123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716 |
- package main
- import (
- "context"
- "encoding/json"
- "flag"
- "fmt"
- "log"
- "log/slog"
- "math"
- "net"
- "net/http"
- "os"
- "path/filepath"
- "regexp"
- "runtime"
- "strconv"
- "strings"
- "sync"
- "time"
- "github.com/ollama/ollama/api"
- "github.com/ollama/ollama/llama"
- )
- type Sequence struct {
- // number of tokens evaluated
- nPast int
- // batch index
- iBatch int
- // number of tokens predicted so far
- numPredicted int
- // tokens left to evaluate
- tokens []int
- // tokens that have been generated but not returned yet (e.g. for stop sequences)
- // TODO (jmorganca): simplify this
- pendingResponses []string
- // channel to send responses over
- responses chan string
- // channel to stop decoding (such as if the remote connection is closed)
- quit chan bool
- // number of tokens to predict
- numPredict int
- samplingCtx *llama.SamplingContext
- // channel to send back the embedding if embedding only
- embedding chan []float32
- // stop sequences
- stop []string
- // number of tokens to keep at the beginning when shifting context window
- numKeep int
- // true if an embedding are to be returned instead of text generation
- embeddingOnly bool
- doneReason string
- // Metrics
- startProcessingTime time.Time
- startGenerationTime time.Time
- numDecoded int
- numPromptTokens int
- }
- type NewSequenceParams struct {
- numPredict int
- stop []string
- numKeep int
- samplingParams *llama.SamplingParams
- embedding bool
- }
- func (s *Server) NewSequence(prompt string, params NewSequenceParams) *Sequence {
- tokens, err := s.lc.Model().Tokenize(prompt, true, true)
- if err != nil {
- panic(err)
- }
- if params.numKeep < 0 {
- params.numKeep = len(tokens)
- }
- if !params.embedding {
- // Subtracting 4 ensures that at least 1 token can be discarded during shift
- params.numKeep = min(params.numKeep, s.numCtx-4)
- params.numKeep += s.bosToken
- } else {
- // Embeddings are 1 shot - just truncate to the context window, without ever shifting
- params.numKeep = min(params.numKeep, s.numCtx)
- }
- // truncate to fit in context window
- if len(tokens) > s.numCtx {
- slog.Warn("truncating input prompt", "limit", s.numCtx, "prompt", len(tokens), "numKeep", params.numKeep)
- newTokens := tokens[:params.numKeep]
- newTokens = append(newTokens, tokens[len(tokens)-s.numCtx+params.numKeep:]...)
- tokens = newTokens
- }
- var sc *llama.SamplingContext
- if params.samplingParams != nil {
- sc = llama.NewSamplingContext(*params.samplingParams)
- for _, t := range tokens {
- sc.Accept(s.lc, t, false)
- }
- }
- return &Sequence{
- tokens: tokens,
- numPromptTokens: len(tokens),
- numPredict: params.numPredict,
- pendingResponses: make([]string, 0),
- responses: make(chan string, 1),
- quit: make(chan bool, 1),
- embedding: make(chan []float32, 1),
- samplingCtx: sc,
- embeddingOnly: params.embedding,
- stop: params.stop,
- numKeep: params.numKeep,
- }
- }
- type Server struct {
- model *llama.Model
- lc *llama.Context
- cc *llama.ClipContext
- batchSize int
- // parallel is the number of parallel requests to handle
- parallel int
- // seqs is the list of parallel sequences being evaluated
- // TODO (jmorganca): this can probably be moved into run()
- seqs []*Sequence
- // context window size
- numCtx int
- // does this model require a beginning of sequence token?
