123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915 |
- /**
- * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include <cstddef>
- #include <cstdint>
- #include <limits>
- #include <stdint.h>
- #include <stdio.h>
- #include <atomic>
- #include <assert.h>
- #include <cuda_runtime.h>
- #include <cublas_v2.h>
- #include <cuda_fp16.h>
- #include "ggml-cuda.h"
- #include "ggml.h"
- #define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
- #define CUDA_CHECK(err) \
- do { \
- cudaError_t err_ = (err); \
- if (err_ != cudaSuccess) { \
- fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
- cudaGetErrorString(err_)); \
- exit(1); \
- } \
- } while (0)
- #if CUDART_VERSION >= 12000
- #define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \
- err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \
- exit(1); \
- } \
- } while (0)
- #else
- #define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
- exit(1); \
- } \
- } while (0)
- #endif // CUDART_VERSION >= 11
- #ifdef GGML_CUDA_DMMV_F16
- typedef half dfloat; // dequantize float
- typedef half2 dfloat2;
- #else
- typedef float dfloat; // dequantize float
- typedef float2 dfloat2;
- #endif //GGML_CUDA_DMMV_F16
- typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
- typedef void (*to_fp32_cuda_t)(const void * __restrict__ x, float * __restrict__ y, int k, cudaStream_t stream);
- typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
- typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
- typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- typedef void (*ggml_cuda_op_t)(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i,
- float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main);
- // QK = number of values after dequantization
- // QR = QK / number of values before dequantization
- // QI = number of 32 bit integers before dequantization
- #define QK4_0 32
- #define QR4_0 2
- #define QI4_0 (QK4_0 / (4 * QR4_0))
- typedef struct {
- half d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
- #define QK4_1 32
- #define QR4_1 2
- #define QI4_1 (QK4_1 / (4 * QR4_1))
- typedef struct {
- half d; // delta
- half m; // min
- uint8_t qs[QK4_1 / 2]; // nibbles / quants
- } block_q4_1;
- static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
- #define QK5_0 32
- #define QR5_0 2
- #define QI5_0 (QK5_0 / (4 * QR5_0))
- typedef struct {
- half d; // delta
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_0 / 2]; // nibbles / quants
- } block_q5_0;
- static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
- #define QK5_1 32
- #define QR5_1 2
- #define QI5_1 (QK5_1 / (4 * QR5_1))
- typedef struct {
- half d; // delta
- half m; // min
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_1 / 2]; // nibbles / quants
- } block_q5_1;
- static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
- #define QK8_0 32
- #define QR8_0 1
- #define QI8_0 (QK8_0 / (4 * QR8_0))
- typedef struct {
- half d; // delta
- int8_t qs[QK8_0]; // quants
- } block_q8_0;
- static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
- #define QK8_1 32
- #define QR8_1 1
- #define QI8_1 (QK8_1 / (4 * QR8_1))
- typedef struct {
- half d; // delta
- half s; // unquantized sum
- int8_t qs[QK8_0]; // quants
- } block_q8_1;
- static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");
- typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs);
- //================================= k-quants
- #ifdef GGML_QKK_64
- #define QK_K 64
- #define K_SCALE_SIZE 4
- #else
- #define QK_K 256
- #define K_SCALE_SIZE 12
- #endif
- #define QR2_K 4
- #define QI2_K (QK_K / (4*QR2_K))
- typedef struct {
- uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
- uint8_t qs[QK_K/4]; // quants
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- } block_q2_K;
- static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
- #define QR3_K 4
- #define QI3_K (QK_K / (4*QR3_K))
- typedef struct {
- uint8_t hmask[QK_K/8]; // quants - high bit
- uint8_t qs[QK_K/4]; // quants - low 2 bits
- #ifdef GGML_QKK_64
- uint8_t scales[2]; // scales, quantized with 8 bits
- #else
- uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
- #endif
- half d; // super-block scale
- } block_q3_K;
- //static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
- #define QR4_K 2
- #define QI4_K (QK_K / (4*QR4_K))
- #ifdef GGML_QKK_64
- typedef struct {
- half d[2]; // super-block scales/mins
- uint8_t scales[2]; // 4-bit block scales/mins
- uint8_t qs[QK_K/2]; // 4--bit quants
- } block_q4_K;
- static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
- #else
- typedef struct {
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
- uint8_t qs[QK_K/2]; // 4--bit quants
- } block_q4_K;
- static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
- #endif
- #define QR5_K 2
- #define QI5_K (QK_K / (4*QR5_K))
- #ifdef GGML_QKK_64
- typedef struct {
- half d; // super-block scale
- int8_t scales[QK_K/16]; // block scales
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
- } block_q5_K;
- static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
- #else
- typedef struct {
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
- } block_q5_K;
- static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
- #endif
- #define QR6_K 2
- #define QI6_K (QK_K / (4*QR6_K))
- typedef struct {
- uint8_t ql[QK_K/2]; // quants, lower 4 bits
- uint8_t qh[QK_K/4]; // quants, upper 2 bits
- int8_t scales[QK_K/16]; // scales
- half d; // delta
- } block_q6_K;
- static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
- #define WARP_SIZE 32
- #define MATRIX_ROW_PADDING 256 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
- #define CUDA_ADD_BLOCK_SIZE 256
- #define CUDA_MUL_BLOCK_SIZE 256
- #define CUDA_GELU_BLOCK_SIZE 256
- #define CUDA_SILU_BLOCK_SIZE 256
- #define CUDA_CPY_BLOCK_SIZE 32
- #define CUDA_SCALE_BLOCK_SIZE 256
- #define CUDA_ROPE_BLOCK_SIZE 256
- #define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
- #define CUDA_QUANTIZE_BLOCK_SIZE 256
- #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
- // dmmv = dequantize_mul_mat_vec
- #ifndef GGML_CUDA_DMMV_X
- #define GGML_CUDA_DMMV_X 32
- #endif
- #ifndef GGML_CUDA_MMV_Y
- #define GGML_CUDA_MMV_Y 1
- #endif
- #ifndef K_QUANTS_PER_ITERATION
- #define K_QUANTS_PER_ITERATION 2
- #else
- static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
- #endif
- struct ggml_tensor_extra_gpu {
- void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
- cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs
- };
- static __global__ void add_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= kx) {
- return;
- }
- dst[i] = x[i] + y[i%ky];
- }
- static __global__ void add_f16_f32_f16(const half * x, const float * y, half * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = __hadd(x[i], __float2half(y[i]));
- }
- static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= kx) {
- return;
- }
- dst[i] = x[i] * y[i%ky];
- }
- static __global__ void gelu_f32(const float * x, float * dst, const int k) {
- const float GELU_COEF_A = 0.044715f;
- const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- float xi = x[i];
- dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
- }
- static __global__ void silu_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] / (1.0f + expf(-x[i]));
- }
- static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- const float eps = 1e-5f;
- float mean = 0.0f;
- float var = 0.0f;
- for (int col = tid; col < ncols; col += WARP_SIZE) {
- const float xi = x[row*ncols + col];
- mean += xi;
- var += xi * xi;
- }
- // sum up partial sums
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- mean += __shfl_xor_sync(0xffffffff, mean, mask, 32);
- var += __shfl_xor_sync(0xffffffff, var, mask, 32);
- }
- mean /= ncols;
- var = var / ncols - mean * mean;
- const float inv_var = rsqrtf(var + eps);
- for (int col = tid; col < ncols; col += WARP_SIZE) {
- dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_var;
- }
- }
- static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- const float eps = 1e-6f;
- float tmp = 0.0f; // partial sum for thread in warp
- for (int col = tid; col < ncols; col += WARP_SIZE) {
- const float xi = x[row*ncols + col];
- tmp += xi * xi;
- }
- // sum up partial sums
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- const float mean = tmp / ncols;
- const float scale = rsqrtf(mean + eps);
- for (int col = tid; col < ncols; col += WARP_SIZE) {
- dst[row*ncols + col] = scale * x[row*ncols + col];
- }
- }
- static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q4_0 * x = (const block_q4_0 *) vx;
- const dfloat d = x[ib].d;
- const int vui = x[ib].qs[iqs];
- v.x = vui & 0xF;
- v.y = vui >> 4;
- #ifdef GGML_CUDA_DMMV_F16
- v = __hsub2(v, {8.0f, 8.0f});
- v = __hmul2(v, {d, d});
- #else
- v.x = (v.x - 8.0f) * d;
- v.y = (v.y - 8.0f) * d;
- #endif // GGML_CUDA_DMMV_F16
- }
- static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q4_1 * x = (const block_q4_1 *) vx;
- const dfloat d = x[ib].d;
- const dfloat m = x[ib].m;
- const int vui = x[ib].qs[iqs];
- v.x = vui & 0xF;
- v.y = vui >> 4;
- #ifdef GGML_CUDA_DMMV_F16
- v = __hmul2(v, {d, d});
- v = __hadd2(v, {m, m});
- #else
- v.x = (v.x * d) + m;
- v.y = (v.y * d) + m;
- #endif // GGML_CUDA_DMMV_F16
- }
- static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q5_0 * x = (const block_q5_0 *) vx;
- const dfloat d = x[ib].d;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
- #ifdef GGML_CUDA_DMMV_F16
- v = __hsub2(v, {16.0f, 16.0f});
- v = __hmul2(v, {d, d});
- #else
- v.x = (v.x - 16.0f) * d;
- v.y = (v.y - 16.0f) * d;
- #endif // GGML_CUDA_DMMV_F16
- }
- static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q5_1 * x = (const block_q5_1 *) vx;
- const dfloat d = x[ib].d;
- const dfloat m = x[ib].m;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
- #ifdef GGML_CUDA_DMMV_F16
- v = __hmul2(v, {d, d});
- v = __hadd2(v, {m, m});
- #else
- v.x = (v.x * d) + m;
- v.y = (v.y * d) + m;
- #endif // GGML_CUDA_DMMV_F16
- }
- static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q8_0 * x = (const block_q8_0 *) vx;
- const dfloat d = x[ib].d;
- v.x = x[ib].qs[iqs + 0];
- v.y = x[ib].qs[iqs + 1];
- #ifdef GGML_CUDA_DMMV_F16
- v = __hmul2(v, {d, d});
- #else
