12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622 |
- /**
- * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #pragma once
- //
- // GGML Tensor Library
- //
- // This documentation is still a work in progress.
- // If you wish some specific topics to be covered, feel free to drop a comment:
- //
- // https://github.com/ggerganov/whisper.cpp/issues/40
- //
- // ## Overview
- //
- // This library implements:
- //
- // - a set of tensor operations
- // - automatic differentiation
- // - basic optimization algorithms
- //
- // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
- // but is not limited to, the following:
- //
- // - linear regression
- // - support vector machines
- // - neural networks
- //
- // The library allows the user to define a certain function using the available tensor operations. This function
- // definition is represented internally via a computation graph. Each tensor operation in the function definition
- // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
- // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
- // using one of the available optimization algorithms.
- //
- // For example, here we define the function: f(x) = a*x^2 + b
- //
- // {
- // struct ggml_init_params params = {
- // .mem_size = 16*1024*1024,
- // .mem_buffer = NULL,
- // };
- //
- // // memory allocation happens here
- // struct ggml_context * ctx = ggml_init(params);
- //
- // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- //
- // ggml_set_param(ctx, x); // x is an input variable
- //
- // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
- // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
- //
- // ...
- // }
- //
- // Notice that the function definition above does not involve any actual computation. The computation is performed only
- // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
- //
- // {
- // ...
- //
- // struct ggml_cgraph gf = ggml_build_forward(f);
- //
- // // set the input variable and parameter values
- // ggml_set_f32(x, 2.0f);
- // ggml_set_f32(a, 3.0f);
- // ggml_set_f32(b, 4.0f);
- //
- // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
- //
- // printf("f = %f\n", ggml_get_f32_1d(f, 0));
- //
- // ...
- // }
- //
- // The actual computation is performed in the ggml_graph_compute() function.
- //
- // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
- // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
- // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
- // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
- // actually needed.
- //
- // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
- // differentiation and optimization algorithms.
- //
- // The described approach allows to define the function graph once and then compute its forward or backward graphs
- // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
- // the user can avoid the memory allocation overhead at runtime.
- //
- // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
- // citizens, but in theory the library can be extended to support FP8 and integer data types.
- //
- // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
- // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
- // clear that the library needs to support more complex operations. The way to support these operations is not clear
- // yet, but a few examples are demonstrated in the following operations:
- //
- // - ggml_permute()
- // - ggml_conv_1d_1s()
- // - ggml_conv_1d_2s()
- //
- // For each tensor operator, the library implements a forward and backward computation function. The forward function
- // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
- // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
- // calculus class, or watch the following video:
- //
- // What is Automatic Differentiation?
- // https://www.youtube.com/watch?v=wG_nF1awSSY
- //
- //
- // ## Tensor data (struct ggml_tensor)
- //
- // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
- // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
- // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
- //
- // {
- // struct ggml_tensor * c = ggml_add(ctx, a, b);
- //
- // assert(c->src[0] == a);
- // assert(c->src[1] == b);
- // }
- //
- // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
- // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
- // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
- // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
- // contiguous in memory.
- //
- // The data of the tensor is accessed via the "data" pointer. For example:
- //
- // {
- // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
- //
- // // a[2, 1] = 1.0f;
- // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
- //
- // // a[0, 2] = 2.0f;
- // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
- //
- // ...
