server.cpp 124 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262
  1. #include "common.h"
  2. #include "llama.h"
  3. #include "grammar-parser.h"
  4. #include "utils.hpp"
  5. #include "../llava/clip.h"
  6. #include "../llava/llava.h"
  7. #include "stb_image.h"
  8. #ifndef NDEBUG
  9. // crash the server in debug mode, otherwise send an http 500 error
  10. #define CPPHTTPLIB_NO_EXCEPTIONS 1
  11. #endif
  12. // increase max payload length to allow use of larger context size
  13. #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
  14. #include "httplib.h"
  15. #include "json.hpp"
  16. #include <cstddef>
  17. #include <thread>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <atomic>
  21. #include <signal.h>
  22. using json = nlohmann::json;
  23. struct server_params {
  24. std::string hostname = "127.0.0.1";
  25. std::vector<std::string> api_keys;
  26. std::string public_path = "examples/server/public";
  27. std::string chat_template = "";
  28. int32_t port = 8080;
  29. int32_t read_timeout = 600;
  30. int32_t write_timeout = 600;
  31. bool slots_endpoint = true;
  32. bool metrics_endpoint = false;
  33. int n_threads_http = -1;
  34. };
  35. bool server_verbose = false;
  36. bool server_log_json = true;
  37. enum stop_type {
  38. STOP_FULL,
  39. STOP_PARTIAL,
  40. };
  41. // TODO: can become bool if we can't find use of more states
  42. enum slot_state {
  43. IDLE,
  44. PROCESSING,
  45. };
  46. enum slot_command {
  47. NONE,
  48. LOAD_PROMPT,
  49. RELEASE,
  50. };
  51. struct slot_params {
  52. bool stream = true;
  53. bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
  54. uint32_t seed = -1; // RNG seed
  55. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  56. int32_t n_predict = -1; // new tokens to predict
  57. std::vector<std::string> antiprompt;
  58. json input_prefix;
  59. json input_suffix;
  60. };
  61. struct slot_image {
  62. int32_t id;
  63. bool request_encode_image = false;
  64. float * image_embedding = nullptr;
  65. int32_t image_tokens = 0;
  66. clip_image_u8 * img_data;
  67. std::string prefix_prompt; // before of this image
  68. };
  69. struct server_slot {
  70. int id;
  71. int task_id = -1;
  72. struct slot_params params;
  73. slot_state state = IDLE;
  74. slot_command command = NONE;
  75. // used to determine the slot that has been used the longest
  76. int64_t t_last_used = -1;
  77. // generation props
  78. int32_t n_ctx = 0; // context size per slot
  79. int32_t n_past = 0;
  80. int32_t n_decoded = 0;
  81. int32_t n_remaining = -1;
  82. int32_t i_batch = -1;
  83. int32_t n_predict = -1;
  84. int32_t n_prompt_tokens = 0;
  85. int32_t n_prompt_tokens_processed = 0;
  86. json prompt;
  87. std::string generated_text;
  88. llama_token sampled;
  89. std::vector<llama_token> cache_tokens;
  90. std::vector<completion_token_output> generated_token_probs;
  91. bool infill = false;
  92. bool embedding = false;
  93. bool has_next_token = true;
  94. bool truncated = false;
  95. bool stopped_eos = false;
  96. bool stopped_word = false;
  97. bool stopped_limit = false;
  98. std::string stopping_word;
  99. // sampling
  100. struct llama_sampling_params sparams;
  101. llama_sampling_context *ctx_sampling = nullptr;
  102. int32_t ga_i = 0; // group-attention state
  103. int32_t ga_n = 1; // group-attention factor
  104. int32_t ga_w = 512; // group-attention width
  105. int32_t n_past_se = 0; // self-extend
  106. // multimodal
  107. std::vector<slot_image> images;
  108. // stats
  109. size_t n_sent_text = 0; // number of sent text character
  110. size_t n_sent_token_probs = 0;
  111. int64_t t_start_process_prompt;
  112. int64_t t_start_genereration;
  113. double t_prompt_processing; // ms
  114. double t_token_generation; // ms
  115. // multitasks
  116. int multitask_id = -1;
  117. void reset() {
  118. n_prompt_tokens = 0;
  119. generated_text = "";
  120. truncated = false;
  121. stopped_eos = false;
  122. stopped_word = false;
  123. stopped_limit = false;
  124. stopping_word = "";
  125. n_past = 0;
  126. n_sent_text = 0;
  127. n_sent_token_probs = 0;
  128. infill = false;
  129. ga_i = 0;
  130. n_past_se = 0;
  131. generated_token_probs.clear();
  132. for (slot_image & img : images) {
