12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247 |
- /**
- * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #ifndef LLAMA_H
- #define LLAMA_H
- #include "ggml.h"
- #include "ggml-backend.h"
- #include <stddef.h>
- #include <stdint.h>
- #include <stdio.h>
- #include <stdbool.h>
- #ifdef LLAMA_SHARED
- # if defined(_WIN32) && !defined(__MINGW32__)
- # ifdef LLAMA_BUILD
- # define LLAMA_API __declspec(dllexport)
- # else
- # define LLAMA_API __declspec(dllimport)
- # endif
- # else
- # define LLAMA_API __attribute__ ((visibility ("default")))
- # endif
- #else
- # define LLAMA_API
- #endif
- #ifdef __GNUC__
- # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
- #elif defined(_MSC_VER)
- # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
- #else
- # define DEPRECATED(func, hint) func
- #endif
- #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
- // TODO: use everywhere in the implementation
- #define LLAMA_TOKEN_NULL -1
- #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
- #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
- #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
- #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
- #define LLAMA_SESSION_VERSION 9
- #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
- #define LLAMA_STATE_SEQ_VERSION 2
- #ifdef __cplusplus
- extern "C" {
- #endif
- //
- // C interface
- //
- // TODO: show sample usage
- //
- // struct llama_vocab; // TODO: add in the future
- struct llama_model;
- struct llama_context;
- struct llama_sampler;
- typedef int32_t llama_pos;
- typedef int32_t llama_token;
- typedef int32_t llama_seq_id;
- enum llama_vocab_type {
- LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
- LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
- LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
- LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
- LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
- LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
- };
- // pre-tokenization types
- enum llama_vocab_pre_type {
- LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
- LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
- LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
- LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
- LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
- LLAMA_VOCAB_PRE_TYPE_MPT = 5,
- LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
- LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
- LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
- LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
- LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
- LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
- LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
- LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
- LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
- LLAMA_VOCAB_PRE_TYPE_PORO = 15,
- LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
- LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
- LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
- LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
- LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
- LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
- LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
- LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
- LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
- LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
- LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
- };
- enum llama_rope_type {
- LLAMA_ROPE_TYPE_NONE = -1,
- LLAMA_ROPE_TYPE_NORM = 0,
- LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
- };
- enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
- LLAMA_TOKEN_TYPE_UNDEFINED = 0,
- LLAMA_TOKEN_TYPE_NORMAL = 1,
- LLAMA_TOKEN_TYPE_UNKNOWN = 2,
- LLAMA_TOKEN_TYPE_CONTROL = 3,
- LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
- LLAMA_TOKEN_TYPE_UNUSED = 5,
- LLAMA_TOKEN_TYPE_BYTE = 6,
- };
- enum llama_token_attr {
- LLAMA_TOKEN_ATTR_UNDEFINED = 0,
- LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
- LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
- LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
- LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
- LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
- LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
- LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
- LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
- LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
- LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
- };
- // model file types
- enum llama_ftype {
- LLAMA_FTYPE_ALL_F32 = 0,
- LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
- // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
- // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
- // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
- LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
- LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
- LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
- };
- enum llama_rope_scaling_type {
- LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
- LLAMA_ROPE_SCALING_TYPE_NONE = 0,
- LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
- LLAMA_ROPE_SCALING_TYPE_YARN = 2,
- LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
- };
- enum llama_pooling_type {
- LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
- LLAMA_POOLING_TYPE_NONE = 0,
- LLAMA_POOLING_TYPE_MEAN = 1,
- LLAMA_POOLING_TYPE_CLS = 2,
- LLAMA_POOLING_TYPE_LAST = 3,
- LLAMA_POOLING_TYPE_RANK = 4, // used by reranking models to attach the classification head to the graph
- };
- enum llama_attention_type {
- LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
- LLAMA_ATTENTION_TYPE_CAUSAL = 0,
- LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
- };
- enum llama_split_mode {
- LLAMA_SPLIT_MODE_NONE = 0, // single GPU
- LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
- LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
- };
- // TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
- typedef struct llama_token_data {
- llama_token id; // token id
- float logit; // log-odds of the token
- float p; // probability of the token
- } llama_token_data;
- typedef struct llama_token_data_array {
- // TODO: consider SoA
- llama_token_data * data;
- size_t size;
- int64_t selected; // this is the index in the data array (i.e. not the token id)
- bool sorted;
- } llama_token_data_array;
- typedef bool (*llama_progress_callback)(float progress, void * user_data);
- // Input data for llama_decode
- // A llama_batch object can contain input about one or many sequences
- // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
- //
- // - token : the token ids of the input (used when embd is NULL)
- // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
- // - pos : the positions of the respective token in the sequence
- // - seq_id : the sequence to which the respective token belongs
- // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
- //
- typedef struct llama_batch {
- int32_t n_tokens;
- llama_token * token;
- float * embd;
- llama_pos * pos;
- int32_t * n_seq_id;
- llama_seq_id ** seq_id;
- int8_t * logits; // TODO: rename this to "output"
- // NOTE: helpers for smooth API transition - can be deprecated in the future
- // for future-proof code, use the above fields instead and ignore everything below
- //
- // pos[i] = all_pos_0 + i*all_pos_1
- //
- llama_pos all_pos_0; // used if pos == NULL
- llama_pos all_pos_1; // used if pos == NULL
- llama_seq_id all_seq_id; // used if seq_id == NULL
- } llama_batch;
- enum llama_model_kv_override_type {
- LLAMA_KV_OVERRIDE_TYPE_INT,
- LLAMA_KV_OVERRIDE_TYPE_FLOAT,
- LLAMA_KV_OVERRIDE_TYPE_BOOL,
- LLAMA_KV_OVERRIDE_TYPE_STR,
- };
- struct llama_model_kv_override {
- enum llama_model_kv_override_type tag;
- char key[128];
- union {
- int64_t val_i64;
- double val_f64;
- bool val_bool;
- char val_str[128];
- };
- };
- struct llama_model_params {
- int32_t n_gpu_layers; // number of layers to store in VRAM
- enum llama_split_mode split_mode; // how to split the model across multiple GPUs
- // main_gpu interpretation depends on split_mode:
- // LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model
- // LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results
- // LLAMA_SPLIT_MODE_LAYER: ignored
- int32_t main_gpu;
- // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
- const float * tensor_split;
- // comma separated list of RPC servers to use for offloading
- const char * rpc_servers;
- // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
- // If the provided progress_callback returns true, model loading continues.
- // If it returns false, model loading is immediately aborted.
- llama_progress_callback progress_callback;
- // context pointer passed to the progress callback
- void * progress_callback_user_data;
- // override key-value pairs of the model meta data
- const struct llama_model_kv_override * kv_overrides;
- // Keep the booleans together to avoid misalignment during copy-by-value.
