llama.h 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227
  1. /**
  2. * llama.cpp - commit a8db2a9ce64cd4417f6a312ab61858f17f0f8584 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #ifndef LLAMA_H
  27. #define LLAMA_H
  28. #include "ggml.h"
  29. #include "ggml-backend.h"
  30. #include <stddef.h>
  31. #include <stdint.h>
  32. #include <stdio.h>
  33. #include <stdbool.h>
  34. #ifdef LLAMA_SHARED
  35. # if defined(_WIN32) && !defined(__MINGW32__)
  36. # ifdef LLAMA_BUILD
  37. # define LLAMA_API __declspec(dllexport)
  38. # else
  39. # define LLAMA_API __declspec(dllimport)
  40. # endif
  41. # else
  42. # define LLAMA_API __attribute__ ((visibility ("default")))
  43. # endif
  44. #else
  45. # define LLAMA_API
  46. #endif
  47. #ifdef __GNUC__
  48. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  49. #elif defined(_MSC_VER)
  50. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  51. #else
  52. # define DEPRECATED(func, hint) func
  53. #endif
  54. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  55. #define LLAMA_MAX_RNG_STATE (64*1024)
  56. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  57. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  58. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  59. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  60. #define LLAMA_SESSION_VERSION 6
  61. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  62. #define LLAMA_STATE_SEQ_VERSION 1
  63. #ifdef __cplusplus
  64. extern "C" {
  65. #endif
  66. //
  67. // C interface
  68. //
  69. // TODO: show sample usage
  70. //
  71. struct llama_model;
  72. struct llama_context;
  73. typedef int32_t llama_pos;
  74. typedef int32_t llama_token;
  75. typedef int32_t llama_seq_id;
  76. enum llama_vocab_type {
  77. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  78. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  79. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  80. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  81. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  82. };
  83. // pre-tokenization types
  84. enum llama_vocab_pre_type {
  85. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  86. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  87. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  88. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  89. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  90. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  91. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  92. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  93. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  94. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  95. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  96. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  97. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  98. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  99. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  100. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  101. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  102. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  103. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  104. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  105. };
  106. // note: these values should be synchronized with ggml_rope
  107. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  108. enum llama_rope_type {
  109. LLAMA_ROPE_TYPE_NONE = -1,
  110. LLAMA_ROPE_TYPE_NORM = 0,
  111. LLAMA_ROPE_TYPE_NEOX = 2,
  112. LLAMA_ROPE_TYPE_GLM = 4,
  113. };
  114. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  115. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  116. LLAMA_TOKEN_TYPE_NORMAL = 1,
  117. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  118. LLAMA_TOKEN_TYPE_CONTROL = 3,
  119. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  120. LLAMA_TOKEN_TYPE_UNUSED = 5,
  121. LLAMA_TOKEN_TYPE_BYTE = 6,
  122. };
  123. enum llama_token_attr {
  124. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  125. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  126. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  127. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  128. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  129. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  130. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  131. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  132. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  133. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  134. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  135. };
  136. // model file types
  137. enum llama_ftype {
  138. LLAMA_FTYPE_ALL_F32 = 0,
  139. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  140. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  141. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  142. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  143. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  144. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  145. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  146. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  147. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  148. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  149. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  150. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  151. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  152. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  153. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  154. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  155. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  156. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  157. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  158. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  159. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  160. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  161. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  162. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  163. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  164. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  165. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  166. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  167. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  168. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  169. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  170. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  171. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  172. };
