llama.go 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671
  1. package llama
  2. /*
  3. #cgo CFLAGS: -std=c11
  4. #cgo CXXFLAGS: -std=c++17
  5. #cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/include
  6. #cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/common
  7. #cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/examples/llava
  8. #cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/src
  9. #cgo CPPFLAGS: -I${SRCDIR}/../ml/backend/ggml/ggml/include
  10. #include <stdlib.h>
  11. #include "ggml.h"
  12. #include "llama.h"
  13. #include "clip.h"
  14. #include "llava.h"
  15. #include "gguf.h"
  16. #include "mllama.h"
  17. #include "sampling_ext.h"
  18. extern bool llamaProgressCallback(float progress, void *user_data);
  19. extern void llamaLog(int level, char* text, void* user_data);
  20. */
  21. import "C"
  22. import (
  23. "context"
  24. _ "embed"
  25. "errors"
  26. "fmt"
  27. "log/slog"
  28. "os"
  29. "runtime"
  30. "runtime/cgo"
  31. "slices"
  32. "strings"
  33. "unsafe"
  34. _ "github.com/ollama/ollama/llama/llama.cpp/common"
  35. _ "github.com/ollama/ollama/llama/llama.cpp/examples/llava"
  36. _ "github.com/ollama/ollama/llama/llama.cpp/src"
  37. ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
  38. )
  39. func init() {
  40. C.llama_log_set(C.ggml_log_callback(C.llamaLog), nil)
  41. }
  42. //export llamaLog
  43. func llamaLog(level C.int, text *C.char, _ unsafe.Pointer) {
  44. // slog levels zeros INFO and are multiples of 4
  45. if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
  46. fmt.Fprint(os.Stderr, C.GoString(text))
  47. }
  48. }
  49. func BackendInit() {
  50. ggml.OnceLoad()
  51. C.llama_backend_init()
  52. }
  53. func GetModelArch(modelPath string) (string, error) {
  54. mp := C.CString(modelPath)
  55. defer C.free(unsafe.Pointer(mp))
  56. gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
  57. if gguf_ctx == nil {
  58. return "", errors.New("unable to load model file")
  59. }
  60. defer C.gguf_free(gguf_ctx)
  61. key := C.CString("general.architecture")
  62. defer C.free(unsafe.Pointer(key))
  63. arch_index := C.gguf_find_key(gguf_ctx, key)
  64. if int(arch_index) < 0 {
  65. return "", errors.New("unknown model architecture")
  66. }
  67. arch := C.gguf_get_val_str(gguf_ctx, arch_index)
  68. return C.GoString(arch), nil
  69. }
  70. type ContextParams struct {
  71. c C.struct_llama_context_params
  72. }
  73. func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool, kvCacheType string) ContextParams {
  74. params := C.llama_context_default_params()
  75. params.n_ctx = C.uint(numCtx)
  76. params.n_batch = C.uint(batchSize)
  77. params.n_seq_max = C.uint(numSeqMax)
  78. params.n_threads = C.int(threads)
  79. params.n_threads_batch = params.n_threads
  80. params.embeddings = C.bool(true)
  81. params.flash_attn = C.bool(flashAttention)
  82. params.type_k = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
  83. params.type_v = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
  84. return ContextParams{c: params}
  85. }
  86. // kvCacheTypeFromStr converts a string cache type to the corresponding GGML type value
  87. func kvCacheTypeFromStr(s string) C.enum_ggml_type {
  88. if s == "" {
  89. return C.GGML_TYPE_F16
  90. }
  91. switch s {
  92. case "q8_0":
  93. return C.GGML_TYPE_Q8_0
  94. case "q4_0":
  95. return C.GGML_TYPE_Q4_0
  96. default:
  97. return C.GGML_TYPE_F16
  98. }
  99. }
  100. type Context struct {
  101. c *C.struct_llama_context
  102. numThreads int
  103. }
  104. var ErrKvCacheFull = errors.New("could not find a kv cache slot")
  105. func (c *Context) Decode(batch *Batch) error {
  106. // Positive return values does not mean a fatal error, but rather a warning.