- bool vocab_only; // only load the vocabulary, no weights
- bool use_mmap; // use mmap if possible
- bool use_mlock; // force system to keep model in RAM
- bool check_tensors; // validate model tensor data
- };
- // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
- // https://github.com/ggerganov/llama.cpp/pull/7544
- struct llama_context_params {
- uint32_t n_ctx; // text context, 0 = from model
- uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
- uint32_t n_ubatch; // physical maximum batch size
- uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
- int32_t n_threads; // number of threads to use for generation
- int32_t n_threads_batch; // number of threads to use for batch processing
- enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
- enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
- enum llama_attention_type attention_type; // attention type to use for embeddings
- // ref: https://github.com/ggerganov/llama.cpp/pull/2054
- float rope_freq_base; // RoPE base frequency, 0 = from model
- float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
- float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
- float yarn_attn_factor; // YaRN magnitude scaling factor
- float yarn_beta_fast; // YaRN low correction dim
- float yarn_beta_slow; // YaRN high correction dim
- uint32_t yarn_orig_ctx; // YaRN original context size
- float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
- ggml_backend_sched_eval_callback cb_eval;
- void * cb_eval_user_data;
- enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
- enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
- // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
- // TODO: move at the end of the struct
- bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
- bool embeddings; // if true, extract embeddings (together with logits)
- bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
- bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
- bool no_perf; // whether to measure performance timings
- // Abort callback
- // if it returns true, execution of llama_decode() will be aborted
- // currently works only with CPU execution
- ggml_abort_callback abort_callback;
- void * abort_callback_data;
- };
- // model quantization parameters
- typedef struct llama_model_quantize_params {
- int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
- enum llama_ftype ftype; // quantize to this llama_ftype
- enum ggml_type output_tensor_type; // output tensor type
- enum ggml_type token_embedding_type; // token embeddings tensor type
- bool allow_requantize; // allow quantizing non-f32/f16 tensors
- bool quantize_output_tensor; // quantize output.weight
- bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
- bool pure; // quantize all tensors to the default type
- bool keep_split; // quantize to the same number of shards
- void * imatrix; // pointer to importance matrix data
- void * kv_overrides; // pointer to vector containing overrides
- } llama_model_quantize_params;
- typedef struct llama_logit_bias {
- llama_token token;
- float bias;
- } llama_logit_bias;
- typedef struct llama_sampler_chain_params {
- bool no_perf; // whether to measure performance timings
- } llama_sampler_chain_params;
- // used in chat template
- typedef struct llama_chat_message {
- const char * role;
- const char * content;
- } llama_chat_message;
- // lora adapter
- struct llama_lora_adapter;
- // Helpers for getting default parameters
- // TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
- LLAMA_API struct llama_model_params llama_model_default_params(void);
- LLAMA_API struct llama_context_params llama_context_default_params(void);
- LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
- LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
- // Initialize the llama + ggml backend
- // If numa is true, use NUMA optimizations
- // Call once at the start of the program
- LLAMA_API void llama_backend_init(void);
- //optional:
- LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
- // Optional: an auto threadpool gets created in ggml if not passed explicitly
- LLAMA_API void llama_attach_threadpool(
- struct llama_context * ctx,
- ggml_threadpool_t threadpool,
- ggml_threadpool_t threadpool_batch);
- LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
- // Call once at the end of the program - currently only used for MPI
- LLAMA_API void llama_backend_free(void);
- LLAMA_API struct llama_model * llama_load_model_from_file(
- const char * path_model,
- struct llama_model_params params);
- LLAMA_API void llama_free_model(struct llama_model * model);
- // TODO: rename to llama_init_from_model
- LLAMA_API struct llama_context * llama_new_context_with_model(
- struct llama_model * model,
- struct llama_context_params params);
- // TODO (jmorganca): this should most likely be passed in as part of a batch
- // and not set on the context for all batches.
- LLAMA_API void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state);
- // Frees all allocated memory
- LLAMA_API void llama_free(struct llama_context * ctx);
- LLAMA_API int64_t llama_time_us(void);
- LLAMA_API size_t llama_max_devices(void);
- LLAMA_API bool llama_supports_mmap (void);
- LLAMA_API bool llama_supports_mlock (void);
- LLAMA_API bool llama_supports_gpu_offload(void);
- LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
- LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
- LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
- LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
- LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
- LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
- LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
- LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
- LLAMA_API int32_t llama_n_head (const struct llama_model * model);
- LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
- LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
- LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
- LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
- // Get the model's RoPE frequency scaling factor
- LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
- // Functions to access the model's GGUF metadata scalar values
- // - The functions return the length of the string on success, or -1 on failure
- // - The output string is always null-terminated and cleared on failure
- // - GGUF array values are not supported by these functions
- // Get metadata value as a string by key name
- LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
- // Get the number of metadata key/value pairs
- LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
- // Get metadata key name by index
- LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
- // Get metadata value as a string by index
- LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
- // Get a string describing the model type
- LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
- // Returns the total size of all the tensors in the model in bytes
- LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
- // Returns the total number of parameters in the model
- LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
- // Get a llama model tensor
- LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
- // Returns true if the model contains an encoder that requires llama_encode() call
- LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
- // Returns true if the model contains a decoder that requires llama_decode() call
- LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
- // For encoder-decoder models, this function returns id of the token that must be provided
- // to the decoder to start generating output sequence. For other models, it returns -1.
- LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
- // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
- LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
- // Returns 0 on success
- LLAMA_API uint32_t llama_model_quantize(
- const char * fname_inp,
- const char * fname_out,
- const llama_model_quantize_params * params);
- // Load a LoRA adapter from file
- // The loaded adapter will be associated to the given model, and will be free when the model is deleted
- LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
- struct llama_model * model,
- const char * path_lora);
- // Add a loaded LoRA adapter to given context
- // This will not modify model's weight
- LLAMA_API int32_t llama_lora_adapter_set(
- struct llama_context * ctx,
- struct llama_lora_adapter * adapter,
- float scale);
- // Remove a specific LoRA adapter from given context
- // Return -1 if the adapter is not present in the context
- LLAMA_API int32_t llama_lora_adapter_remove(
- struct llama_context * ctx,
- struct llama_lora_adapter * adapter);
- // Remove all LoRA adapters from given context
- LLAMA_API void llama_lora_adapter_clear(
- struct llama_context * ctx);
- // Manually free a LoRA adapter
- // Note: loaded adapters will be free when the associated model is deleted
- LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
- // Apply a loaded control vector to a llama_context, or if data is NULL, clear
- // the currently loaded vector.
- // n_embd should be the size of a single layer's control, and data should point
- // to an n_embd x n_layers buffer starting from layer 1.
- // il_start and il_end are the layer range the vector should apply to (both inclusive)
- // See llama_control_vector_load in common to load a control vector.
- LLAMA_API int32_t llama_control_vector_apply(
- struct llama_context * lctx,
- const float * data,
- size_t len,
- int32_t n_embd,
- int32_t il_start,
- int32_t il_end);
- //
- // KV cache
- //
- // Information associated with an individual cell in the KV cache view.
- struct llama_kv_cache_view_cell {
- // The position for this cell. Takes KV cache shifts into account.
- // May be negative if the cell is not populated.
- llama_pos pos;
- };
- // An updateable view of the KV cache.
- struct llama_kv_cache_view {
- // Number of KV cache cells. This will be the same as the context size.
- int32_t n_cells;
- // Maximum number of sequences that can exist in a cell. It's not an error
- // if there are more sequences in a cell than this value, however they will
- // not be visible in the view cells_sequences.
- int32_t n_seq_max;
- // Number of tokens in the cache. For example, if there are two populated
- // cells, the first with 1 sequence id in it and the second with 2 sequence
- // ids then you'll have 3 tokens.
- int32_t token_count;
- // Number of populated cache cells.
- int32_t used_cells;
- // Maximum contiguous empty slots in the cache.
- int32_t max_contiguous;
- // Index to the start of the max_contiguous slot range. Can be negative
- // when cache is full.
- int32_t max_contiguous_idx;
- // Information for an individual cell.
- struct llama_kv_cache_view_cell * cells;
- // The sequences for each cell. There will be n_seq_max items per cell.