  173. enum llama_rope_scaling_type {
  174. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  175. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  176. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  177. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  178. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  179. };
  180. enum llama_pooling_type {
  181. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  182. LLAMA_POOLING_TYPE_NONE = 0,
  183. LLAMA_POOLING_TYPE_MEAN = 1,
  184. LLAMA_POOLING_TYPE_CLS = 2,
  185. LLAMA_POOLING_TYPE_LAST = 3,
  186. };
  187. enum llama_attention_type {
  188. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  189. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  190. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  191. };
  192. enum llama_split_mode {
  193. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  194. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  195. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  196. };
  197. typedef struct llama_token_data {
  198. llama_token id; // token id
  199. float logit; // log-odds of the token
  200. float p; // probability of the token
  201. } llama_token_data;
  202. typedef struct llama_token_data_array {
  203. llama_token_data * data;
  204. size_t size;
  205. bool sorted;
  206. } llama_token_data_array;
  207. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  208. // Input data for llama_decode
  209. // A llama_batch object can contain input about one or many sequences
  210. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  211. //
  212. // - token : the token ids of the input (used when embd is NULL)
  213. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  214. // - pos : the positions of the respective token in the sequence
  215. // - seq_id : the sequence to which the respective token belongs
  216. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  217. //
  218. typedef struct llama_batch {
  219. int32_t n_tokens;
  220. llama_token * token;
  221. float * embd;
  222. llama_pos * pos;
  223. int32_t * n_seq_id;
  224. llama_seq_id ** seq_id;
  225. int8_t * logits; // TODO: rename this to "output"
  226. // NOTE: helpers for smooth API transition - can be deprecated in the future
  227. // for future-proof code, use the above fields instead and ignore everything below
  228. //
  229. // pos[i] = all_pos_0 + i*all_pos_1
  230. //
  231. llama_pos all_pos_0; // used if pos == NULL
  232. llama_pos all_pos_1; // used if pos == NULL
  233. llama_seq_id all_seq_id; // used if seq_id == NULL
  234. } llama_batch;
  235. enum llama_model_kv_override_type {
  236. LLAMA_KV_OVERRIDE_TYPE_INT,
  237. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  238. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  239. LLAMA_KV_OVERRIDE_TYPE_STR,
  240. };
  241. struct llama_model_kv_override {
  242. enum llama_model_kv_override_type tag;
  243. char key[128];
  244. union {
  245. int64_t val_i64;
  246. double val_f64;
  247. bool val_bool;
  248. char val_str[128];
  249. };
  250. };
  251. struct llama_model_params {
  252. int32_t n_gpu_layers; // number of layers to store in VRAM
  253. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  254. // main_gpu interpretation depends on split_mode:
  255. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  256. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  257. // LLAMA_SPLIT_LAYER: ignored
  258. int32_t main_gpu;
  259. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  260. const float * tensor_split;
  261. // comma separated list of RPC servers to use for offloading
  262. const char * rpc_servers;
  263. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  264. // If the provided progress_callback returns true, model loading continues.
  265. // If it returns false, model loading is immediately aborted.
  266. llama_progress_callback progress_callback;
  267. // context pointer passed to the progress callback
  268. void * progress_callback_user_data;
  269. // override key-value pairs of the model meta data
  270. const struct llama_model_kv_override * kv_overrides;
  271. // Keep the booleans together to avoid misalignment during copy-by-value.
  272. bool vocab_only; // only load the vocabulary, no weights
  273. bool use_mmap; // use mmap if possible
  274. bool use_mlock; // force system to keep model in RAM
  275. bool check_tensors; // validate model tensor data
  276. };
  277. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  278. // https://github.com/ggerganov/llama.cpp/pull/7544
  279. struct llama_context_params {
  280. uint32_t seed; // RNG seed, -1 for random
  281. uint32_t n_ctx; // text context, 0 = from model
  282. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  283. uint32_t n_ubatch; // physical maximum batch size
  284. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  285. uint32_t n_threads; // number of threads to use for generation
  286. uint32_t n_threads_batch; // number of threads to use for batch processing
  287. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  288. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  289. enum llama_attention_type attention_type; // attention type to use for embeddings
  290. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  291. float rope_freq_base; // RoPE base frequency, 0 = from model
  292. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  293. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  294. float yarn_attn_factor; // YaRN magnitude scaling factor
  295. float yarn_beta_fast; // YaRN low correction dim
  296. float yarn_beta_slow; // YaRN high correction dim
  297. uint32_t yarn_orig_ctx; // YaRN original context size
  298. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  299. ggml_backend_sched_eval_callback cb_eval;
  300. void * cb_eval_user_data;
  301. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  302. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  303. // Keep the booleans together to avoid misalignment during copy-by-value.