  107. // 0 - success
  108. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  109. // < 0 - error
  110. code := int(C.llama_decode(c.c, batch.c))
  111. if code < 0 {
  112. return fmt.Errorf("llama_decode failed with code %d", code)
  113. }
  114. if code > 0 {
  115. return ErrKvCacheFull
  116. }
  117. return nil
  118. }
  119. func (c *Context) Model() *Model {
  120. return &Model{c: C.llama_get_model(c.c)}
  121. }
  122. func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
  123. C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
  124. }
  125. func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
  126. return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
  127. }
  128. func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
  129. C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
  130. }
  131. func (c *Context) KvCacheClear() {
  132. C.llama_kv_cache_clear(c.c)
  133. }
  134. func (c *Context) KvCacheDefrag() {
  135. C.llama_kv_cache_defrag(c.c)
  136. }
  137. // Get the embeddings for a sequence id
  138. func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
  139. e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
  140. if e == nil {
  141. return nil
  142. }
  143. embeddings := make([]float32, c.Model().NEmbd())
  144. _ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
  145. return embeddings
  146. }
  147. func (c *Context) GetEmbeddingsIth(i int) []float32 {
  148. e := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
  149. if e == nil {
  150. return nil
  151. }
  152. embeddings := make([]float32, c.Model().NEmbd())
  153. _ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
  154. return embeddings
  155. }
  156. type ModelParams struct {
  157. NumGpuLayers int
  158. MainGpu int
  159. UseMmap bool
  160. UseMlock bool
  161. TensorSplit []float32
  162. Progress func(float32)
  163. VocabOnly bool
  164. }
  165. //export llamaProgressCallback
  166. func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
  167. handle := *(*cgo.Handle)(userData)
  168. callback := handle.Value().(func(float32))
  169. callback(float32(progress))
  170. return true
  171. }
  172. func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
  173. cparams := C.llama_model_default_params()
  174. cparams.n_gpu_layers = C.int(params.NumGpuLayers)
  175. cparams.main_gpu = C.int32_t(params.MainGpu)
  176. cparams.use_mmap = C.bool(params.UseMmap)
  177. cparams.use_mlock = C.bool(params.UseMlock)
  178. cparams.vocab_only = C.bool(params.VocabOnly)
  179. if len(params.TensorSplit) > 0 {
  180. tensorSplitData := &params.TensorSplit[0]
  181. var tensorSplitPin runtime.Pinner
  182. tensorSplitPin.Pin(tensorSplitData)
  183. defer tensorSplitPin.Unpin()
  184. cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
  185. }
  186. if params.Progress != nil {
  187. handle := cgo.NewHandle(params.Progress)
  188. defer handle.Delete()
  189. var handlePin runtime.Pinner
  190. handlePin.Pin(&handle)
  191. defer handlePin.Unpin()
  192. cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
  193. cparams.progress_callback_user_data = unsafe.Pointer(&handle)
  194. }
  195. m := Model{c: C.llama_model_load_from_file(C.CString(modelPath), cparams)}
  196. if m.c == nil {
  197. return nil, fmt.Errorf("unable to load model: %s", modelPath)
  198. }
  199. return &m, nil
  200. }
  201. func FreeModel(model *Model) {
  202. C.llama_model_free(model.c)
  203. }
  204. func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
  205. c := Context{
  206. c: C.llama_init_from_model(model.c, params.c),
  207. numThreads: int(params.c.n_threads),
  208. }
  209. if c.c == nil {
  210. return nil, errors.New("unable to create llama context")
  211. }
  212. return &c, nil
  213. }
  214. func (m *Model) NumVocab() int {
  215. return int(C.llama_vocab_n_tokens(m.Vocab()))
  216. }