  133. free(img.image_embedding);
  134. if (img.img_data) {
  135. clip_image_u8_free(img.img_data);
  136. }
  137. img.prefix_prompt = "";
  138. }
  139. images.clear();
  140. }
  141. bool has_budget(gpt_params &global_params) {
  142. if (params.n_predict == -1 && global_params.n_predict == -1) {
  143. return true; // limitless
  144. }
  145. n_remaining = -1;
  146. if (params.n_predict != -1) {
  147. n_remaining = params.n_predict - n_decoded;
  148. } else if (global_params.n_predict != -1) {
  149. n_remaining = global_params.n_predict - n_decoded;
  150. }
  151. return n_remaining > 0; // no budget
  152. }
  153. bool available() const {
  154. return state == IDLE && command == NONE;
  155. }
  156. bool is_processing() const {
  157. return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
  158. }
  159. void add_token_string(const completion_token_output &token) {
  160. if (command == RELEASE) {
  161. return;
  162. }
  163. cache_tokens.push_back(token.tok);
  164. generated_token_probs.push_back(token);
  165. }
  166. void release() {
  167. if (state == PROCESSING)
  168. {
  169. t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
  170. command = RELEASE;
  171. }
  172. }
  173. json get_formated_timings() {
  174. return json
  175. {
  176. {"prompt_n", n_prompt_tokens_processed},
  177. {"prompt_ms", t_prompt_processing},
  178. {"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
  179. {"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
  180. {"predicted_n", n_decoded},
  181. {"predicted_ms", t_token_generation},
  182. {"predicted_per_token_ms", t_token_generation / n_decoded},
  183. {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
  184. };
  185. }
  186. void print_timings() const {
  187. char buffer[512];
  188. double t_token = t_prompt_processing / n_prompt_tokens_processed;
  189. double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  190. sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
  191. t_prompt_processing, n_prompt_tokens_processed,
  192. t_token, n_tokens_second);
  193. LOG_INFO(buffer, {
  194. {"slot_id", id},
  195. {"task_id", task_id},
  196. {"t_prompt_processing", t_prompt_processing},
  197. {"n_prompt_tokens_processed", n_prompt_tokens_processed},
  198. {"t_token", t_token},
  199. {"n_tokens_second", n_tokens_second},
  200. });
  201. t_token = t_token_generation / n_decoded;
  202. n_tokens_second = 1e3 / t_token_generation * n_decoded;
  203. sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
  204. t_token_generation, n_decoded,
  205. t_token, n_tokens_second);
  206. LOG_INFO(buffer, {
  207. {"slot_id", id},
  208. {"task_id", task_id},
  209. {"t_token_generation", t_token_generation},
  210. {"n_decoded", n_decoded},
  211. {"t_token", t_token},
  212. {"n_tokens_second", n_tokens_second},
  213. });
  214. sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
  215. LOG_INFO(buffer, {
  216. {"slot_id", id},
  217. {"task_id", task_id},
  218. {"t_prompt_processing", t_prompt_processing},
  219. {"t_token_generation", t_token_generation},
  220. {"t_total", t_prompt_processing + t_token_generation},
  221. });
  222. }
  223. };
  224. struct server_metrics {
  225. uint64_t n_prompt_tokens_processed_total = 0;
  226. uint64_t n_tokens_predicted_total = 0;
  227. uint64_t n_prompt_tokens_processed = 0;
  228. uint64_t t_prompt_processing = 0;
  229. uint64_t n_tokens_predicted = 0;
  230. uint64_t t_tokens_generation = 0;
  231. void on_prompt_eval(const server_slot &slot) {
  232. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  233. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  234. t_prompt_processing += slot.t_prompt_processing;
  235. }
  236. void on_prediction(const server_slot &slot) {
  237. n_tokens_predicted_total += slot.n_decoded;
  238. n_tokens_predicted += slot.n_decoded;
  239. t_tokens_generation += slot.t_token_generation;
  240. }
  241. void reset_bucket() {
  242. n_prompt_tokens_processed = 0;
  243. t_prompt_processing = 0;
  244. n_tokens_predicted = 0;
  245. t_tokens_generation = 0;
  246. }
  247. };
  248. struct llama_server_context
  249. {
  250. llama_model *model = nullptr;
  251. llama_context *ctx = nullptr;
  252. clip_ctx *clp_ctx = nullptr;
