llama.h 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247
  1. /**
  2. * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #ifndef LLAMA_H
  27. #define LLAMA_H
  28. #include "ggml.h"
  29. #include "ggml-backend.h"
  30. #include <stddef.h>
  31. #include <stdint.h>
  32. #include <stdio.h>
  33. #include <stdbool.h>
  34. #ifdef LLAMA_SHARED
  35. # if defined(_WIN32) && !defined(__MINGW32__)
  36. # ifdef LLAMA_BUILD
  37. # define LLAMA_API __declspec(dllexport)
  38. # else
  39. # define LLAMA_API __declspec(dllimport)
  40. # endif
  41. # else
  42. # define LLAMA_API __attribute__ ((visibility ("default")))
  43. # endif
  44. #else
  45. # define LLAMA_API
  46. #endif
  47. #ifdef __GNUC__
  48. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  49. #elif defined(_MSC_VER)
  50. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  51. #else
  52. # define DEPRECATED(func, hint) func
  53. #endif
  54. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  55. // TODO: use everywhere in the implementation
  56. #define LLAMA_TOKEN_NULL -1
  57. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  58. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  59. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  60. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  61. #define LLAMA_SESSION_VERSION 9
  62. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  63. #define LLAMA_STATE_SEQ_VERSION 2
  64. #ifdef __cplusplus
  65. extern "C" {
  66. #endif
  67. //
  68. // C interface
  69. //
  70. // TODO: show sample usage
  71. //
  72. // struct llama_vocab; // TODO: add in the future
  73. struct llama_model;
  74. struct llama_context;
  75. struct llama_sampler;
  76. typedef int32_t llama_pos;
  77. typedef int32_t llama_token;
  78. typedef int32_t llama_seq_id;
  79. enum llama_vocab_type {
  80. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  81. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  82. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  83. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  84. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  85. LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
  86. };
  87. // pre-tokenization types
  88. enum llama_vocab_pre_type {
  89. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  90. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  91. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  92. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  93. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  94. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  95. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  96. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  97. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  98. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  99. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  100. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  101. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  102. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  103. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  104. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  105. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  106. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  107. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  108. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  109. LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
  110. LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
  111. LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
  112. LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
  113. LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
  114. LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
  115. LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
  116. };
  117. enum llama_rope_type {
  118. LLAMA_ROPE_TYPE_NONE = -1,
  119. LLAMA_ROPE_TYPE_NORM = 0,
  120. LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
  121. };
  122. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  123. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  124. LLAMA_TOKEN_TYPE_NORMAL = 1,
  125. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  126. LLAMA_TOKEN_TYPE_CONTROL = 3,
  127. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  128. LLAMA_TOKEN_TYPE_UNUSED = 5,
  129. LLAMA_TOKEN_TYPE_BYTE = 6,
  130. };
  131. enum llama_token_attr {
  132. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  133. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  134. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  135. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  136. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  137. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  138. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  139. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  140. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  141. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  142. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  143. };
  144. // model file types
  145. enum llama_ftype {
  146. LLAMA_FTYPE_ALL_F32 = 0,
  147. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  148. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  149. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  150. // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  151. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  152. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  153. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  154. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  155. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  156. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  157. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  158. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  159. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  160. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  161. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  162. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  163. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  164. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  165. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  166. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  167. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  168. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  169. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  170. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  171. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  172. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  173. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  174. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  175. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  176. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  177. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  178. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  179. LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
