ggml.go 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675
  1. package ggml
  2. /*
  3. #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
  4. #include <stdlib.h>
  5. #include <stdint.h>
  6. #include "ggml.h"
  7. #include "ggml-cpu.h"
  8. #include "ggml-backend.h"
  9. static struct ggml_backend_feature * getBackendFeatures(void *fp, ggml_backend_reg_t reg) {return ((ggml_backend_get_features_t)(fp))(reg);}
  10. static struct ggml_backend_feature * getNextBackendFeatures(struct ggml_backend_feature * feature) { return &feature[1];}
  11. typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
  12. COMPILER inline get_compiler() {
  13. #if defined(__clang__)
  14. return COMP_CLANG;
  15. #elif defined(__GNUC__)
  16. return COMP_GCC;
  17. #else
  18. return UNKNOWN_COMPILER;
  19. #endif
  20. }
  21. */
  22. import "C"
  23. import (
  24. "fmt"
  25. "io"
  26. "log/slog"
  27. "os"
  28. "sync"
  29. "unsafe"
  30. "github.com/ollama/ollama/format"
  31. fs "github.com/ollama/ollama/fs/ggml"
  32. "github.com/ollama/ollama/ml"
  33. "golang.org/x/sync/errgroup"
  34. ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
  35. )
  36. type device struct {
  37. d *C.struct_ggml_backend_device
  38. }
  39. func (d device) LogValue() slog.Value {
  40. var free, total uint64
  41. C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
  42. kind := "unknown"
  43. switch C.ggml_backend_dev_type(d.d) {
  44. case C.GGML_BACKEND_DEVICE_TYPE_CPU:
  45. kind = "cpu"
  46. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  47. kind = "gpu"
  48. case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  49. kind = "accel"
  50. }
  51. return slog.GroupValue(
  52. slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
  53. slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
  54. slog.String("kind", kind),
  55. slog.String("free", format.HumanBytes2(free)),
  56. slog.String("total", format.HumanBytes2(total)),
  57. )
  58. }
  59. var devices = sync.OnceValue(func() []device {
  60. ggml.OnceLoad()
  61. s := make([]device, C.ggml_backend_dev_count())
  62. for i := range s {
  63. s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
  64. }
  65. return s
  66. })
  67. type Backend struct {
  68. meta *fs.GGML
  69. cpus, gpus []Context
  70. tensors map[string]*Context
  71. }
  72. func New(r *os.File) (ml.Backend, error) {
  73. meta, n, err := fs.Decode(r, -1)
  74. if err != nil {
  75. return nil, err
  76. }
  77. slog.Info(
  78. "",
  79. "architecture", meta.KV().Architecture(),
  80. "file_type", meta.KV().FileType(),
  81. "name", meta.KV().String("general.name"),
  82. "description", meta.KV().String("general.description"),
  83. "num_tensors", len(meta.Tensors().Items()),
  84. "num_key_values", len(meta.KV()),
  85. )
  86. var cpus, gpus []Context
  87. for _, d := range devices() {
  88. switch C.ggml_backend_dev_type(d.d) {
  89. case C.GGML_BACKEND_DEVICE_TYPE_CPU,
  90. C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  91. slog.Info("cpu", "device", d)
  92. cpus = append(cpus, Context{
  93. ctx: C.ggml_init(C.struct_ggml_init_params{
  94. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  95. no_alloc: true,
  96. }),
  97. backend: C.ggml_backend_dev_init(d.d, nil),
  98. })
  99. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  100. slog.Info("gpu", "device", d)
  101. gpus = append(gpus, Context{
  102. ctx: C.ggml_init(C.struct_ggml_init_params{
  103. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  104. no_alloc: true,
  105. }),
  106. backend: C.ggml_backend_dev_init(d.d, nil),
  107. })
  108. }
  109. }
  110. ctxFunc := func(s []Context) (*Context, error) {
  111. for _, e := range s {
  112. return &e, nil
  113. }
  114. return nil, fmt.Errorf("no devices available")
  115. }
  116. tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
  117. for _, t := range meta.Tensors().Items() {
  118. c, err := ctxFunc(append(gpus, cpus...))