  304. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  305. bool embeddings; // if true, extract embeddings (together with logits)
  306. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  307. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  308. // Abort callback
  309. // if it returns true, execution of llama_decode() will be aborted
  310. // currently works only with CPU execution
  311. ggml_abort_callback abort_callback;
  312. void * abort_callback_data;
  313. };
  314. // model quantization parameters
  315. typedef struct llama_model_quantize_params {
  316. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  317. enum llama_ftype ftype; // quantize to this llama_ftype
  318. enum ggml_type output_tensor_type; // output tensor type
  319. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  320. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  321. bool quantize_output_tensor; // quantize output.weight
  322. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  323. bool pure; // quantize all tensors to the default type
  324. bool keep_split; // quantize to the same number of shards
  325. void * imatrix; // pointer to importance matrix data
  326. void * kv_overrides; // pointer to vector containing overrides
  327. llama_progress_callback quantize_callback; // callback to report quantization progress
  328. void * quantize_callback_data; // user data for the callback
  329. } llama_model_quantize_params;
  330. // grammar types
  331. struct llama_grammar;
  332. // grammar element type
  333. enum llama_gretype {
  334. // end of rule definition
  335. LLAMA_GRETYPE_END = 0,
  336. // start of alternate definition for rule
  337. LLAMA_GRETYPE_ALT = 1,
  338. // non-terminal element: reference to rule
  339. LLAMA_GRETYPE_RULE_REF = 2,
  340. // terminal element: character (code point)
  341. LLAMA_GRETYPE_CHAR = 3,
  342. // inverse char(s) ([^a], [^a-b] [^abc])
  343. LLAMA_GRETYPE_CHAR_NOT = 4,
  344. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  345. // be an inclusive range ([a-z])
  346. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  347. // modifies a preceding LLAMA_GRETYPE_CHAR or
  348. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  349. LLAMA_GRETYPE_CHAR_ALT = 6,
  350. // any character (.)
  351. LLAMA_GRETYPE_CHAR_ANY = 7,
  352. };
  353. typedef struct llama_grammar_element {
  354. enum llama_gretype type;
  355. uint32_t value; // Unicode code point or rule ID
  356. } llama_grammar_element;
  357. // performance timing information
  358. struct llama_timings {
  359. double t_start_ms;
  360. double t_end_ms;
  361. double t_load_ms;
  362. double t_sample_ms;
  363. double t_p_eval_ms;
  364. double t_eval_ms;
  365. int32_t n_sample;
  366. int32_t n_p_eval;
  367. int32_t n_eval;
  368. };
  369. // used in chat template
  370. typedef struct llama_chat_message {
  371. const char * role;
  372. const char * content;
  373. } llama_chat_message;
  374. // Helpers for getting default parameters
  375. LLAMA_API struct llama_model_params llama_model_default_params(void);
  376. LLAMA_API struct llama_context_params llama_context_default_params(void);
  377. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  378. // Initialize the llama + ggml backend
  379. // If numa is true, use NUMA optimizations
  380. // Call once at the start of the program
  381. LLAMA_API void llama_backend_init(void);
  382. //optional:
  383. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  384. // Call once at the end of the program - currently only used for MPI
  385. LLAMA_API void llama_backend_free(void);
  386. LLAMA_API struct llama_model * llama_load_model_from_file(
  387. const char * path_model,
  388. struct llama_model_params params);
  389. LLAMA_API void llama_free_model(struct llama_model * model);
  390. LLAMA_API struct llama_context * llama_new_context_with_model(
  391. struct llama_model * model,
  392. struct llama_context_params params);
  393. // Frees all allocated memory
  394. LLAMA_API void llama_free(struct llama_context * ctx);
  395. LLAMA_API int64_t llama_time_us(void);
  396. LLAMA_API size_t llama_max_devices(void);
  397. LLAMA_API bool llama_supports_mmap (void);
  398. LLAMA_API bool llama_supports_mlock (void);
  399. LLAMA_API bool llama_supports_gpu_offload(void);
  400. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  401. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  402. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  403. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  404. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  405. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  406. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  407. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  408. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  409. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  410. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  411. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  412. // Get the model's RoPE frequency scaling factor
  413. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  414. // Functions to access the model's GGUF metadata scalar values
  415. // - The functions return the length of the string on success, or -1 on failure
  416. // - The output string is always null-terminated and cleared on failure
  417. // - GGUF array values are not supported by these functions
  418. // Get metadata value as a string by key name
  419. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  420. // Get the number of metadata key/value pairs
  421. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  422. // Get metadata key name by index
  423. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  424. // Get metadata value as a string by index
  425. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  426. // Get a string describing the model type
  427. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  428. // Returns the total size of all the tensors in the model in bytes
  429. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  430. // Returns the total number of parameters in the model
  431. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  432. // Get a llama model tensor
  433. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  434. // Returns true if the model contains an encoder that requires llama_encode() call
  435. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  436. // For encoder-decoder models, this function returns id of the token that must be provided
  437. // to the decoder to start generating output sequence. For other models, it returns -1.