  253. gpt_params params;
  254. llama_batch batch;
  255. bool multimodal = false;
  256. bool clean_kv_cache = true;
  257. bool all_slots_are_idle = false;
  258. bool add_bos_token = true;
  259. int32_t n_ctx; // total context for all clients / slots
  260. // system prompt
  261. bool system_need_update = false;
  262. std::string system_prompt;
  263. std::vector<llama_token> system_tokens;
  264. std::string name_user; // this should be the antiprompt
  265. std::string name_assistant;
  266. // slots / clients
  267. std::vector<server_slot> slots;
  268. json default_generation_settings_for_props;
  269. llama_server_queue queue_tasks;
  270. llama_server_response queue_results;
  271. server_metrics metrics;
  272. ~llama_server_context()
  273. {
  274. if (ctx)
  275. {
  276. llama_free(ctx);
  277. ctx = nullptr;
  278. }
  279. if (model)
  280. {
  281. llama_free_model(model);
  282. model = nullptr;
  283. }
  284. }
  285. bool load_model(const gpt_params &params_)
  286. {
  287. params = params_;
  288. if (!params.mmproj.empty()) {
  289. multimodal = true;
  290. LOG_INFO("Multi Modal Mode Enabled", {});
  291. clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
  292. if(clp_ctx == nullptr) {
  293. LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
  294. return false;
  295. }
  296. if (params.n_ctx < 2048) { // request larger context for the image embedding
  297. params.n_ctx = 2048;
  298. }
  299. }
  300. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  301. if (model == nullptr)
  302. {
  303. LOG_ERROR("unable to load model", {{"model", params.model}});
  304. return false;
  305. }
  306. if (multimodal) {
  307. const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
  308. const int n_embd_llm = llama_n_embd(model);
  309. if (n_embd_clip != n_embd_llm) {
  310. LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
  311. llama_free(ctx);
  312. llama_free_model(model);
  313. return false;
  314. }
  315. }
  316. n_ctx = llama_n_ctx(ctx);
  317. add_bos_token = llama_should_add_bos_token(model);
  318. return true;
  319. }
  320. void validate_model_chat_template(server_params & sparams) {
  321. llama_chat_message chat[] = {{"user", "test"}};
  322. std::vector<char> buf(1);
  323. int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
  324. if (res < 0) {
  325. LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
  326. sparams.chat_template = "chatml";
  327. }
  328. }
  329. void initialize() {
  330. // create slots
  331. all_slots_are_idle = true;
  332. const int32_t n_ctx_slot = n_ctx / params.n_parallel;
  333. LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
  334. for (int i = 0; i < params.n_parallel; i++)
  335. {
  336. server_slot slot;
  337. slot.id = i;
  338. slot.n_ctx = n_ctx_slot;
  339. slot.n_predict = params.n_predict;
  340. LOG_INFO("new slot", {
  341. {"slot_id", slot.id},
  342. {"n_ctx_slot", slot.n_ctx}
  343. });
  344. const int ga_n = params.grp_attn_n;
  345. const int ga_w = params.grp_attn_w;
  346. if (ga_n != 1) {
  347. GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
  348. GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
  349. //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
  350. //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
  351. LOG_INFO("slot self-extend", {
  352. {"slot_id", slot.id},
  353. {"ga_n", ga_n},
  354. {"ga_w", ga_w}
  355. });
  356. }
  357. slot.ga_i = 0;
  358. slot.ga_n = ga_n;
  359. slot.ga_w = ga_w;
  360. slot.reset();
  361. slots.push_back(slot);
  362. }
  363. default_generation_settings_for_props = get_formated_generation(slots.front());
  364. default_generation_settings_for_props["seed"] = -1;
  365. batch = llama_batch_init(n_ctx, 0, params.n_parallel);
  366. }
  367. std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
  368. {
  369. // TODO: currently, we tokenize using special tokens by default
  370. // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
  371. // but it's better compared to completely ignoring ChatML and other chat templates
  372. const bool TMP_FORCE_SPECIAL = true;
  373. // If `add_bos` is true, we only add BOS, when json_prompt is a string,
  374. // or the first element of the json_prompt array is a string.