- // }
- //
- // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
- //
- // ## The matrix multiplication operator (ggml_mul_mat)
- //
- // TODO
- //
- //
- // ## Multi-threading
- //
- // TODO
- //
- //
- // ## Overview of ggml.c
- //
- // TODO
- //
- //
- // ## SIMD optimizations
- //
- // TODO
- //
- //
- // ## Debugging ggml
- //
- // TODO
- //
- //
- #ifdef GGML_SHARED
- # if defined(_WIN32) && !defined(__MINGW32__)
- # ifdef GGML_BUILD
- # define GGML_API __declspec(dllexport)
- # else
- # define GGML_API __declspec(dllimport)
- # endif
- # else
- # define GGML_API __attribute__ ((visibility ("default")))
- # endif
- #else
- # define GGML_API
- #endif
- #include <stdint.h>
- #include <stddef.h>
- #include <stdbool.h>
- #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
- #define GGML_FILE_VERSION 1
- #define GGML_QNT_VERSION 2 // bump this on quantization format changes
- #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
- #define GGML_MAX_DIMS 4
- #define GGML_MAX_NODES 4096
- #define GGML_MAX_PARAMS 256
- #define GGML_MAX_CONTEXTS 64
- #define GGML_MAX_SRC 6
- #define GGML_MAX_NAME 48
- #define GGML_DEFAULT_N_THREADS 4
- #define GGML_EXIT_SUCCESS 0
- #define GGML_EXIT_ABORTED 1
- #define GGML_UNUSED(x) (void)(x)
- #define GGML_ASSERT(x) \
- do { \
- if (!(x)) { \
- fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
- abort(); \
- } \
- } while (0)
- // used to copy the number of elements and stride in bytes of tensors into local variables.
- // main purpose is to reduce code duplication and improve readability.
- //
- // example:
- //
- // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
- // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
- //
- #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
- const type prefix##0 = (pointer)->array[0]; \
- GGML_UNUSED(prefix##0);
- #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
- GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
- const type prefix##1 = (pointer)->array[1]; \
- GGML_UNUSED(prefix##1);
- #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
- GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
- const type prefix##2 = (pointer)->array[2]; \
- GGML_UNUSED(prefix##2);
- #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
- GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
- const type prefix##3 = (pointer)->array[3]; \
- GGML_UNUSED(prefix##3);
- #ifdef __cplusplus
- extern "C" {
- #endif
- #ifdef __ARM_NEON
- // we use the built-in 16-bit float type
- typedef __fp16 ggml_fp16_t;
- #else
- typedef uint16_t ggml_fp16_t;
- #endif
- // convert FP16 <-> FP32
- GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
- GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
- GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
- GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
- struct ggml_object;
- struct ggml_context;
- enum ggml_type {
- GGML_TYPE_F32 = 0,
- GGML_TYPE_F16 = 1,
- GGML_TYPE_Q4_0 = 2,
- GGML_TYPE_Q4_1 = 3,
- // GGML_TYPE_Q4_2 = 4, support has been removed
- // GGML_TYPE_Q4_3 (5) support has been removed
- GGML_TYPE_Q5_0 = 6,
- GGML_TYPE_Q5_1 = 7,
- GGML_TYPE_Q8_0 = 8,
- GGML_TYPE_Q8_1 = 9,
- // k-quantizations
- GGML_TYPE_Q2_K = 10,
- GGML_TYPE_Q3_K = 11,
- GGML_TYPE_Q4_K = 12,
- GGML_TYPE_Q5_K = 13,
- GGML_TYPE_Q6_K = 14,
- GGML_TYPE_Q8_K = 15,
- GGML_TYPE_I8,
- GGML_TYPE_I16,
- GGML_TYPE_I32,
- GGML_TYPE_COUNT,
- };
- enum ggml_backend {
- GGML_BACKEND_CPU = 0,
- GGML_BACKEND_GPU = 10,
- GGML_BACKEND_GPU_SPLIT = 20,
- };
- // model file types
- enum ggml_ftype {
- GGML_FTYPE_UNKNOWN = -1,
- GGML_FTYPE_ALL_F32 = 0,
- GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
- GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
- };
- // available tensor operations:
- enum ggml_op {
- GGML_OP_NONE = 0,
- GGML_OP_DUP,
- GGML_OP_ADD,
- GGML_OP_ADD1,
- GGML_OP_ACC,
- GGML_OP_SUB,
- GGML_OP_MUL,
- GGML_OP_DIV,
- GGML_OP_SQR,
- GGML_OP_SQRT,
- GGML_OP_LOG,
- GGML_OP_SUM,
- GGML_OP_SUM_ROWS,
- GGML_OP_MEAN,
- GGML_OP_ARGMAX,
- GGML_OP_REPEAT,
- GGML_OP_REPEAT_BACK,
- GGML_OP_ABS,
- GGML_OP_SGN,
- GGML_OP_NEG,
- GGML_OP_STEP,
- GGML_OP_TANH,
- GGML_OP_ELU,
- GGML_OP_RELU,
- GGML_OP_GELU,
- GGML_OP_GELU_QUICK,
- GGML_OP_SILU,
- GGML_OP_SILU_BACK,
- GGML_OP_NORM, // normalize
- GGML_OP_RMS_NORM,
- GGML_OP_RMS_NORM_BACK,
- GGML_OP_MUL_MAT,
- GGML_OP_OUT_PROD,
- GGML_OP_SCALE,
- GGML_OP_SET,
- GGML_OP_CPY,
- GGML_OP_CONT,
- GGML_OP_RESHAPE,
- GGML_OP_VIEW,
- GGML_OP_PERMUTE,
- GGML_OP_TRANSPOSE,
- GGML_OP_GET_ROWS,
- GGML_OP_GET_ROWS_BACK,
- GGML_OP_DIAG,
- GGML_OP_DIAG_MASK_INF,
- GGML_OP_DIAG_MASK_ZERO,
- GGML_OP_SOFT_MAX,
- GGML_OP_SOFT_MAX_BACK,
- GGML_OP_ROPE,
- GGML_OP_ROPE_BACK,
- GGML_OP_ALIBI,
- GGML_OP_CLAMP,
- GGML_OP_CONV_1D,
- GGML_OP_CONV_2D,
- GGML_OP_POOL_1D,
- GGML_OP_POOL_2D,
- GGML_OP_FLASH_ATTN,