  438. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  439. // Returns 0 on success
  440. LLAMA_API uint32_t llama_model_quantize(
  441. const char * fname_inp,
  442. const char * fname_out,
  443. const llama_model_quantize_params * params);
  444. // Apply a LoRA adapter to a loaded model
  445. // path_base_model is the path to a higher quality model to use as a base for
  446. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  447. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  448. // will be applied on top of the previous one
  449. // Returns 0 on success
  450. LLAMA_API int32_t llama_model_apply_lora_from_file(
  451. const struct llama_model * model,
  452. const char * path_lora,
  453. float scale,
  454. const char * path_base_model,
  455. int32_t n_threads);
  456. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  457. // the currently loaded vector.
  458. // n_embd should be the size of a single layer's control, and data should point
  459. // to an n_embd x n_layers buffer starting from layer 1.
  460. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  461. // See llama_control_vector_load in common to load a control vector.
  462. LLAMA_API int32_t llama_control_vector_apply(
  463. struct llama_context * lctx,
  464. const float * data,
  465. size_t len,
  466. int32_t n_embd,
  467. int32_t il_start,
  468. int32_t il_end);
  469. //
  470. // KV cache
  471. //
  472. // Information associated with an individual cell in the KV cache view.
  473. struct llama_kv_cache_view_cell {
  474. // The position for this cell. Takes KV cache shifts into account.
  475. // May be negative if the cell is not populated.
  476. llama_pos pos;
  477. };
  478. // An updateable view of the KV cache.
  479. struct llama_kv_cache_view {
  480. // Number of KV cache cells. This will be the same as the context size.
  481. int32_t n_cells;
  482. // Maximum number of sequences that can exist in a cell. It's not an error
  483. // if there are more sequences in a cell than this value, however they will
  484. // not be visible in the view cells_sequences.
  485. int32_t n_seq_max;
  486. // Number of tokens in the cache. For example, if there are two populated
  487. // cells, the first with 1 sequence id in it and the second with 2 sequence
  488. // ids then you'll have 3 tokens.
  489. int32_t token_count;
  490. // Number of populated cache cells.
  491. int32_t used_cells;
  492. // Maximum contiguous empty slots in the cache.
  493. int32_t max_contiguous;
  494. // Index to the start of the max_contiguous slot range. Can be negative
  495. // when cache is full.
  496. int32_t max_contiguous_idx;
  497. // Information for an individual cell.
  498. struct llama_kv_cache_view_cell * cells;
  499. // The sequences for each cell. There will be n_seq_max items per cell.