- v.x *= d;
- v.y *= d;
- #endif // GGML_CUDA_DMMV_F16
- }
- //================================== k-quants
- static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_q2_K * x = (const block_q2_K *) vx;
- const int tid = threadIdx.x;
- #if QK_K == 256
- const int n = tid/32;
- const int l = tid - 32*n;
- const int is = 8*n + l/16;
- const uint8_t q = x[i].qs[32*n + l];
- float * y = yy + i*QK_K + 128*n;
- float dall = x[i].d;
- float dmin = x[i].dmin;
- y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
- y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
- y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
- #else
- const int is = tid/16; // 0 or 1
- const int il = tid%16; // 0...15
- const uint8_t q = x[i].qs[il] >> (2*is);
- float * y = yy + i*QK_K + 16*is + il;
- float dall = x[i].d;
- float dmin = x[i].dmin;
- y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
- #endif
- }
- static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, float * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_q3_K * x = (const block_q3_K *) vx;
- #if QK_K == 256
- const int r = threadIdx.x/4;
- const int tid = r/2;
- const int is0 = r%2;
- const int l0 = 16*is0 + 4*(threadIdx.x%4);
- const int n = tid / 4;
- const int j = tid - 4*n;
- uint8_t m = 1 << (4*n + j);
- int is = 8*n + 2*j + is0;
- int shift = 2*j;
- int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
- is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
- is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
- (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
- float d_all = x[i].d;
- float dl = d_all * (us - 32);
- float * y = yy + i*QK_K + 128*n + 32*j;
- const uint8_t * q = x[i].qs + 32*n;
- const uint8_t * hm = x[i].hmask;
- for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
- #else
- const int tid = threadIdx.x;
- const int is = tid/16; // 0 or 1
- const int il = tid%16; // 0...15
- const int im = il/8; // 0...1
- const int in = il%8; // 0...7
- float * y = yy + i*QK_K + 16*is + il;
- const uint8_t q = x[i].qs[il] >> (2*is);
- const uint8_t h = x[i].hmask[in] >> (2*is + im);
- const float d = (float)x[i].d;
- if (is == 0) {
- y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
- y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
- } else {
- y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
- y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
- }
- #endif
- }
- #if QK_K == 256
- static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
- if (j < 4) {
- d = q[j] & 63; m = q[j + 4] & 63;
- } else {
- d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
- }
- }
- #endif
- static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float * __restrict__ yy) {
- const block_q4_K * x = (const block_q4_K *) vx;
- const int i = blockIdx.x;
- #if QK_K == 256
- // assume 32 threads
- const int tid = threadIdx.x;
- const int il = tid/8;
- const int ir = tid%8;
- const int is = 2*il;
- const int n = 4;
- float * y = yy + i*QK_K + 64*il + n*ir;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
- const uint8_t * q = x[i].qs + 32*il + n*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- for (int l = 0; l < n; ++l) {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l +32] = d2 * (q[l] >> 4) - m2;
- }
- #else
- const int tid = threadIdx.x;
- const uint8_t * q = x[i].qs;
- float * y = yy + i*QK_K;
- const float d = (float)x[i].d[0];
- const float m = (float)x[i].d[1];
- y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
- y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
- #endif
- }
- static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float * __restrict__ yy) {
- const block_q5_K * x = (const block_q5_K *) vx;
- const int i = blockIdx.x;
- #if QK_K == 256
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int il = tid/16; // il is in 0...3
- const int ir = tid%16; // ir is in 0...15
- const int is = 2*il; // is is in 0...6
- float * y = yy + i*QK_K + 64*il + 2*ir;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
- const uint8_t * ql = x[i].qs + 32*il + 2*ir;
- const uint8_t * qh = x[i].qh + 2*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- uint8_t hm = 1 << (2*il);
- y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
- y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
- hm <<= 1;
- y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
- y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
- #else
- const int tid = threadIdx.x;
- const uint8_t q = x[i].qs[tid];
- const int im = tid/8; // 0...3
- const int in = tid%8; // 0...7
- const int is = tid/16; // 0 or 1
- const uint8_t h = x[i].qh[in] >> im;
- const float d = x[i].d;
- float * y = yy + i*QK_K + tid;
- y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
- y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
- #endif
- }
- static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, float * __restrict__ yy) {
- const block_q6_K * x = (const block_q6_K *) vx;
- const int i = blockIdx.x;
- #if QK_K == 256
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int ip = tid/32; // ip is 0 or 1
- const int il = tid - 32*ip; // 0...32
- const int is = 8*ip + il/16;
- float * y = yy + i*QK_K + 128*ip + il;
- const float d = x[i].d;
- const uint8_t * ql = x[i].ql + 64*ip + il;
- const uint8_t qh = x[i].qh[32*ip + il];
- const int8_t * sc = x[i].scales + is;
- y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
- y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
- #else
- // assume 32 threads
- const int tid = threadIdx.x;
- const int ip = tid/16; // 0 or 1
- const int il = tid - 16*ip; // 0...15
- float * y = yy + i*QK_K + 16*ip + il;
- const float d = x[i].d;
- const uint8_t ql = x[i].ql[16*ip + il];
- const uint8_t qh = x[i].qh[il] >> (2*ip);
- const int8_t * sc = x[i].scales;
- y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- #endif
- }
- static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q2_K * x = (const block_q2_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int s_offset = 8*im;
- const int y_offset = 128*im + l0;
- uint32_t aux[4];
- const uint8_t * d = (const uint8_t *)aux;
- const uint8_t * m = (const uint8_t *)(aux + 2);
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
- const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
- aux[0] = a[0] & 0x0f0f0f0f;
- aux[1] = a[1] & 0x0f0f0f0f;
- aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
- aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
- + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
- + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
- + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
- + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
- + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
- + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
- +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
- sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
- + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
- }
- tmp += dall * sum1 - dmin * sum2;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
- const int offset = tid * K_QUANTS_PER_ITERATION;
- uint32_t uaux[2];
- const uint8_t * d = (const uint8_t *)uaux;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + offset;
- const uint8_t * q = x[i].qs + offset;
- const uint32_t * s = (const uint32_t *)x[i].scales;
- uaux[0] = s[0] & 0x0f0f0f0f;
- uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
- const half2 * dh = (const half2 *)&x[i].d;
- const float2 dall = __half22float2(dh[0]);
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- const uint8_t ql = q[l];
- sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
- + y[l+16] * d[1] * ((ql >> 2) & 3)
- + y[l+32] * d[2] * ((ql >> 4) & 3)
- + y[l+48] * d[3] * ((ql >> 6) & 3);
- sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
- }
- tmp += dall.x * sum1 - dall.y * sum2;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q3_K * x = (const block_q3_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const uint16_t kmask1 = 0x0303;
- const uint16_t kmask2 = 0x0f0f;
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0....15 or 0...7
- const uint8_t m = 1 << (4*im);
- const int l0 = n*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int y_offset = 128*im + l0;
- uint16_t utmp[4];
- const int8_t * s = (const int8_t *)utmp;
- const uint16_t s_shift = 4*im;
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const uint8_t * h = x[i].hmask + l0;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
- utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
- utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
- utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
- const float d = x[i].d;
- float sum = 0;
- for (int l = 0; l < n; ++l) {
- sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
- + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
- + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
- + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
- sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
- + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
- + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
- + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
- }
- tmp += d * sum;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
- const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
- const int in = offset/8; // 0 or 1
- const int im = offset%8; // 0...7
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + offset;
- const uint8_t * q = x[i].qs + offset;
- const uint8_t * s = x[i].scales;
- const float dall = (float)x[i].d;
- float sum = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- const uint8_t hl = x[i].hmask[im+l] >> in;
- const uint8_t ql = q[l];
- sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
- + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
- + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
- + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q4_K * x = (const block_q4_K *)vx + ib0;
- #if QK_K == 256
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
- const int il = tid/step; // 0...3
- const int ir = tid - step*il; // 0...7 or 0...3
- const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const uint8_t * q1 = x[i].qs + q_offset;