  217. func (m *Model) TokenIsEog(token int) bool {
  218. return bool(C.llama_vocab_is_eog(m.Vocab(), C.llama_token(token)))
  219. }
  220. func (m *Model) AddBOSToken() bool {
  221. return bool(C.llama_vocab_get_add_bos(m.Vocab()))
  222. }
  223. func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
  224. cLoraPath := C.CString(loraPath)
  225. defer C.free(unsafe.Pointer(cLoraPath))
  226. loraAdapter := C.llama_adapter_lora_init(m.c, cLoraPath)
  227. if loraAdapter == nil {
  228. return errors.New("unable to load lora")
  229. }
  230. err := -1
  231. if loraAdapter != nil {
  232. err = int(C.llama_set_adapter_lora(context.c, loraAdapter, C.float(scale)))
  233. }
  234. if err != 0 {
  235. return errors.New("error applying lora from file")
  236. }
  237. return nil
  238. }
  239. func (m *Model) Vocab() *C.struct_llama_vocab {
  240. return C.llama_model_get_vocab(m.c)
  241. }
  242. type Batch struct {
  243. c C.struct_llama_batch
  244. batchSize int
  245. maxSeq int
  246. embedSize int
  247. }
  248. // Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
  249. // Batches cannot contain both types at the same time. batchSize is the maximum number of entries
  250. // that can be added per sequence
  251. func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
  252. b := Batch{
  253. c: C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
  254. batchSize: batchSize,
  255. maxSeq: maxSeq,
  256. embedSize: embedSize,
  257. }
  258. // Check to see if any of the allocations in llama_batch_init() failed
  259. nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
  260. b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
  261. slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)
  262. if nilPointer {
  263. C.llama_batch_free(b.c)
  264. return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
  265. }
  266. return &b, nil
  267. }
  268. func (b *Batch) Size() int {
  269. return b.batchSize
  270. }
  271. func (b *Batch) allocSize() int {
  272. return b.batchSize * b.maxSeq
  273. }
  274. func (b *Batch) NumTokens() int {
  275. return int(b.c.n_tokens)
  276. }
  277. func (b *Batch) IsEmbedding() bool {
  278. return b.embedSize != 0
  279. }
  280. // Add adds either a token or an image embedding to the batch depending on the type
  281. // when the batch was initialized. The other argument will be ignored. Adds to the
  282. // batch with the given position for the given sequence ids, and optionally instructs
  283. // to include logits.
  284. func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
  285. if !b.IsEmbedding() {
  286. unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
  287. } else {
  288. copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
  289. }
  290. unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
  291. unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
  292. for i, s := range seqIds {
  293. unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
  294. }
  295. if logits {
  296. unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
  297. } else {
  298. unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 0
  299. }
  300. b.c.n_tokens += 1
  301. }
  302. func (b *Batch) Clear() {
  303. b.c.n_tokens = 0
  304. }
  305. func (b *Batch) Free() {
  306. b.batchSize = 0
  307. C.llama_batch_free(b.c)
  308. }
  309. type Model struct {
  310. c *C.struct_llama_model
  311. }
  312. func (m *Model) TokenToPiece(token int) string {
  313. tokenLen := 12
  314. buf := make([]byte, tokenLen)
  315. tokenLen = int(C.llama_token_to_piece(
  316. m.Vocab(),
  317. C.int32_t(token),
  318. (*C.char)(unsafe.Pointer(&buf[0])),
  319. C.int32_t(tokenLen),
  320. C.int32_t(0),
  321. C.bool(true),
  322. ))
  323. if tokenLen < 0 {
  324. tokenLen = -tokenLen
  325. buf = make([]byte, tokenLen)
  326. C.llama_token_to_piece(
  327. m.Vocab(),
  328. C.int32_t(token),