  119. if err != nil {
  120. return nil, err
  121. }
  122. func() {
  123. tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
  124. cname := C.CString(t.Name)
  125. defer C.free(unsafe.Pointer(cname))
  126. C.ggml_set_name(tt, cname)
  127. tensors[t] = c
  128. }()
  129. }
  130. for _, b := range append(gpus, cpus...) {
  131. C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
  132. }
  133. sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
  134. var g errgroup.Group
  135. for t, c := range tensors {
  136. g.Go(func() error {
  137. bts := make([]byte, t.Size())
  138. n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
  139. if err != nil {
  140. return err
  141. }
  142. if n != int(t.Size()) {
  143. return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
  144. }
  145. cname := C.CString(t.Name)
  146. defer C.free(unsafe.Pointer(cname))
  147. C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
  148. return nil
  149. })
  150. }
  151. if err := g.Wait(); err != nil {
  152. return nil, err
  153. }
  154. return &Backend{
  155. meta: meta,
  156. cpus: cpus,
  157. gpus: gpus,
  158. }, nil
  159. }
  160. func init() {
  161. ml.RegisterBackend("ggml", New)
  162. }
  163. func (b *Backend) Config() ml.Config {
  164. return b.meta.KV()
  165. }
  166. func (b *Backend) Get(name string) ml.Tensor {
  167. cname := C.CString(name)
  168. defer C.free(unsafe.Pointer(cname))
  169. for _, c := range append(b.gpus, b.cpus...) {
  170. if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
  171. return &Tensor{t: t}
  172. }
  173. }
  174. return nil
  175. }
  176. func (b *Backend) NewContext() ml.Context {
  177. nodes := max(8192, len(b.meta.Tensors().Items())*5)
  178. c := C.ggml_init(C.struct_ggml_init_params{
  179. mem_buffer: nil,
  180. mem_size: C.size_t(nodes)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(nodes), false),
  181. no_alloc: true,
  182. })
  183. backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
  184. bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
  185. for i, c := range append(b.gpus, b.cpus...) {
  186. backends[i] = c.backend
  187. bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
  188. }
  189. return &Context{
  190. ctx: c,
  191. backend: backends[0],
  192. nodes: nodes,
  193. sched: C.ggml_backend_sched_new(
  194. (*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
  195. (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
  196. C.int(len(backends)),
  197. C.size_t(nodes),
  198. true,
  199. ),
  200. }
  201. }
  202. type Context struct {
  203. ctx *C.struct_ggml_context
  204. backend *C.struct_ggml_backend
  205. sched *C.struct_ggml_backend_sched
  206. graph *C.struct_ggml_cgraph
  207. nodes int
  208. }
  209. func (c *Context) Forward(t ml.Tensor) {
  210. if c.graph == nil {
  211. c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
  212. }
  213. C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
  214. }
  215. func (c *Context) Compute(tensors ...ml.Tensor) {
  216. C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
  217. needSync := true
  218. sync := func() {
  219. if needSync {
  220. C.ggml_backend_sched_synchronize(c.sched)
  221. needSync = false
  222. }
  223. }
  224. for _, t := range tensors {
  225. if C.ggml_nbytes(t.(*Tensor).t) > 0 {
  226. t.(*Tensor).sync = sync
  227. }
  228. }
  229. }
  230. func (c *Context) MaxTensors() int {
  231. return c.nodes
  232. }
  233. func shapeToGGML(shape []int) *C.int64_t {
  234. sh := make([]C.int64_t, len(shape))
  235. for i, s := range shape {
  236. sh[i] = (C.int64_t)(s)
  237. }
  238. return &sh[0]
  239. }
  240. func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
  241. if len(shape) < 1 || len(shape) > 4 {
  242. panic("unsupported number of dimensions")
  243. }
  244. for _, dim := range shape {
  245. if dim < 1 {
  246. panic("invalid shape")
  247. }
  248. }
  249. var t *C.struct_ggml_tensor
  250. switch dtype {
  251. case ml.DTypeF32:
  252. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
  253. case ml.DTypeF16:
  254. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
  255. case ml.DTypeI32:
  256. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
  257. default:
  258. panic("unsupported dtype")
  259. }
  260. b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
  261. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  262. C.ggml_set_zero(t)
  263. return &Tensor{t: t}
  264. }
  265. func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
  266. n := len(s)
  267. if n == 0 {
  268. var shape C.int64_t = 0
  269. t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