- const uint8_t * q2 = q1 + 64;
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < n; ++l) {
- s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4);
- s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4);
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
- const int step = tid * K_QUANTS_PER_ITERATION;
- uint16_t aux16[2];
- const uint8_t * s = (const uint8_t *)aux16;
- float tmp = 0;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const uint8_t * q = x[i].qs + step;
- const float * y = yy + i*QK_K + step;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux16[0] = a[0] & 0x0f0f;
- aux16[1] = (a[0] >> 4) & 0x0f0f;
- const float d = (float)x[i].d[0];
- const float m = (float)x[i].d[1];
- float sum = 0.f;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
- + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
- + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
- + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
- const int row = blockIdx.x;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q5_K * x = (const block_q5_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int tid = threadIdx.x/2; // 0...15
- const int ix = threadIdx.x%2;
- const int il = tid/4; // 0...3
- const int ir = tid - 4*il;// 0...3
- const int n = 2;
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- const uint8_t hm1 = 1 << (2*im);
- const uint8_t hm2 = hm1 << 4;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- for (int i = ix; i < num_blocks_per_row; i += 2) {
- const uint8_t * ql1 = x[i].qs + q_offset;
- const uint8_t * ql2 = ql1 + 64;
- const uint8_t * qh = x[i].qh + l0;
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- float4 sum = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < n; ++l) {
- sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
- + y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
- sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
- + y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
- sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
- + y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
- sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
- + y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
- smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
- + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
- }
- tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
- const int step = tid * K_QUANTS_PER_ITERATION;
- const int im = step/8;
- const int in = step%8;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const uint8_t * q = x[i].qs + step;
- const int8_t * s = x[i].scales;
- const float * y = yy + i*QK_K + step;
- const float d = x[i].d;
- float sum = 0.f;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- const uint8_t h = x[i].qh[in+j] >> im;
- sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
- + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
- + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
- + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q6_K * x = (const block_q6_K *)vx + ib0;
- #if QK_K == 256
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
- const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- #if K_QUANTS_PER_ITERATION == 1
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
- const int is = 0;
- #else
- const int l0 = 4 * in; // 0, 4, 8, ..., 28
- const int is = in / 4;
- #endif
- const int ql_offset = 64*im + l0;
- const int qh_offset = 32*im + l0;
- const int s_offset = 8*im + is;
- const int y_offset = 128*im + l0;
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * ql = x[i].ql + ql_offset;
- const uint8_t * qh = x[i].qh + qh_offset;
- const int8_t * s = x[i].scales + s_offset;
- const float d = x[i].d;
- #if K_QUANTS_PER_ITERATION == 1
- float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
- + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
- + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
- + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
- + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
- + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
- + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
- +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
- tmp += sum;
- #else
- float sum = 0;
- for (int l = 0; l < 4; ++l) {
- sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
- + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
- + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
- + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
- }
- tmp += sum;
- #endif
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
- const int step = tid * K_QUANTS_PER_ITERATION;
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + step;
- const uint8_t * ql = x[i].ql + step;
- const uint8_t * qh = x[i].qh + step;
- const int8_t * s = x[i].scales;
- const float d = x[i+0].d;
- float sum = 0;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
- + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
- + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
- + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const half * x = (const half *) vx;
- // automatic half -> float type cast if dfloat == float
- v.x = x[ib + iqs + 0];
- v.y = x[ib + iqs + 1];
- }
- static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int ndata, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- block_q8_1 * y = (block_q8_1 *) vy;
- const int ib = i / QK8_1; // block index
- const int iqs = i % QK8_1; // quant index
- const float xi = i < ndata ? x[i] : 0.0f;
- float amax = fabsf(xi);
- float sum = xi;
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32));
- sum += __shfl_xor_sync(0xffffffff, sum, mask, 32);
- }
- const float d = amax / 127;
- const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
- y[ib].qs[iqs] = q;
- if (iqs > 0) {
- return;
- }
- y[ib].d = d;
- y[ib].s = sum;
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_block(const void * __restrict__ vx, float * __restrict__ y, const int k) {
- const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
- if (i >= k) {
- return;
- }
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs, v);
- y[iybs + iqs + 0] = v.x;
- y[iybs + iqs + y_offset] = v.y;
- }
- static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
- int vi;
- memcpy(&vi, &bq4_0->qs[sizeof(int) * (iqs + 0)], sizeof(int));
- const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
- const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI4_0)]);
- const float d = __half2float(bq4_0->d) * __half2float(bq8_1->d);
- // subtract 8 from each quantized value
- const int vi0 = __vsub4((vi >> 0) & 0x0F0F0F0F, 0x08080808);
- const int vi1 = __vsub4((vi >> 4) & 0x0F0F0F0F, 0x08080808);
- // SIMD dot product of quantized values
- int sumi = __dp4a(vi0, ui0, 0);
- sumi = __dp4a(vi1, ui1, sumi);
- return sumi*d;
- #else
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
- const int vi = *((int *) &bq4_1->qs[sizeof(int) * (iqs + 0)]);
- const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
- const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI4_1)]);
- const float d = __half2float(bq4_1->d) * __half2float(bq8_1->d);
- const float m = bq4_1->m;
- const float s = bq8_1->s;
- const int vi0 = (vi >> 0) & 0x0F0F0F0F;
- const int vi1 = (vi >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- int sumi = __dp4a(vi0, ui0, 0);
- sumi = __dp4a(vi1, ui1, sumi);
- return sumi*d + m*s / QI4_1; // scale sum by QI4_1 because there are QI4_1 threads working on this block
- #else
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
- int qs;
- memcpy(&qs, &bq5_0->qs[sizeof(int) * (iqs + 0)], sizeof(int));
- const int qh0 = bq5_0->qh[iqs/2 + 0] >> 4*(iqs%2);
- const int qh1 = bq5_0->qh[iqs/2 + 2] >> 4*(iqs%2);
- const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
- const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI5_0)]);
- const float d = __half2float(bq5_0->d) * __half2float(bq8_1->d);
- int vi0 = (qs >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh0 as 5th bits
- vi0 |= (qh0 << 4) & 0x00000010; // 1 -> 5
- vi0 |= (qh0 << 11) & 0x00001000; // 2 -> 13
- vi0 |= (qh0 << 18) & 0x00100000; // 3 -> 21
- vi0 |= (qh0 << 25) & 0x10000000; // 4 -> 29
- vi0 = __vsub4(vi0, 0x10101010); // subtract 16 from quantized values
- int sumi = __dp4a(vi0, ui0, 0); // SIMD dot product of quantized values
- int vi1 = (qs >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh1 as 5th bits
- vi1 |= (qh1 << 4) & 0x00000010; // 1 -> 5
- vi1 |= (qh1 << 11) & 0x00001000; // 2 -> 13
- vi1 |= (qh1 << 18) & 0x00100000; // 3 -> 21
- vi1 |= (qh1 << 25) & 0x10000000; // 4 -> 29
- vi1 = __vsub4(vi1, 0x10101010); // subtract 16 from quantized values
- sumi = __dp4a(vi1, ui1, sumi); // SIMD dot product of quantized values
- return sumi*d;
- #else
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
- const int qs = *((int *) &bq5_1->qs[sizeof(int) * (iqs + 0)]);
- const int qh0 = bq5_1->qh[iqs/2 + 0] >> 4*(iqs%2);
- const int qh1 = bq5_1->qh[iqs/2 + 2] >> 4*(iqs%2);
- const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
- const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI5_1)]);
- const float d = __half2float(bq5_1->d) * __half2float(bq8_1->d);
- const float m = bq5_1->m;
- const float s = bq8_1->s;
- int vi0 = (qs >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh0 as 5th bits
- vi0 |= (qh0 << 4) & 0x00000010; // 1 -> 5
- vi0 |= (qh0 << 11) & 0x00001000; // 2 -> 13
- vi0 |= (qh0 << 18) & 0x00100000; // 3 -> 21
- vi0 |= (qh0 << 25) & 0x10000000; // 4 -> 29
- int sumi = __dp4a(vi0, ui0, 0); // SIMD dot product of quantized values
- int vi1 = (qs >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh1 as 5th bits
- vi1 |= (qh1 << 4) & 0x00000010; // 1 -> 5
- vi1 |= (qh1 << 11) & 0x00001000; // 2 -> 13
- vi1 |= (qh1 << 18) & 0x00100000; // 3 -> 21
- vi1 |= (qh1 << 25) & 0x10000000; // 4 -> 29
- sumi = __dp4a(vi1, ui1, sumi); // SIMD dot product of quantized values
- return sumi*d + m*s / QI5_1; // scale sum by QI5_1 because there are QI5_1 threads working on this block
- #else
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
- int vi;
- memcpy(&vi, &bq8_0->qs[sizeof(int) * (iqs + 0)], sizeof(int));
- const int ui = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
