llama.go 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599
  1. package llama
  2. //go:generate make -j 8
  3. /*
  4. #cgo CFLAGS: -O2 -std=c11 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE
  5. #cgo CXXFLAGS: -O2 -std=c++11 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE
  6. #cgo amd64,avx CFLAGS: -mavx
  7. #cgo amd64,avx CXXFLAGS: -mavx
  8. #cgo amd64,avx2 CFLAGS: -mavx2 -mfma
  9. #cgo amd64,avx2 CXXFLAGS: -mavx2 -mfma
  10. #cgo amd64,f16c CFLAGS: -mf16c
  11. #cgo amd64,f16c CXXFLAGS: -mf16c
  12. #cgo amd64,fma CFLAGS: -mfma
  13. #cgo amd64,fma CXXFLAGS: -mfma
  14. #cgo avx CFLAGS: -mavx
  15. #cgo avx CXXFLAGS: -mavx
  16. #cgo avx2 CFLAGS: -mavx2 -mfma -mf16c
  17. #cgo avx2 CXXFLAGS: -mavx2 -mfma -mf16c
  18. #cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  19. #cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  20. #cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  21. #cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  22. #cgo cuda_v11 LDFLAGS: -lggml_cuda_v11 -L/usr/local/cuda-11/lib64
  23. #cgo cuda_v12 LDFLAGS: -lggml_cuda_v12 -L/usr/local/cuda-12/lib64
  24. #cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
  25. #cgo darwin,amd64 CXXFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
  26. #cgo darwin,amd64 LDFLAGS: -framework Foundation
  27. #cgo darwin,amd64,avx2 CFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  28. #cgo darwin,amd64,avx2 CXXFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  29. #cgo darwin,amd64,avx2 LDFLAGS: -framework Accelerate
  30. #cgo darwin,arm64 CFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_BLAS
  31. #cgo darwin,arm64 CXXFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_BLAS
  32. #cgo darwin,arm64 LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework Accelerate
  33. #cgo linux CFLAGS: -D_GNU_SOURCE
  34. #cgo linux CXXFLAGS: -D_GNU_SOURCE
  35. #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
  36. #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
  37. #cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
  38. #cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
  39. #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/Linux/arm64
  40. #cgo linux,arm64,sve CFLAGS: -march=armv8.6-a+sve
  41. #cgo linux,arm64,sve CXXFLAGS: -march=armv8.6-a+sve
  42. #cgo linux,cuda LDFLAGS: -lcuda -lcudart -lcublas -lcublasLt -lpthread -ldl -lrt -lresolv
  43. #cgo linux,rocm LDFLAGS: -L/opt/rocm/lib -lpthread -ldl -lrt -lresolv
  44. #cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  45. #cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  46. #cgo rocm LDFLAGS: -L${SRCDIR} -lggml_rocm -lhipblas -lamdhip64 -lrocblas
  47. #cgo windows CFLAGS: -Wno-discarded-qualifiers -D_WIN32_WINNT=0x602
  48. #cgo windows CXXFLAGS: -D_WIN32_WINNT=0x602
  49. #cgo windows LDFLAGS: -lmsvcrt
  50. #cgo windows LDFLAGS: -lmsvcrt -static-libstdc++ -static-libgcc -static
  51. #cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64
  52. #cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64
  53. #cgo windows,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
  54. #cgo windows,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
  55. #cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/Windows/arm64
  56. #cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/Windows/arm64
  57. #cgo windows,cuda LDFLAGS: -lcuda -lcudart -lcublas -lcublasLt
  58. #cgo windows,rocm LDFLAGS: -lggml_rocm -lhipblas -lamdhip64 -lrocblas
  59. #include <stdlib.h>
  60. #include "llama.h"
  61. #include "clip.h"
  62. #include "ggml.h"
  63. #include "llava.h"
  64. #include "mllama.h"
  65. #include "sampling_ext.h"
  66. bool llamaProgressCallback(float progress, void *user_data);
  67. */
  68. import "C"
  69. import (
  70. _ "embed"
  71. "errors"
  72. "fmt"
  73. "runtime"
  74. "runtime/cgo"
  75. "strings"
  76. "unsafe"
  77. )
  78. var CpuFeatures = ""
  79. func BackendInit() {
  80. C.llama_backend_init()
  81. }
  82. func PrintSystemInfo() string {
  83. return C.GoString(C.llama_print_system_info())
  84. }
  85. type ContextParams struct {
  86. c C.struct_llama_context_params
  87. }
  88. func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool) ContextParams {
  89. params := C.llama_context_default_params()
  90. params.n_ctx = C.uint(numCtx)
  91. params.n_batch = C.uint(batchSize)
  92. params.n_seq_max = C.uint(numSeqMax)
  93. params.n_threads = C.int(threads)
  94. params.n_threads_batch = params.n_threads
  95. params.embeddings = C.bool(true)
  96. params.flash_attn = C.bool(flashAttention)
  97. return ContextParams{c: params}
  98. }
  99. type Context struct {
  100. c *C.struct_llama_context
  101. numThreads int
  102. }
  103. func (c *Context) KvCacheClear() {
  104. C.llama_kv_cache_clear(c.c)
  105. }
  106. func (c *Context) Decode(batch *Batch) error {
  107. // Positive return values does not mean a fatal error, but rather a warning.