- llama_seq_id * cells_sequences;
- };
- // Create an empty KV cache view. (use only for debugging purposes)
- LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
- // Free a KV cache view. (use only for debugging purposes)
- LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
- // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
- LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
- // Returns the number of tokens in the KV cache (slow, use only for debug)
- // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
- LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
- // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
- LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
- // Clear the KV cache - both cell info is erased and KV data is zeroed
- LLAMA_API void llama_kv_cache_clear(
- struct llama_context * ctx);
- // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
- // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
- // seq_id < 0 : match any sequence
- // p0 < 0 : [0, p1]
- // p1 < 0 : [p0, inf)
- LLAMA_API bool llama_kv_cache_seq_rm(
- struct llama_context * ctx,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1);
- // Copy all tokens that belong to the specified sequence to another sequence
- // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
- // p0 < 0 : [0, p1]
- // p1 < 0 : [p0, inf)
- LLAMA_API void llama_kv_cache_seq_cp(
- struct llama_context * ctx,
- llama_seq_id seq_id_src,
- llama_seq_id seq_id_dst,
- llama_pos p0,
- llama_pos p1);
- // Removes all tokens that do not belong to the specified sequence
- LLAMA_API void llama_kv_cache_seq_keep(
- struct llama_context * ctx,
- llama_seq_id seq_id);
- // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
- // If the KV cache is RoPEd, the KV data is updated accordingly:
- // - lazily on next llama_decode()
- // - explicitly with llama_kv_cache_update()
- // p0 < 0 : [0, p1]
- // p1 < 0 : [p0, inf)
- LLAMA_API void llama_kv_cache_seq_add(
- struct llama_context * ctx,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1,
- llama_pos delta);
- // Integer division of the positions by factor of `d > 1`
- // If the KV cache is RoPEd, the KV data is updated accordingly:
- // - lazily on next llama_decode()
- // - explicitly with llama_kv_cache_update()
- // p0 < 0 : [0, p1]
- // p1 < 0 : [p0, inf)
- LLAMA_API void llama_kv_cache_seq_div(
- struct llama_context * ctx,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1,
- int d);
- // Returns the largest position present in the KV cache for the specified sequence
- LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
- struct llama_context * ctx,
- llama_seq_id seq_id);
- // Defragment the KV cache
- // This will be applied:
- // - lazily on next llama_decode()
- // - explicitly with llama_kv_cache_update()
- LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
- // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
- LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
- //
- // State / sessions
- //
- // Returns the *actual* size in bytes of the state
- // (logits, embedding and kv_cache)
- // Only use when saving the state, not when restoring it, otherwise the size may be too small.
- LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
- LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
- "use llama_state_get_size instead");
- // Copies the state to the specified destination address.
- // Destination needs to have allocated enough memory.
- // Returns the number of bytes copied
- LLAMA_API size_t llama_state_get_data(
- struct llama_context * ctx,
- uint8_t * dst,
- size_t size);
- LLAMA_API DEPRECATED(size_t llama_copy_state_data(
- struct llama_context * ctx,
- uint8_t * dst),
- "use llama_state_get_data instead");
- // Set the state reading from the specified address
- // Returns the number of bytes read
- LLAMA_API size_t llama_state_set_data(
- struct llama_context * ctx,
- const uint8_t * src,
- size_t size);
- LLAMA_API DEPRECATED(size_t llama_set_state_data(
- struct llama_context * ctx,
- const uint8_t * src),
- "use llama_state_set_data instead");
- // Save/load session file
- LLAMA_API bool llama_state_load_file(
- struct llama_context * ctx,
- const char * path_session,
- llama_token * tokens_out,
- size_t n_token_capacity,
- size_t * n_token_count_out);
- LLAMA_API DEPRECATED(bool llama_load_session_file(
- struct llama_context * ctx,
- const char * path_session,
- llama_token * tokens_out,
- size_t n_token_capacity,
- size_t * n_token_count_out),
- "use llama_state_load_file instead");
- LLAMA_API bool llama_state_save_file(
- struct llama_context * ctx,
- const char * path_session,
- const llama_token * tokens,
- size_t n_token_count);