  375. std::vector<llama_token> prompt_tokens;
  376. if (json_prompt.is_array())
  377. {
  378. bool first = true;
  379. for (const auto& p : json_prompt)
  380. {
  381. if (p.is_string())
  382. {
  383. auto s = p.template get<std::string>();
  384. std::vector<llama_token> p;
  385. if (first)
  386. {
  387. p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
  388. first = false;
  389. }
  390. else
  391. {
  392. p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
  393. }
  394. prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
  395. }
  396. else
  397. {
  398. if (first)
  399. {
  400. first = false;
  401. }
  402. prompt_tokens.push_back(p.template get<llama_token>());
  403. }
  404. }
  405. }
  406. else
  407. {
  408. auto s = json_prompt.template get<std::string>();
  409. prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
  410. }
  411. return prompt_tokens;
  412. }
  413. server_slot* get_slot(int id) {
  414. int64_t t_last = ggml_time_us();
  415. server_slot *last_used = nullptr;
  416. for (server_slot & slot : slots)
  417. {
  418. if (slot.id == id && slot.available())
  419. {
  420. return &slot;
  421. }
  422. if (slot.available() && slot.t_last_used < t_last)
  423. {
  424. last_used = &slot;
  425. t_last = slot.t_last_used;
  426. }
  427. }
  428. return last_used;
  429. }
  430. bool launch_slot_with_data(server_slot* &slot, json data) {
  431. slot_params default_params;
  432. llama_sampling_params default_sparams;
  433. slot->params.stream = json_value(data, "stream", false);
  434. slot->params.cache_prompt = json_value(data, "cache_prompt", false);
  435. slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
  436. slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
  437. slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
  438. slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
  439. slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
  440. slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
  441. slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
  442. slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
  443. slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
  444. slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
  445. slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
  446. slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
  447. slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
  448. slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
  449. slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
  450. slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
  451. slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
  452. slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
  453. slot->params.seed = json_value(data, "seed", default_params.seed);
  454. slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
  455. slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
  456. slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
  457. if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
  458. // Might be better to reject the request with a 400 ?
  459. LOG_WARNING("Max tokens to predict exceeds server configuration", {
  460. {"params.n_predict", slot->params.n_predict},
  461. {"slot.n_predict", slot->n_predict},
  462. });
  463. slot->params.n_predict = slot->n_predict;
  464. }
  465. // infill
  466. if (data.count("input_prefix") != 0)
  467. {
  468. slot->params.input_prefix = data["input_prefix"];
  469. }
  470. else
  471. {
  472. slot->params.input_prefix = "";
  473. }
  474. if (data.count("input_suffix") != 0)
  475. {
  476. slot->params.input_suffix = data["input_suffix"];
  477. }
  478. else
  479. {
  480. slot->params.input_suffix = "";
  481. }
  482. if (data.count("prompt") != 0)
  483. {
  484. slot->prompt = data["prompt"];
  485. }
  486. else
  487. {
  488. slot->prompt = "";
  489. }
  490. slot->sparams.penalty_prompt_tokens.clear();
  491. slot->sparams.use_penalty_prompt_tokens = false;
  492. const auto &penalty_prompt = data.find("penalty_prompt");
  493. if (penalty_prompt != data.end())
  494. {
  495. if (penalty_prompt->is_string())
  496. {
  497. const auto penalty_prompt_string = penalty_prompt->get<std::string>();
  498. auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
  499. slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
  500. if (slot->params.n_predict > 0)
  501. {
  502. slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
  503. }