  108. // 0 - success
  109. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  110. // < 0 - error
  111. code := int(C.llama_decode(c.c, batch.c))
  112. if code < 0 {
  113. return fmt.Errorf("llama_decode failed with code %d", code)
  114. }
  115. if code > 0 {
  116. return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d", code)
  117. }
  118. return nil
  119. }
  120. func (c *Context) Model() *Model {
  121. return &Model{c: C.llama_get_model(c.c)}
  122. }
  123. func (c *Context) GetLogitsIth(i int) []float32 {
  124. return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_logits_ith(c.c, C.int(i)))), c.Model().NumVocab())
  125. }
  126. func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
  127. C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
  128. }
  129. func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
  130. return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
  131. }
  132. func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
  133. C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
  134. }
  135. // Get the embeddings for a sequence id
  136. func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
  137. embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
  138. if embeddings == nil {
  139. return nil
  140. }
  141. return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
  142. }
  143. func (c *Context) GetEmbeddingsIth(i int) []float32 {
  144. return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))), c.Model().NEmbd())
  145. }
  146. type ModelParams struct {
  147. NumGpuLayers int
  148. MainGpu int
  149. UseMmap bool
  150. UseMlock bool
  151. TensorSplit []float32
  152. Progress func(float32)
  153. VocabOnly bool
  154. }
  155. //export llamaProgressCallback
  156. func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
  157. handle := *(*cgo.Handle)(userData)
  158. callback := handle.Value().(func(float32))
  159. callback(float32(progress))
  160. return true
  161. }
  162. func LoadModelFromFile(modelPath string, params ModelParams) *Model {
  163. cparams := C.llama_model_default_params()
  164. cparams.n_gpu_layers = C.int(params.NumGpuLayers)
  165. cparams.main_gpu = C.int32_t(params.MainGpu)
  166. cparams.use_mmap = C.bool(params.UseMmap)
  167. cparams.use_mlock = C.bool(params.UseMlock)
  168. cparams.vocab_only = C.bool(params.VocabOnly)
  169. if len(params.TensorSplit) > 0 {
  170. tensorSplitData := &params.TensorSplit[0]
  171. var tensorSplitPin runtime.Pinner
  172. tensorSplitPin.Pin(tensorSplitData)
  173. defer tensorSplitPin.Unpin()
  174. cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
  175. }
  176. if params.Progress != nil {
  177. handle := cgo.NewHandle(params.Progress)
  178. defer handle.Delete()
  179. var handlePin runtime.Pinner
  180. handlePin.Pin(&handle)
  181. defer handlePin.Unpin()
  182. cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
  183. cparams.progress_callback_user_data = unsafe.Pointer(&handle)
  184. }
  185. return &Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
  186. }
  187. func FreeModel(model *Model) {
  188. C.llama_free_model(model.c)
  189. }
  190. func NewContextWithModel(model *Model, params ContextParams) *Context {