- LLAMA_API DEPRECATED(bool llama_save_session_file(
- struct llama_context * ctx,
- const char * path_session,
- const llama_token * tokens,
- size_t n_token_count),
- "use llama_state_save_file instead");
- // Get the exact size needed to copy the KV cache of a single sequence
- LLAMA_API size_t llama_state_seq_get_size(
- struct llama_context * ctx,
- llama_seq_id seq_id);
- // Copy the KV cache of a single sequence into the specified buffer
- LLAMA_API size_t llama_state_seq_get_data(
- struct llama_context * ctx,
- uint8_t * dst,
- size_t size,
- llama_seq_id seq_id);
- // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
- // Returns:
- // - Positive: Ok
- // - Zero: Failed to load
- LLAMA_API size_t llama_state_seq_set_data(
- struct llama_context * ctx,
- const uint8_t * src,
- size_t size,
- llama_seq_id dest_seq_id);
- LLAMA_API size_t llama_state_seq_save_file(
- struct llama_context * ctx,
- const char * filepath,
- llama_seq_id seq_id,
- const llama_token * tokens,
- size_t n_token_count);
- LLAMA_API size_t llama_state_seq_load_file(
- struct llama_context * ctx,
- const char * filepath,
- llama_seq_id dest_seq_id,
- llama_token * tokens_out,
- size_t n_token_capacity,
- size_t * n_token_count_out);
- //
- // Decoding
- //
- // Return batch for single sequence of tokens starting at pos_0
- //
- // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
- //
- LLAMA_API struct llama_batch llama_batch_get_one(
- llama_token * tokens,
- int32_t n_tokens,
- llama_pos pos_0,
- llama_seq_id seq_id);
- // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
- // Each token can be assigned up to n_seq_max sequence ids
- // The batch has to be freed with llama_batch_free()
- // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
- // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
- // The rest of the llama_batch members are allocated with size n_tokens
- // All members are left uninitialized
- LLAMA_API struct llama_batch llama_batch_init(
- int32_t n_tokens,
- int32_t embd,
- int32_t n_seq_max);
- // Frees a batch of tokens allocated with llama_batch_init()
- LLAMA_API void llama_batch_free(struct llama_batch batch);
- // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
- // Stores the encoder output internally for later use by the decoder cross-attention layers.
- // 0 - success
- // < 0 - error
- LLAMA_API int32_t llama_encode(
- struct llama_context * ctx,
- struct llama_batch batch);
- // Positive return values does not mean a fatal error, but rather a warning.
- // 0 - success
- // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
- // < 0 - error
- LLAMA_API int32_t llama_decode(
- struct llama_context * ctx,
- struct llama_batch batch);
- // Set the number of threads used for decoding
- // n_threads is the number of threads used for generation (single token)
- // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
- LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);
- // Get the number of threads used for generation of a single token.
- LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);
- // Get the number of threads used for prompt and batch processing (multiple token).
- LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
- // Set whether the model is in embeddings mode or not
- // If true, embeddings will be returned but logits will not
- LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
- // Set whether to use causal attention or not
- // If set to true, the model will only attend to the past tokens
- LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
- // Set abort callback
- LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
- // Wait until all computations are finished
- // This is automatically done when using one of the functions below to obtain the computation results
- // and is not necessary to call it explicitly in most cases
- LLAMA_API void llama_synchronize(struct llama_context * ctx);
- // Token logits obtained from the last call to llama_decode()
- // The logits for which llama_batch.logits[i] != 0 are stored contiguously
- // in the order they have appeared in the batch.
- // Rows: number of tokens for which llama_batch.logits[i] != 0
- // Cols: n_vocab
- LLAMA_API float * llama_get_logits(struct llama_context * ctx);
- // Logits for the ith token. For positive indices, Equivalent to:
- // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
- // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
- // returns NULL for invalid ids.
- LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
- // Get all output token embeddings.
- // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
- // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
- // in the order they have appeared in the batch.