  500. llama_seq_id * cells_sequences;
  501. };
  502. // Create an empty KV cache view. (use only for debugging purposes)
  503. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  504. // Free a KV cache view. (use only for debugging purposes)
  505. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  506. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  507. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  508. // Returns the number of tokens in the KV cache (slow, use only for debug)
  509. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  510. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  511. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  512. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  513. // Clear the KV cache - both cell info is erased and KV data is zeroed
  514. LLAMA_API void llama_kv_cache_clear(
  515. struct llama_context * ctx);
  516. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  517. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  518. // seq_id < 0 : match any sequence
  519. // p0 < 0 : [0, p1]
  520. // p1 < 0 : [p0, inf)
  521. LLAMA_API bool llama_kv_cache_seq_rm(
  522. struct llama_context * ctx,
  523. llama_seq_id seq_id,
  524. llama_pos p0,
  525. llama_pos p1);
  526. // Copy all tokens that belong to the specified sequence to another sequence
  527. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  528. // p0 < 0 : [0, p1]
  529. // p1 < 0 : [p0, inf)
  530. LLAMA_API void llama_kv_cache_seq_cp(
  531. struct llama_context * ctx,
  532. llama_seq_id seq_id_src,
  533. llama_seq_id seq_id_dst,
  534. llama_pos p0,
  535. llama_pos p1);
  536. // Removes all tokens that do not belong to the specified sequence
  537. LLAMA_API void llama_kv_cache_seq_keep(
  538. struct llama_context * ctx,
  539. llama_seq_id seq_id);
  540. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  541. // If the KV cache is RoPEd, the KV data is updated accordingly:
  542. // - lazily on next llama_decode()
  543. // - explicitly with llama_kv_cache_update()
  544. // p0 < 0 : [0, p1]
  545. // p1 < 0 : [p0, inf)
  546. LLAMA_API void llama_kv_cache_seq_add(
  547. struct llama_context * ctx,
  548. llama_seq_id seq_id,
  549. llama_pos p0,
  550. llama_pos p1,
  551. llama_pos delta);
  552. // Integer division of the positions by factor of `d > 1`
  553. // If the KV cache is RoPEd, the KV data is updated accordingly:
  554. // - lazily on next llama_decode()
  555. // - explicitly with llama_kv_cache_update()
  556. // p0 < 0 : [0, p1]
  557. // p1 < 0 : [p0, inf)
  558. LLAMA_API void llama_kv_cache_seq_div(
  559. struct llama_context * ctx,
  560. llama_seq_id seq_id,
  561. llama_pos p0,
  562. llama_pos p1,
  563. int d);
  564. // Returns the largest position present in the KV cache for the specified sequence
  565. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  566. struct llama_context * ctx,
  567. llama_seq_id seq_id);
  568. // Defragment the KV cache
  569. // This will be applied:
  570. // - lazily on next llama_decode()
  571. // - explicitly with llama_kv_cache_update()
  572. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  573. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  574. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  575. //
  576. // State / sessions
  577. //
  578. // Returns the maximum size in bytes of the state (rng, logits, embedding
  579. // and kv_cache) - will often be smaller after compacting tokens
  580. LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
  581. LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
  582. "use llama_state_get_size instead");
  583. // Copies the state to the specified destination address.
  584. // Destination needs to have allocated enough memory.
  585. // Returns the number of bytes copied
  586. LLAMA_API size_t llama_state_get_data(
  587. struct llama_context * ctx,
  588. uint8_t * dst);
  589. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  590. struct llama_context * ctx,
  591. uint8_t * dst),
  592. "use llama_state_get_data instead");
  593. // Set the state reading from the specified address
  594. // Returns the number of bytes read
  595. LLAMA_API size_t llama_state_set_data(
  596. struct llama_context * ctx,
  597. const uint8_t * src);
  598. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  599. struct llama_context * ctx,
  600. const uint8_t * src),
  601. "use llama_state_set_data instead");
  602. // Save/load session file
  603. LLAMA_API bool llama_state_load_file(
  604. struct llama_context * ctx,
  605. const char * path_session,
  606. llama_token * tokens_out,
  607. size_t n_token_capacity,
  608. size_t * n_token_count_out);
  609. LLAMA_API DEPRECATED(bool llama_load_session_file(
  610. struct llama_context * ctx,
  611. const char * path_session,
  612. llama_token * tokens_out,
  613. size_t n_token_capacity,
  614. size_t * n_token_count_out),
  615. "use llama_state_load_file instead");
  616. LLAMA_API bool llama_state_save_file(
  617. struct llama_context * ctx,
  618. const char * path_session,
  619. const llama_token * tokens,
  620. size_t n_token_count);
  621. LLAMA_API DEPRECATED(bool llama_save_session_file(
  622. struct llama_context * ctx,
  623. const char * path_session,
  624. const llama_token * tokens,