  191. return &Context{
  192. c: C.llama_new_context_with_model(model.c, params.c),
  193. numThreads: int(params.c.n_threads),
  194. }
  195. }
  196. func (m *Model) NumVocab() int {
  197. return int(C.llama_n_vocab(m.c))
  198. }
  199. func (m *Model) TokenIsEog(token int) bool {
  200. return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
  201. }
  202. func (m *Model) AddBOSToken() bool {
  203. return bool(C.llama_add_bos_token(m.c))
  204. }
  205. func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
  206. cLoraPath := C.CString(loraPath)
  207. defer C.free(unsafe.Pointer(cLoraPath))
  208. loraAdapter := C.llama_lora_adapter_init(m.c, cLoraPath)
  209. err := -1
  210. if loraAdapter != nil {
  211. err = int(C.llama_lora_adapter_set(context.c, loraAdapter, C.float(scale)))
  212. }
  213. if err != 0 {
  214. return errors.New("error applying lora from file")
  215. }
  216. return nil
  217. }
  218. type Batch struct {
  219. c C.struct_llama_batch
  220. batchSize int
  221. embedSize int
  222. }
  223. // Creates a new batch for either word tokens if embed is 0 or
  224. // image embeddings if embed is specified. Batches cannot contain
  225. // both types at the same time
  226. func NewBatch(nTokens int, embed int, maxSeq int) *Batch {
  227. return &Batch{
  228. c: C.llama_batch_init(C.int(nTokens), C.int(embed), C.int(maxSeq)),
  229. batchSize: nTokens,
  230. embedSize: embed,
  231. }
  232. }
  233. func (b *Batch) NumTokens() int {
  234. return int(b.c.n_tokens)
  235. }
  236. func (b *Batch) IsEmbedding() bool {
  237. return b.embedSize != 0
  238. }
  239. // Add adds either a token or an image embedding to the batch depending on the type
  240. // when the batch was initialized. The other argument will be ignored. Adds to the
  241. // batch with the given position for the given sequence ids, and optionally instructs
  242. // to include logits.
  243. func (b *Batch) Add(token int, embed []float32, pos int, seqIds []int, logits bool) {
  244. if !b.IsEmbedding() {
  245. unsafe.Slice(b.c.token, b.batchSize)[b.c.n_tokens] = C.llama_token(token)
  246. } else {
  247. copy(unsafe.Slice((*float32)(b.c.embd), b.batchSize*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
  248. }
  249. unsafe.Slice(b.c.pos, b.batchSize)[b.c.n_tokens] = C.llama_pos(pos)
  250. unsafe.Slice(b.c.n_seq_id, b.batchSize)[b.c.n_tokens] = C.int(len(seqIds))
  251. for i, s := range seqIds {
  252. unsafe.Slice((unsafe.Slice(b.c.seq_id, b.batchSize)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
  253. }
  254. if logits {
  255. unsafe.Slice(b.c.logits, b.batchSize)[b.c.n_tokens] = 1
  256. }
  257. b.c.n_tokens += 1
  258. }
  259. func (b *Batch) Clear() {
  260. b.c.n_tokens = 0
  261. }
  262. func (b *Batch) Free() {
  263. b.batchSize = 0
  264. C.llama_batch_free(b.c)
  265. }
  266. type Model struct {
  267. c *C.struct_llama_model
  268. }
  269. func (m *Model) TokenToPiece(token int) string {
  270. tokenLen := 12
  271. buf := make([]byte, tokenLen)
  272. tokenLen = int(C.llama_token_to_piece(
  273. m.c,
  274. C.int32_t(token),
  275. (*C.char)(unsafe.Pointer(&buf[0])),
  276. C.int32_t(tokenLen),
  277. C.int32_t(0),
  278. C.bool(true),
  279. ))
  280. if tokenLen < 0 {