- // shape: [n_outputs*n_embd]
- // Otherwise, returns NULL.
- LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
- // Get the embeddings for the ith token. For positive indices, Equivalent to:
- // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
- // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
- // shape: [n_embd] (1-dimensional)
- // returns NULL for invalid ids.
- LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
- // Get the embeddings for a sequence id
- // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
- // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[1] with the rank of the sequence
- // otherwise: float[n_embd] (1-dimensional)
- LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
- //
- // Vocab
- //
- LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
- LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
- LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
- // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
- LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
- // Identify if Token Id is a control token or a render-able token
- LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
- // Special tokens
- LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
- LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
- LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
- LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
- LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
- LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
- LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
- LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
- // Codellama infill tokens
- LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
- LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
- LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
- LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
- //
- // Tokenization
- //
- // The API is thread-safe.
- //
- /// @details Convert the provided text into tokens.
- /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
- /// @return Returns the number of tokens on success, no more than n_tokens_max
- /// @return Returns a negative number on failure - the number of tokens that would have been returned
- /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
- /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
- /// as plaintext. Does not insert a leading space.
- LLAMA_API int32_t llama_tokenize(
- const struct llama_model * model,
- const char * text,
- int32_t text_len,
- llama_token * tokens,
- int32_t n_tokens_max,
- bool add_special,
- bool parse_special);
- // Token Id -> Piece.
- // Uses the vocabulary in the provided context.
- // Does not write null terminator to the buffer.
- // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
- // @param special If true, special tokens are rendered in the output.
- LLAMA_API int32_t llama_token_to_piece(
- const struct llama_model * model,
- llama_token token,
- char * buf,
- int32_t length,
- int32_t lstrip,
- bool special);
- /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
- /// @param text The char pointer must be large enough to hold the resulting text.
- /// @return Returns the number of chars/bytes on success, no more than text_len_max.
- /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
- /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
- /// @param unparse_special If true, special tokens are rendered in the output.
- LLAMA_API int32_t llama_detokenize(
- const struct llama_model * model,
- const llama_token * tokens,
- int32_t n_tokens,
- char * text,
- int32_t text_len_max,
- bool remove_special,
- bool unparse_special);
- //
- // Chat templates
- //
- /// Apply chat template. Inspired by hf apply_chat_template() on python.
- /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
- /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
- /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
- /// @param chat Pointer to a list of multiple llama_chat_message
- /// @param n_msg Number of llama_chat_message in this chat
- /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
- /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
- /// @param length The size of the allocated buffer
- /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
- LLAMA_API int32_t llama_chat_apply_template(
- const struct llama_model * model,
- const char * tmpl,
- const struct llama_chat_message * chat,
- size_t n_msg,
- bool add_ass,
- char * buf,
- int32_t length);
- //
- // Sampling API
- //
- // Sample usage:
- //
- // // prepare the sampling chain at the start
- // auto sparams = llama_sampler_chain_default_params();
- //
- // llama_sampler * smpl = llama_sampler_chain_init(sparams);
- //
- // llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50));
- // llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
- // llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8));
- //
- // // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat"
- // // this sampler will be responsible to select the actual token
- // llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed));
- //
- // ...
- //
- // // decoding loop:
- // while (...) {
- // ...
- //
- // llama_decode(ctx, batch);
- //
- // // sample from the logits of the last token in the batch
- // const llama_token id = llama_sampler_sample(smpl, ctx, -1);
- //
- // // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
- // llama_sampler_accept(smpl, id);
- // ...