  625. size_t n_token_count),
  626. "use llama_state_save_file instead");
  627. // Get the exact size needed to copy the KV cache of a single sequence
  628. LLAMA_API size_t llama_state_seq_get_size(
  629. struct llama_context * ctx,
  630. llama_seq_id seq_id);
  631. // Copy the KV cache of a single sequence into the specified buffer
  632. LLAMA_API size_t llama_state_seq_get_data(
  633. struct llama_context * ctx,
  634. uint8_t * dst,
  635. llama_seq_id seq_id);
  636. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  637. // Returns:
  638. // - Positive: Ok
  639. // - Zero: Failed to load
  640. LLAMA_API size_t llama_state_seq_set_data(
  641. struct llama_context * ctx,
  642. const uint8_t * src,
  643. llama_seq_id dest_seq_id);
  644. LLAMA_API size_t llama_state_seq_save_file(
  645. struct llama_context * ctx,
  646. const char * filepath,
  647. llama_seq_id seq_id,
  648. const llama_token * tokens,
  649. size_t n_token_count);
  650. LLAMA_API size_t llama_state_seq_load_file(
  651. struct llama_context * ctx,
  652. const char * filepath,
  653. llama_seq_id dest_seq_id,
  654. llama_token * tokens_out,
  655. size_t n_token_capacity,
  656. size_t * n_token_count_out);
  657. //
  658. // Decoding
  659. //
  660. // Return batch for single sequence of tokens starting at pos_0
  661. //
  662. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  663. //
  664. LLAMA_API struct llama_batch llama_batch_get_one(
  665. llama_token * tokens,
  666. int32_t n_tokens,
  667. llama_pos pos_0,
  668. llama_seq_id seq_id);
  669. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  670. // Each token can be assigned up to n_seq_max sequence ids
  671. // The batch has to be freed with llama_batch_free()
  672. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  673. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  674. // The rest of the llama_batch members are allocated with size n_tokens
  675. // All members are left uninitialized
  676. LLAMA_API struct llama_batch llama_batch_init(
  677. int32_t n_tokens,
  678. int32_t embd,
  679. int32_t n_seq_max);
  680. // Frees a batch of tokens allocated with llama_batch_init()
  681. LLAMA_API void llama_batch_free(struct llama_batch batch);
  682. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  683. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  684. // 0 - success
  685. // < 0 - error
  686. LLAMA_API int32_t llama_encode(
  687. struct llama_context * ctx,
  688. struct llama_batch batch);
  689. // Positive return values does not mean a fatal error, but rather a warning.
  690. // 0 - success
  691. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  692. // < 0 - error
  693. LLAMA_API int32_t llama_decode(
  694. struct llama_context * ctx,
  695. struct llama_batch batch);
  696. // Set the number of threads used for decoding
  697. // n_threads is the number of threads used for generation (single token)
  698. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  699. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  700. // Get the number of threads used for generation of a single token.
  701. LLAMA_API uint32_t llama_n_threads(struct llama_context * ctx);
  702. // Get the number of threads used for prompt and batch processing (multiple token).
  703. LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
  704. // Set whether the model is in embeddings mode or not
  705. // If true, embeddings will be returned but logits will not
  706. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  707. // Set whether to use causal attention or not
  708. // If set to true, the model will only attend to the past tokens
  709. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  710. // Set abort callback
  711. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  712. // Wait until all computations are finished
  713. // This is automatically done when using one of the functions below to obtain the computation results
  714. // and is not necessary to call it explicitly in most cases
  715. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  716. // Token logits obtained from the last call to llama_decode()
  717. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  718. // in the order they have appeared in the batch.
  719. // Rows: number of tokens for which llama_batch.logits[i] != 0
  720. // Cols: n_vocab
  721. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  722. // Logits for the ith token. For positive indices, Equivalent to:
  723. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  724. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  725. // returns NULL for invalid ids.
  726. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  727. // Get all output token embeddings.
  728. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  729. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  730. // in the order they have appeared in the batch.
  731. // shape: [n_outputs*n_embd]
  732. // Otherwise, returns NULL.
  733. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  734. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  735. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  736. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  737. // shape: [n_embd] (1-dimensional)
  738. // returns NULL for invalid ids.