- GGML_OP_FLASH_FF,
- GGML_OP_FLASH_ATTN_BACK,
- GGML_OP_WIN_PART,
- GGML_OP_WIN_UNPART,
- GGML_OP_MAP_UNARY,
- GGML_OP_MAP_BINARY,
- GGML_OP_MAP_CUSTOM1,
- GGML_OP_MAP_CUSTOM2,
- GGML_OP_MAP_CUSTOM3,
- GGML_OP_CROSS_ENTROPY_LOSS,
- GGML_OP_CROSS_ENTROPY_LOSS_BACK,
- GGML_OP_COUNT,
- };
- // ggml object
- struct ggml_object {
- size_t offs;
- size_t size;
- struct ggml_object * next;
- char padding[8];
- };
- static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
- // n-dimensional tensor
- struct ggml_tensor {
- enum ggml_type type;
- enum ggml_backend backend;
- int n_dims;
- int64_t ne[GGML_MAX_DIMS]; // number of elements
- size_t nb[GGML_MAX_DIMS]; // stride in bytes:
- // nb[0] = sizeof(type)
- // nb[1] = nb[0] * ne[0] + padding
- // nb[i] = nb[i-1] * ne[i-1]
- // compute data
- enum ggml_op op;
- bool is_param;
- struct ggml_tensor * grad;
- struct ggml_tensor * src[GGML_MAX_SRC];
- // performance
- int perf_runs;
- int64_t perf_cycles;
- int64_t perf_time_us;
- void * data;
- char name[GGML_MAX_NAME];
- void * extra; // extra things e.g. for ggml-cuda.cu
- char padding[8];
- };
- static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
- // the compute plan that needs to be prepared for ggml_graph_compute()
- // since https://github.com/ggerganov/ggml/issues/287
- struct ggml_cplan {
- size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
- uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
- int n_threads;
- // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
- int n_tasks[GGML_MAX_NODES];
- // abort ggml_graph_compute when true
- bool (*abort_callback)(void * data);
- void * abort_callback_data;
- };
- // computation graph
- struct ggml_cgraph {
- int n_nodes;
- int n_leafs;
- struct ggml_tensor * nodes[GGML_MAX_NODES];
- struct ggml_tensor * grads[GGML_MAX_NODES];
- struct ggml_tensor * leafs[GGML_MAX_NODES];
- // performance
- int perf_runs;
- int64_t perf_cycles;
- int64_t perf_time_us;
- };
- // scratch buffer
- struct ggml_scratch {
- size_t offs;
- size_t size;
- void * data;
- };
- struct ggml_init_params {
- // memory pool
- size_t mem_size; // bytes
- void * mem_buffer; // if NULL, memory will be allocated internally
- bool no_alloc; // don't allocate memory for the tensor data
- };
- // compute types
- // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
- // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
- enum ggml_task_type {
- GGML_TASK_INIT = 0,
- GGML_TASK_COMPUTE,
- GGML_TASK_FINALIZE,
- };
- struct ggml_compute_params {
- enum ggml_task_type type;
- // ith = thread index, nth = number of threads
- int ith, nth;
- // work buffer for all threads
- size_t wsize;
- void * wdata;
- };
- // misc
- GGML_API void ggml_time_init(void); // call this once at the beginning of the program
- GGML_API int64_t ggml_time_ms(void);
- GGML_API int64_t ggml_time_us(void);
- GGML_API int64_t ggml_cycles(void);
- GGML_API int64_t ggml_cycles_per_ms(void);
- GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
- GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
- GGML_API void ggml_print_object (const struct ggml_object * obj);
- GGML_API void ggml_print_objects(const struct ggml_context * ctx);
- GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
- GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
- GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
- GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
- GGML_API int ggml_blck_size (enum ggml_type type);
- GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
- GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
- GGML_API const char * ggml_type_name(enum ggml_type type);
- GGML_API const char * ggml_op_name (enum ggml_op op);
- GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_quantized(enum ggml_type type);
- // TODO: temporary until model loading of ggml examples is refactored
- GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
- GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
- // use this to compute the memory overhead of a tensor
- GGML_API size_t ggml_tensor_overhead(void);
- // main
- GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
- GGML_API void ggml_free(struct ggml_context * ctx);
- GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
- GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
- GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
- GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
- GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
- GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
- GGML_API struct ggml_tensor * ggml_new_tensor(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t *ne);
- GGML_API struct ggml_tensor * ggml_new_tensor_1d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0);
- GGML_API struct ggml_tensor * ggml_new_tensor_2d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1);
