ggml.go 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
  1. package llm
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "slices"
  8. "strings"
  9. "sync"
  10. "github.com/ollama/ollama/util/bufioutil"
  11. )
  12. type GGML struct {
  13. container
  14. model
  15. }
  16. type model interface {
  17. KV() KV
  18. Tensors() *Tensors
  19. }
  20. type KV map[string]any
  21. func (kv KV) u64(key string) uint64 {
  22. switch v := kv[key].(type) {
  23. case uint64:
  24. return v
  25. case uint32:
  26. return uint64(v)
  27. case float64:
  28. return uint64(v)
  29. default:
  30. return 0
  31. }
  32. }
  33. func (kv KV) Architecture() string {
  34. if s, ok := kv["general.architecture"].(string); ok {
  35. return s
  36. }
  37. return "unknown"
  38. }
  39. func (kv KV) Kind() string {
  40. if s, ok := kv["general.type"].(string); ok {
  41. return s
  42. }
  43. return "unknown"
  44. }
  45. func (kv KV) ParameterCount() uint64 {
  46. return kv.u64("general.parameter_count")
  47. }
  48. func (kv KV) FileType() fileType {
  49. if u64 := kv.u64("general.file_type"); u64 > 0 {
  50. return fileType(uint32(u64))
  51. }
  52. return fileTypeUnknown
  53. }
  54. func (kv KV) BlockCount() uint64 {
  55. return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
  56. }
  57. func (kv KV) HeadCount() uint64 {
  58. return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
  59. }
  60. func (kv KV) HeadCountKV() uint64 {
  61. if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
  62. return headCountKV
  63. }
  64. return 1
  65. }
  66. func (kv KV) EmbeddingHeadCount() uint64 {
  67. if heads := kv.HeadCount(); heads > 0 {
  68. return kv.EmbeddingLength() / kv.HeadCount()
  69. }
  70. return 0
  71. }
  72. func (kv KV) EmbeddingHeadCountK() uint64 {
  73. if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
  74. return k
  75. }
  76. return kv.EmbeddingHeadCount()
  77. }
  78. func (kv KV) EmbeddingHeadCountV() uint64 {
  79. if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
  80. return v
  81. }
  82. return kv.EmbeddingHeadCount()
  83. }
  84. func (kv KV) GQA() uint64 {
  85. return kv.HeadCount() / kv.HeadCountKV()
  86. }
  87. func (kv KV) EmbeddingLength() uint64 {
  88. return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
  89. }
  90. func (kv KV) ContextLength() uint64 {
  91. return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
  92. }
  93. func (kv KV) ChatTemplate() string {
  94. s, _ := kv["tokenizer.chat_template"].(string)
  95. return s
  96. }
  97. type Tensors struct {
  98. Items []*Tensor
  99. Offset uint64
  100. layers map[string]Layer
  101. layersOnce sync.Once
  102. }
  103. func (ts *Tensors) Layers() map[string]Layer {
  104. ts.layersOnce.Do(func() {
  105. ts.layers = make(map[string]Layer)
  106. for _, t := range ts.Items {
  107. parts := strings.Split(t.Name, ".")
  108. if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
  109. if len(parts) > index+2 {
  110. // blk and mm should have a number after them, join it
  111. parts = append(
  112. []string{strings.Join(parts[:index+2], ".")},
  113. parts[index+2:]...)