- bosToken int
- mu sync.Mutex
- cond *sync.Cond
- progress float32
- status string
- }
- func (s *Server) allNil() bool {
- for _, item := range s.seqs {
- if item != nil {
- return false
- }
- }
- return true
- }
- func (s *Server) shiftContext(seqIndex int) {
- seq := s.seqs[seqIndex]
- numLeft := seq.nPast - seq.numKeep
- numDiscard := numLeft / 2
- slog.Debug("context limit hit - shifting", "limit", s.numCtx, "nPast", seq.nPast,
- "numKeep", seq.numKeep, "numLeft", numLeft, "numDiscard", numDiscard)
- // TODO (jessegross): KV cache removal can fail for certain types of models
- // server.cpp doesn't handle this, though we can be more graceful
- s.lc.KvCacheSeqRm(seqIndex, seq.numKeep, seq.numKeep+numDiscard)
- s.lc.KvCacheSeqAdd(seqIndex, seq.numKeep+numDiscard, seq.nPast, -numDiscard)
- seq.nPast -= numDiscard
- }
- func incompleteUnicode(token string) bool {
- incomplete := false
- // check if there is incomplete UTF-8 character at the end
- for i := 1; i < 5 && i <= len(token); i++ {
- c := token[len(token)-i]
- if (c & 0xc0) == 0x80 {
- // continuation byte: 10xxxxxx
- continue
- }
- if (c & 0xe0) == 0xc0 {
- // 2-byte character: 110xxxxx ...
- incomplete = i < 2
- } else if (c & 0xf0) == 0xe0 {
- // 3-byte character: 1110xxxx ...
- incomplete = i < 3
- } else if (c & 0xf8) == 0xf0 {
- // 4-byte character: 11110xxx ...
- incomplete = i < 4
- }
- // else 1-byte character or invalid byte
- break
- }
- return incomplete
- }
- func (s *Server) removeSequence(seqIndex int, reason string) {
- seq := s.seqs[seqIndex]
- seq.doneReason = reason
- close(seq.responses)
- close(seq.embedding)
- seq.pendingResponses = []string{}
- seq.samplingCtx.Free()
- s.lc.KvCacheSeqRm(seqIndex, 0, -1)
- s.seqs[seqIndex] = nil
- }
- func (s *Server) run(ctx context.Context) {
- for {
- select {
- case <-ctx.Done():
- return
- default:
- s.processBatch()
- }
- }
- }
- func (s *Server) processBatch() {
- batch := llama.NewBatch(s.batchSize*len(s.seqs), 0, len(s.seqs))
- defer batch.Free()
- s.mu.Lock()
- for s.allNil() {
- s.cond.Wait() // Wait until an item is added
- }
- defer s.mu.Unlock()
- slog.Debug("Processing batch", "seqs", len(s.seqs))
- for i, seq := range s.seqs {
- if seq == nil {
- continue
- }
- // if past the num predict limit
- if seq.numPredict > 0 && seq.numPredicted > seq.numPredict {
- s.removeSequence(i, "limit")
- continue
- }
- if seq.nPast+len(seq.tokens) > s.numCtx {
- s.shiftContext(i)
- }
- if seq.startProcessingTime.IsZero() {
- seq.startProcessingTime = time.Now()
- }
- var numTokensProcessed int
- for j, t := range seq.tokens {
- // todo: make this n_batch
- if j >= s.batchSize {
- break
- }
- batch.Add(t, seq.nPast, []int{i}, numTokensProcessed+1 == len(seq.tokens))
- seq.nPast++
- numTokensProcessed++
- }
- seq.tokens = seq.tokens[numTokensProcessed:]
- seq.iBatch = batch.NumTokens() - 1
- }
- if batch.NumTokens() == 0 {
- return
- }
- err := s.lc.Decode(batch)
- if err != nil {
- slog.Error("failed to decode batch", "error", err)
- panic("Failed to decode")
- }
- for i, seq := range s.seqs {
- if seq == nil {
- continue
- }
- // don't sample prompt processing
- if len(seq.tokens) != 0 {
- continue
- }
- // if done processing the prompt, generate an embedding and return
- if seq.embeddingOnly {
- embd := s.lc.GetEmbeddingsSeq(i)