  739. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  740. // Get the embeddings for a sequence id
  741. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  742. // shape: [n_embd] (1-dimensional)
  743. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  744. //
  745. // Vocab
  746. //
  747. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  748. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  749. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  750. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  751. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  752. // Identify if Token Id is a control token or a render-able token
  753. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  754. // Special tokens
  755. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  756. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  757. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  758. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  759. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  760. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  761. // Returns -1 if unknown, 1 for true or 0 for false.
  762. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  763. // Returns -1 if unknown, 1 for true or 0 for false.
  764. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  765. // Codellama infill tokens
  766. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  767. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  768. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  769. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  770. //
  771. // Tokenization
  772. //
  773. /// @details Convert the provided text into tokens.
  774. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  775. /// @return Returns the number of tokens on success, no more than n_tokens_max
  776. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  777. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  778. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  779. /// as plaintext. Does not insert a leading space.
  780. LLAMA_API int32_t llama_tokenize(
  781. const struct llama_model * model,
  782. const char * text,
  783. int32_t text_len,
  784. llama_token * tokens,
  785. int32_t n_tokens_max,
  786. bool add_special,
  787. bool parse_special);
  788. // Token Id -> Piece.
  789. // Uses the vocabulary in the provided context.
  790. // Does not write null terminator to the buffer.
  791. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  792. // @param special If true, special tokens are rendered in the output.
  793. LLAMA_API int32_t llama_token_to_piece(
  794. const struct llama_model * model,
  795. llama_token token,
  796. char * buf,
  797. int32_t length,
  798. int32_t lstrip,
  799. bool special);
  800. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  801. /// @param text The char pointer must be large enough to hold the resulting text.
  802. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  803. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  804. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  805. /// @param unparse_special If true, special tokens are rendered in the output.
  806. LLAMA_API int32_t llama_detokenize(
  807. const struct llama_model * model,
  808. const llama_token * tokens,
  809. int32_t n_tokens,
  810. char * text,
  811. int32_t text_len_max,
  812. bool remove_special,
  813. bool unparse_special);
  814. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  815. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  816. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  817. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  818. /// @param chat Pointer to a list of multiple llama_chat_message
  819. /// @param n_msg Number of llama_chat_message in this chat
  820. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  821. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  822. /// @param length The size of the allocated buffer
  823. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  824. LLAMA_API int32_t llama_chat_apply_template(
  825. const struct llama_model * model,
  826. const char * tmpl,
  827. const struct llama_chat_message * chat,
  828. size_t n_msg,
  829. bool add_ass,
  830. char * buf,
  831. int32_t length);
  832. //
  833. // Grammar
  834. //
  835. /// Initialize a llama_grammar.
  836. ///
  837. /// @param rules The rule elements of the grammar to initialize.
  838. /// @param n_rules The number of rules.
  839. /// @param start_rule_index The index of the root rule (the starting point of the grammar).
  840. /// @return The initialized llama_grammar or nullptr if initialization failed.
  841. LLAMA_API struct llama_grammar * llama_grammar_init(
  842. const llama_grammar_element ** rules,
  843. size_t n_rules,
  844. size_t start_rule_index);
  845. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  846. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  847. //
  848. // Sampling functions
  849. //
  850. // Sets the current rng seed.
  851. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  852. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  853. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  854. LLAMA_API void llama_sample_repetition_penalties(
  855. struct llama_context * ctx,
  856. llama_token_data_array * candidates,
  857. const llama_token * last_tokens,
  858. size_t penalty_last_n,
  859. float penalty_repeat,
  860. float penalty_freq,
  861. float penalty_present);
  862. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  863. /// @param logits Logits extracted from the original generation context.
