i int) []float32 {
- return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))), c.Model().NEmbd())
- }
- type ModelParams struct {
- NumGpuLayers int
- MainGpu int
- UseMmap bool
- UseMlock bool
- TensorSplit []float32
- Progress func(float32)
- VocabOnly bool
- }
- //export llamaProgressCallback
- func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
- handle := *(*cgo.Handle)(userData)
- callback := handle.Value().(func(float32))
- callback(float32(progress))
- return true
- }
- func LoadModelFromFile(modelPath string, params ModelParams) *Model {
- cparams := C.llama_model_default_params()
- cparams.n_gpu_layers = C.int(params.NumGpuLayers)
- cparams.main_gpu = C.int32_t(params.MainGpu)
- cparams.use_mmap = C.bool(params.UseMmap)
- cparams.use_mlock = C.bool(params.UseMlock)
- cparams.vocab_only = C.bool(params.VocabOnly)
- if len(params.TensorSplit) > 0 {
- tensorSplitData := ¶ms.TensorSplit[0]
- var tensorSplitPin runtime.Pinner
- tensorSplitPin.Pin(tensorSplitData)
- defer tensorSplitPin.Unpin()
- cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
- }
- if params.Progress != nil {
- handle := cgo.NewHandle(params.Progress)
- defer handle.Delete()
- var handlePin runtime.Pinner
- handlePin.Pin(&handle)
- defer handlePin.Unpin()
- cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
- cparams.progress_callback_user_data = unsafe.Pointer(&handle)
- }
- return &Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
- }
- func FreeModel(model *Model) {
- C.llama_free_model(model.c)
- }
- func NewContextWithModel(model *Model, params ContextParams) *Context {
- return &Context{
- c: C.llama_new_context_with_model(model.c, params.c),
- numThreads: int(params.c.n_threads),
- }
- }
- func (m *Model) NumVocab() int {
- return int(C.llama_n_vocab(m.c))
- }
- func (m *Model) TokenIsEog(token int) bool {
- return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
- }
- func (m *Model) AddBOSToken() bool {
- return bool(C.llama_add_bos_token(m.c))
- }
- func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
- cLoraPath := C.CString(loraPath)
- defer C.free(unsafe.Pointer(cLoraPath))
- loraAdapter := C.llama_lora_adapter_init(m.c, cLoraPath)
- err := -1
- if loraAdapter != nil {
- err = int(C.llama_lora_adapter_set(context.c, loraAdapter, C.float(scale)))
- }
- if err != 0 {
- return errors.New("error applying lora from file")
- }
- return nil
- }
- type Batch struct {
- c C.struct_llama_batch
- batchSize int
- embedSize int
- }
- // Creates a new batch for either word tokens if embed is 0 or
- // image embeddings if embed is specified. Batches cannot contain
- // both types at the same time
- func NewBatch(nTokens int, embed int, maxSeq int) *Batch {
- return &Batch{
- c: C.llama_batch_init(C.int(nTokens), C.int(embed), C.int(maxSeq)),
- batchSize: nTokens,
- embedSize: embed,
- }
- }
- func (b *Batch) NumTokens() int {
- return int(b.c.n_tokens)
- }
- func (b *Batch) IsEmbedding() bool {
- return b.embedSize != 0
- }
- // Add adds either a token or an image embedding to the batch depending on the type
- // when the batch was initialized. The other argument will be ignored. Adds to the
- // batch with the given position for the given sequence ids, and optionally instructs
- // to include logits.