- const float d = __half2float(bq8_0->d) * __half2float(bq8_1->d);
- // SIMD dot product of quantized values
- int sumi = __dp4a(vi, ui, 0);
- return sumi*d;
- #else
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q2_K * bq2_K = (const block_q2_K *) vbq;
- const int bq8_offset = QR2_K * (iqs / QI8_1);
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- const float d = bq2_K->d;
- const float dmin = bq2_K->dmin;
- const int v = *((int *) &bq2_K->qs[sizeof(int) * iqs]);
- for (int i = 0; i < QR2_K; ++i) {
- const int sc = bq2_K->scales[scale_offset + 2*i];
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- const float d8i = bq8i->d;
- const int vi = (v >> (2*i)) & 0x03030303;
- const int ui = *((int*) &bq8i->qs[sizeof(int) * (iqs % QI8_1)]);
- sumf_d += d8i * (__dp4a(vi, ui, 0) * (sc & 0xF)); // SIMD dot product
- sumf_m += d8i * (__dp4a(0x01010101, ui, 0) * (sc >> 4)); // multiply constant q2_K part with sum of q8_1 values
- }
- return d*sumf_d - dmin*sumf_m;
- #else
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q3_K * bq3_K = (const block_q3_K *) vbq;
- const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- float sumf = 0.0f;
- const float d = bq3_K->d;
- int vl;
- memcpy(&vl, &bq3_K->qs[sizeof(int) * iqs], sizeof(int));
- int vh;
- memcpy(&vh, &bq3_K->hmask[sizeof(int) * (iqs % (QI3_K/2))], sizeof(int));
- vh = ~vh; // invert the mask so that a 0/1 results in 4/0 being subtracted
- vh >>= bq8_offset;
- for (int i = 0; i < QR3_K; ++i) {
- const int isc = scale_offset + 2*i;
- const int isc_low = isc % (QK_K/32);
- const int sc_shift_low = 4 * (isc / (QK_K/32));
- const int sc_low = (bq3_K->scales[isc_low] >> sc_shift_low) & 0xF;
- const int isc_high = isc % (QK_K/64);
- const int sc_shift_high = 2 * (isc / (QK_K/64));
- const int sc_high = ((bq3_K->scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
- const int sc = (sc_low | sc_high) - 32;
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- const int ui = *((int*) &bq8i->qs[sizeof(int) * (iqs % QI8_1)]);
- const float d8i = bq8i->d;
- const int vil = (vl >> (2*i)) & 0x03030303;
- const int vih = ((vh >> i) << 2) & 0x04040404;
- const int vi = __vsubss4(vil, vih);
- sumf += d8i * (__dp4a(vi, ui, 0) * sc); // SIMD dot product
- }
- return d*sumf;
- #else
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
- const int bq8_offset = QR4_K * (iqs / QI8_1);
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- const float d = bq4_K->d;
- const float dmin = bq4_K->dmin;
- const int v = *((int *) &bq4_K->qs[sizeof(int) * iqs]);
- for (int i = 0; i < QR4_K; ++i) {
- const int isc = bq8_offset + i;
- uint8_t sc, m;
- get_scale_min_k4(isc, bq4_K->scales, sc, m);
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- const int ui = *((int*) &bq8i->qs[sizeof(int) * (iqs % QI8_1)]);
- const float d8i = bq8i->d;
- const int vi = (v >> (4*i)) & 0x0F0F0F0F;
- sumf_d += d8i * (__dp4a(vi, ui, 0) * sc); // SIMD dot product
- sumf_m += d8i * (__dp4a(0x01010101, ui, 0) * m); // multiply constant part of q4_K with sum of q8_1 values
- }
- return d*sumf_d - dmin*sumf_m;
- #else
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- const int bq8_offset = QR5_K * (iqs / QI8_1);
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- const float d = bq5_K->d;
- const float dmin = bq5_K->dmin;
- const int vl = *((int *) &bq5_K->qs[sizeof(int) * iqs]);
- const int vh = (*((int *) &bq5_K->qh[sizeof(int) * (iqs % (QI5_K/4))])) >> bq8_offset;
- for (int i = 0; i < QR5_K; ++i) {
- const int isc = bq8_offset + i;
- uint8_t sc, m;
- get_scale_min_k4(isc, bq5_K->scales, sc, m);
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- const int ui = *((int*) &bq8i->qs[sizeof(int) * (iqs % QI8_1)]);
- const float d8i = bq8i->d;
- const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
- const int vih = ((vh >> i) << 4) & 0x10101010;
- const int vi = vil | vih;
- sumf_d += d8i * (__dp4a(vi, ui, 0) * sc); // SIMD dot product
- sumf_m += d8i * (__dp4a(0x01010101, ui, 0) * m); // multiply constant part of q5_K with sum of q8_1 values
- }
- return d*sumf_d - dmin*sumf_m;
- #else
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q6_K * bq6_K = (const block_q6_K *) vbq;
- const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
- const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
- const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
- float sumf = 0.0f;
- const float d = bq6_K->d;
- int vl;
- memcpy(&vl, &bq6_K->ql[sizeof(int) * iqs], sizeof(int));
- int vh;
- memcpy(&vh, &bq6_K->qh[sizeof(int) * ((QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4))], sizeof(int));
- for (int i = 0; i < QR6_K; ++i) {
- const int sc = bq6_K->scales[scale_offset + 4*i];
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + 2*i;
- const int ui = *((int*) &bq8i->qs[sizeof(int) * (iqs % (QI8_1))]);
- const float d8i = bq8i->d;
- const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
- const int vih = ((vh >> (vh_shift + 4*i)) << 4) & 0x30303030;
- const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
- sumf += d8i * (__dp4a(vi, ui, 0) * sc); // SIMD dot product
- }
- return d*sumf;
- #else
- return 0.0f; // only to satisfy the compiler
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- template <int qk, int qi, typename block_q_t, vec_dot_q_cuda_t vec_dot_q_cuda>
- static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) {
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i + threadIdx.x / qi; // x block index
- const int iby = (i + threadIdx.x / qi) * qk/QK8_1; // y block index that aligns with ibx
- const int iqs = threadIdx.x % qi; // x block quant index when casting the quants to int
- tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
- // qk = quantized weights per x block
- // qr = number of quantized weights per data value in x block
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row >= nrows) {
- return;
- }
- const int tid = threadIdx.x;
- const int iter_stride = 2*GGML_CUDA_DMMV_X;
- const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
- const int y_offset = qr == 1 ? 1 : qk/2;
- // partial sum for each thread
- #ifdef GGML_CUDA_DMMV_F16
- half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
- #else
- float tmp = 0.0f;
- #endif // GGML_CUDA_DMMV_F16
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = (row*ncols + col)/qk; // x block index
- const int iqs = (col%qk)/qr; // x quant index
- const int iybs = col - col%qk; // y block start index
- // processing >2 values per i iter is faster for fast GPUs
- #pragma unroll
- for (int j = 0; j < vals_per_iter; j += 2) {
- // process 2 vals per j iter
- // dequantize
- // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs + j/qr, v);
- // matrix multiplication
- // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
- #ifdef GGML_CUDA_DMMV_F16
- tmp += __hmul2(v, {
- y[iybs + iqs + j/qr + 0],
- y[iybs + iqs + j/qr + y_offset]
- });
- #else
- tmp += v.x * y[iybs + iqs + j/qr + 0];
- tmp += v.y * y[iybs + iqs + j/qr + y_offset];
- #endif // GGML_CUDA_DMMV_F16
- }
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- #ifdef GGML_CUDA_DMMV_F16
- dst[row] = tmp.x + tmp.y;
- #else
- dst[row] = tmp;
- #endif // GGML_CUDA_DMMV_F16
- }
- }
- static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int nchannels_x) {
- const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- // x is transposed and permuted
- const int ix = row_x*nchannels_x*ncols_x + channel*ncols_x + col_x;
- const float xi = __half2float(x[ix]);
- const int row_y = col_x;
- // y is not transposed but permuted
- const int iy = channel*nrows_y + row_y;
- tmp += xi * y[iy];
- }
- // dst is not transposed and not permuted
- const int idst = channel*nrows_dst + row_dst;
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
- const int row_stride_x, const int channel_stride_x) {
- const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- const int idst = channel*nrows_dst + row_dst;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- const int ix = channel*channel_stride_x + row_x*row_stride_x + col_x;
- const float xi = __half2float(x[ix]);
- const int row_y = col_x;
- const int iy = channel*nrows_y + row_y;
- tmp += xi * y[iy];
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- float * dsti = (float *) cdsti;
- *dsti = *xi;
- }
- static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- half * dsti = (half *) cdsti;
- *dsti = __float2half(*xi);
- }
- template <cpy_kernel_t cpy_1>
- static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= ne) {
- return;
- }
- // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
- // then combine those indices with the corresponding byte offsets to get the total offsets
- const int i02 = i / (ne00*ne01);
- const int i01 = (i - i02*ne01*ne00) / ne00;
- const int i00 = i - i02*ne01*ne00 - i01*ne00;
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
- const int i12 = i / (ne10*ne11);
- const int i11 = (i - i12*ne10*ne11) / ne10;
- const int i10 = i - i12*ne10*ne11 - i11*ne10;
- const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
- cpy_1(cx + x_offset, cdst + dst_offset);
- }
- // rope == RoPE == rotary positional embedding
- static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p, const float theta_scale) {
- const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
- if (col >= ncols) {
- return;
- }
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int i = row*ncols + col;
- const float theta = p*powf(theta_scale, col/2);
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + 1];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + 1] = x0*sin_theta + x1*cos_theta;
- }
- static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) {
- const int col = blockDim.x*blockIdx.x + threadIdx.x;
- const int half_n_dims = ncols/4;
- if (col >= half_n_dims) {
- return;
- }
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int i = row*ncols + col;
- const float col_theta_scale = powf(theta_scale, col);
- const float theta = p*col_theta_scale;
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + half_n_dims];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
- const float block_theta = block_p*col_theta_scale;
- const float sin_block_theta = sinf(block_theta);