- GGML_API struct ggml_tensor * ggml_new_tensor_3d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- GGML_API struct ggml_tensor * ggml_new_tensor_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
- GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
- GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
- GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
- GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
- GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
- GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
- GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
- GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
- GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
- GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
- GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
- GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
- GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
- GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
- GGML_API struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name);
- GGML_API struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...);
- //
- // operations on tensors with backpropagation
- //
- GGML_API struct ggml_tensor * ggml_dup(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_add(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_add_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_add1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_add1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_acc(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_acc_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_sub(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_sub_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_mul(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_mul_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_div(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_div_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_sqr(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sqr_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sqrt(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sqrt_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_log(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_log_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // return scalar
- GGML_API struct ggml_tensor * ggml_sum(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
- GGML_API struct ggml_tensor * ggml_sum_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // mean along rows
- GGML_API struct ggml_tensor * ggml_mean(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // argmax along rows
- GGML_API struct ggml_tensor * ggml_argmax(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // if a is the same shape as b, and a is not parameter, return a
- // otherwise, return a new tensor: repeat(a) to fit in b
- GGML_API struct ggml_tensor * ggml_repeat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_repeat_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_abs(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_abs_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sgn(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sgn_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_neg(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_neg_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_step(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_step_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_tanh(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_tanh_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_elu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_elu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_relu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // TODO: double-check this computation is correct
- GGML_API struct ggml_tensor * ggml_gelu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_quick(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_silu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_silu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // a - x
- // b - dy
- GGML_API struct ggml_tensor * ggml_silu_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // normalize along rows
- // TODO: eps is hardcoded to 1e-5 for now
- GGML_API struct ggml_tensor * ggml_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_rms_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // a - x
- // b - dy
- GGML_API struct ggml_tensor * ggml_rms_norm_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // A: n columns, m rows
- // B: n columns, p rows (i.e. we transpose it internally)
- // result is m columns, p rows
- GGML_API struct ggml_tensor * ggml_mul_mat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // A: m columns, n rows,