- func (b *Batch) Add(token int, embed []float32, pos int, seqIds []int, logits bool) {
- if !b.IsEmbedding() {
- unsafe.Slice(b.c.token, b.batchSize)[b.c.n_tokens] = C.llama_token(token)
- } else {
- copy(unsafe.Slice((*float32)(b.c.embd), b.batchSize*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
- }
- unsafe.Slice(b.c.pos, b.batchSize)[b.c.n_tokens] = C.llama_pos(pos)
- unsafe.Slice(b.c.n_seq_id, b.batchSize)[b.c.n_tokens] = C.int(len(seqIds))
- for i, s := range seqIds {
- unsafe.Slice((unsafe.Slice(b.c.seq_id, b.batchSize)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
- }
- if logits {
- unsafe.Slice(b.c.logits, b.batchSize)[b.c.n_tokens] = 1
- }
- b.c.n_tokens += 1
- }
- func (b *Batch) Clear() {
- b.c.n_tokens = 0
- }
- func (b *Batch) Free() {
- b.batchSize = 0
- C.llama_batch_free(b.c)
- }
- type Model struct {
- c *C.struct_llama_model
- }
- func (m *Model) TokenToPiece(token int) string {
- tokenLen := 12
- buf := make([]byte, tokenLen)
- tokenLen = int(C.llama_token_to_piece(
- m.c,
- C.int32_t(token),
- (*C.char)(unsafe.Pointer(&buf[0])),
- C.int32_t(tokenLen),
- C.int32_t(0),
- C.bool(true),
- ))
- if tokenLen < 0 {
- tokenLen = -tokenLen
- buf = make([]byte, tokenLen)
- C.llama_token_to_piece(
- m.c,
- C.int32_t(token),
- (*C.char)(unsafe.Pointer(&buf[0])),
- C.int32_t(tokenLen),
- C.int32_t(0),
- C.bool(true),
- )
- }
- return strings.TrimRight(string(buf), "\x00")
- }
- func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
- maxTokens := len(text) + 2
- cTokens := make([]C.llama_token, maxTokens)
- cText := C.CString(text)
- defer C.free(unsafe.Pointer(cText))
- result := C.llama_tokenize(
- m.c,
- cText,
- C.int32_t(len(text)),
- &cTokens[0],
- C.int32_t(maxTokens),
- C.bool(addSpecial),
- C.bool(parseSpecial),
- )
- // if the result is negative, reallocate and retry with the correct buffer size
- if result < 0 {
- maxTokens = int(-result)
- cTokens = make([]C.llama_token, maxTokens)
- result = C.llama_tokenize(
- m.c,
- cText,
- C.int32_t(len(text)),
- &cTokens[0],
- C.int32_t(maxTokens),
- C.bool(addSpecial),
- C.bool(parseSpecial),
- )
- if result < 0 {
- return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
- }
- }
- tokens := make([]int, result)
- for i := range result {
- tokens[i] = int(cTokens[i])
- }
- return tokens, nil
- }
- func (m *Model) NEmbd() int {
- return int(C.llama_n_embd(m.c))
- }
- func Quantize(infile, outfile string, ftype uint32) error {
- cinfile := C.CString(infile)
- defer C.free(unsafe.Pointer(cinfile))
- coutfile := C.CString(outfile)
- defer C.free(unsafe.Pointer(coutfile))
- params := C.llama_model_quantize_default_params()
- params.nthread = -1
- params.ftype = ftype
- if rc := C.llama_model_quantize(cinfile, coutfile, ¶ms); rc != 0 {
- return fmt.Errorf("llama_model_quantize: %d", rc)
- }
- return nil
- }
- // llava
- type ClipContext struct {
- c *C.struct_clip_ctx
- m *C.struct_mllama_ctx
- IsMllama bool
- embedPin runtime.Pinner
- pinned bool
- }
- func getVisionArch(mp *C.char) (string, error) {
- gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
- if gguf_ctx == nil {
- return "", errors.New("unable to load vision projector")
- }
- defer C.gguf_free(gguf_ctx)
- arch_index := C.gguf_find_key(gguf_ctx, C.CString("general.architecture"))
- if int(arch_index) < 0 {
- return "", errors.New("unknown vision model architecture")
- }
- arch := C.gguf_get_val_str(gguf_ctx, arch_index)
- return C.GoString(arch), nil
- }
- func NewClipContext(modelPath string) (*ClipContext, error) {
- mp := C.CString(modelPath)
- defer C.free(unsafe.Pointer(mp))
- arch, err := getVisionArch(mp)
- if err != nil {
- return nil, err
- }
- var cc ClipContext
- if arch == "clip" {
- cc.c = C.clip_model_load(mp, 1)
- } else if arch == "mllama" {
- cc.m = C.mllama_model_load(mp, 1)
- cc.IsMllama = true
- } else {
- return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
- }
- // XXX: check embedding size?