- const float cos_block_theta = cosf(block_theta);
- const float x2 = x[i + half_n_dims * 2];
- const float x3 = x[i + half_n_dims * 3];
- dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
- dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
- }
- static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
- const int col = blockDim.x*blockIdx.x + threadIdx.x;
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- if (col >= ncols) {
- return;
- }
- const int i = row*ncols + col;
- // dst[i] = col > n_past + row ? -INFINITY : x[i];
- dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
- }
- // the CUDA soft max implementation differs from the CPU implementation
- // instead of doubles floats are used
- // values are also not normalized to the maximum value by subtracting it in the exponential function
- // theoretically these changes could cause problems with rounding error and arithmetic overflow but for LLaMa it seems to be fine
- static __global__ void soft_max_f32(const float * x, float * dst, const int ncols) {
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int block_size = blockDim.x;
- const int tid = threadIdx.x;
- float tmp = 0.0;
- for (int block_start = 0; block_start < ncols; block_start += block_size) {
- const int col = block_start + tid;
- if (col >= ncols) {
- break;
- }
- const int i = row*ncols + col;
- const float val = expf(x[i]);
- tmp += val;
- dst[i] = val;
- }
- // sum up partial sums
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- for (int block_start = 0; block_start < ncols; block_start += block_size) {
- const int col = block_start + tid;
- if (col >= ncols) {
- break;
- }
- const int i = row*ncols + col;
- dst[i] /= tmp;
- }
- }
- static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = scale * x[i];
- }
- static void add_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
- const int num_blocks = (kx + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
- add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
- }
- static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
- add_f16_f32_f16<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
- }
- static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
- const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
- mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
- }
- static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
- gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
- silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
- }
- static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
- }
- static void quantize_row_q8_1_cuda(const float * x, void * vy, const int ndata, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
- quantize_q8_1<<<num_blocks, CUDA_QUANTIZE_BLOCK_SIZE, 0, stream>>>(x, vy, ndata, k);
- }
- static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 1, 1);
- dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK4_0 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, vec_dot_q4_0_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK4_1 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, vec_dot_q4_1_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK5_0 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, vec_dot_q5_0_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK5_1 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, vec_dot_q5_1_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK8_0 == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, vec_dot_q8_0_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI2_K, block_q2_K, vec_dot_q2_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI3_K, block_q3_K, vec_dot_q3_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI4_K, block_q4_K, vec_dot_q4_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI5_K, block_q5_K, vec_dot_q5_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK_K, QI6_K, block_q6_K, vec_dot_q6_K_q8_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
- }
- static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<1, 1, convert_f16>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_cuda;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_cuda;
- case GGML_TYPE_Q5_0:
- return dequantize_row_q5_0_cuda;
- case GGML_TYPE_Q5_1:
- return dequantize_row_q5_1_cuda;
- case GGML_TYPE_Q8_0:
- return dequantize_row_q8_0_cuda;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_cuda;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_cuda;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_cuda;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_cuda;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_cuda;
- case GGML_TYPE_F16:
- return convert_fp16_to_fp32_cuda;
- default:
- return nullptr;
- }
- }
- static void ggml_mul_mat_p021_f16_f32_cuda(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_x);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x);
- }
- static void ggml_mul_mat_vec_nc_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
- const int nchannels_x, const int channel_stride_x, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_x);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
- (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x);
- }
- static void ggml_cpy_f32_f32_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
- }
- static void ggml_cpy_f32_f16_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
- }
- static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
- scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
- }
- static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) {
- GGML_ASSERT(nrows % 2 == 0);
- const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
- const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
- const dim3 block_nums(num_blocks_x, nrows, 1);
- rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, theta_scale);
- }
- static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
- GGML_ASSERT(nrows % 4 == 0);
- const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1);
- const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE);
- const dim3 block_nums(num_blocks_x, nrows, 1);
- rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, block_p, theta_scale);
- }
- static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
- const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1);
- const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
- const dim3 block_nums(block_num_x, nrows_x, 1);
- diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
- }
- static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, cudaStream_t stream) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- const dim3 block_nums(1, nrows_x, 1);
- soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
- }
- // buffer pool for cuda
- #define MAX_CUDA_BUFFERS 256
- struct scoped_spin_lock {
- std::atomic_flag& lock;
- scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
- while (lock.test_and_set(std::memory_order_acquire)) {
- ; // spin
- }
- }
- ~scoped_spin_lock() {
- lock.clear(std::memory_order_release);
- }
- scoped_spin_lock(const scoped_spin_lock&) = delete;
- scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
- };
- struct cuda_buffer {
- void * ptr = nullptr;
- size_t size = 0;
- };
- static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
- static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
- static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[id][i];
- if (b.size >= size && b.ptr != nullptr) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- }
- void * ptr;
- CUDA_CHECK(cudaMalloc((void **) &ptr, size));
- *actual_size = size;
- return ptr;
- }
- static void ggml_cuda_pool_free(void * ptr, size_t size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[id][i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
- CUDA_CHECK(cudaFree(ptr));
- }
- static void * g_scratch_buffer = nullptr;
- static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
- static size_t g_scratch_offset = 0;
- static int g_device_count = -1;
- static int g_main_device = 0;
- static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
- static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
- static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
- static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES] = { nullptr };
- void ggml_init_cublas() {
- static bool initialized = false;
- if (!initialized) {
- CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
- GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
- int64_t total_vram = 0;
- fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count);
- for (int id = 0; id < g_device_count; ++id) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
- fprintf(stderr, " Device %d: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor);
- g_tensor_split[id] = total_vram;
- total_vram += prop.totalGlobalMem;
- g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
- }
- for (int id = 0; id < g_device_count; ++id) {
- g_tensor_split[id] /= total_vram;
- }
- for (int id = 0; id < g_device_count; ++id) {
- CUDA_CHECK(cudaSetDevice(id));
- // create main stream
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id], cudaStreamNonBlocking));
- // create cublas handle
- CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
- CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
- }
- // configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
- initialized = true;
- }
- }
- void ggml_cuda_set_tensor_split(const float * tensor_split) {
- bool all_zero = true;
- for (int i = 0; i < g_device_count; ++i) {
- if (tensor_split[i] != 0.0f) {
- all_zero = false;
- break;
- }
- }
- if (all_zero) {
- return;
- }
- float split_sum = 0.0f;
- for (int i = 0; i < g_device_count; ++i) {
- g_tensor_split[i] = split_sum;
- split_sum += tensor_split[i];
- }
- for (int i = 0; i < g_device_count; ++i) {
- g_tensor_split[i] /= split_sum;
- }
- }
- void * ggml_cuda_host_malloc(size_t size) {
- if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
- return nullptr;
- }
- void * ptr = nullptr;
- cudaError_t err = cudaMallocHost((void **) &ptr, size);
- if (err != cudaSuccess) {
- // The allocation error can be bypassed. A null ptr will assigned out of this function.