  281. tokenLen = -tokenLen
  282. buf = make([]byte, tokenLen)
  283. C.llama_token_to_piece(
  284. m.c,
  285. C.int32_t(token),
  286. (*C.char)(unsafe.Pointer(&buf[0])),
  287. C.int32_t(tokenLen),
  288. C.int32_t(0),
  289. C.bool(true),
  290. )
  291. }
  292. return strings.TrimRight(string(buf), "\x00")
  293. }
  294. func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
  295. maxTokens := len(text) + 2
  296. cTokens := make([]C.llama_token, maxTokens)
  297. cText := C.CString(text)
  298. defer C.free(unsafe.Pointer(cText))
  299. result := C.llama_tokenize(
  300. m.c,
  301. cText,
  302. C.int32_t(len(text)),
  303. &cTokens[0],
  304. C.int32_t(maxTokens),
  305. C.bool(addSpecial),
  306. C.bool(parseSpecial),
  307. )
  308. // if the result is negative, reallocate and retry with the correct buffer size
  309. if result < 0 {
  310. maxTokens = int(-result)
  311. cTokens = make([]C.llama_token, maxTokens)
  312. result = C.llama_tokenize(
  313. m.c,
  314. cText,
  315. C.int32_t(len(text)),
  316. &cTokens[0],
  317. C.int32_t(maxTokens),
  318. C.bool(addSpecial),
  319. C.bool(parseSpecial),
  320. )
  321. if result < 0 {
  322. return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
  323. }
  324. }
  325. tokens := make([]int, result)
  326. for i := range result {
  327. tokens[i] = int(cTokens[i])
  328. }
  329. return tokens, nil
  330. }
  331. func (m *Model) NEmbd() int {
  332. return int(C.llama_n_embd(m.c))
  333. }
  334. func Quantize(infile, outfile string, ftype uint32) error {
  335. cinfile := C.CString(infile)
  336. defer C.free(unsafe.Pointer(cinfile))
  337. coutfile := C.CString(outfile)
  338. defer C.free(unsafe.Pointer(coutfile))
  339. params := C.llama_model_quantize_default_params()
  340. params.nthread = -1
  341. params.ftype = ftype
  342. if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
  343. return fmt.Errorf("llama_model_quantize: %d", rc)
  344. }
  345. return nil
  346. }
  347. // llava
  348. type ClipContext struct {
  349. c *C.struct_clip_ctx
  350. m *C.struct_mllama_ctx
  351. IsMllama bool
  352. embedPin runtime.Pinner
  353. pinned bool
  354. }
  355. func getVisionArch(mp *C.char) (string, error) {
  356. gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
  357. if gguf_ctx == nil {
  358. return "", errors.New("unable to load vision projector")
  359. }
  360. defer C.gguf_free(gguf_ctx)
  361. arch_index := C.gguf_find_key(gguf_ctx, C.CString("general.architecture"))
  362. if int(arch_index) < 0 {
  363. return "", errors.New("unknown vision model architecture")
  364. }
  365. arch := C.gguf_get_val_str(gguf_ctx, arch_index)
  366. return C.GoString(arch), nil
  367. }
  368. func NewClipContext(modelPath string) (*ClipContext, error) {
  369. mp := C.CString(modelPath)
  370. defer C.free(unsafe.Pointer(mp))
  371. arch, err := getVisionArch(mp)
  372. if err != nil {
  373. return nil, err
  374. }
  375. var cc ClipContext
  376. if arch == "clip" {
  377. cc.c = C.clip_model_load(mp, 1)
  378. } else if arch == "mllama" {
  379. cc.m = C.mllama_model_load(mp, 1)
  380. cc.IsMllama = true
  381. } else {
  382. return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
  383. }
  384. // XXX: check embedding size?