- // }
- //
- // llama_sampler_free(smpl);
- //
- // TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
- // TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
- //
- typedef void * llama_sampler_context_t;
- // user code can implement the interface below in order to create custom llama_sampler
- struct llama_sampler_i {
- const char * (*name) (const struct llama_sampler * smpl); // can be NULL
- void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL
- void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
- void (*reset) ( struct llama_sampler * smpl); // can be NULL
- struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
- void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
- // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
- //void (*apply_ggml) (struct llama_sampler * smpl, ...);
- };
- struct llama_sampler {
- struct llama_sampler_i * iface;
- llama_sampler_context_t ctx;
- };
- // mirror of llama_sampler_i:
- LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
- LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
- LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
- LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl);
- LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
- // important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
- LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl);
- // llama_sampler_chain
- // a type of llama_sampler that can chain multiple samplers one after another
- LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);
- // important: takes ownership of the sampler object and will free it when llama_sampler_free is called
- LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
- LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
- LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
- // after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
- LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i);
- // available samplers:
- LLAMA_API struct llama_sampler * llama_sampler_init_greedy (void);
- LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
- /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
- /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
- LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void);
- /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
- LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
- /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
- LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
- /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
- LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
- /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
- LLAMA_API struct llama_sampler * llama_sampler_init_tail_free (float z, size_t min_keep);
- /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
- LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
- LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
- /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
- LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
- /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
- /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
- /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
- /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
- /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
- /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
- LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
- int32_t n_vocab,
- uint32_t seed,
- float tau,
- float eta,
- int32_t m);
- /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
- /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
- /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
- /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
- /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
- LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
- uint32_t seed,
- float tau,
- float eta);
- LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
- const struct llama_model * model,
- const char * grammar_str,
- const char * grammar_root);
- LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
- int32_t n_vocab, // llama_n_vocab()
- llama_token special_eos_id, // llama_token_eos()
- llama_token linefeed_id, // llama_token_nl()
- int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
- float penalty_repeat, // 1.0 = disabled
- float penalty_freq, // 0.0 = disabled
- float penalty_present, // 0.0 = disabled
- bool penalize_nl, // consider newlines as a repeatable token
- bool ignore_eos); // ignore the end-of-sequence token
- LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
- int32_t n_vocab,
- int32_t n_logit_bias,
- const llama_logit_bias * logit_bias);
- // Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
- LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
- /// @details Sample and accept a token from the idx-th output of the last evaluation
- //
- // Shorthand for:
- // const auto * logits = llama_get_logits_ith(ctx, idx);
- // llama_token_data_array cur_p = { ... init from logits ... };
- // llama_sampler_apply(smpl, &cur_p);
- // auto token = cur_p.data[cur_p.selected].id;
- // llama_sampler_accept(smpl, token);
- // return token;
- // Returns the sampled token
- LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);
- // TODO: extend in the future
- //LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...);
- //
- // Model split
- //
- /// @details Build a split GGUF final path for this chunk.
- /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
- // Returns the split_path length.
- LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
- /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
- /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
- // Returns the split_prefix length.
- LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
- // Print system information
- LLAMA_API const char * llama_print_system_info(void);
- // Set callback for all future logging events.
- // If this is not called, or NULL is supplied, everything is output on stderr.
- LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
- //
- // Performance utils
- //
- // NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
- //
- struct llama_perf_context_data {
- double t_start_ms;
- double t_load_ms;
- double t_p_eval_ms;
- double t_eval_ms;
- int32_t n_p_eval;
- int32_t n_eval;
- };
- struct llama_perf_sampler_data {
- double t_sample_ms;
- int32_t n_sample;
- };
- LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
- LLAMA_API void llama_perf_context_print(const struct llama_context * ctx);
- LLAMA_API void llama_perf_context_reset( struct llama_context * ctx);
- // NOTE: the following work only with samplers constructed via llama_sampler_chain_init
- LLAMA_API struct llama_perf_sampler_data llama_perf_sampler (const struct llama_sampler * chain);
- LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
- LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
- LLAMA_API void llama_perf_dump_yaml(FILE * stream, const struct llama_context * ctx);
- #ifdef __cplusplus
- }
- #endif
- #endif // LLAMA_H
|