  504. slot->sparams.use_penalty_prompt_tokens = true;
  505. }
  506. else if (penalty_prompt->is_array())
  507. {
  508. const auto n_tokens = penalty_prompt->size();
  509. slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
  510. const int n_vocab = llama_n_vocab(model);
  511. for (const auto &penalty_token : *penalty_prompt)
  512. {
  513. if (penalty_token.is_number_integer())
  514. {
  515. const auto tok = penalty_token.get<llama_token>();
  516. if (tok >= 0 && tok < n_vocab)
  517. {
  518. slot->sparams.penalty_prompt_tokens.push_back(tok);
  519. }
  520. }
  521. }
  522. slot->sparams.use_penalty_prompt_tokens = true;
  523. }
  524. }
  525. slot->sparams.logit_bias.clear();
  526. if (json_value(data, "ignore_eos", false))
  527. {
  528. slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  529. }
  530. const auto &logit_bias = data.find("logit_bias");
  531. if (logit_bias != data.end() && logit_bias->is_array())
  532. {
  533. const int n_vocab = llama_n_vocab(model);
  534. for (const auto &el : *logit_bias)
  535. {
  536. if (el.is_array() && el.size() == 2)
  537. {
  538. float bias;
  539. if (el[1].is_number())
  540. {
  541. bias = el[1].get<float>();
  542. }
  543. else if (el[1].is_boolean() && !el[1].get<bool>())
  544. {
  545. bias = -INFINITY;
  546. }
  547. else
  548. {
  549. continue;
  550. }
  551. if (el[0].is_number_integer())
  552. {
  553. llama_token tok = el[0].get<llama_token>();
  554. if (tok >= 0 && tok < n_vocab)
  555. {
  556. slot->sparams.logit_bias[tok] = bias;
  557. }
  558. }
  559. else if (el[0].is_string())
  560. {
  561. auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
  562. for (auto tok : toks)
  563. {
  564. slot->sparams.logit_bias[tok] = bias;
  565. }
  566. }
  567. }
  568. }
  569. }
  570. slot->params.antiprompt.clear();
  571. const auto &stop = data.find("stop");
  572. if (stop != data.end() && stop->is_array())
  573. {
  574. for (const auto &word : *stop)
  575. {
  576. if (!word.empty())
  577. {
  578. slot->params.antiprompt.push_back(word);
  579. }
  580. }
  581. }
  582. const auto &samplers_sequence = data.find("samplers");
  583. if (samplers_sequence != data.end() && samplers_sequence->is_array())
  584. {
  585. std::vector<std::string> sampler_names;
  586. for (const auto &sampler_name : *samplers_sequence)
  587. {
  588. if (sampler_name.is_string())
  589. {
  590. sampler_names.emplace_back(sampler_name);
  591. }
  592. }
  593. slot->sparams.samplers_sequence = sampler_types_from_names(sampler_names, false);
  594. }
  595. else
  596. {
  597. slot->sparams.samplers_sequence = default_sparams.samplers_sequence;
  598. }
  599. if (multimodal)
  600. {
  601. const auto &images_data = data.find("image_data");
  602. if (images_data != data.end() && images_data->is_array())
  603. {
  604. for (const auto &img : *images_data)
  605. {
  606. const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
  607. slot_image img_sl;
  608. img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
  609. img_sl.img_data = clip_image_u8_init();
  610. if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
  611. {
  612. LOG_ERROR("failed to load image", {
  613. {"slot_id", slot->id},
  614. {"img_sl_id", img_sl.id}
  615. });
  616. return false;
  617. }
  618. LOG_VERBOSE("image loaded", {
  619. {"slot_id", slot->id},
  620. {"img_sl_id", img_sl.id}
  621. });
  622. img_sl.request_encode_image = true;
  623. slot->images.push_back(img_sl);
  624. }
  625. // process prompt
  626. // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
  627. if (slot->images.size() > 0 && !slot->prompt.is_array())
  628. {
  629. std::string prompt = slot->prompt.get<std::string>();
  630. size_t pos = 0, begin_prefix = 0;
  631. std::string pattern = "[img-";
  632. while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
  633. size_t end_prefix = pos;
  634. pos += pattern.length();
  635. size_t end_pos = prompt.find(']', pos);
  636. if (end_pos != std::string::npos)
  637. {
  638. std::string image_id = prompt.substr(pos, end_pos - pos);
  639. try
  640. {
  641. int img_id = std::stoi(image_id);
  642. bool found = false;
  643. for (slot_image &img : slot->images)
  644. {
  645. if (img.id == img_id) {
  646. found = true;
  647. img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
  648. begin_prefix = end_pos + 1;
  649. break;
  650. }
  651. }
  652. if (!found) {
  653. LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
  654. slot->images.clear();
