123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- package gemma3
- import (
- "bytes"
- "image"
- "math"
- "slices"
- "github.com/ollama/ollama/kvcache"
- "github.com/ollama/ollama/ml"
- "github.com/ollama/ollama/ml/nn"
- "github.com/ollama/ollama/model"
- "github.com/ollama/ollama/model/input"
- )
- type Model struct {
- model.Base
- model.SentencePieceModel
- *VisionModel `gguf:"v,vision"`
- *TextModel
- *MultiModalProjector `gguf:"mm"`
- ImageProcessor
- }
- var _ model.MultimodalProcessor = (*Model)(nil)
- type MultiModalProjector struct {
- SoftEmbNorm *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
- InputProjection *nn.Linear `gguf:"mm_input_projection"`
- tokensPerImage int
- }
- func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, imageSize, patchSize int, eps float32) ml.Tensor {
- l := visionOutputs.Dim(0)
- visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
- patchesPerImage := imageSize / patchSize
- visionOutputs = visionOutputs.Reshape(ctx, patchesPerImage, patchesPerImage, l)
- kernelSize := patchesPerImage / int(math.Sqrt(float64(p.tokensPerImage)))
- visionOutputs = visionOutputs.AvgPool2D(ctx, kernelSize, kernelSize, 0)
- visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0)*visionOutputs.Dim(1), l)
- visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
- visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)
- // TODO: inputProjection must be transposed since they're incompatible with visionOutputs
- visionOutputs = p.InputProjection.Weight.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mulmat(ctx, visionOutputs)
- return visionOutputs
- }
- func New(c ml.Config) (model.Model, error) {
- m := Model{
- SentencePieceModel: model.NewSentencePieceModel(
- c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
- &model.Vocabulary{
- Values: c.Strings("tokenizer.ggml.tokens"),
- Scores: c.Floats("tokenizer.ggml.scores"),
- Types: c.Uints("tokenizer.ggml.token_type"),
- BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
- AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
- EOS: int32(1),
- AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
- EOT: int32(106),
- AddEOT: c.Bool("tokenizer.ggml.add_eot_token", false),
- },
- ),
- ImageProcessor: newImageProcessor(c),
- VisionModel: newVisionModel(c),
- TextModel: newTextModel(c),
- MultiModalProjector: &MultiModalProjector{
- tokensPerImage: int(c.Uint("mm_tokens_per_image", 256)),
- },
- }
- slidingWindowLen := int32(c.Uint("attention.sliding_window"))
- m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
- return &m, nil
- }
- func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
- if len(m.VisionModel.Layers) == 0 {
- return nil, model.ErrNoVisionModel
- }
- image, _, err := image.Decode(bytes.NewReader(multimodalData))
- if err != nil {
- return nil, err
- }
- f32s, err := m.ImageProcessor.ProcessImage(image)
- if err != nil {
- return nil, err
- }
- pixelValues, err := ctx.Input().FromFloatSlice(f32s,
- m.ImageProcessor.imageSize,
- m.ImageProcessor.imageSize,
- m.ImageProcessor.numChannels,
- )
- if err != nil {
- return nil, err
- }
- visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
- visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
- return visionOutputs, nil
- }
- func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
- var result []input.Input
- for _, inp := range inputs {
- if inp.Multimodal == nil {
- result = append(result, inp)
- } else {
- inputMultimodal := inp.Multimodal.(ml.Tensor)
- result = append(result,
- input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
- input.Input{Token: 255999}, // "<start_of_image>""
- input.Input{Multimodal: inputMultimodal, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
- )
- // add image token placeholders
- result = append(result, slices.Repeat([]input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
- result = append(result,
- input.Input{Token: 256000}, // <end_of_image>
- input.Input{Token: 108}, // "\n\n"
- )
- }
- }
- return result, nil
- }
- func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
- inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
- if err != nil {
- return nil, err
- }
- positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
- if err != nil {
- return nil, err
- }
- outputs, err := ctx.Input().FromIntSlice(opts.Outputs, len(opts.Outputs))
- if err != nil {
- return nil, err
- }
- return m.TextModel.Forward(ctx, inputs, positions, outputs, opts, m.Cache), nil
- }
- func init() {
- model.Register("gemma3", New)
- }
|