  864. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  865. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  866. LLAMA_API void llama_sample_apply_guidance(
  867. struct llama_context * ctx,
  868. float * logits,
  869. float * logits_guidance,
  870. float scale);
  871. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  872. LLAMA_API void llama_sample_softmax(
  873. struct llama_context * ctx,
  874. llama_token_data_array * candidates);
  875. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  876. LLAMA_API void llama_sample_top_k(
  877. struct llama_context * ctx,
  878. llama_token_data_array * candidates,
  879. int32_t k,
  880. size_t min_keep);
  881. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  882. LLAMA_API void llama_sample_top_p(
  883. struct llama_context * ctx,
  884. llama_token_data_array * candidates,
  885. float p,
  886. size_t min_keep);
  887. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  888. LLAMA_API void llama_sample_min_p(
  889. struct llama_context * ctx,
  890. llama_token_data_array * candidates,
  891. float p,
  892. size_t min_keep);
  893. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  894. LLAMA_API void llama_sample_tail_free(
  895. struct llama_context * ctx,
  896. llama_token_data_array * candidates,
  897. float z,
  898. size_t min_keep);
  899. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  900. LLAMA_API void llama_sample_typical(
  901. struct llama_context * ctx,
  902. llama_token_data_array * candidates,
  903. float p,
  904. size_t min_keep);
  905. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  906. LLAMA_API void llama_sample_entropy(
  907. struct llama_context * ctx,
  908. llama_token_data_array * candidates_p,
  909. float min_temp,
  910. float max_temp,
  911. float exponent_val);
  912. LLAMA_API void llama_sample_temp(
  913. struct llama_context * ctx,
  914. llama_token_data_array * candidates,
  915. float temp);
  916. /// @details Apply constraints from grammar
  917. LLAMA_API void llama_sample_grammar(
  918. struct llama_context * ctx,
  919. llama_token_data_array * candidates,
  920. const struct llama_grammar * grammar);
  921. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  922. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  923. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  924. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  925. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  926. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  927. LLAMA_API llama_token llama_sample_token_mirostat(
  928. struct llama_context * ctx,
  929. llama_token_data_array * candidates,
  930. float tau,
  931. float eta,
  932. int32_t m,
  933. float * mu);
  934. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  935. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  936. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  937. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  938. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  939. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  940. struct llama_context * ctx,
  941. llama_token_data_array * candidates,
  942. float tau,
  943. float eta,
  944. float * mu);
  945. /// @details Selects the token with the highest probability.
  946. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  947. LLAMA_API llama_token llama_sample_token_greedy(
  948. struct llama_context * ctx,
  949. llama_token_data_array * candidates);
  950. /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
  951. LLAMA_API llama_token llama_sample_token(
  952. struct llama_context * ctx,
  953. llama_token_data_array * candidates);
  954. /// @details Accepts the sampled token into the grammar
  955. LLAMA_API void llama_grammar_accept_token(
  956. struct llama_context * ctx,
  957. struct llama_grammar * grammar,
  958. llama_token token);
  959. //
  960. // Model split
  961. //
  962. /// @details Build a split GGUF final path for this chunk.
  963. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  964. // Returns the split_path length.
  965. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  966. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  967. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  968. // Returns the split_prefix length.
  969. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  970. // Performance information
  971. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  972. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  973. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  974. // Print system information
  975. LLAMA_API const char * llama_print_system_info(void);
  976. // Set callback for all future logging events.
  977. // If this is not called, or NULL is supplied, everything is output on stderr.
  978. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  979. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  980. #ifdef __cplusplus
  981. }
  982. #endif
  983. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  984. #ifdef LLAMA_API_INTERNAL
  985. #include <random>
  986. #include <string>
  987. #include <vector>
  988. struct ggml_tensor;
  989. struct llama_partial_utf8 {
  990. uint32_t value; // bit value so far (unshifted)
  991. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  992. };
  993. struct llama_grammar {
  994. const std::vector<std::vector<llama_grammar_element>> rules;
  995. std::vector<std::vector<const llama_grammar_element *>> stacks;
  996. // buffer for partially generated UTF-8 sequence from accepted tokens
  997. llama_partial_utf8 partial_utf8;
  998. };
  999. struct llama_grammar_candidate {
  1000. size_t index;
  1001. const uint32_t * code_points;
  1002. llama_partial_utf8 partial_utf8;
  1003. };
  1004. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  1005. struct llama_context * ctx
  1006. );
  1007. void llama_grammar_accept(
  1008. const std::vector<std::vector<llama_grammar_element>> & rules,
  1009. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  1010. const uint32_t chr,
  1011. std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
  1012. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  1013. const std::string & src,
  1014. llama_partial_utf8 partial_start);
  1015. // Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
  1016. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
  1017. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
  1018. #endif // LLAMA_API_INTERNAL
  1019. #endif // LLAMA_H