123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 |
- From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
- From: Michael Yang <mxyng@pm.me>
- Date: Thu, 17 Oct 2024 17:19:25 -0700
- Subject: [PATCH] add unpad operator
- ---
- ggml/include/ggml.h | 10 ++++
- ggml/src/ggml-cuda.cu | 4 ++
- ggml/src/ggml-cuda/pad.cu | 46 +++++++++++++++++++
- ggml/src/ggml-cuda/pad.cuh | 1 +
- ggml/src/ggml-metal.m | 33 ++++++++++++++
- ggml/src/ggml-metal.metal | 45 ++++++++++++++++++
- ggml/src/ggml.c | 93 +++++++++++++++++++++++++++++++++++++-
- 7 files changed, 230 insertions(+), 2 deletions(-)
- diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
- index ce3d92cb..962cb5f7 100644
- --- a/ggml/include/ggml.h
- +++ b/ggml/include/ggml.h
- @@ -506,6 +506,7 @@ extern "C" {
- GGML_OP_POOL_2D_BACK,
- GGML_OP_UPSCALE, // nearest interpolate
- GGML_OP_PAD,
- + GGML_OP_UNPAD,
- GGML_OP_ARANGE,
- GGML_OP_TIMESTEP_EMBEDDING,
- GGML_OP_ARGSORT,
- @@ -1764,6 +1765,15 @@ extern "C" {
- int p2,
- int p3);
-
- + // unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
- + GGML_API struct ggml_tensor * ggml_unpad(
- + struct ggml_context * ctx,
- + struct ggml_tensor * a,
- + int p0,
- + int p1,
- + int p2,
- + int p3);
- +
- // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
- // timesteps: [N,]
- // return: [N, dim]
- diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu
- index fe77b81c..6e84af56 100644
- --- a/ggml/src/ggml-cuda.cu
- +++ b/ggml/src/ggml-cuda.cu
- @@ -2270,6 +2270,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
- case GGML_OP_PAD:
- ggml_cuda_op_pad(ctx, dst);
- break;
- + case GGML_OP_UNPAD:
- + ggml_cuda_op_unpad(ctx, dst);
- + break;
- case GGML_OP_ARANGE:
- ggml_cuda_op_arange(ctx, dst);
- break;
- @@ -2992,6 +2995,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
- case GGML_OP_GROUP_NORM:
- case GGML_OP_UPSCALE:
- case GGML_OP_PAD:
- + case GGML_OP_UNPAD:
- case GGML_OP_ARANGE:
- case GGML_OP_TIMESTEP_EMBEDDING:
- case GGML_OP_LEAKY_RELU:
- diff --git a/ggml/src/ggml-cuda/pad.cu b/ggml/src/ggml-cuda/pad.cu
- index aba539e8..39fd4b16 100644
- --- a/ggml/src/ggml-cuda/pad.cu
- +++ b/ggml/src/ggml-cuda/pad.cu
- @@ -47,3 +47,49 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
- dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
- }
- +
- +static __global__ void unpad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
- + // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
- + // blockIdx.y: idx of ne1
- + // blockIDx.x: idx of ne0 / BLOCK_SIZE
- + int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- + if (nidx >= ne0) {
- + return;
- + }
- +
- + // operation
- + int offset_dst =
- + nidx +
- + blockIdx.y * ne0 +
- + blockIdx.z * ne0 * gridDim.y;
- + if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
- + int offset_src =
- + nidx +
- + blockIdx.y * ne00 +
- + blockIdx.z * ne00 * ne01;
- + dst[offset_dst] = x[offset_src];
- + }
- +}
- +
- +static void unpad_f32_cuda(const float * x, float * dst,
- + const int ne00, const int ne01, const int ne02, const int ne03,
- + const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
- + int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
- + dim3 gridDim(num_blocks, ne1, ne2*ne3);
- + unpad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
- +}
- +
- +void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- + const ggml_tensor * src0 = dst->src[0];
- + const float * src0_d = (const float *)src0->data;
- + float * dst_d = (float *)dst->data;
- + cudaStream_t stream = ctx.stream();
- +
- + GGML_ASSERT(src0->type == GGML_TYPE_F32);
- + GGML_ASSERT(dst->type == GGML_TYPE_F32);
- + GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- +
- + unpad_f32_cuda(src0_d, dst_d,
- + src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
- + dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
- +}
- diff --git a/ggml/src/ggml-cuda/pad.cuh b/ggml/src/ggml-cuda/pad.cuh
- index 8fd386b0..e2ededc3 100644
- --- a/ggml/src/ggml-cuda/pad.cuh
- +++ b/ggml/src/ggml-cuda/pad.cuh
- @@ -3,3 +3,4 @@
- #define CUDA_PAD_BLOCK_SIZE 256