  180. LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
  181. LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
  182. LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
  183. LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
  184. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  185. };
  186. enum llama_rope_scaling_type {
  187. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  188. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  189. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  190. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  191. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  192. };
  193. enum llama_pooling_type {
  194. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  195. LLAMA_POOLING_TYPE_NONE = 0,
  196. LLAMA_POOLING_TYPE_MEAN = 1,
  197. LLAMA_POOLING_TYPE_CLS = 2,
  198. LLAMA_POOLING_TYPE_LAST = 3,
  199. LLAMA_POOLING_TYPE_RANK = 4, // used by reranking models to attach the classification head to the graph
  200. };
  201. enum llama_attention_type {
  202. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  203. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  204. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  205. };
  206. enum llama_split_mode {
  207. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  208. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  209. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  210. };
  211. // TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
  212. typedef struct llama_token_data {
  213. llama_token id; // token id
  214. float logit; // log-odds of the token
  215. float p; // probability of the token
  216. } llama_token_data;
  217. typedef struct llama_token_data_array {
  218. // TODO: consider SoA
  219. llama_token_data * data;
  220. size_t size;
  221. int64_t selected; // this is the index in the data array (i.e. not the token id)
  222. bool sorted;
  223. } llama_token_data_array;
  224. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  225. // Input data for llama_decode
  226. // A llama_batch object can contain input about one or many sequences
  227. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  228. //
  229. // - token : the token ids of the input (used when embd is NULL)
  230. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  231. // - pos : the positions of the respective token in the sequence
  232. // - seq_id : the sequence to which the respective token belongs
  233. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  234. //
  235. typedef struct llama_batch {
  236. int32_t n_tokens;
  237. llama_token * token;
  238. float * embd;
  239. llama_pos * pos;
  240. int32_t * n_seq_id;
  241. llama_seq_id ** seq_id;
  242. int8_t * logits; // TODO: rename this to "output"
  243. // NOTE: helpers for smooth API transition - can be deprecated in the future
  244. // for future-proof code, use the above fields instead and ignore everything below
  245. //
  246. // pos[i] = all_pos_0 + i*all_pos_1
  247. //
  248. llama_pos all_pos_0; // used if pos == NULL
  249. llama_pos all_pos_1; // used if pos == NULL
  250. llama_seq_id all_seq_id; // used if seq_id == NULL
  251. } llama_batch;
  252. enum llama_model_kv_override_type {
  253. LLAMA_KV_OVERRIDE_TYPE_INT,
  254. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  255. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  256. LLAMA_KV_OVERRIDE_TYPE_STR,
  257. };
  258. struct llama_model_kv_override {
  259. enum llama_model_kv_override_type tag;
  260. char key[128];
  261. union {
  262. int64_t val_i64;
  263. double val_f64;
  264. bool val_bool;
  265. char val_str[128];
  266. };
  267. };
  268. struct llama_model_params {
  269. int32_t n_gpu_layers; // number of layers to store in VRAM
  270. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  271. // main_gpu interpretation depends on split_mode:
  272. // LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model
  273. // LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results
  274. // LLAMA_SPLIT_MODE_LAYER: ignored
  275. int32_t main_gpu;
  276. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  277. const float * tensor_split;
  278. // comma separated list of RPC servers to use for offloading
  279. const char * rpc_servers;
  280. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  281. // If the provided progress_callback returns true, model loading continues.
  282. // If it returns false, model loading is immediately aborted.
  283. llama_progress_callback progress_callback;
  284. // context pointer passed to the progress callback
  285. void * progress_callback_user_data;
  286. // override key-value pairs of the model meta data
  287. const struct llama_model_kv_override * kv_overrides;
  288. // Keep the booleans together to avoid misalignment during copy-by-value.
  289. bool vocab_only; // only load the vocabulary, no weights
  290. bool use_mmap; // use mmap if possible
  291. bool use_mlock; // force system to keep model in RAM
  292. bool check_tensors; // validate model tensor data
  293. };
  294. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  295. // https://github.com/ggerganov/llama.cpp/pull/7544
  296. struct llama_context_params {
  297. uint32_t n_ctx; // text context, 0 = from model
  298. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  299. uint32_t n_ubatch; // physical maximum batch size
  300. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  301. int32_t n_threads; // number of threads to use for generation
  302. int32_t n_threads_batch; // number of threads to use for batch processing
  303. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  304. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  305. enum llama_attention_type attention_type; // attention type to use for embeddings
  306. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  307. float rope_freq_base; // RoPE base frequency, 0 = from model
  308. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  309. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  310. float yarn_attn_factor; // YaRN magnitude scaling factor
  311. float yarn_beta_fast; // YaRN low correction dim
  312. float yarn_beta_slow; // YaRN high correction dim
  313. uint32_t yarn_orig_ctx; // YaRN original context size
  314. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  315. ggml_backend_sched_eval_callback cb_eval;