  655. return false;
  656. }
  657. } catch (const std::invalid_argument& e) {
  658. LOG_TEE("Invalid image number id in prompt\n");
  659. slot->images.clear();
  660. return false;
  661. }
  662. }
  663. }
  664. slot->prompt = "";
  665. slot->params.input_suffix = prompt.substr(begin_prefix);
  666. slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
  667. }
  668. }
  669. }
  670. if (slot->ctx_sampling != nullptr)
  671. {
  672. llama_sampling_free(slot->ctx_sampling);
  673. }
  674. slot->ctx_sampling = llama_sampling_init(slot->sparams);
  675. llama_set_rng_seed(ctx, slot->params.seed);
  676. slot->command = LOAD_PROMPT;
  677. all_slots_are_idle = false;
  678. LOG_INFO("slot is processing task", {
  679. {"slot_id", slot->id},
  680. {"task_id", slot->task_id},
  681. });
  682. return true;
  683. }
  684. void kv_cache_clear() {
  685. // clear the entire KV cache
  686. llama_kv_cache_clear(ctx);
  687. clean_kv_cache = false;
  688. }
  689. void system_prompt_update() {
  690. kv_cache_clear();
  691. system_tokens.clear();
  692. if (!system_prompt.empty()) {
  693. system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
  694. llama_batch_clear(batch);
  695. for (int i = 0; i < (int)system_tokens.size(); ++i)
  696. {
  697. llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
  698. }
  699. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
  700. {
  701. const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i));
  702. llama_batch batch_view = {
  703. n_tokens,
  704. batch.token + i,
  705. nullptr,
  706. batch.pos + i,
  707. batch.n_seq_id + i,
  708. batch.seq_id + i,
  709. batch.logits + i,
  710. 0, 0, 0, // unused
  711. };
  712. if (llama_decode(ctx, batch_view) != 0)
  713. {
  714. LOG_TEE("%s: llama_decode() failed\n", __func__);
  715. return;
  716. }
  717. }
  718. // assign the system KV cache to all parallel sequences
  719. for (int32_t i = 1; i < params.n_parallel; ++i)
  720. {
  721. llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
  722. }
  723. }
  724. LOG_TEE("system prompt updated\n");
  725. system_need_update = false;
  726. }
  727. void system_prompt_notify() {
  728. // release all slots
  729. for (server_slot &slot : slots)
  730. {
  731. slot.release();
  732. }
  733. system_need_update = true;
  734. }
  735. void system_prompt_process(const json &sys_props) {
  736. system_prompt = sys_props.value("prompt", "");
  737. name_user = sys_props.value("anti_prompt", "");
  738. name_assistant = sys_props.value("assistant_name", "");
  739. system_prompt_notify();
  740. }
  741. static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
  742. const stop_type type, server_slot &slot)
  743. {
  744. size_t stop_pos = std::string::npos;
  745. for (const std::string &word : slot.params.antiprompt)
  746. {
  747. size_t pos;
  748. if (type == STOP_FULL)
  749. {
  750. const size_t tmp = word.size() + last_token_size;
  751. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  752. pos = text.find(word, from_pos);
  753. }
  754. else
  755. {
  756. pos = find_partial_stop_string(word, text);
  757. }
  758. if (pos != std::string::npos &&
  759. (stop_pos == std::string::npos || pos < stop_pos))
  760. {
  761. if (type == STOP_FULL)
  762. {
  763. slot.stopped_word = true;
  764. slot.stopping_word = word;
  765. slot.has_next_token = false;
  766. }
  767. stop_pos = pos;
  768. }
  769. }
  770. return stop_pos;
  771. }
  772. bool process_token(completion_token_output &result, server_slot &slot) {
  773. // remember which tokens were sampled - used for repetition penalties during sampling
  774. const std::string token_str = llama_token_to_piece(ctx, result.tok);
  775. slot.sampled = result.tok;
  776. // search stop word and delete it
  777. slot.generated_text += token_str;
  778. slot.has_next_token = true;
  779. if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
  780. {
  781. // we can change penalty_prompt_tokens because it is always created from scratch each request
  782. slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
  783. }
  784. // check if there is incomplete UTF-8 character at the end
  785. bool incomplete = false;
  786. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
  787. {
  788. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  789. if ((c & 0xC0) == 0x80)
  790. {
  791. // continuation byte: 10xxxxxx
  792. continue;
  793. }
  794. if ((c & 0xE0) == 0xC0)
  795. {
  796. // 2-byte character: 110xxxxx ...