  270. return &Tensor{t: t}, nil
  271. }
  272. for _, v := range shape {
  273. n /= v
  274. }
  275. if n != 1 {
  276. return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
  277. }
  278. t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
  279. b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
  280. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  281. C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
  282. return &Tensor{t: t}, nil
  283. }
  284. func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
  285. return fromSlice(c, s, shape, C.GGML_TYPE_F32)
  286. }
  287. func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
  288. return fromSlice(c, s, shape, C.GGML_TYPE_I32)
  289. }
  290. func (c *Context) Close() {
  291. if c != nil {
  292. C.ggml_backend_sched_free(c.sched)
  293. C.ggml_free(c.ctx)
  294. }
  295. }
  296. type Tensor struct {
  297. t *C.struct_ggml_tensor
  298. sync func()
  299. }
  300. func (t *Tensor) LogValue() slog.Value {
  301. return slog.GroupValue(
  302. slog.String("name", C.GoString(C.ggml_get_name(t.t))),
  303. slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
  304. slog.Any("shape", t.Shape()),
  305. )
  306. }
  307. func (t *Tensor) Dim(n int) int {
  308. return int(t.t.ne[n])
  309. }
  310. func (t *Tensor) Stride(n int) int {
  311. return int(t.t.nb[n])
  312. }
  313. func (t *Tensor) Shape() []int {
  314. shape := make([]int, C.ggml_n_dims(t.t))
  315. for i := range shape {
  316. shape[i] = t.Dim(i)
  317. }
  318. return shape
  319. }
  320. func (t *Tensor) Bytes() (data []byte) {
  321. if t.sync != nil {
  322. data = make([]byte, C.ggml_nbytes(t.t))
  323. t.sync()
  324. C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
  325. }
  326. return
  327. }
  328. func (t *Tensor) Floats() (data []float32) {
  329. if t.sync != nil {
  330. data = make([]float32, C.ggml_nelements(t.t))
  331. t.sync()
  332. C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
  333. }
  334. return
  335. }
  336. func (t *Tensor) DType() ml.DType {
  337. switch t.t._type {
  338. case C.GGML_TYPE_F32:
  339. return ml.DTypeF32
  340. case C.GGML_TYPE_F16:
  341. return ml.DTypeF16
  342. case C.GGML_TYPE_I32:
  343. return ml.DTypeI32
  344. default:
  345. return ml.DTypeOther
  346. }
  347. }
  348. func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  349. return &Tensor{
  350. t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  351. }
  352. }
  353. func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
  354. if len(s) > 0 {
  355. return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
  356. }
  357. return t
  358. }
  359. func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
  360. return &Tensor{
  361. t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
  362. }
  363. }
  364. func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
  365. return &Tensor{
  366. t: C.ggml_cont(ctx.(*Context).ctx, t.t),
  367. }
  368. }
  369. func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  370. return &Tensor{
  371. t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  372. }
  373. }
  374. func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  375. return &Tensor{
  376. t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  377. }
  378. }
  379. func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  380. mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
  381. C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
  382. return &Tensor{
  383. t: mul,
  384. }
  385. }
  386. func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
  387. tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
  388. if b != nil {
  389. tt = tt.Add(ctx, b)
  390. }
  391. return tt
  392. }
  393. func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
  394. return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
  395. }
  396. func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
  397. if len(shape) != 4 {
  398. panic("expected 4 dimensions")
  399. }
  400. return &Tensor{
  401. t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  402. }
  403. }
  404. func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
  405. if len(shape) != 4 {
  406. panic("expected 4 dimensions")
  407. }
  408. return &Tensor{
  409. t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  410. }
  411. }
  412. func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  413. return &Tensor{
  414. t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  415. }
  416. }
  417. func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  418. return &Tensor{