  114. }
  115. }
  116. if _, ok := ts.layers[parts[0]]; !ok {
  117. ts.layers[parts[0]] = make(Layer)
  118. }
  119. ts.layers[parts[0]][strings.Join(parts[1:], ".")] = t
  120. }
  121. })
  122. return ts.layers
  123. }
  124. type Layer map[string]*Tensor
  125. func (l Layer) size() (size uint64) {
  126. for _, t := range l {
  127. size += t.Size()
  128. }
  129. return size
  130. }
  131. type Tensor struct {
  132. Name string `json:"name"`
  133. Kind uint32 `json:"kind"`
  134. Offset uint64 `json:"-"`
  135. // Shape is the number of elements in each dimension
  136. Shape []uint64 `json:"shape"`
  137. io.WriterTo `json:"-"`
  138. }
  139. func (t Tensor) block() (n int) {
  140. if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
  141. return -1
  142. }
  143. return
  144. }
  145. func (t Tensor) blockSize() uint64 {
  146. switch t.Kind {
  147. case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
  148. return 1
  149. case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
  150. return 32
  151. default: // All others
  152. return 256
  153. }
  154. }
  155. func (t Tensor) typeSize() uint64 {
  156. blockSize := t.blockSize()
  157. switch t.Kind {
  158. case 0: // FP32
  159. return 4
  160. case 1: // FP16
  161. return 2
  162. case 2: // Q4_0
  163. return 2 + blockSize/2
  164. case 3: // Q4_1
  165. return 2 + 2 + blockSize/2
  166. case 6: // Q5_0
  167. return 2 + 4 + blockSize/2
  168. case 7: // Q5_1
  169. return 2 + 2 + 4 + blockSize/2
  170. case 8: // Q8_0
  171. return 2 + blockSize
  172. case 9: // Q8_1
  173. return 4 + 4 + blockSize
  174. case 10: // Q2_K
  175. return blockSize/16 + blockSize/4 + 2 + 2
  176. case 11: // Q3_K
  177. return blockSize/8 + blockSize/4 + 12 + 2
  178. case 12: // Q4_K
  179. return 2 + 2 + 12 + blockSize/2
  180. case 13: // Q5_K
  181. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  182. case 14: // Q6_K
  183. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  184. case 15: // Q8_K
  185. return 2 + blockSize + 2*blockSize/16
  186. case 16: // IQ2_XXS
  187. return 2 + 2*blockSize/8
  188. case 17: // IQ2_XS
  189. return 2 + 2*blockSize/8 + blockSize/32
  190. case 18: // IQ3_XXS
  191. return 2 + blockSize/4 + blockSize/8
  192. case 19: // IQ1_S
  193. return 2 + blockSize/8 + blockSize/16
  194. case 20: // IQ4_NL
  195. return 2 + blockSize/2
  196. case 21: // IQ3_S
  197. return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
  198. case 22: // IQ2_S
  199. return 2 + blockSize/4 + blockSize/16
  200. case 23: // IQ4_XS
  201. return 2 + 2 + blockSize/2 + blockSize/64
  202. case 24: // I8
  203. return 1
  204. case 25: // I16
  205. return 2
  206. case 26: // I32
  207. return 4
  208. case 27: // I64
  209. return 8
  210. case 28: // F64
  211. return 8
  212. case 29: // IQ1_M
  213. return blockSize/8 + blockSize/16 + blockSize/32
  214. case 30: // BF16
  215. return 2
  216. default:
  217. return 0
  218. }
  219. }
  220. func (t Tensor) parameters() uint64 {
  221. var count uint64 = 1
  222. for _, n := range t.Shape {
  223. count *= n
  224. }
  225. return count
  226. }
  227. func (t Tensor) Size() uint64 {
  228. return t.parameters() * t.typeSize() / t.blockSize()
  229. }
  230. type container interface {
  231. Name() string
  232. Decode(io.ReadSeeker) (model, error)
  233. }
  234. const (
  235. // Magic constant for `ggml` files (unversioned).
  236. FILE_MAGIC_GGML = 0x67676d6c
  237. // Magic constant for `ggml` files (versioned, ggmf).
  238. FILE_MAGIC_GGMF = 0x67676d66
  239. // Magic constant for `ggml` files (versioned, ggjt).
  240. FILE_MAGIC_GGJT = 0x67676a74
  241. // Magic constant for `ggla` files (LoRA adapter).
  242. FILE_MAGIC_GGLA = 0x67676C61
  243. // Magic constant for `gguf` files (versioned, gguf)
  244. FILE_MAGIC_GGUF_LE = 0x46554747
  245. FILE_MAGIC_GGUF_BE = 0x47475546
  246. )
  247. var ErrUnsupportedFormat = errors.New("unsupported model format")
  248. func DetectGGMLType(b []byte) string {
  249. switch binary.LittleEndian.Uint32(b[:4]) {
  250. case FILE_MAGIC_GGML:
  251. return "ggml"
  252. case FILE_MAGIC_GGMF:
  253. return "ggmf"
  254. case FILE_MAGIC_GGJT:
  255. return "ggjt"
  256. case FILE_MAGIC_GGLA:
  257. return "ggla"
  258. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  259. return "gguf"
  260. default:
  261. return ""
  262. }
  263. }
  264. // DecodeGGML decodes a GGML model from the given reader.
  265. //
  266. // It collects array values for arrays with a size less than or equal to
  267. // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
  268. // the maxArraySize is negative, all arrays are collected.