  316. void * cb_eval_user_data;
  317. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  318. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  319. // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
  320. // TODO: move at the end of the struct
  321. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  322. bool embeddings; // if true, extract embeddings (together with logits)
  323. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  324. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  325. bool no_perf; // whether to measure performance timings
  326. // Abort callback
  327. // if it returns true, execution of llama_decode() will be aborted
  328. // currently works only with CPU execution
  329. ggml_abort_callback abort_callback;
  330. void * abort_callback_data;
  331. };
  332. // model quantization parameters
  333. typedef struct llama_model_quantize_params {
  334. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  335. enum llama_ftype ftype; // quantize to this llama_ftype
  336. enum ggml_type output_tensor_type; // output tensor type
  337. enum ggml_type token_embedding_type; // token embeddings tensor type
  338. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  339. bool quantize_output_tensor; // quantize output.weight
  340. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  341. bool pure; // quantize all tensors to the default type
  342. bool keep_split; // quantize to the same number of shards
  343. void * imatrix; // pointer to importance matrix data
  344. void * kv_overrides; // pointer to vector containing overrides
  345. } llama_model_quantize_params;
  346. typedef struct llama_logit_bias {
  347. llama_token token;
  348. float bias;
  349. } llama_logit_bias;
  350. typedef struct llama_sampler_chain_params {
  351. bool no_perf; // whether to measure performance timings
  352. } llama_sampler_chain_params;
  353. // used in chat template
  354. typedef struct llama_chat_message {
  355. const char * role;
  356. const char * content;
  357. } llama_chat_message;
  358. // lora adapter
  359. struct llama_lora_adapter;
  360. // Helpers for getting default parameters
  361. // TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
  362. LLAMA_API struct llama_model_params llama_model_default_params(void);
  363. LLAMA_API struct llama_context_params llama_context_default_params(void);
  364. LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
  365. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  366. // Initialize the llama + ggml backend
  367. // If numa is true, use NUMA optimizations
  368. // Call once at the start of the program
  369. LLAMA_API void llama_backend_init(void);
  370. //optional:
  371. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  372. // Optional: an auto threadpool gets created in ggml if not passed explicitly
  373. LLAMA_API void llama_attach_threadpool(
  374. struct llama_context * ctx,
  375. ggml_threadpool_t threadpool,
  376. ggml_threadpool_t threadpool_batch);
  377. LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
  378. // Call once at the end of the program - currently only used for MPI
  379. LLAMA_API void llama_backend_free(void);
  380. LLAMA_API struct llama_model * llama_load_model_from_file(
  381. const char * path_model,
  382. struct llama_model_params params);
  383. LLAMA_API void llama_free_model(struct llama_model * model);
  384. // TODO: rename to llama_init_from_model
  385. LLAMA_API struct llama_context * llama_new_context_with_model(
  386. struct llama_model * model,
  387. struct llama_context_params params);
  388. // TODO (jmorganca): this should most likely be passed in as part of a batch
  389. // and not set on the context for all batches.
  390. LLAMA_API void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state);
  391. // Frees all allocated memory
  392. LLAMA_API void llama_free(struct llama_context * ctx);
  393. LLAMA_API int64_t llama_time_us(void);
  394. LLAMA_API size_t llama_max_devices(void);
  395. LLAMA_API bool llama_supports_mmap (void);
  396. LLAMA_API bool llama_supports_mlock (void);
  397. LLAMA_API bool llama_supports_gpu_offload(void);
  398. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  399. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  400. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  401. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  402. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  403. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  404. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  405. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  406. LLAMA_API int32_t llama_n_head (const struct llama_model * model);
  407. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  408. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  409. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  410. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  411. // Get the model's RoPE frequency scaling factor
  412. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  413. // Functions to access the model's GGUF metadata scalar values
  414. // - The functions return the length of the string on success, or -1 on failure
  415. // - The output string is always null-terminated and cleared on failure
  416. // - GGUF array values are not supported by these functions
  417. // Get metadata value as a string by key name
  418. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  419. // Get the number of metadata key/value pairs
  420. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  421. // Get metadata key name by index
  422. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  423. // Get metadata value as a string by index
  424. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  425. // Get a string describing the model type
  426. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  427. // Returns the total size of all the tensors in the model in bytes
  428. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  429. // Returns the total number of parameters in the model
  430. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  431. // Get a llama model tensor
  432. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  433. // Returns true if the model contains an encoder that requires llama_encode() call
  434. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  435. // Returns true if the model contains a decoder that requires llama_decode() call
  436. LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
  437. // For encoder-decoder models, this function returns id of the token that must be provided
  438. // to the decoder to start generating output sequence. For other models, it returns -1.