  797. incomplete = i < 2;
  798. }
  799. else if ((c & 0xF0) == 0xE0)
  800. {
  801. // 3-byte character: 1110xxxx ...
  802. incomplete = i < 3;
  803. }
  804. else if ((c & 0xF8) == 0xF0)
  805. {
  806. // 4-byte character: 11110xxx ...
  807. incomplete = i < 4;
  808. }
  809. // else 1-byte character or invalid byte
  810. break;
  811. }
  812. if (!incomplete)
  813. {
  814. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  815. const std::string str_test = slot.generated_text.substr(pos);
  816. bool is_stop_full = false;
  817. size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
  818. if (stop_pos != std::string::npos)
  819. {
  820. is_stop_full = true;
  821. slot.generated_text.erase(
  822. slot.generated_text.begin() + pos + stop_pos,
  823. slot.generated_text.end());
  824. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  825. }
  826. else
  827. {
  828. is_stop_full = false;
  829. stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
  830. }
  831. // check if there is any token to predict
  832. if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
  833. {
  834. // no send the stop word in the response
  835. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  836. slot.n_sent_text += result.text_to_send.size();
  837. // add the token to slot queue and cache
  838. }
  839. slot.add_token_string(result);
  840. if (slot.params.stream)
  841. {
  842. send_partial_response(slot, result);
  843. }
  844. }
  845. if (incomplete)
  846. {
  847. slot.has_next_token = true;
  848. }
  849. // check the limits
  850. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params))
  851. {
  852. slot.stopped_limit = true;
  853. slot.has_next_token = false;
  854. }
  855. if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
  856. {
  857. slot.stopped_eos = true;
  858. slot.has_next_token = false;
  859. LOG_VERBOSE("eos token found", {});
  860. }
  861. LOG_VERBOSE("next token", {
  862. {"token", result.tok},
  863. {"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
  864. {"has_next_token", slot.has_next_token},
  865. {"n_remain", slot.n_remaining},
  866. {"num_tokens_predicted", slot.n_decoded},
  867. {"stopped_eos", slot.stopped_eos},
  868. {"stopped_word", slot.stopped_word},
  869. {"stopped_limit", slot.stopped_limit},
  870. {"stopping_word", slot.stopping_word},
  871. });
  872. return slot.has_next_token; // continue
  873. }
  874. bool process_images(server_slot &slot) const
  875. {
  876. for (slot_image &img : slot.images)
  877. {
  878. if (!img.request_encode_image)
  879. {
  880. continue;
  881. }
  882. if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
  883. LOG_TEE("Error processing the given image");
  884. return false;
  885. }
  886. img.request_encode_image = false;
  887. }
  888. return slot.images.size() > 0;
  889. }
  890. void send_error(task_server& task, const std::string &error)
  891. {
  892. LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
  893. task_result res;
  894. res.id = task.id;
  895. res.multitask_id = task.multitask_id;
  896. res.stop = false;
  897. res.error = true;
  898. res.result_json = { { "content", error } };
  899. queue_results.send(res);
  900. }
  901. json get_formated_generation(server_slot &slot)
  902. {
  903. const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
  904. const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
  905. eos_bias->second < 0.0f && std::isinf(eos_bias->second);
  906. std::vector<std::string> samplers_sequence;
  907. for (const auto &sampler_type : slot.sparams.samplers_sequence)
  908. {
  909. samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type));
  910. }
  911. return json {
  912. {"n_ctx", slot.n_ctx},
  913. {"n_predict", slot.n_predict},
  914. {"model", params.model_alias},
  915. {"seed", slot.params.seed},
  916. {"temperature", slot.sparams.temp},
  917. {"dynatemp_range", slot.sparams.dynatemp_range},
  918. {"dynatemp_exponent", slot.sparams.dynatemp_exponent},
  919. {"top_k", slot.sparams.top_k},
  920. {"top_p", slot.sparams.top_p},
  921. {"min_p", slot.sparams.min_p},
  922. {"tfs_z", slot.sparams.tfs_z},