  329. (*C.char)(unsafe.Pointer(&buf[0])),
  330. C.int32_t(tokenLen),
  331. C.int32_t(0),
  332. C.bool(true),
  333. )
  334. }
  335. return strings.TrimRight(string(buf), "\x00")
  336. }
  337. func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
  338. maxTokens := len(text) + 2
  339. cTokens := make([]C.llama_token, maxTokens)
  340. cText := C.CString(text)
  341. defer C.free(unsafe.Pointer(cText))
  342. result := C.llama_tokenize(
  343. m.Vocab(),
  344. cText,
  345. C.int32_t(len(text)),
  346. &cTokens[0],
  347. C.int32_t(maxTokens),
  348. C.bool(addSpecial),
  349. C.bool(parseSpecial),
  350. )
  351. // if the result is negative, reallocate and retry with the correct buffer size
  352. if result < 0 {
  353. maxTokens = int(-result)
  354. cTokens = make([]C.llama_token, maxTokens)
  355. result = C.llama_tokenize(
  356. m.Vocab(),
  357. cText,
  358. C.int32_t(len(text)),
  359. &cTokens[0],
  360. C.int32_t(maxTokens),
  361. C.bool(addSpecial),
  362. C.bool(parseSpecial),
  363. )
  364. if result < 0 {
  365. return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
  366. }
  367. }
  368. tokens := make([]int, result)
  369. for i := range result {
  370. tokens[i] = int(cTokens[i])
  371. }
  372. return tokens, nil
  373. }
  374. func (m *Model) NEmbd() int {
  375. return int(C.llama_model_n_embd(m.c))
  376. }
  377. func Quantize(infile, outfile string, ftype uint32) error {
  378. cinfile := C.CString(infile)
  379. defer C.free(unsafe.Pointer(cinfile))
  380. coutfile := C.CString(outfile)
  381. defer C.free(unsafe.Pointer(coutfile))
  382. params := C.llama_model_quantize_default_params()
  383. params.nthread = -1
  384. params.ftype = ftype
  385. if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
  386. return fmt.Errorf("llama_model_quantize: %d", rc)
  387. }
  388. return nil
  389. }
  390. // vision processing
  391. type ClipContext struct {
  392. c *C.struct_clip_ctx
  393. }
  394. func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) {
  395. mp := C.CString(modelPath)
  396. defer C.free(unsafe.Pointer(mp))
  397. c := C.clip_model_load(mp, 1)
  398. if c == nil {
  399. return nil, fmt.Errorf("unable to load clip model: %v", modelPath)
  400. }
  401. projEmbedSize := int(C.clip_n_mmproj_embd(c))
  402. modelEmbedSize := llamaContext.Model().NEmbd()
  403. if projEmbedSize != modelEmbedSize {
  404. return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
  405. }
  406. return &ClipContext{c: c}, nil
  407. }
  408. func (c *ClipContext) Free() {
  409. C.clip_free(c.c)
  410. }
  411. func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
  412. l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
  413. if l == nil {
  414. return nil, errors.New("unable to make llava embedding from image")
  415. }
  416. numTokens := int(l.n_image_pos)
  417. numEmbed := llamaContext.Model().NEmbd()
  418. s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens)
  419. embed := make([][]float32, numTokens)
  420. rows := make([]float32, len(s))
  421. copy(rows, s)
  422. for i := range embed {
  423. embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
  424. }
  425. C.llava_image_embed_free(l)
  426. return embed, nil
  427. }
  428. type MllamaContext struct {
  429. c *C.struct_mllama_ctx
  430. }
  431. func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
  432. mp := C.CString(modelPath)
  433. defer C.free(unsafe.Pointer(mp))
  434. c := C.mllama_model_load(mp, 1)
  435. if c == nil {
  436. return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
  437. }
  438. projEmbedSize := int(C.mllama_n_embd(c))
  439. modelEmbedSize := llamaContext.Model().NEmbd()
  440. if projEmbedSize != modelEmbedSize {
  441. return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
  442. }
  443. return &MllamaContext{c: c}, nil
  444. }
  445. func (m *MllamaContext) Free() {
  446. C.mllama_free(m.c)