  439. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  440. // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
  441. LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
  442. // Returns 0 on success
  443. LLAMA_API uint32_t llama_model_quantize(
  444. const char * fname_inp,
  445. const char * fname_out,
  446. const llama_model_quantize_params * params);
  447. // Load a LoRA adapter from file
  448. // The loaded adapter will be associated to the given model, and will be free when the model is deleted
  449. LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
  450. struct llama_model * model,
  451. const char * path_lora);
  452. // Add a loaded LoRA adapter to given context
  453. // This will not modify model's weight
  454. LLAMA_API int32_t llama_lora_adapter_set(
  455. struct llama_context * ctx,
  456. struct llama_lora_adapter * adapter,
  457. float scale);
  458. // Remove a specific LoRA adapter from given context
  459. // Return -1 if the adapter is not present in the context
  460. LLAMA_API int32_t llama_lora_adapter_remove(
  461. struct llama_context * ctx,
  462. struct llama_lora_adapter * adapter);
  463. // Remove all LoRA adapters from given context
  464. LLAMA_API void llama_lora_adapter_clear(
  465. struct llama_context * ctx);
  466. // Manually free a LoRA adapter
  467. // Note: loaded adapters will be free when the associated model is deleted
  468. LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
  469. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  470. // the currently loaded vector.
  471. // n_embd should be the size of a single layer's control, and data should point
  472. // to an n_embd x n_layers buffer starting from layer 1.
  473. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  474. // See llama_control_vector_load in common to load a control vector.
  475. LLAMA_API int32_t llama_control_vector_apply(
  476. struct llama_context * lctx,
  477. const float * data,
  478. size_t len,
  479. int32_t n_embd,
  480. int32_t il_start,
  481. int32_t il_end);
  482. //
  483. // KV cache
  484. //
  485. // Information associated with an individual cell in the KV cache view.
  486. struct llama_kv_cache_view_cell {
  487. // The position for this cell. Takes KV cache shifts into account.
  488. // May be negative if the cell is not populated.
  489. llama_pos pos;
  490. };
  491. // An updateable view of the KV cache.
  492. struct llama_kv_cache_view {
  493. // Number of KV cache cells. This will be the same as the context size.
  494. int32_t n_cells;
  495. // Maximum number of sequences that can exist in a cell. It's not an error
  496. // if there are more sequences in a cell than this value, however they will
  497. // not be visible in the view cells_sequences.
  498. int32_t n_seq_max;
  499. // Number of tokens in the cache. For example, if there are two populated
  500. // cells, the first with 1 sequence id in it and the second with 2 sequence
  501. // ids then you'll have 3 tokens.
  502. int32_t token_count;
  503. // Number of populated cache cells.
  504. int32_t used_cells;
  505. // Maximum contiguous empty slots in the cache.
  506. int32_t max_contiguous;
  507. // Index to the start of the max_contiguous slot range. Can be negative
  508. // when cache is full.
  509. int32_t max_contiguous_idx;
  510. // Information for an individual cell.
  511. struct llama_kv_cache_view_cell * cells;
  512. // The sequences for each cell. There will be n_seq_max items per cell.