-
- void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
- +void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
- diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m
- index 829c5e39..25702d85 100644
- --- a/ggml/src/ggml-metal.m
- +++ b/ggml/src/ggml-metal.m
- @@ -193,6 +193,7 @@
- GGML_METAL_KERNEL_TYPE_IM2COL_F32,
- GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
- GGML_METAL_KERNEL_TYPE_PAD_F32,
- + GGML_METAL_KERNEL_TYPE_UNPAD_F32,
- GGML_METAL_KERNEL_TYPE_ARANGE_F32,
- GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
- GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
- @@ -689,6 +690,7 @@ static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
- + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UNPAD_F32, unpad_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
- @@ -846,6 +848,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx
- return false;
- case GGML_OP_UPSCALE:
- case GGML_OP_PAD:
- + case GGML_OP_UNPAD:
- case GGML_OP_ARANGE:
- case GGML_OP_TIMESTEP_EMBEDDING:
- case GGML_OP_ARGSORT:
- @@ -2655,6 +2658,36 @@ static void ggml_metal_encode_node(
-
- const int nth = MIN(1024, ne0);
-
- + [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- + } break;
- + case GGML_OP_UNPAD:
- + {
- + GGML_ASSERT(src0->type == GGML_TYPE_F32);
- +
- + id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UNPAD_F32].pipeline;
- +
- + [encoder setComputePipelineState:pipeline];
- + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- + [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
- + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
- + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
- + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
- + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
- + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
- + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
- + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
- + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
- + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
- + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
- + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
- + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
- + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
- + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
- + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
- +
- + const int nth = MIN(1024, ne0);
- +
- [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_ARANGE:
- diff --git a/ggml/src/ggml-metal.metal b/ggml/src/ggml-metal.metal
- index 2b200032..09887511 100644
- --- a/ggml/src/ggml-metal.metal
- +++ b/ggml/src/ggml-metal.metal
- @@ -2029,6 +2029,51 @@ kernel void kernel_pad_f32(
- }
- }
-
- +kernel void kernel_unpad_f32(
- + device const char * src0,
- + device char * dst,
- + constant int64_t & ne00,
- + constant int64_t & ne01,
- + constant int64_t & ne02,
- + constant int64_t & ne03,
- + constant uint64_t & nb00,
- + constant uint64_t & nb01,
- + constant uint64_t & nb02,
- + constant uint64_t & nb03,
- + constant int64_t & ne0,
- + constant int64_t & ne1,
- + constant int64_t & ne2,
- + constant int64_t & ne3,
- + constant uint64_t & nb0,
- + constant uint64_t & nb1,
- + constant uint64_t & nb2,
- + constant uint64_t & nb3,
- + uint3 tgpig[[threadgroup_position_in_grid]],
- + uint3 tpitg[[thread_position_in_threadgroup]],
- + uint3 ntg[[threads_per_threadgroup]]) {
- +
- + const int64_t i3 = tgpig.z;
- + const int64_t i2 = tgpig.y;
- + const int64_t i1 = tgpig.x;
- +
- + const int64_t i03 = i3;
- + const int64_t i02 = i2;
- + const int64_t i01 = i1;
- +
- + device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
- + device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
- +
- + if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
- + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
- + if (i0 < ne00) {
- + dst_ptr[i0] = src0_ptr[i0];
- + }
- + }
- +
- + return;
- + }
- +}
- +
- kernel void kernel_arange_f32(
- device char * dst,
- constant int64_t & ne0,
- diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
- index bcbc32d9..f4864ac8 100644
- --- a/ggml/src/ggml.c
- +++ b/ggml/src/ggml.c
- @@ -2997,6 +2997,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
- "POOL_2D_BACK",
- "UPSCALE",
- "PAD",
- + "UNPAD",
- "ARANGE",
- "TIMESTEP_EMBEDDING",
- "ARGSORT",
- @@ -3030,7 +3031,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
- "OPT_STEP_ADAMW",
- };
-
- -static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
- +static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
-
- static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
- "none",
- @@ -3091,6 +3092,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
- "pool_2d_back(x)",
- "upscale(x)",
- "pad(x)",
- + "unpad(x)",
- "arange(start, stop, step)",
- "timestep_embedding(timesteps, dim, max_period)",
- "argsort(x)",
- @@ -3124,7 +3126,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
- "adamw(x)",
- };
-
- -static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
- +static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
-
- static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
-
- @@ -6955,6 +6957,32 @@ struct ggml_tensor * ggml_pad(
- return result;
- }
-
- +// ggml_unpad
- +
- +struct ggml_tensor * ggml_unpad(
- + struct ggml_context * ctx,
- + struct ggml_tensor * a,
- + int p0, int p1, int p2, int p3) {
- + bool is_node = false;
- +
- + if (a->grad) {
- + GGML_ABORT("fatal error"); // TODO: implement backward
- + is_node = true;
- + }
- +
- + struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
- + a->ne[0] - p0,
- + a->ne[1] - p1,
- + a->ne[2] - p2,
- + a->ne[3] - p3);
- +
- + result->op = GGML_OP_UNPAD;
- + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- + result->src[0] = a;
- +
- + return result;
- +}
- +
- // ggml_arange
-
- struct ggml_tensor * ggml_arange(
- @@ -15312,6 +15340,58 @@ static void ggml_compute_forward_pad(
- }
- }
-
- +static void ggml_compute_forward_unpad_f32(
- + const struct ggml_compute_params *params,
- + struct ggml_tensor *dst) {
- +
- + const struct ggml_tensor * src0 = dst->src[0];
- +
- + GGML_ASSERT(src0->nb[0] == sizeof(float));
- + GGML_ASSERT( dst->nb[0] == sizeof(float));
- +
- + const int ith = params->ith;
- + const int nth = params->nth;
- +
- + GGML_TENSOR_UNARY_OP_LOCALS
- +
- + float * dst_ptr = (float *) dst->data;
- +
- + // TODO: optimize
- +
- + for (int64_t i2 = 0; i2 < ne2; ++i2) {
- + for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
- + for (int64_t i0 = 0; i0 < ne0; ++i0) {
- + for (int64_t i3 = 0; i3 < ne3; ++i3) {
- + const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
- +
- + const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- +
- + if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- + dst_ptr[dst_idx] = *src_ptr;
- + }
- + }
- + }
- + }
- + }
- +}
- +
- +static void ggml_compute_forward_unpad(
- + const struct ggml_compute_params * params,
- + struct ggml_tensor * dst) {
- +
- + const struct ggml_tensor * src0 = dst->src[0];
- +
- + switch (src0->type) {
- + case GGML_TYPE_F32:
- + {
- + ggml_compute_forward_unpad_f32(params, dst);
- + } break;
- + default:
- + {
- + GGML_ABORT("fatal error");
- + }
- + }
- +}
-
- // ggml_compute_forward_arange
-
- @@ -17294,6 +17374,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
- {
- ggml_compute_forward_pad(params, tensor);
- } break;
- + case GGML_OP_UNPAD:
- + {
- + ggml_compute_forward_unpad(params, tensor);
- + } break;
- case GGML_OP_ARANGE:
- {
- ggml_compute_forward_arange(params, tensor);
- @@ -18369,6 +18453,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
- {
- GGML_ABORT("fatal error"); // TODO: not implemented
- }
- + case GGML_OP_UNPAD:
- + {
- + GGML_ABORT("fatal error"); // TODO: not implemented
- + }
- case GGML_OP_ARANGE:
- {
- GGML_ABORT("fatal error"); // TODO: not implemented
- @@ -19165,6 +19253,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
- } break;
- case GGML_OP_UPSCALE:
- case GGML_OP_PAD:
- + case GGML_OP_UNPAD:
- case GGML_OP_ARANGE:
- case GGML_OP_TIMESTEP_EMBEDDING:
- case GGML_OP_ARGSORT:
|