- // This can fixed the OOM error in WSL.
- cudaGetLastError();
- fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
- size/1024.0/1024.0, cudaGetErrorString(err));
- return nullptr;
- }
- return ptr;
- }
- void ggml_cuda_host_free(void * ptr) {
- CUDA_CHECK(cudaFreeHost(ptr));
- }
- static cudaError_t ggml_cuda_cpy_tensor_2d(
- void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
- cudaMemcpyKind kind;
- char * src_ptr;
- if (src->backend == GGML_BACKEND_CPU) {
- kind = cudaMemcpyHostToDevice;
- src_ptr = (char *) src->data;
- } else if (src->backend == GGML_BACKEND_GPU) {
- kind = cudaMemcpyDeviceToDevice;
- struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- src_ptr = (char *) extra->data_device[id];
- } else {
- GGML_ASSERT(false);
- }
- char * dst_ptr = (char *) dst;
- const int64_t ne0 = src->ne[0];
- const int64_t nb0 = src->nb[0];
- const int64_t nb1 = src->nb[1];
- const int64_t nb2 = src->nb[2];
- const int64_t nb3 = src->nb[3];
- const enum ggml_type type = src->type;
- const int64_t ts = ggml_type_size(type);
- const int64_t bs = ggml_blck_size(type);
- int64_t i1_diff = i1_high - i1_low;
- const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
- } else if (nb0 == ts) {
- return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
- } else {
- for (int64_t i1 = 0; i1 < i1_diff; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
- if (r != cudaSuccess) return r;
- }
- return cudaSuccess;
- }
- }
- inline void ggml_cuda_op_add(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddq_i != nullptr || src0_ddf_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- // compute
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne00*i01_diff, cudaStream_main);
- } else {
- GGML_ASSERT(false);
- }
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_mul(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- mul_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
- (void) dst;
- (void) src0_ddq_i;
- (void) i02;
- }
- inline void ggml_cuda_op_gelu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- gelu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_silu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_rms_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_mul_mat_vec(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddq_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = i01_high - i01_low;
- #ifdef GGML_CUDA_FORCE_DMMV
- const bool use_mul_mat_vec_q = false;
- #else
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- bool mul_mat_vec_q_implemented =
- src0->type == GGML_TYPE_Q4_0 ||
- src0->type == GGML_TYPE_Q4_1 ||
- src0->type == GGML_TYPE_Q5_0 ||
- src0->type == GGML_TYPE_Q5_1 ||
- src0->type == GGML_TYPE_Q8_0;
- #if QK_K == 256
- mul_mat_vec_q_implemented = mul_mat_vec_q_implemented ||
- src0->type == GGML_TYPE_Q2_K ||
- src0->type == GGML_TYPE_Q3_K ||
- src0->type == GGML_TYPE_Q4_K ||
- src0->type == GGML_TYPE_Q5_K ||
- src0->type == GGML_TYPE_Q6_K;
- #endif // QK_K == 256
- const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= MIN_CC_DP4A && mul_mat_vec_q_implemented;
- #endif
- if (use_mul_mat_vec_q) {
- int64_t padded_row_size = ne00 + MATRIX_ROW_PADDING - 1;
- padded_row_size -= padded_row_size % MATRIX_ROW_PADDING;
- size_t as;
- void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
- quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, padded_row_size, cudaStream_main);
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- mul_mat_vec_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q4_1:
- mul_mat_vec_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_0:
- mul_mat_vec_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_1:
- mul_mat_vec_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q8_0:
- mul_mat_vec_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q2_K:
- mul_mat_vec_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q3_K:
- mul_mat_vec_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q4_K:
- mul_mat_vec_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_K:
- mul_mat_vec_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q6_K:
- mul_mat_vec_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- ggml_cuda_pool_free(src1_q8_1, as);
- } else {
- // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
- #ifdef GGML_CUDA_DMMV_F16
- size_t ash;
- dfloat * src1_dfloat = nullptr; // dfloat == half
- bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
- src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
- src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
- if (src1_convert_f16) {
- src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash);
- ggml_cpy_f32_f16_cuda((char *) src1_ddf_i, (char *) src1_dfloat, ne00,
- ne00, 1, sizeof(float), 0, 0,
- ne00, 1, sizeof(half), 0, 0, cudaStream_main);
- }
- #else
- dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion
- #endif // GGML_CUDA_DMMV_F16
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q4_1:
- dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_0:
- dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_1:
- dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q8_0:
- dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q2_K:
- dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q3_K:
- dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q4_K:
- dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_K:
- dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q6_K:
- dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_F16:
- convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- #ifdef GGML_CUDA_DMMV_F16
- if (src1_convert_f16) {
- ggml_cuda_pool_free(src1_dfloat, ash);
- }
- #endif // GGML_CUDA_DMMV_F16
- }
- (void) src1;
- (void) dst;
- (void) src0_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_mul_mat_cublas(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne0 = dst->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // ldc == nrows of the matrix that cuBLAS writes into
- int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], cudaStream_main));
- CUBLAS_CHECK(
- cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
- i01_diff, ne11, ne10,
- &alpha, src0_ddf_i, ne00,
- src1_ddf_i, ne10,
- &beta, dst_ddf_i, ldc));
- (void) dst;
- (void) src0_ddq_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_rope(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
- const int n_ctx = ((int32_t *) src1->data)[3];
- const float theta_scale = powf(10000.0, -2.0f/n_dims);
- const float p = ((mode & 1) == 0 ? n_past + i02 : i02);
- bool is_glm = mode & 4;
- // compute
- if (is_glm) {
- const float id_p = min(p, n_ctx - 2.f);
- const float block_p = max(p - (n_ctx - 2.f), 0.f);
- rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
- } else {
- rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
- }
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i1;
- }
- inline void ggml_cuda_op_diag_mask_inf(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t i01_diff = i01_high - i01_low;
- const int n_past = ((int32_t *) src1->data)[0];
- // compute
- diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_soft_max(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_scale(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const float scale = ((float *) src1->data)[0];
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- scale_f32_cuda(src0_ddf_i, dst_ddf_i, scale, ne00*i01_diff, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- ggml_cuda_op_t op, bool src0_needs_f32, bool flatten_rows) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t nrows0 = ggml_nrows(src0);
- const bool use_src1 = src1 != nullptr;
- const int64_t ne10 = use_src1 ? src1->ne[0] : 1;
- const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
- const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
- const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
- // strides for iteration over dims 3 and 2
- const int64_t num_iters = flatten_rows ? 1 : ne02 * ne03;
- const int64_t stride_mod = flatten_rows ? ne02 * ne03 : 1;
- const int64_t src0_stride = ne00 * ne01 * stride_mod;
- const int64_t src1_stride = ne10 * ne11 * stride_mod;
- const int64_t dst_stride = ne0 * ne1 * stride_mod;
- const size_t src0_ts = ggml_type_size(src0->type);
- const size_t src0_bs = ggml_blck_size(src0->type);
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
- struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
- const bool src0_is_contiguous = ggml_is_contiguous(src0);
- const bool src0_is_f32 = src0->type == GGML_TYPE_F32;
- const bool src1_is_contiguous = use_src1 && ggml_is_contiguous(src1);
- const bool src1_stays_on_host = use_src1 && (
- dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);
- const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
- // dd = data device
- char * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized
- float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float
- float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
- float * dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
- // asq = actual size quantized, asf = actual size float
- size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0};
- size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0};
- size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
- size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0};
- // if multiple devices are used they need to wait for the main device
- // here an event is recorded that signifies that the main device has finished calculating the input data
- if (split && g_device_count > 1) {
- CUDA_CHECK(cudaSetDevice(g_main_device));
- CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device], g_cudaStreams_main[g_main_device]));
- }
- for (int id = 0; id < g_device_count; ++id) {
- if (!split && id != g_main_device) {
- continue;
- }
- const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU && id == g_main_device;
- const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
- int64_t row_low, row_high;
- if (split) {
- row_low = id == 0 ? 0 : nrows0*g_tensor_split[id];
- row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1];
- } else {
- row_low = 0;
- row_high = nrows0;
- }
- if (row_low == row_high) {
- continue;
- }
- int64_t row_diff = row_high - row_low;
- cudaSetDevice(id);
- cudaStream_t cudaStream_main = g_cudaStreams_main[id];
- // wait for main GPU data if necessary
- if (split && id != g_main_device) {
- CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, src0_extra->events[g_main_device]));
- }
- if (src0_on_device && src0_is_contiguous) {
- if (src0_is_f32) {
- src0_ddf[id] = (float *) src0_extra->data_device[id];
- } else {
- src0_ddq[id] = (char *) src0_extra->data_device[id];
- }
- } else {
- if (src0_is_f32) {
- src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
- } else {
- src0_ddq[id] = (char *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_asq[id]);
- }
- }
- if (src0_needs_f32 && !src0_is_f32) {
- src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
- }
- if (use_src1 && !src1_stays_on_host) {
- if (src1_on_device && src1_is_contiguous) {
- src1_ddf[id] = (float *) src1_extra->data_device[id];
- } else {
- src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]);
- }
- }
- if (dst_on_device) {
- dst_ddf[id] = (float *) dst_extra->data_device[id];
- } else {
- size_t size_dst_ddf = split ? row_diff*ne1 * sizeof(float) : num_iters*dst_stride * sizeof(float);
- dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
- }
- const int64_t i03_max = flatten_rows ? 1 : ne03;
- const int64_t i02_max = flatten_rows ? 1 : ne02;
- const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
- for (int64_t i03 = 0; i03 < i03_max; i03++) {
- const int64_t i13 = i03 % ne13;
- for (int64_t i02 = 0; i02 < i02_max; i02++) {
- const int64_t i12 = i02 % ne12;
- const int64_t i0 = i03*ne02 + i02;
- // i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
- const int64_t i0_offset_low = row_low/rows_per_iter;
- const int64_t i0_offset_high = row_high/rows_per_iter;
- int64_t i01_low = 0;
- int64_t i01_high = rows_per_iter;
- if (split) {
- if (i0 < i0_offset_low || i0 > i0_offset_high) {
- continue;
- }
- if (i0 == i0_offset_low) {
- i01_low = row_low % rows_per_iter;
- }
- if (i0 == i0_offset_high) {
- i01_high = row_high % rows_per_iter;
- }
- }
- // There is possibly a bug in the Windows nvcc compiler regarding instruction reordering or optimizing out local variables.
- // Removing the first assert or changing the order of the arguments causes the second assert to fail.
- // Removing both asserts results in i01_high becoming 0 which in turn results in garbage output.
- // The root cause seems to be a problem with i0_offset_high becoming 0 when it should always be >0 (for single GPU).
- GGML_ASSERT(i01_low == 0 || g_device_count > 1);
- GGML_ASSERT(i01_high == rows_per_iter || g_device_count > 1);
- const int64_t i01_diff = i01_high - i01_low;
- if (i01_diff == 0) {
- continue;
- }
- const int64_t i11 = i13*ne12 + i12;
- // for split tensors the data begins at i0 == i0_offset_low
- char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
- float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride;
- float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
- float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
- // for split tensors the data pointer needs to be rounded down
- // to the bin edge for i03, i02 bins beyond the first
- if (i0 - i0_offset_low > 0) {
- GGML_ASSERT(!flatten_rows);
- src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs;
- src0_ddf_i -= (row_low % ne01)*ne00;
- dst_ddf_i -= (row_low % ne0)*ne1;
- }
- // the main device memory buffer can be on VRAM scratch, with space for all partial results
- // in that case an offset on dst_ddf_i is needed
- if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
- dst_ddf_i += i01_low; // offset is 0 if no tensor split
- }
- // copy src0, src1 to device if necessary
- if (use_src1 && !src1_stays_on_host) {
- if (src1->backend == GGML_BACKEND_CPU) {
- GGML_ASSERT(!flatten_rows || nrows0 == ggml_nrows(src1));
- int64_t nrows1 = flatten_rows ? nrows0 : ne11;
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_main));
- } else if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
- if (id != g_main_device) {
- GGML_ASSERT(!flatten_rows);
- float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
- src1_ddf_i_source += i11*src1_stride;
- CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float),
- cudaMemcpyDeviceToDevice, cudaStream_main));
- }
- } else if (src1_on_device && !src1_is_contiguous) {
- GGML_ASSERT(!split);
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_main));
- } else {
- GGML_ASSERT(false);
- }
- }
- if (!src0_on_device || !src0_is_contiguous) {
- if (src0_is_f32) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
- } else {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
- }
- }
- // convert src0 to f32 if it is necessary for the ggml_cuda_op
- if (src0_needs_f32 && !src0_is_f32) {
- to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- }
- // do the computation
- op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- // copy dst to host or other device if necessary
- if (!dst_on_device) {
- void * dst_off_device;
- cudaMemcpyKind kind;
- if (dst->backend == GGML_BACKEND_CPU) {
- dst_off_device = dst->data;
- kind = cudaMemcpyDeviceToHost;
- } else if (dst->backend == GGML_BACKEND_GPU) {
- dst_off_device = dst_extra->data_device[g_main_device];
- kind = cudaMemcpyDeviceToDevice;
- } else {
- GGML_ASSERT(false);
- }
- if (split) {
- // src0 = weight matrix is saved as a transposed matrix for better memory layout.
- // dst is NOT transposed.
- // The outputs of cuBLAS matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
- // Instead they need to be copied to the correct slice in ne0 = dst row index.
- // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
- for (int64_t j = 0; j < ne1; ++j) {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + (j*ne0 + i01_low)*sizeof(float) + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i + j*i01_diff, i01_diff*sizeof(float), kind, cudaStream_main));
- }
- } else {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
- }
- }
- // signify to main device that other device is done
- if (split && g_device_count > 1 && id != g_main_device) {
- CUDA_CHECK(cudaEventRecord(src0_extra->events[id], cudaStream_main));
- }
- }
- }
- }
- // wait until each device is finished, then free their buffers
- for (int id = 0; id < g_device_count; ++id) {
- if (src0_asq[id] == 0 && src0_asf[id] == 0 && src1_asf[id] == 0 && dst_asf[id] == 0) {
- continue;
- }
- CUDA_CHECK(cudaSetDevice(id));
- if (src0_asq[id] > 0) {
- ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
- }
- if (src0_asf[id] > 0) {
- ggml_cuda_pool_free(src0_ddf[id], src0_asf[id]);
- }
- if (src1_asf[id] > 0) {
- ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
- }
- if (dst_asf[id] > 0) {
- ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]);
- }
- }
- // main device waits for all other devices to be finished
- if (split && g_device_count > 1) {
- CUDA_CHECK(cudaSetDevice(g_main_device));
- for (int id = 0; id < g_device_count; ++id) {
- if (id != g_main_device) {
- CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams_main[g_main_device], src0_extra->events[id]));
- }
- }
- }
- if (dst->backend == GGML_BACKEND_CPU) {
- CUDA_CHECK(cudaSetDevice(g_main_device));
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- }
- void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- // ggml_cuda_add permits f16 dst even though this could in theory cause problems with the pointer arithmetic in ggml_cuda_op.