  513. llama_seq_id * cells_sequences;
  514. };
  515. // Create an empty KV cache view. (use only for debugging purposes)
  516. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  517. // Free a KV cache view. (use only for debugging purposes)
  518. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  519. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  520. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  521. // Returns the number of tokens in the KV cache (slow, use only for debug)
  522. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  523. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  524. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  525. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  526. // Clear the KV cache - both cell info is erased and KV data is zeroed
  527. LLAMA_API void llama_kv_cache_clear(
  528. struct llama_context * ctx);
  529. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  530. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  531. // seq_id < 0 : match any sequence
  532. // p0 < 0 : [0, p1]
  533. // p1 < 0 : [p0, inf)
  534. LLAMA_API bool llama_kv_cache_seq_rm(
  535. struct llama_context * ctx,
  536. llama_seq_id seq_id,
  537. llama_pos p0,
  538. llama_pos p1);
  539. // Copy all tokens that belong to the specified sequence to another sequence
  540. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  541. // p0 < 0 : [0, p1]
  542. // p1 < 0 : [p0, inf)
  543. LLAMA_API void llama_kv_cache_seq_cp(
  544. struct llama_context * ctx,
  545. llama_seq_id seq_id_src,
  546. llama_seq_id seq_id_dst,
  547. llama_pos p0,
  548. llama_pos p1);
  549. // Removes all tokens that do not belong to the specified sequence
  550. LLAMA_API void llama_kv_cache_seq_keep(
  551. struct llama_context * ctx,
  552. llama_seq_id seq_id);
  553. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  554. // If the KV cache is RoPEd, the KV data is updated accordingly:
  555. // - lazily on next llama_decode()
  556. // - explicitly with llama_kv_cache_update()
  557. // p0 < 0 : [0, p1]
  558. // p1 < 0 : [p0, inf)
  559. LLAMA_API void llama_kv_cache_seq_add(
  560. struct llama_context * ctx,
  561. llama_seq_id seq_id,
  562. llama_pos p0,
  563. llama_pos p1,
  564. llama_pos delta);
  565. // Integer division of the positions by factor of `d > 1`
  566. // If the KV cache is RoPEd, the KV data is updated accordingly:
  567. // - lazily on next llama_decode()
  568. // - explicitly with llama_kv_cache_update()
  569. // p0 < 0 : [0, p1]
  570. // p1 < 0 : [p0, inf)
  571. LLAMA_API void llama_kv_cache_seq_div(
  572. struct llama_context * ctx,
  573. llama_seq_id seq_id,
  574. llama_pos p0,
  575. llama_pos p1,
  576. int d);
  577. // Returns the largest position present in the KV cache for the specified sequence
  578. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  579. struct llama_context * ctx,
  580. llama_seq_id seq_id);
  581. // Defragment the KV cache
  582. // This will be applied:
  583. // - lazily on next llama_decode()
  584. // - explicitly with llama_kv_cache_update()
  585. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  586. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  587. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  588. //
  589. // State / sessions
  590. //
  591. // Returns the *actual* size in bytes of the state
  592. // (logits, embedding and kv_cache)
  593. // Only use when saving the state, not when restoring it, otherwise the size may be too small.
  594. LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
  595. LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
  596. "use llama_state_get_size instead");
  597. // Copies the state to the specified destination address.
  598. // Destination needs to have allocated enough memory.
  599. // Returns the number of bytes copied
  600. LLAMA_API size_t llama_state_get_data(
  601. struct llama_context * ctx,
  602. uint8_t * dst,
  603. size_t size);
  604. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  605. struct llama_context * ctx,
  606. uint8_t * dst),
  607. "use llama_state_get_data instead");
  608. // Set the state reading from the specified address
  609. // Returns the number of bytes read
  610. LLAMA_API size_t llama_state_set_data(
  611. struct llama_context * ctx,
  612. const uint8_t * src,
  613. size_t size);
  614. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  615. struct llama_context * ctx,
  616. const uint8_t * src),
  617. "use llama_state_set_data instead");
  618. // Save/load session file
  619. LLAMA_API bool llama_state_load_file(
  620. struct llama_context * ctx,
  621. const char * path_session,
  622. llama_token * tokens_out,
  623. size_t n_token_capacity,
  624. size_t * n_token_count_out);
  625. LLAMA_API DEPRECATED(bool llama_load_session_file(
  626. struct llama_context * ctx,
  627. const char * path_session,
  628. llama_token * tokens_out,
  629. size_t n_token_capacity,
  630. size_t * n_token_count_out),
  631. "use llama_state_load_file instead");
  632. LLAMA_API bool llama_state_save_file(
  633. struct llama_context * ctx,
  634. const char * path_session,
  635. const llama_token * tokens,
  636. size_t n_token_count);
  637. LLAMA_API DEPRECATED(bool llama_save_session_file(
  638. struct llama_context * ctx,
  639. const char * path_session,