- // B: p columns, n rows,
- // result is m columns, p rows
- GGML_API struct ggml_tensor * ggml_out_prod(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- //
- // operations on tensors without backpropagation
- //
- GGML_API struct ggml_tensor * ggml_scale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_scale_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // b -> view(a,offset,nb1,nb2,3), return modified a
- GGML_API struct ggml_tensor * ggml_set(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- // b -> view(a,offset,nb1,nb2,3), return view(a)
- GGML_API struct ggml_tensor * ggml_set_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_set_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_set_1d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset);
- // b -> view(a,offset,nb1,nb2,3), return modified a
- GGML_API struct ggml_tensor * ggml_set_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset);
- // b -> view(a,offset,nb1,nb2,3), return view(a)
- GGML_API struct ggml_tensor * ggml_set_2d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset);
- // a -> b, return view(b)
- GGML_API struct ggml_tensor * ggml_cpy(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // make contiguous
- GGML_API struct ggml_tensor * ggml_cont(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // return view(a), b specifies the new shape
- // TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // return view(a)
- // TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0);
- GGML_API struct ggml_tensor * ggml_reshape_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1);
- // return view(a)
- // TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- GGML_API struct ggml_tensor * ggml_reshape_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- // offset in bytes
- GGML_API struct ggml_tensor * ggml_view_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_view_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- size_t nb1, // row stride in bytes
- size_t offset);
- GGML_API struct ggml_tensor * ggml_view_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- size_t nb1, // row stride in bytes
- size_t nb2, // slice stride in bytes
- size_t offset);
- GGML_API struct ggml_tensor * ggml_view_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- size_t nb1, // row stride in bytes
- size_t nb2, // slice stride in bytes
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_permute(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis0,
- int axis1,
- int axis2,
- int axis3);
- // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
- GGML_API struct ggml_tensor * ggml_transpose(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_get_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_get_rows_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c);
- GGML_API struct ggml_tensor * ggml_diag(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // set elements above the diagonal to -INF
- GGML_API struct ggml_tensor * ggml_diag_mask_inf(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // set elements above the diagonal to 0
- GGML_API struct ggml_tensor * ggml_diag_mask_zero(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- GGML_API struct ggml_tensor * ggml_soft_max(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_soft_max_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_soft_max_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // rotary position embedding
- // if mode & 1 == 1, skip n_past elements
- // if mode & 2 == 1, GPT-NeoX style
- // if mode & 4 == 1, ChatGLM style
- // TODO: avoid creating a new tensor every time
- GGML_API struct ggml_tensor * ggml_rope(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_rope_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx);
- // custom RoPE, in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- float freq_base,
- float freq_scale,
- int n_ctx);
- // rotary position embedding backward, i.e compute dx from dy
- // a - dy
- GGML_API struct ggml_tensor * ggml_rope_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode);
- // alibi position embedding
- // in-place, returns view(a)
- struct ggml_tensor * ggml_alibi(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_head,
- float bias_max);
- // clamp
- // in-place, returns view(a)
- struct ggml_tensor * ggml_clamp(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float min,
- float max);
- GGML_API struct ggml_tensor * ggml_conv_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0, // stride
- int p0, // padding
- int d0); // dilation
- GGML_API struct ggml_tensor * ggml_conv_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1);
- // conv_1d with padding = half
- // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