  419. t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  420. }
  421. }
  422. func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
  423. switch len(shape) {
  424. case 1:
  425. return &Tensor{
  426. t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
  427. }
  428. case 2:
  429. return &Tensor{
  430. t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
  431. }
  432. case 3:
  433. return &Tensor{
  434. t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
  435. }
  436. case 4:
  437. return &Tensor{
  438. t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
  439. }
  440. default:
  441. panic("unsupported number of dimensions")
  442. }
  443. }
  444. func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
  445. return &Tensor{
  446. t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
  447. }
  448. }
  449. func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
  450. return &Tensor{
  451. t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
  452. }
  453. }
  454. func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
  455. return &Tensor{
  456. t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
  457. }
  458. }
  459. func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
  460. if len(shape) != 4 {
  461. panic("expected 4 dimensions")
  462. }
  463. return &Tensor{
  464. t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  465. }
  466. }
  467. func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
  468. switch len(shape) {
  469. case 1:
  470. return &Tensor{
  471. t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
  472. }
  473. case 3:
  474. return &Tensor{
  475. t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
  476. C.int64_t(shape[0]), C.int64_t(shape[2]),
  477. C.size_t(shape[1]),
  478. C.size_t(offset)),
  479. }
  480. case 5:
  481. return &Tensor{
  482. t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
  483. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
  484. C.size_t(shape[1]), C.size_t(shape[3]),
  485. C.size_t(offset)),
  486. }
  487. case 7:
  488. return &Tensor{
  489. t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
  490. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
  491. C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
  492. C.size_t(offset)),
  493. }
  494. default:
  495. panic("unsupported number of dimensions")
  496. }
  497. }
  498. const (
  499. ropeTypeNorm C.int = iota
  500. )
  501. func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
  502. if ropeFactors == nil {
  503. ropeFactors = &Tensor{}
  504. }
  505. dequant := t.t
  506. if C.ggml_is_quantized(t.t._type) {
  507. dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
  508. }
  509. return &Tensor{
  510. t: C.ggml_rope_ext(
  511. ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
  512. C.int(ropeDim),
  513. 131072, // YaRN n_ctx_train
  514. ropeTypeNorm, // ROPE_TYPE_NORM
  515. C.float(ropeBase),
  516. C.float(ropeScale),
  517. 0., // YaRN ext_factor
  518. 1., // YaRN attn_factor
  519. 32., // YaRN beta_fast
  520. 1., // YaRN beta_slow
  521. ),
  522. }
  523. }
  524. func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
  525. return &Tensor{
  526. t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
  527. }
  528. }
  529. func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
  530. return &Tensor{
  531. t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
  532. }
  533. }
  534. func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
  535. return &Tensor{
  536. t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
  537. }
  538. }
  539. func (b *Backend) SystemInfo() string {
  540. var compiler string
  541. switch C.get_compiler() {
  542. case C.COMP_UNKNOWN:
  543. compiler = "cgo(unknown_compiler)"
  544. case C.COMP_GCC:
  545. compiler = "cgo(gcc)"
  546. case C.COMP_CLANG:
  547. compiler = "cgo(clang)"
  548. }
  549. var s string
  550. for i := range C.ggml_backend_reg_count() {
  551. reg := C.ggml_backend_reg_get(i)
  552. fName := C.CString("ggml_backend_get_features")
  553. defer C.free(unsafe.Pointer(fName))
  554. get_features_fn := C.ggml_backend_reg_get_proc_address(reg, fName)
  555. if get_features_fn != nil {
  556. s += C.GoString(C.ggml_backend_reg_name(reg))
  557. s += " : "
  558. for features := C.getBackendFeatures(get_features_fn, reg); features.name != nil; features = C.getNextBackendFeatures(features) {
  559. s += C.GoString(features.name)
  560. s += " = "
  561. s += C.GoString(features.value)
  562. s += " | "
  563. }
  564. }
  565. }
  566. return s + compiler
  567. }