  640. const llama_token * tokens,
  641. size_t n_token_count),
  642. "use llama_state_save_file instead");
  643. // Get the exact size needed to copy the KV cache of a single sequence
  644. LLAMA_API size_t llama_state_seq_get_size(
  645. struct llama_context * ctx,
  646. llama_seq_id seq_id);
  647. // Copy the KV cache of a single sequence into the specified buffer
  648. LLAMA_API size_t llama_state_seq_get_data(
  649. struct llama_context * ctx,
  650. uint8_t * dst,
  651. size_t size,
  652. llama_seq_id seq_id);
  653. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  654. // Returns:
  655. // - Positive: Ok
  656. // - Zero: Failed to load
  657. LLAMA_API size_t llama_state_seq_set_data(
  658. struct llama_context * ctx,
  659. const uint8_t * src,
  660. size_t size,
  661. llama_seq_id dest_seq_id);
  662. LLAMA_API size_t llama_state_seq_save_file(
  663. struct llama_context * ctx,
  664. const char * filepath,
  665. llama_seq_id seq_id,
  666. const llama_token * tokens,
  667. size_t n_token_count);
  668. LLAMA_API size_t llama_state_seq_load_file(
  669. struct llama_context * ctx,
  670. const char * filepath,
  671. llama_seq_id dest_seq_id,
  672. llama_token * tokens_out,
  673. size_t n_token_capacity,
  674. size_t * n_token_count_out);
  675. //
  676. // Decoding
  677. //
  678. // Return batch for single sequence of tokens starting at pos_0
  679. //
  680. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  681. //
  682. LLAMA_API struct llama_batch llama_batch_get_one(
  683. llama_token * tokens,
  684. int32_t n_tokens,
  685. llama_pos pos_0,
  686. llama_seq_id seq_id);
  687. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  688. // Each token can be assigned up to n_seq_max sequence ids
  689. // The batch has to be freed with llama_batch_free()
  690. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  691. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  692. // The rest of the llama_batch members are allocated with size n_tokens
  693. // All members are left uninitialized
  694. LLAMA_API struct llama_batch llama_batch_init(
  695. int32_t n_tokens,
  696. int32_t embd,
  697. int32_t n_seq_max);
  698. // Frees a batch of tokens allocated with llama_batch_init()
  699. LLAMA_API void llama_batch_free(struct llama_batch batch);
  700. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  701. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  702. // 0 - success
  703. // < 0 - error
  704. LLAMA_API int32_t llama_encode(
  705. struct llama_context * ctx,
  706. struct llama_batch batch);
  707. // Positive return values does not mean a fatal error, but rather a warning.
  708. // 0 - success
  709. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  710. // < 0 - error
  711. LLAMA_API int32_t llama_decode(
  712. struct llama_context * ctx,
  713. struct llama_batch batch);
  714. // Set the number of threads used for decoding
  715. // n_threads is the number of threads used for generation (single token)
  716. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  717. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);
  718. // Get the number of threads used for generation of a single token.
  719. LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);
  720. // Get the number of threads used for prompt and batch processing (multiple token).
  721. LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
  722. // Set whether the model is in embeddings mode or not
  723. // If true, embeddings will be returned but logits will not
  724. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  725. // Set whether to use causal attention or not
  726. // If set to true, the model will only attend to the past tokens
  727. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  728. // Set abort callback
  729. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  730. // Wait until all computations are finished
  731. // This is automatically done when using one of the functions below to obtain the computation results
  732. // and is not necessary to call it explicitly in most cases
  733. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  734. // Token logits obtained from the last call to llama_decode()
  735. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  736. // in the order they have appeared in the batch.
  737. // Rows: number of tokens for which llama_batch.logits[i] != 0
  738. // Cols: n_vocab
  739. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  740. // Logits for the ith token. For positive indices, Equivalent to:
  741. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  742. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  743. // returns NULL for invalid ids.
  744. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  745. // Get all output token embeddings.
  746. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  747. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  748. // in the order they have appeared in the batch.
  749. // shape: [n_outputs*n_embd]
  750. // Otherwise, returns NULL.
  751. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  752. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  753. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  754. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  755. // shape: [n_embd] (1-dimensional)
  756. // returns NULL for invalid ids.