- GGML_API struct ggml_tensor* ggml_conv_1d_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s,
- int d);
- enum ggml_op_pool {
- GGML_OP_POOL_MAX,
- GGML_OP_POOL_AVG,
- GGML_OP_POOL_COUNT,
- };
- GGML_API struct ggml_tensor* ggml_pool_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0, // kernel size
- int s0, // stride
- int p0); // padding
- GGML_API struct ggml_tensor* ggml_pool_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- int p0,
- int p1);
- GGML_API struct ggml_tensor * ggml_flash_attn(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- bool masked);
- GGML_API struct ggml_tensor * ggml_flash_attn_back(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * d,
- bool masked);
- GGML_API struct ggml_tensor * ggml_flash_ff(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b0,
- struct ggml_tensor * b1,
- struct ggml_tensor * c0,
- struct ggml_tensor * c1);
- // partition into non-overlapping windows with padding if needed
- // example:
- // a: 768 64 64 1
- // w: 14
- // res: 768 14 14 25
- // used in sam
- GGML_API struct ggml_tensor * ggml_win_part(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w);
- // reverse of ggml_win_part
- // used in sam
- GGML_API struct ggml_tensor * ggml_win_unpart(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w0,
- int h0,
- int w);
- // custom operators
- typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
- typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
- typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
- typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
- typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
- GGML_API struct ggml_tensor * ggml_map_unary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_unary_op_f32_t fun);
- GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_unary_op_f32_t fun);
- GGML_API struct ggml_tensor * ggml_map_binary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_binary_op_f32_t fun);
- GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_binary_op_f32_t fun);
- GGML_API struct ggml_tensor * ggml_map_custom1_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_f32_t fun);
- GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_f32_t fun);
- GGML_API struct ggml_tensor * ggml_map_custom2_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_f32_t fun);
- GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_f32_t fun);
- GGML_API struct ggml_tensor * ggml_map_custom3_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_f32_t fun);
- GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_f32_t fun);
- // loss function
- GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c);
- //
- // automatic differentiation
- //
- GGML_API void ggml_set_param(
- struct ggml_context * ctx,
- struct ggml_tensor * tensor);
- GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
- GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
- GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
- // ggml_graph_plan() has to be called before ggml_graph_compute()
- // when plan.work_size > 0, caller must allocate memory for plan.work_data
- GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
- GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
- GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
- // same as ggml_graph_compute() but the work data is allocated as a part of the context
- // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
- GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
- GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
- GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
- GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
- // print info and performance information for the graph
- GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
- // dump the graph into a file using the dot format
- GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
- //
- // optimization
- //
- // optimization methods
- enum ggml_opt_type {
- GGML_OPT_ADAM,
- GGML_OPT_LBFGS,
- };
- // linesearch methods
- enum ggml_linesearch {
- GGML_LINESEARCH_DEFAULT = 1,
- GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
- GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
- GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
- };
- // optimization return values
- enum ggml_opt_result {
- GGML_OPT_OK = 0,
- GGML_OPT_DID_NOT_CONVERGE,
- GGML_OPT_NO_CONTEXT,
- GGML_OPT_INVALID_WOLFE,
- GGML_OPT_FAIL,
- GGML_LINESEARCH_FAIL = -128,
- GGML_LINESEARCH_MINIMUM_STEP,
- GGML_LINESEARCH_MAXIMUM_STEP,
- GGML_LINESEARCH_MAXIMUM_ITERATIONS,
- GGML_LINESEARCH_INVALID_PARAMETERS,
- };
- // optimization parameters
- //
- // see ggml.c (ggml_opt_default_params) for default values
- //
- struct ggml_opt_params {
- enum ggml_opt_type type;
- int n_threads;
- // delta-based convergence test
- //
- // if past == 0 - disabled