- // Due to flatten_rows == true this does in practice not make a difference however.
- // Better solution would be nice but right now that would require disproportionate changes.
- GGML_ASSERT(
- (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) &&
- src1->type == GGML_TYPE_F32 &&
- (dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16));
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, false, true);
- }
- void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten
- }
- void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_gelu, true, true);
- }
- void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true);
- }
- void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_norm, true, true);
- }
- void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true, true);
- }
- bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
- return true;
- }
- return false;
- }
- void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
- GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
- GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- CUDA_CHECK(cudaSetDevice(g_main_device));
- cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, cudaStream_main);
- }
- void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
- GGML_ASSERT(!ggml_is_permuted(src0));
- GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- CUDA_CHECK(cudaSetDevice(g_main_device));
- cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- const int row_stride_x = nb01 / sizeof(half);
- const int channel_stride_x = nb02 / sizeof(half);
- ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main);
- }
- void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
- src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;
- if (all_on_device && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
- ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
- } else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) {
- ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
- }else if (src0->type == GGML_TYPE_F32) {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
- } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
- if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_vec, false, false);
- } else {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
- }
- } else {
- GGML_ASSERT(false);
- }
- }
- void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_scale, true, true);
- }
- void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int64_t ne = ggml_nelements(src0);
- GGML_ASSERT(ne == ggml_nelements(src1));
- GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
- GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
- GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
- GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- GGML_ASSERT(src0->ne[3] == 1);
- const int64_t nb00 = src0->nb[0];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- GGML_ASSERT(src1->ne[3] == 1);
- const int64_t nb10 = src1->nb[0];
- const int64_t nb11 = src1->nb[1];
- const int64_t nb12 = src1->nb[2];
- CUDA_CHECK(cudaSetDevice(g_main_device));
- cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
- const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
- ne10, ne11, nb10, nb11, nb12, cudaStream_main);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
- ne10, ne11, nb10, nb11, nb12, cudaStream_main);
- } else {
- GGML_ASSERT(false);
- }
- (void) dst;
- }
- void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_cpy(src0, dst, nullptr);
- (void) src1;
- }
- void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true);
- }
- void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_soft_max, true, true);
- }
- void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, false); // FIXME flatten changes results
- }
- void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- (void) src0;
- (void) src1;
- (void) dst;
- }
- void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
- int nrows = ggml_nrows(tensor);
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_backend backend = tensor->backend;
- struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
- memset(extra, 0, sizeof(*extra));
- for (int id = 0; id < g_device_count; ++id) {
- if (backend == GGML_BACKEND_GPU && id != g_main_device) {
- continue;
- }
- cudaSetDevice(id);
- int row_low, row_high;
- if (backend == GGML_BACKEND_GPU) {
- row_low = 0;
- row_high = nrows;
- } else if (backend == GGML_BACKEND_GPU_SPLIT) {
- row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
- row_high = id == g_device_count - 1 ? nrows : nrows*g_tensor_split[id + 1];
- } else {
- GGML_ASSERT(false);
- }
- if (row_low == row_high) {
- continue;
- }
- int64_t nrows_split = row_high - row_low;
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 256 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
- * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
- }
- char * buf;
- CUDA_CHECK(cudaMalloc(&buf, size));
- char * buf_host = (char*)data + offset_split;
- // set padding to 0 to avoid possible NaN values
- if (size > original_size) {
- CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
- }
- CUDA_CHECK(cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice));
- extra->data_device[id] = buf;
- if (backend == GGML_BACKEND_GPU_SPLIT) {
- CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id], cudaEventDisableTiming));
- }
- }
- tensor->extra = extra;
- }
- void ggml_cuda_free_data(struct ggml_tensor * tensor) {
- if (!tensor || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
- return;
- }
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
- for (int id = 0; id < g_device_count; ++id) {
- if (extra->data_device[id] != nullptr) {
- CUDA_CHECK(cudaSetDevice(id));
- CUDA_CHECK(cudaFree(extra->data_device[id]));
- }
- if (extra->events[id] != nullptr) {
- CUDA_CHECK(cudaSetDevice(id));
- CUDA_CHECK(cudaEventDestroy(extra->events[id]));
- }
- }
- delete extra;
- }
- static struct ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
- static size_t g_temp_tensor_extra_index = 0;
- static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
- if (g_temp_tensor_extras == nullptr) {
- g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES];
- }
- size_t alloc_index = g_temp_tensor_extra_index;
- g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_MAX_NODES;
- struct ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
- memset(extra, 0, sizeof(*extra));
- return extra;
- }
- void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace) {
- if (scratch && g_scratch_size == 0) {
- return;
- }
- // recursively assign CUDA buffers until a compute tensor is found
- if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
- const ggml_op src0_op = tensor->src[0]->op;
- if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
- ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace);
- }
- }
- if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
- ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace);
- }
- tensor->backend = GGML_BACKEND_GPU;
- struct ggml_tensor_extra_gpu * extra;
- const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
- tensor->op == GGML_OP_VIEW ||
- force_inplace;
- const size_t size = ggml_nbytes(tensor);
- CUDA_CHECK(cudaSetDevice(g_main_device));
- if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- size_t offset = 0;
- if (tensor->op == GGML_OP_VIEW) {
- memcpy(&offset, tensor->src[2]->data, sizeof(size_t));
- }
- extra = ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = src0_ddc + offset;
- } else if (tensor->op == GGML_OP_CPY) {
- struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
- void * src1_ddv = src1_extra->data_device[g_main_device];
- extra = ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = src1_ddv;
- } else if (scratch) {
- GGML_ASSERT(size <= g_scratch_size);
- if (g_scratch_offset + size > g_scratch_size) {
- g_scratch_offset = 0;
- }
- char * data = (char *) g_scratch_buffer;
- if (data == nullptr) {
- CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
- g_scratch_buffer = data;
- }
- extra = ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = data + g_scratch_offset;
- g_scratch_offset += size;
- GGML_ASSERT(g_scratch_offset <= g_scratch_size);
- } else { // allocate new buffers outside of scratch
- void * data;
- CUDA_CHECK(cudaMalloc(&data, size));
- CUDA_CHECK(cudaMemset(data, 0, size));
- extra = new ggml_tensor_extra_gpu;
- memset(extra, 0, sizeof(*extra));
- extra->data_device[g_main_device] = data;
- }
- tensor->extra = extra;
- }
- void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, true, false);
- }
- void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, false, false);
- }
- void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, false, true);
- }
- void ggml_cuda_set_main_device(int main_device) {
- if (main_device >= g_device_count) {
- fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
- main_device, g_device_count, g_main_device);
- return;
- }
- g_main_device = main_device;
- if (g_device_count > 1) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
- fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
- }
- }
- void ggml_cuda_set_scratch_size(size_t scratch_size) {
- g_scratch_size = scratch_size;
- }
- void ggml_cuda_free_scratch() {
- if (g_scratch_buffer == nullptr) {
- return;
- }
- CUDA_CHECK(cudaFree(g_scratch_buffer));
- g_scratch_buffer = nullptr;
- }
- bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){
- ggml_cuda_func_t func;
- const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
- || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
- || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
- switch (tensor->op) {
- case GGML_OP_DUP:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_dup;
- break;
- case GGML_OP_ADD:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_add;
- break;
- case GGML_OP_MUL:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_mul;
- break;
- case GGML_OP_GELU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_gelu;
- break;
- case GGML_OP_SILU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_silu;
- break;
- case GGML_OP_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_norm;
- break;
- case GGML_OP_RMS_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_rms_norm;
- break;
- case GGML_OP_MUL_MAT:
- if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
- return false;
- }
- func = ggml_cuda_mul_mat;
- break;
- case GGML_OP_SCALE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_scale;
- break;
- case GGML_OP_CPY:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_cpy;
- break;
- case GGML_OP_CONT:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_dup;
- break;
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_nop;
- break;
- case GGML_OP_DIAG_MASK_INF:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_diag_mask_inf;
- break;
- case GGML_OP_SOFT_MAX:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_soft_max;
- break;
- case GGML_OP_ROPE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_rope;
- break;
- default:
- return false;
- }
- if (params->ith != 0) {
- return true;
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return true;
- }
- func(tensor->src[0], tensor->src[1], tensor);
- return true;
- }
|