- if embd == nil {
- embd = s.lc.GetEmbeddingsIth(seq.iBatch)
- }
- seq.embedding <- embd
- s.removeSequence(i, "")
- continue
- }
- // sample a token
- token := seq.samplingCtx.Sample(s.lc, nil, seq.iBatch)
- seq.samplingCtx.Accept(s.lc, token, true)
- seq.numDecoded += 1
- if seq.numDecoded == 1 {
- seq.startGenerationTime = time.Now()
- }
- piece := s.model.TokenToPiece(token)
- seq.numPredicted++
- slog.Debug("sampled", "piece", piece)
- // if it's an end of sequence token, break
- if s.model.TokenIsEog(token) {
- // TODO (jmorganca): we should send this back
- // as it's important for the /api/generate context
- // seq.responses <- piece
- s.removeSequence(i, "stop")
- continue
- }
- seq.tokens = []int{token}
- seq.pendingResponses = append(seq.pendingResponses, piece)
- sequence := strings.Join(seq.pendingResponses, "")
- if incompleteUnicode(sequence) {
- continue
- }
- if ok, stop := findStop(sequence, seq.stop); ok {
- slog.Info("hit stop token", "stop", seq.stop)
- truncated := truncateStop(seq.pendingResponses, stop)
- for _, p := range truncated {
- select {
- case seq.responses <- p:
- case <-seq.quit:
- break
- }
- }
- s.removeSequence(i, "stop")
- continue
- }
- if containsStopSuffix(sequence, seq.stop) {
- continue
- }
- for _, p := range seq.pendingResponses {
- select {
- case seq.responses <- p:
- case <-seq.quit:
- s.removeSequence(i, "connection")
- break
- }
- }
- seq.pendingResponses = []string{}
- }
- }
- type Options struct {
- api.Runner
- NumKeep int `json:"n_keep"`
- Seed int `json:"seed"`
- NumPredict int `json:"n_predict"`
- TopK int `json:"top_k"`
- TopP float32 `json:"top_p"`
- MinP float32 `json:"min_p"`
- TFSZ float32 `json:"tfs_z"`
- TypicalP float32 `json:"typical_p"`
- RepeatLastN int `json:"repeat_last_n"`
- Temperature float32 `json:"temperature"`
- RepeatPenalty float32 `json:"repeat_penalty"`
- PresencePenalty float32 `json:"presence_penalty"`
- FrequencyPenalty float32 `json:"frequency_penalty"`
- Mirostat int `json:"mirostat"`
- MirostatTau float32 `json:"mirostat_tau"`
- MirostatEta float32 `json:"mirostat_eta"`
- PenalizeNewline bool `json:"penalize_nl"`
- Stop []string `json:"stop"`
- }
- type CompletionRequest struct {
- Prompt string `json:"prompt"`
- Images []string `json:"images"`
- Grammar string `json:"grammar"`
- Options
- }
- type Timings struct {
- PredictedN int `json:"predicted_n"`
- PredictedMS float64 `json:"predicted_ms"`
- PromptN int `json:"prompt_n"`
- PromptMS float64 `json:"prompt_ms"`
- }
- type CompletionResponse struct {
- Content string `json:"content"`
- Stop bool `json:"stop"`
- Model string `json:"model,omitempty"`
- Prompt string `json:"prompt,omitempty"`
- StoppedLimit bool `json:"stopped_limit,omitempty"`
- PredictedN int `json:"predicted_n,omitempty"`
- PredictedMS float64 `json:"predicted_ms,omitempty"`
- PromptN int `json:"prompt_n,omitempty"`
- PromptMS float64 `json:"prompt_ms,omitempty"`
- Timings Timings `json:"timings"`
- }
- func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
- var req CompletionRequest
- req.Options = Options(api.DefaultOptions())
- if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
- http.Error(w, "Bad request", http.StatusBadRequest)
- return
- }
- // Set the headers to indicate streaming
- w.Header().Set("Content-Type", "application/json")
