123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- From 5cadb45f39d001ffbad95b690d6cf0abcb4a6d96 Mon Sep 17 00:00:00 2001
- From: Ollama maintainers <hello@ollama.com>
- Date: Wed, 26 Jun 2024 16:18:09 -0700
- Subject: [PATCH] Architecture support
- ---
- llama.cpp | 194 +++++++++++++++++++++++++++++++++++++++++++++++++++++-
- 1 file changed, 193 insertions(+), 1 deletion(-)
- diff --git a/llama.cpp b/llama.cpp
- index 61948751..3b4196f5 100644
- --- a/llama.cpp
- +++ b/llama.cpp
- @@ -217,6 +217,7 @@ enum llm_arch {
- LLM_ARCH_INTERNLM2,
- LLM_ARCH_MINICPM,
- LLM_ARCH_GEMMA,
- + LLM_ARCH_GEMMA2,
- LLM_ARCH_STARCODER2,
- LLM_ARCH_MAMBA,
- LLM_ARCH_XVERSE,
- @@ -255,6 +256,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
- { LLM_ARCH_INTERNLM2, "internlm2" },
- { LLM_ARCH_MINICPM, "minicpm" },
- { LLM_ARCH_GEMMA, "gemma" },
- + { LLM_ARCH_GEMMA2, "gemma2" },
- { LLM_ARCH_STARCODER2, "starcoder2" },
- { LLM_ARCH_MAMBA, "mamba" },
- { LLM_ARCH_XVERSE, "xverse" },
- @@ -464,10 +466,12 @@ enum llm_tensor {
- LLM_TENSOR_ATTN_NORM,
- LLM_TENSOR_ATTN_NORM_2,
- LLM_TENSOR_ATTN_OUT_NORM,
- + LLM_TENSOR_ATTN_POST_NORM,
- LLM_TENSOR_ATTN_ROT_EMBD,
- LLM_TENSOR_FFN_GATE_INP,
- LLM_TENSOR_FFN_GATE_INP_SHEXP,
- LLM_TENSOR_FFN_NORM,
- + LLM_TENSOR_FFN_POST_NORM,
- LLM_TENSOR_FFN_GATE,
- LLM_TENSOR_FFN_DOWN,
- LLM_TENSOR_FFN_UP,
- @@ -960,6 +964,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- + {
- + LLM_ARCH_GEMMA2,
- + {
- + { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- + { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- + { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
- + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- + { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
- + },
- + },
- {
- LLM_ARCH_STARCODER2,
- {
- @@ -1941,6 +1963,8 @@ enum e_model {
- MODEL_8x22B,
- MODEL_16x12B,
- MODEL_10B_128x3_66B,
- + MODEL_9B,
- + MODEL_27B,
- };
-
- static const size_t kiB = 1024;
- @@ -2114,6 +2138,7 @@ struct llama_layer {
- struct ggml_tensor * attn_out_norm_b;
- struct ggml_tensor * attn_q_a_norm;
- struct ggml_tensor * attn_kv_a_norm;
- + struct ggml_tensor * attn_post_norm;
-
- // attention
- struct ggml_tensor * wq;
- @@ -2136,6 +2161,7 @@ struct llama_layer {
- // normalization
- struct ggml_tensor * ffn_norm;
- struct ggml_tensor * ffn_norm_b;
- + struct ggml_tensor * ffn_post_norm;
- struct ggml_tensor * layer_out_norm;
- struct ggml_tensor * layer_out_norm_b;
- struct ggml_tensor * ffn_norm_exps;
- @@ -4529,6 +4555,16 @@ static void llm_load_hparams(
- }
- } break;
- case LLM_ARCH_GEMMA:
- + {
- + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- +
- + switch (hparams.n_layer) {
- + case 18: model.type = e_model::MODEL_9B; break;
- + case 28: model.type = e_model::MODEL_27B; break;
- + default: model.type = e_model::MODEL_UNKNOWN;
- + }
- + } break;
- + case LLM_ARCH_GEMMA2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
-
- @@ -6305,6 +6341,40 @@ static bool llm_load_tensors(
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- }
- } break;
- + case LLM_ARCH_GEMMA2:
- + {
- + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- +
- + // output
- + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
- +
- + const int64_t n_ff = hparams.n_ff;
- + const int64_t n_embd_head_k = hparams.n_embd_head_k;
- + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- +
- + for (uint32_t i = 0; i < n_layer; ++i) {
- + ggml_context * ctx_layer = ctx_for_layer(i);
- + ggml_context * ctx_split = ctx_for_layer_split(i);
- +
- + auto & layer = model.layers[i];
- +
- + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- +
- + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
- + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
- + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
- + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
- + layer.attn_post_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
- +
- + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- + layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
- + }
- + } break;
- case LLM_ARCH_STARCODER2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- @@ -10614,6 +10684,123 @@ struct llm_build_context {
- return gf;
- }
-
- + struct ggml_cgraph * build_gemma2() {
- + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- +
- + const int64_t n_embd_head_k = hparams.n_embd_head_k;
- +
- + struct ggml_tensor * cur;
- + struct ggml_tensor * inpL;
- +
- + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- +
- + inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
- + cb(inpL, "inp_scaled", -1);
- +
- + // inp_pos - contains the positions
- + struct ggml_tensor * inp_pos = build_inp_pos();
- +
- + // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- + struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- +
- + for (int il = 0; il < n_layer; ++il) {
- + // norm
- + cur = llm_build_norm(ctx0, inpL, hparams,
- + model.layers[il].attn_norm, NULL,
- + LLM_NORM_RMS, cb, il);
- + cb(cur, "attn_norm", il);
- +
- + // self-attention
- + {
- + // compute Q and K and RoPE them
- + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- + cb(Qcur, "Qcur", il);
- +
- + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- + cb(Kcur, "Kcur", il);
- +
- + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- + cb(Vcur, "Vcur", il);
- +
- + Qcur = ggml_rope_ext(
- + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
- + n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
- + ext_factor, attn_factor, beta_fast, beta_slow);
- + cb(Qcur, "Qcur", il);
- +
- + Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
- + cb(Qcur, "Qcur_scaled", il);
- +
- + Kcur = ggml_rope_ext(
- + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
- + n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
- + ext_factor, attn_factor, beta_fast, beta_slow);
- + cb(Kcur, "Kcur", il);
- +
- + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- + model.layers[il].wo, NULL,
- + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
- + }
- +
- + if (il == n_layer - 1) {
- + // skip computing output for unused tokens
- + struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- + cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- + }
- +
- + cur = llm_build_norm(ctx0, cur, hparams,
- + model.layers[il].attn_post_norm, NULL,
- + LLM_NORM_RMS, cb, il);
- + cb(cur, "attn_post_norm", il);
- +
- + struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
- + cb(sa_out, "sa_out", il);
- +
- + cur = llm_build_norm(ctx0, sa_out, hparams,
- + model.layers[il].ffn_norm, NULL,
- + LLM_NORM_RMS, cb, il);
- + cb(cur, "ffn_norm", il);
- +
- + // feed-forward network
- + {
- + cur = llm_build_ffn(ctx0, cur,
- + model.layers[il].ffn_up, NULL,
- + model.layers[il].ffn_gate, NULL,
- + model.layers[il].ffn_down, NULL,
- + NULL,
- + LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
- + cb(cur, "ffn_out", il);
- + }
- +
- + cur = llm_build_norm(ctx0, cur, hparams,
- + model.layers[il].ffn_post_norm, NULL,
- + LLM_NORM_RMS, cb, -1);
- + cb(cur, "ffn_post_norm", -1);
- +
- + cur = ggml_add(ctx0, cur, sa_out);
- + cb(cur, "l_out", il);
- +
- + // input for next layer
- + inpL = cur;
- + }
- +
- + cur = inpL;
- +
- + cur = llm_build_norm(ctx0, cur, hparams,
- + model.output_norm, NULL,
- + LLM_NORM_RMS, cb, -1);
- + cb(cur, "result_norm", -1);
- +
- + // lm_head
- + cur = ggml_mul_mat(ctx0, model.output, cur);
- + cb(cur, "result_output", -1);
- +
- + ggml_build_forward_expand(gf, cur);
- +
- + return gf;
- + }
- +
- struct ggml_cgraph * build_starcoder2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
-
- @@ -11847,6 +12034,10 @@ static struct ggml_cgraph * llama_build_graph(
- {
- result = llm.build_gemma();
- } break;
- + case LLM_ARCH_GEMMA2:
- + {
- + result = llm.build_gemma2();
- + } break;
- case LLM_ARCH_STARCODER2:
- {
- result = llm.build_starcoder2();
- @@ -16671,6 +16862,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
- case LLM_ARCH_PHI2:
- case LLM_ARCH_PHI3:
- case LLM_ARCH_GEMMA:
- + case LLM_ARCH_GEMMA2:
- case LLM_ARCH_STARCODER2:
- case LLM_ARCH_GPTNEOX:
- return LLAMA_ROPE_TYPE_NEOX;
- @@ -18551,7 +18743,7 @@ static int32_t llama_chat_apply_template_internal(
- if (add_ass) {
- ss << "<s>assistant\n";
- }
- - } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
- + } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl.find("<start_of_turn>") != std::string::npos) {
- // google/gemma-7b-it
- std::string system_prompt = "";
- for (auto message : chat) {
- --
- 2.45.2
|