  269. func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
  270. if maxArraySize == 0 {
  271. maxArraySize = 1024
  272. }
  273. rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
  274. var magic uint32
  275. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  276. return nil, 0, err
  277. }
  278. var c container
  279. switch magic {
  280. case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
  281. return nil, 0, ErrUnsupportedFormat
  282. case FILE_MAGIC_GGLA:
  283. c = &containerGGLA{}
  284. case FILE_MAGIC_GGUF_LE:
  285. c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
  286. case FILE_MAGIC_GGUF_BE:
  287. c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
  288. default:
  289. return nil, 0, errors.New("invalid file magic")
  290. }
  291. model, err := c.Decode(rs)
  292. if err != nil {
  293. return nil, 0, err
  294. }
  295. offset, err := rs.Seek(0, io.SeekCurrent)
  296. if err != nil {
  297. return nil, 0, err
  298. }
  299. // final model type
  300. return &GGML{
  301. container: c,
  302. model: model,
  303. }, offset, nil
  304. }
  305. func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
  306. embedding := llm.KV().EmbeddingLength()
  307. heads := llm.KV().HeadCount()
  308. headsKV := llm.KV().HeadCountKV()
  309. vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
  310. embeddingHeads := llm.KV().EmbeddingHeadCount()
  311. embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
  312. layers := llm.Tensors().Layers()
  313. switch llm.KV().Architecture() {
  314. case "llama":
  315. fullOffload = max(
  316. 4*batch*(1+4*embedding+context*(1+heads)),
  317. 4*batch*(embedding+vocab),
  318. )
  319. partialOffload = 4 * batch * embedding
  320. partialOffload += max(
  321. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
  322. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  323. )
  324. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  325. // mixtral 8x22b
  326. ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
  327. partialOffload = max(
  328. 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
  329. 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
  330. )
  331. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  332. // mixtral 8x7b
  333. ffnGateWeight1 := ffnGateWeight.Shape[1]
  334. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  335. partialOffload = max(
  336. 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  337. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  338. )
  339. }
  340. case "gemma", "gemma2":
  341. fullOffload = max(
  342. 4*batch*(embedding+vocab),
  343. 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
  344. )
  345. partialOffload = max(
  346. 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
  347. 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
  348. 4*embeddingHeadsK*context*8+
  349. embedding*embeddingHeadsK*heads*9/16,
  350. )
  351. case "command-r":
  352. fullOffload = max(
  353. 4*batch*(embedding+vocab),
  354. 4*batch*(2+4*embedding+context*(1+heads)),
  355. )
  356. partialOffload = max(
  357. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  358. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  359. )
  360. case "qwen2":
  361. fullOffload = max(
  362. 4*batch*(embedding+vocab),
  363. 4*batch*(1+2*embedding+context+context*heads),
  364. )
  365. partialOffload = max(
  366. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  367. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  368. )
  369. case "phi2":
  370. fullOffload = max(
  371. 4*batch*(embedding+vocab),
  372. 4*batch*(1+4*embedding+context+context*heads),
  373. )
  374. partialOffload = max(
  375. 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
  376. 4*batch*(2+3*embedding+context+context*heads),
  377. )
  378. case "stablelm":
  379. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  380. partialOffload = max(
  381. 4*batch*(vocab+2*embedding),
  382. fullOffload,
  383. )
  384. case "deepseek2":
  385. fullOffload = max(
  386. 4*batch*(3*embedding+vocab),
  387. 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
  388. )
  389. partialOffload = max(
  390. 4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
  391. 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
  392. )
  393. case "chatglm":
  394. fullOffload = 4 * batch * (embedding + vocab)
  395. partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
  396. if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
  397. fullOffload = max(
  398. fullOffload,
  399. 4*batch*(2+
  400. 2*embedding+
  401. context+
  402. context*heads+
  403. embeddingHeadsK*heads+
  404. qkvBias.Shape[0]),
  405. )
  406. partialOffload = max(
  407. partialOffload,
  408. 4*batch*(1+
  409. 2*embedding+
  410. embeddingHeadsK*heads+
  411. context+
  412. context*heads)+
  413. 4*embeddingHeadsK*context+
  414. 4*context*embeddingHeadsK+
  415. 4*qkvBias.Shape[0],
  416. )
  417. }
  418. }
  419. return
  420. }