  385. return &cc, nil
  386. }
  387. func (c *ClipContext) Free() {
  388. if c.c != nil {
  389. C.clip_free(c.c)
  390. }
  391. if c.m != nil {
  392. C.mllama_free(c.m)
  393. }
  394. }
  395. func NewLlavaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte) [][]float32 {
  396. c := C.llava_image_embed_make_with_bytes(clipContext.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
  397. numTokens := int(c.n_image_pos)
  398. numEmbed := llamaContext.Model().NEmbd()
  399. s := unsafe.Slice((*float32)(c.embed), numEmbed*numTokens)
  400. embed := make([][]float32, numTokens)
  401. rows := make([]float32, len(s))
  402. copy(rows, s)
  403. for i := range embed {
  404. embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
  405. }
  406. C.llava_image_embed_free(c)
  407. return embed
  408. }
  409. func NewMllamaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte, aspectRatioId int) [][]float32 {
  410. img := C.mllama_image_init()
  411. defer C.mllama_image_free(img)
  412. C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img)
  413. numTokens := int(C.mllama_n_positions(clipContext.m) * C.mllama_n_tiles(clipContext.m))
  414. numEmbed := llamaContext.Model().NEmbd()
  415. rows := make([]float32, numEmbed*numTokens)
  416. C.mllama_image_encode(clipContext.m, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0])))
  417. embed := make([][]float32, numTokens)
  418. for i := range embed {
  419. embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
  420. }
  421. return embed
  422. }
  423. // This really needs to be set on a batch instead
  424. func MllamaSetCrossAttn(llamaContext *Context, clipContext *ClipContext, embed [][]float32) {
  425. if embed != nil {
  426. if clipContext.pinned {
  427. panic("Cross attention state already pinned")
  428. }
  429. embedData := &embed[0][0]
  430. clipContext.embedPin.Pin(embedData)
  431. clipContext.pinned = true
  432. C.llama_set_cross_attn_state(llamaContext.c, (*C.float)(unsafe.Pointer(embedData)))
  433. } else {
  434. C.llama_set_cross_attn_state(llamaContext.c, (*C.float)(C.NULL))
  435. if clipContext.pinned {
  436. clipContext.embedPin.Unpin()
  437. clipContext.pinned = false
  438. }
  439. }
  440. }
  441. // sampling
  442. // TODO: this is a temporary wrapper to allow calling C++ code from CGo
  443. type SamplingContext struct {
  444. c *C.struct_gpt_sampler
  445. }
  446. type SamplingParams struct {
  447. TopK int
  448. TopP float32
  449. MinP float32
  450. TfsZ float32
  451. TypicalP float32
  452. Temp float32
  453. RepeatLastN int
  454. PenaltyRepeat float32
  455. PenaltyFreq float32
  456. PenaltyPresent float32
  457. Mirostat int
  458. MirostatTau float32
  459. MirostatEta float32
  460. PenalizeNl bool
  461. Seed uint32
  462. Grammar string
  463. }
  464. func NewSamplingContext(model *Model, params SamplingParams) *SamplingContext {
  465. var cparams C.struct_gpt_sampler_cparams
  466. cparams.top_k = C.int32_t(params.TopK)
  467. cparams.top_p = C.float(params.TopP)
  468. cparams.min_p = C.float(params.MinP)
  469. cparams.tfs_z = C.float(params.TfsZ)
  470. cparams.typical_p = C.float(params.TypicalP)
  471. cparams.temp = C.float(params.Temp)
  472. cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
  473. cparams.penalty_repeat = C.float(params.PenaltyRepeat)
  474. cparams.penalty_freq = C.float(params.PenaltyFreq)
  475. cparams.penalty_present = C.float(params.PenaltyFreq)
  476. cparams.mirostat = C.int32_t(params.Mirostat)
  477. cparams.mirostat_tau = C.float(params.MirostatTau)
  478. cparams.mirostat_eta = C.float(params.MirostatEta)
  479. cparams.penalize_nl = C.bool(params.PenalizeNl)
  480. cparams.seed = C.uint32_t(params.Seed)
  481. grammar := C.CString(params.Grammar)
  482. defer C.free(unsafe.Pointer(grammar))
  483. cparams.grammar = grammar
  484. context := &SamplingContext{c: C.gpt_sampler_cinit(model.c, &cparams)}
  485. runtime.SetFinalizer(context, func(s *SamplingContext) { C.gpt_sampler_cfree(s.c) })
  486. return context
  487. }
  488. func (s *SamplingContext) Reset() {
  489. C.gpt_sampler_creset(s.c)
  490. }
  491. func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
  492. return int(C.gpt_sampler_csample(s.c, llamaContext.c, C.int(idx)))
  493. }
  494. func (s *SamplingContext) Accept(id int, applyGrammar bool) {
  495. C.gpt_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
  496. }