- // if past > 0:
- // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
- //
- int past;
- float delta;
- // maximum number of iterations without improvement
- //
- // if 0 - disabled
- // if > 0:
- // assume convergence if no cost improvement in this number of iterations
- //
- int max_no_improvement;
- bool print_forward_graph;
- bool print_backward_graph;
- // ADAM parameters
- struct {
- int n_iter;
- float sched; // schedule multiplier (fixed, decay or warmup)
- float decay; // weight decay for AdamW, use 0.0f to disable
- float alpha; // learning rate
- float beta1;
- float beta2;
- float eps; // epsilon for numerical stability
- float eps_f; // epsilon for convergence test
- float eps_g; // epsilon for convergence test
- } adam;
- // LBFGS parameters
- struct {
- int m; // number of corrections to approximate the inv. Hessian
- int n_iter;
- int max_linesearch;
- float eps; // convergence tolerance
- float ftol; // line search tolerance
- float wolfe;
- float min_step;
- float max_step;
- enum ggml_linesearch linesearch;
- } lbfgs;
- };
- struct ggml_opt_context {
- struct ggml_context * ctx;
- struct ggml_opt_params params;
- int iter;
- int64_t nx; // number of parameter elements
- bool just_initialized;
- struct {
- struct ggml_tensor * x; // view of the parameters
- struct ggml_tensor * g1; // gradient
- struct ggml_tensor * g2; // gradient squared
- struct ggml_tensor * m; // first moment
- struct ggml_tensor * v; // second moment
- struct ggml_tensor * mh; // first moment hat
- struct ggml_tensor * vh; // second moment hat
- struct ggml_tensor * pf; // past function values
- float fx_best;
- float fx_prev;
- int n_no_improvement;
- } adam;
- struct {
- struct ggml_tensor * x; // current parameters
- struct ggml_tensor * xp; // previous parameters
- struct ggml_tensor * g; // current gradient
- struct ggml_tensor * gp; // previous gradient
- struct ggml_tensor * d; // search direction
- struct ggml_tensor * pf; // past function values
- struct ggml_tensor * lmal; // the L-BFGS memory alpha
- struct ggml_tensor * lmys; // the L-BFGS memory ys
- struct ggml_tensor * lms; // the L-BFGS memory s
- struct ggml_tensor * lmy; // the L-BFGS memory y
- float fx_best;
- float step;
- int j;
- int k;
- int end;
- int n_no_improvement;
- } lbfgs;
- };
- GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
- // optimize the function defined by the tensor f
- GGML_API enum ggml_opt_result ggml_opt(
- struct ggml_context * ctx,
- struct ggml_opt_params params,
- struct ggml_tensor * f);
- // initialize optimizer context
- GGML_API void ggml_opt_init(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_opt_params params,
- int64_t nx);
- // continue optimizing the function defined by the tensor f
- GGML_API enum ggml_opt_result ggml_opt_resume(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_tensor * f);
- // continue optimizing the function defined by the tensor f
- GGML_API enum ggml_opt_result ggml_opt_resume_g(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb);
- //
- // quantization
- //
- GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
- GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
- GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
- GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
- GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
- GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
- //
- // system info
- //
- GGML_API int ggml_cpu_has_avx (void);
- GGML_API int ggml_cpu_has_avx2 (void);
- GGML_API int ggml_cpu_has_avx512 (void);
- GGML_API int ggml_cpu_has_avx512_vbmi(void);
- GGML_API int ggml_cpu_has_avx512_vnni(void);
- GGML_API int ggml_cpu_has_fma (void);
- GGML_API int ggml_cpu_has_neon (void);
- GGML_API int ggml_cpu_has_arm_fma (void);
- GGML_API int ggml_cpu_has_f16c (void);
- GGML_API int ggml_cpu_has_fp16_va (void);
- GGML_API int ggml_cpu_has_wasm_simd (void);
- GGML_API int ggml_cpu_has_blas (void);
- GGML_API int ggml_cpu_has_cublas (void);
- GGML_API int ggml_cpu_has_clblast (void);
- GGML_API int ggml_cpu_has_gpublas (void);
- GGML_API int ggml_cpu_has_sse3 (void);
- GGML_API int ggml_cpu_has_vsx (void);
- //
- // Internal types and functions exposed for tests and benchmarks
- //
- #ifdef __cplusplus
- // restrict not standard in C++
- #define GGML_RESTRICT
- #else
- #define GGML_RESTRICT restrict
- #endif
- typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
- typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
- typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
- typedef struct {
- ggml_to_float_t to_float;
- ggml_from_float_t from_float;
- ggml_from_float_t from_float_reference;
- ggml_vec_dot_t vec_dot;
- enum ggml_type vec_dot_type;
- } ggml_type_traits_t;
- ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i);
- #ifdef __cplusplus
- }
- #endif
|