  447. }
  448. func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
  449. img := C.mllama_image_init()
  450. defer C.mllama_image_free(img)
  451. ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
  452. if !ok {
  453. return nil, errors.New("unable to load mllama image data")
  454. }
  455. rows := make([]float32, m.EmbedSize(llamaContext))
  456. ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
  457. if !ok {
  458. return nil, errors.New("unable to make mllama embedding from image")
  459. }
  460. embed := make([][]float32, 1)
  461. embed[0] = rows
  462. return embed, nil
  463. }
  464. func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
  465. numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
  466. numEmbed := llamaContext.Model().NEmbd()
  467. return numTokens * numEmbed
  468. }
  469. func (c *Context) SetCrossAttention(state bool) {
  470. C.llama_set_cross_attention(c.c, C.bool(state))
  471. }
  472. func (c *Context) Synchronize() {
  473. C.llama_synchronize(c.c)
  474. }
  475. // sampling
  476. // TODO: this is a temporary wrapper to allow calling C++ code from CGo
  477. type SamplingContext struct {
  478. c *C.struct_common_sampler
  479. }
  480. type SamplingParams struct {
  481. TopK int
  482. TopP float32
  483. MinP float32
  484. TypicalP float32
  485. Temp float32
  486. RepeatLastN int
  487. PenaltyRepeat float32
  488. PenaltyFreq float32
  489. PenaltyPresent float32
  490. Mirostat int
  491. MirostatTau float32
  492. MirostatEta float32
  493. PenalizeNl bool
  494. Seed uint32
  495. Grammar string
  496. }
  497. func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
  498. var cparams C.struct_common_sampler_cparams
  499. cparams.top_k = C.int32_t(params.TopK)
  500. cparams.top_p = C.float(params.TopP)
  501. cparams.min_p = C.float(params.MinP)
  502. cparams.typical_p = C.float(params.TypicalP)
  503. cparams.temp = C.float(params.Temp)
  504. cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
  505. cparams.penalty_repeat = C.float(params.PenaltyRepeat)
  506. cparams.penalty_freq = C.float(params.PenaltyFreq)
  507. cparams.penalty_present = C.float(params.PenaltyFreq)
  508. cparams.mirostat = C.int32_t(params.Mirostat)
  509. cparams.mirostat_tau = C.float(params.MirostatTau)
  510. cparams.mirostat_eta = C.float(params.MirostatEta)
  511. cparams.seed = C.uint32_t(params.Seed)
  512. grammar := C.CString(params.Grammar)
  513. defer C.free(unsafe.Pointer(grammar))
  514. cparams.grammar = grammar
  515. context := &SamplingContext{c: C.common_sampler_cinit(model.c, &cparams)}
  516. if context.c == nil {
  517. return nil, errors.New("unable to create sampling context")
  518. }
  519. runtime.SetFinalizer(context, func(s *SamplingContext) { C.common_sampler_cfree(s.c) })
  520. return context, nil
  521. }
  522. func (s *SamplingContext) Reset() {
  523. C.common_sampler_creset(s.c)
  524. }
  525. func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
  526. return int(C.common_sampler_csample(s.c, llamaContext.c, C.int(idx)))
  527. }
  528. func (s *SamplingContext) Accept(id int, applyGrammar bool) {
  529. C.common_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
  530. }
  531. // SchemaToGrammar converts the provided JSON schema to a grammar. It returns
  532. // nil if the provided schema is invalid JSON or an invalid JSON schema.
  533. func SchemaToGrammar(schema []byte) []byte {
  534. cStr := C.CString(string(schema))
  535. defer C.free(unsafe.Pointer(cStr))
  536. // Allocate buffer for grammar output with reasonable size
  537. const maxLen = 32768 // 32KB
  538. buf := make([]byte, maxLen)
  539. // Call C function to convert schema to grammar
  540. n := C.schema_to_grammar(cStr, (*C.char)(unsafe.Pointer(&buf[0])), C.size_t(maxLen))
  541. if n == 0 {
  542. // preserve nil
  543. return nil
  544. }
  545. return buf[:n]
  546. }