- return &cc, nil
- }
- func (c *ClipContext) Free() {
- if c.c != nil {
- C.clip_free(c.c)
- }
- if c.m != nil {
- C.mllama_free(c.m)
- }
- }
- func NewLlavaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte) [][]float32 {
- c := C.llava_image_embed_make_with_bytes(clipContext.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
- numTokens := int(c.n_image_pos)
- numEmbed := llamaContext.Model().NEmbd()
- s := unsafe.Slice((*float32)(c.embed), numEmbed*numTokens)
- embed := make([][]float32, numTokens)
- rows := make([]float32, len(s))
- copy(rows, s)
- for i := range embed {
- embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
- }
- C.llava_image_embed_free(c)
- return embed
- }
- func NewMllamaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte, aspectRatioId int) [][]float32 {
- img := C.mllama_image_init()
- defer C.mllama_image_free(img)
- C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img)
- numTokens := int(C.mllama_n_positions(clipContext.m) * C.mllama_n_tiles(clipContext.m))
- numEmbed := llamaContext.Model().NEmbd()
- rows := make([]float32, numEmbed*numTokens)
- C.mllama_image_encode(clipContext.m, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0])))
- embed := make([][]float32, numTokens)
- for i := range embed {
- embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
- }
- return embed
- }
- // This really needs to be set on a batch instead
- func MllamaSetCrossAttn(llamaContext *Context, clipContext *ClipContext, embed [][]float32) {
- if embed != nil {
- if clipContext.pinned {
- panic("Cross attention state already pinned")
- }
- embedData := &embed[0][0]
- clipContext.embedPin.Pin(embedData)
- clipContext.pinned = true
- C.llama_set_cross_attn_state(llamaContext.c, (*C.float)(unsafe.Pointer(embedData)))
- } else {
- C.llama_set_cross_attn_state(llamaContext.c, (*C.float)(C.NULL))
- if clipContext.pinned {
- clipContext.embedPin.Unpin()
- clipContext.pinned = false
- }
- }
- }
- // sampling
- // TODO: this is a temporary wrapper to allow calling C++ code from CGo
- type SamplingContext struct {
- c *C.struct_gpt_sampler
- }
- type SamplingParams struct {
- TopK int
- TopP float32
- MinP float32
- TfsZ float32
- TypicalP float32
- Temp float32
- RepeatLastN int
- PenaltyRepeat float32
- PenaltyFreq float32
- PenaltyPresent float32
- Mirostat int
- MirostatTau float32
- MirostatEta float32
- PenalizeNl bool
- Seed uint32
- Grammar string
- }
- func NewSamplingContext(model *Model, params SamplingParams) *SamplingContext {
- var cparams C.struct_gpt_sampler_cparams
- cparams.top_k = C.int32_t(params.TopK)
- cparams.top_p = C.float(params.TopP)
- cparams.min_p = C.float(params.MinP)
- cparams.tfs_z = C.float(params.TfsZ)
- cparams.typical_p = C.float(params.TypicalP)
- cparams.temp = C.float(params.Temp)
- cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
- cparams.penalty_repeat = C.float(params.PenaltyRepeat)
- cparams.penalty_freq = C.float(params.PenaltyFreq)
- cparams.penalty_present = C.float(params.PenaltyFreq)
- cparams.mirostat = C.int32_t(params.Mirostat)
- cparams.mirostat_tau = C.float(params.MirostatTau)
- cparams.mirostat_eta = C.float(params.MirostatEta)
- cparams.penalize_nl = C.bool(params.PenalizeNl)
- cparams.seed = C.uint32_t(params.Seed)
- grammar := C.CString(params.Grammar)
- defer C.free(unsafe.Pointer(grammar))
- cparams.grammar = grammar
- context := &SamplingContext{c: C.gpt_sampler_cinit(model.c, &cparams)}
- runtime.SetFinalizer(context, func(s *SamplingContext) { C.gpt_sampler_cfree(s.c) })
- return context
- }
- func (s *SamplingContext) Reset() {
- C.gpt_sampler_creset(s.c)
- }
- func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
- return int(C.gpt_sampler_csample(s.c, llamaContext.c, C.int(idx)))
- }
- func (s *SamplingContext) Accept(id int, applyGrammar bool) {
- C.gpt_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
- }
|