  757. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  758. // Get the embeddings for a sequence id
  759. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  760. // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[1] with the rank of the sequence
  761. // otherwise: float[n_embd] (1-dimensional)
  762. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  763. //
  764. // Vocab
  765. //
  766. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  767. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  768. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  769. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  770. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  771. // Identify if Token Id is a control token or a render-able token
  772. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  773. // Special tokens
  774. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  775. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  776. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  777. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  778. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  779. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  780. LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
  781. LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
  782. // Codellama infill tokens
  783. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  784. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  785. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  786. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  787. //
  788. // Tokenization
  789. //
  790. // The API is thread-safe.
  791. //
  792. /// @details Convert the provided text into tokens.
  793. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  794. /// @return Returns the number of tokens on success, no more than n_tokens_max
  795. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  796. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  797. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  798. /// as plaintext. Does not insert a leading space.
  799. LLAMA_API int32_t llama_tokenize(
  800. const struct llama_model * model,
  801. const char * text,
  802. int32_t text_len,
  803. llama_token * tokens,
  804. int32_t n_tokens_max,
  805. bool add_special,
  806. bool parse_special);
  807. // Token Id -> Piece.
  808. // Uses the vocabulary in the provided context.
  809. // Does not write null terminator to the buffer.
  810. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  811. // @param special If true, special tokens are rendered in the output.
  812. LLAMA_API int32_t llama_token_to_piece(
  813. const struct llama_model * model,
  814. llama_token token,
  815. char * buf,
  816. int32_t length,
  817. int32_t lstrip,
  818. bool special);
  819. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  820. /// @param text The char pointer must be large enough to hold the resulting text.
  821. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  822. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  823. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  824. /// @param unparse_special If true, special tokens are rendered in the output.
  825. LLAMA_API int32_t llama_detokenize(
  826. const struct llama_model * model,
  827. const llama_token * tokens,
  828. int32_t n_tokens,
  829. char * text,
  830. int32_t text_len_max,
  831. bool remove_special,
  832. bool unparse_special);
  833. //
  834. // Chat templates
  835. //
  836. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  837. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  838. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  839. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  840. /// @param chat Pointer to a list of multiple llama_chat_message
  841. /// @param n_msg Number of llama_chat_message in this chat
  842. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  843. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  844. /// @param length The size of the allocated buffer
  845. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  846. LLAMA_API int32_t llama_chat_apply_template(
  847. const struct llama_model * model,
  848. const char * tmpl,
  849. const struct llama_chat_message * chat,
  850. size_t n_msg,
  851. bool add_ass,
  852. char * buf,
  853. int32_t length);
  854. //
  855. // Sampling API
  856. //
  857. // Sample usage:
  858. //
  859. // // prepare the sampling chain at the start
  860. // auto sparams = llama_sampler_chain_default_params();
  861. //
  862. // llama_sampler * smpl = llama_sampler_chain_init(sparams);
  863. //
  864. // llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50));
  865. // llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
  866. // llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8));
  867. //
  868. // // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat"
  869. // // this sampler will be responsible to select the actual token
  870. // llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed));
  871. //
  872. // ...
  873. //
  874. // // decoding loop:
  875. // while (...) {
  876. // ...
  877. //
  878. // llama_decode(ctx, batch);
  879. //
  880. // // sample from the logits of the last token in the batch
  881. // const llama_token id = llama_sampler_sample(smpl, ctx, -1);
  882. //
  883. // // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
  884. // llama_sampler_accept(smpl, id);
  885. // ...