- w.Header().Set("Transfer-Encoding", "chunked")
- w.WriteHeader(http.StatusOK)
- var samplingParams llama.SamplingParams
- samplingParams.TopK = req.TopK
- samplingParams.TopP = req.TopP
- samplingParams.MinP = req.MinP
- samplingParams.TfsZ = req.TFSZ
- samplingParams.TypicalP = req.TypicalP
- samplingParams.Temp = req.Temperature
- samplingParams.RepeatLastN = req.RepeatLastN
- samplingParams.PenaltyRepeat = req.RepeatPenalty
- samplingParams.PenaltyFreq = req.FrequencyPenalty
- samplingParams.PenaltyPresent = req.PresencePenalty
- samplingParams.Mirostat = req.Mirostat
- samplingParams.MirostatTau = req.MirostatTau
- samplingParams.MirostatEta = req.MirostatEta
- samplingParams.PenalizeNl = req.PenalizeNewline
- samplingParams.Seed = uint32(req.Seed)
- samplingParams.Grammar = req.Grammar
- seq := s.NewSequence(req.Prompt, NewSequenceParams{
- numPredict: req.NumPredict,
- stop: req.Stop,
- numKeep: req.NumKeep,
- samplingParams: &samplingParams,
- embedding: false,
- })
- // TODO (jmorganca): add to sequence queue instead of
- // failing if a slot isn't available
- s.mu.Lock()
- for i, sq := range s.seqs {
- if sq == nil {
- s.seqs[i] = seq
- s.cond.Signal()
- break
- }
- }
- s.mu.Unlock()
- // stream the response
- for content := range seq.responses {
- if err := json.NewEncoder(w).Encode(&CompletionResponse{
- Content: content,
- }); err != nil {
- log.Println("Failed to encode result:", err)
- close(seq.quit)
- return
- }
- flusher, ok := w.(http.Flusher)
- if !ok {
- http.Error(w, "Streaming not supported", http.StatusInternalServerError)
- close(seq.quit)
- return
- }
- flusher.Flush()
- }
- // Send the stop
- if err := json.NewEncoder(w).Encode(&CompletionResponse{
- Stop: true,
- Timings: Timings{
- PromptN: seq.numPromptTokens,
- PromptMS: float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
- PredictedN: seq.numDecoded,
- PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
- },
- }); err != nil {
- log.Println("Failed to encode result:", err)
- return
- }
- flusher, ok := w.(http.Flusher)
- if !ok {
- http.Error(w, "Streaming not supported", http.StatusInternalServerError)
- return
- }
- flusher.Flush()
- }
- type EmbeddingRequest struct {
- Content string `json:"content"`
- }
- type EmbeddingResponse struct {
- Embedding []float32 `json:"embedding"`
- }
- func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
- var req EmbeddingRequest
- if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
- http.Error(w, "Bad request", http.StatusBadRequest)
- return
- }
- w.Header().Set("Content-Type", "application/json")
- slog.Debug("embedding request", "content", req.Content)
- seq := s.NewSequence(req.Content, NewSequenceParams{embedding: true})
- // TODO (jessegross): Wait for a free slot instead of failing and blocking forever
- s.mu.Lock()
- for i, sq := range s.seqs {
- if sq == nil {
- s.seqs[i] = seq
- s.cond.Signal()
- break
- }
- }
- s.mu.Unlock()
- embedding := <-seq.embedding
- if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
- Embedding: embedding,
- }); err != nil {
- log.Println("Failed to encode result:", err)
- return
- }
- }
- type HealthResponse struct {
- Status string `json:"status"`
- Progress float32 `json:"progress"`
- }
- // TODO (jmorganca): is it safe to do this concurrently with updating status?