  886. // }
  887. //
  888. // llama_sampler_free(smpl);
  889. //
  890. // TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
  891. // TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
  892. //
  893. typedef void * llama_sampler_context_t;
  894. // user code can implement the interface below in order to create custom llama_sampler
  895. struct llama_sampler_i {
  896. const char * (*name) (const struct llama_sampler * smpl); // can be NULL
  897. void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL
  898. void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
  899. void (*reset) ( struct llama_sampler * smpl); // can be NULL
  900. struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
  901. void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
  902. // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
  903. //void (*apply_ggml) (struct llama_sampler * smpl, ...);
  904. };
  905. struct llama_sampler {
  906. struct llama_sampler_i * iface;
  907. llama_sampler_context_t ctx;
  908. };
  909. // mirror of llama_sampler_i:
  910. LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
  911. LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
  912. LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
  913. LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl);
  914. LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
  915. // important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
  916. LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl);
  917. // llama_sampler_chain
  918. // a type of llama_sampler that can chain multiple samplers one after another
  919. LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);
  920. // important: takes ownership of the sampler object and will free it when llama_sampler_free is called
  921. LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
  922. LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
  923. LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
  924. // after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
  925. LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i);
  926. // available samplers:
  927. LLAMA_API struct llama_sampler * llama_sampler_init_greedy (void);
  928. LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
  929. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  930. /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
  931. LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void);
  932. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  933. LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
  934. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  935. LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
  936. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  937. LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
  938. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  939. LLAMA_API struct llama_sampler * llama_sampler_init_tail_free (float z, size_t min_keep);
  940. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  941. LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
  942. LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
  943. /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
  944. LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
  945. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  946. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  947. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  948. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  949. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  950. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  951. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
  952. int32_t n_vocab,
  953. uint32_t seed,
  954. float tau,
  955. float eta,
  956. int32_t m);
  957. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  958. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  959. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  960. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  961. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  962. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
  963. uint32_t seed,
  964. float tau,
  965. float eta);
  966. LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
  967. const struct llama_model * model,
  968. const char * grammar_str,
  969. const char * grammar_root);
  970. LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
  971. int32_t n_vocab, // llama_n_vocab()
  972. llama_token special_eos_id, // llama_token_eos()
  973. llama_token linefeed_id, // llama_token_nl()
  974. int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
  975. float penalty_repeat, // 1.0 = disabled
  976. float penalty_freq, // 0.0 = disabled
  977. float penalty_present, // 0.0 = disabled
  978. bool penalize_nl, // consider newlines as a repeatable token
  979. bool ignore_eos); // ignore the end-of-sequence token
  980. LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
  981. int32_t n_vocab,
  982. int32_t n_logit_bias,
  983. const llama_logit_bias * logit_bias);
  984. // Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
  985. LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
  986. /// @details Sample and accept a token from the idx-th output of the last evaluation
  987. //
  988. // Shorthand for:
  989. // const auto * logits = llama_get_logits_ith(ctx, idx);
  990. // llama_token_data_array cur_p = { ... init from logits ... };
  991. // llama_sampler_apply(smpl, &cur_p);
  992. // auto token = cur_p.data[cur_p.selected].id;
  993. // llama_sampler_accept(smpl, token);
  994. // return token;
  995. // Returns the sampled token
  996. LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);
  997. // TODO: extend in the future
  998. //LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...);
  999. //
  1000. // Model split
  1001. //
  1002. /// @details Build a split GGUF final path for this chunk.
  1003. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  1004. // Returns the split_path length.
  1005. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  1006. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  1007. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  1008. // Returns the split_prefix length.
  1009. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  1010. // Print system information
  1011. LLAMA_API const char * llama_print_system_info(void);
  1012. // Set callback for all future logging events.
  1013. // If this is not called, or NULL is supplied, everything is output on stderr.
  1014. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  1015. //
  1016. // Performance utils
  1017. //
  1018. // NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
  1019. //
  1020. struct llama_perf_context_data {
  1021. double t_start_ms;
  1022. double t_load_ms;
  1023. double t_p_eval_ms;
  1024. double t_eval_ms;
  1025. int32_t n_p_eval;
  1026. int32_t n_eval;
  1027. };
  1028. struct llama_perf_sampler_data {
  1029. double t_sample_ms;
  1030. int32_t n_sample;
  1031. };
  1032. LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
  1033. LLAMA_API void llama_perf_context_print(const struct llama_context * ctx);
  1034. LLAMA_API void llama_perf_context_reset( struct llama_context * ctx);
  1035. // NOTE: the following work only with samplers constructed via llama_sampler_chain_init
  1036. LLAMA_API struct llama_perf_sampler_data llama_perf_sampler (const struct llama_sampler * chain);
  1037. LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
  1038. LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
  1039. LLAMA_API void llama_perf_dump_yaml(FILE * stream, const struct llama_context * ctx);
  1040. #ifdef __cplusplus
  1041. }
  1042. #endif
  1043. #endif // LLAMA_H