- func (s *Server) health(w http.ResponseWriter, r *http.Request) {
- w.Header().Set("Content-Type", "application/json")
- if err := json.NewEncoder(w).Encode(&HealthResponse{
- Status: s.status,
- Progress: s.progress,
- }); err != nil {
- log.Println("Failed to encode result:", err)
- return
- }
- }
- func main() {
- mpath := flag.String("model", "", "Path to model binary file")
- ppath := flag.String("mmproj", "", "Path to projector binary file")
- parallel := flag.Int("parallel", 1, "Number of sequences to handle simultaneously")
- batchSize := flag.Int("batch-size", 512, "Batch size")
- nGpuLayers := flag.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
- mainGpu := flag.Int("main-gpu", 0, "Main GPU")
- flashAttention := flag.Bool("flash-attn", false, "Enable flash attention")
- kvSize := flag.Int("ctx-size", 2048, "Context (or KV cache) size")
- lpath := flag.String("lora", "", "Path to lora layer file")
- port := flag.Int("port", 8080, "Port to expose the server on")
- threads := flag.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
- verbose := flag.Bool("verbose", false, "verbose output (default: disabled)")
- noMmap := flag.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
- mlock := flag.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
- tensorSplit := flag.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
- // These are either ignored by llama.cpp or have no significance to us
- _ = flag.Bool("embedding", false, "enable embedding vector output (default: disabled)")
- _ = flag.Bool("log-disable", false, "disables logging to a file")
- _ = flag.Bool("memory-f32", false, "use f32 instead of f16 for memory key+value (default: disabled) not recommended: doubles context memory required and no measurable increase in quality")
- flag.Parse()
- level := slog.LevelInfo
- if *verbose {
- level = slog.LevelDebug
- }
- handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
- Level: level,
- AddSource: true,
- ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
- if attr.Key == slog.SourceKey {
- source := attr.Value.Any().(*slog.Source)
- source.File = filepath.Base(source.File)
- }
- return attr
- },
- })
- slog.SetDefault(slog.New(handler))
- server := &Server{
- numCtx: *kvSize / *parallel,
- batchSize: *batchSize,
- parallel: *parallel,
- seqs: make([]*Sequence, *parallel),
- status: "loading model",
- }
- // TODO (jessegross): This should be in a separate goroutine so we can report progress,
- // otherwise Ollama can timeout for large model loads
- // load the model
- llama.BackendInit()
- var tensorSplitFloats []float32
- if *tensorSplit != "" {
- stringFloats := regexp.MustCompile(",").Split(*tensorSplit, -1)
- tensorSplitFloats = make([]float32, 0, len(stringFloats))
- for _, s := range stringFloats {
- f, _ := strconv.ParseFloat(s, 32)
- tensorSplitFloats = append(tensorSplitFloats, float32(f))
- }
- }
- params := llama.ModelParams{
- NumGpuLayers: *nGpuLayers,
- MainGpu: *mainGpu,
- UseMmap: !*noMmap && *lpath == "",
- UseMlock: *mlock,
- TensorSplit: tensorSplitFloats,
- Progress: func(progress float32) {
- slog.Debug("Loading model", "progress %", math.Round(float64(progress*100)))
- server.progress = progress
- },
- }
- server.model = llama.LoadModelFromFile(*mpath, params)
- if *lpath != "" {
- err := server.model.ApplyLoraFromFile(*lpath, 1.0, "", *threads)
- if err != nil {
- panic(err)
- }
- }
- ctxParams := llama.NewContextParams(*kvSize, *threads, *flashAttention)
- server.lc = llama.NewContextWithModel(server.model, ctxParams)
- if server.model.ShouldAddBOSToken() {
- server.bosToken = 1
- }
- if *ppath != "" {
- server.cc = llama.NewClipContext(*ppath)
- }
- server.cond = sync.NewCond(&server.mu)
- ctx, cancel := context.WithCancel(context.Background())
- go server.run(ctx)
- addr := "127.0.0.1:" + strconv.Itoa(*port)
- listener, err := net.Listen("tcp", addr)
- if err != nil {
- fmt.Println("Listen error:", err)
- return
- }
- defer listener.Close()
- mux := http.NewServeMux()
- mux.HandleFunc("/embedding", server.embeddings)
- mux.HandleFunc("/completion", server.completion)
- mux.HandleFunc("/health", server.health)
- httpServer := http.Server{
- Handler: mux,
- }
- server.status = "ok"
- log.Println("Server listening on", addr)
- if err := httpServer.Serve(listener); err != nil {
- log.Fatal("server error:", err)
- }
- cancel()
- }
|