  923. {"typical_p", slot.sparams.typical_p},
  924. {"repeat_last_n", slot.sparams.penalty_last_n},
  925. {"repeat_penalty", slot.sparams.penalty_repeat},
  926. {"presence_penalty", slot.sparams.penalty_present},
  927. {"frequency_penalty", slot.sparams.penalty_freq},
  928. {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
  929. {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
  930. {"mirostat", slot.sparams.mirostat},
  931. {"mirostat_tau", slot.sparams.mirostat_tau},
  932. {"mirostat_eta", slot.sparams.mirostat_eta},
  933. {"penalize_nl", slot.sparams.penalize_nl},
  934. {"stop", slot.params.antiprompt},
  935. {"n_predict", slot.params.n_predict},
  936. {"n_keep", params.n_keep},
  937. {"ignore_eos", ignore_eos},
  938. {"stream", slot.params.stream},
  939. {"logit_bias", slot.sparams.logit_bias},
  940. {"n_probs", slot.sparams.n_probs},
  941. {"min_keep", slot.sparams.min_keep},
  942. {"grammar", slot.sparams.grammar},
  943. {"samplers", samplers_sequence}
  944. };
  945. }
  946. void send_partial_response(server_slot &slot, completion_token_output tkn)
  947. {
  948. task_result res;
  949. res.id = slot.task_id;
  950. res.multitask_id = slot.multitask_id;
  951. res.error = false;
  952. res.stop = false;
  953. res.result_json = json
  954. {
  955. {"content", tkn.text_to_send},
  956. {"stop", false},
  957. {"slot_id", slot.id},
  958. {"multimodal", multimodal}
  959. };
  960. if (slot.sparams.n_probs > 0)
  961. {
  962. std::vector<completion_token_output> probs_output = {};
  963. const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
  964. size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
  965. size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
  966. if (probs_pos < probs_stop_pos)
  967. {
  968. probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
  969. }
  970. slot.n_sent_token_probs = probs_stop_pos;
  971. res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
  972. }
  973. queue_results.send(res);
  974. }
  975. void send_final_response(server_slot &slot)
  976. {
  977. task_result res;
  978. res.id = slot.task_id;
  979. res.multitask_id = slot.multitask_id;
  980. res.error = false;
  981. res.stop = true;
  982. res.result_json = json
  983. {
  984. {"content", !slot.params.stream ? slot.generated_text : ""},
  985. {"slot_id", slot.id},
  986. {"stop", true},
  987. {"model", params.model_alias},
  988. {"tokens_predicted", slot.n_decoded},
  989. {"tokens_evaluated", slot.n_prompt_tokens},
  990. {"generation_settings", get_formated_generation(slot)},
  991. {"prompt", slot.prompt},
  992. {"truncated", slot.truncated},
  993. {"stopped_eos", slot.stopped_eos},
  994. {"stopped_word", slot.stopped_word},
  995. {"stopped_limit", slot.stopped_limit},
  996. {"stopping_word", slot.stopping_word},
  997. {"tokens_cached", slot.n_past},
  998. {"timings", slot.get_formated_timings()}
  999. };
  1000. if (slot.sparams.n_probs > 0)
  1001. {
  1002. std::vector<completion_token_output> probs = {};
  1003. if (!slot.params.stream && slot.stopped_word)
  1004. {
  1005. const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
  1006. probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
  1007. }
  1008. else
  1009. {
  1010. probs = std::vector<completion_token_output>(
  1011. slot.generated_token_probs.begin(),
  1012. slot.generated_token_probs.end());
  1013. }
  1014. res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
  1015. }
  1016. queue_results.send(res);
  1017. }
  1018. void send_embedding(server_slot & slot, const llama_batch & batch)
  1019. {
  1020. task_result res;
  1021. res.id = slot.task_id;
  1022. res.multitask_id = slot.multitask_id;
  1023. res.error = false;
  1024. res.stop = true;
  1025. const int n_embd = llama_n_embd(model);
  1026. if (!params.embedding)
  1027. {
  1028. LOG_WARNING("embedding disabled", {{"params.embedding", params.embedding}});
  1029. res.result_json = json
  1030. {
  1031. {"embedding", std::vector<float>(n_embd, 0.0f)},
  1032. };
  1033. }
  1034. else
  1035. {
  1036. for (int i = 0; i < batch.n_tokens; ++i) {
  1037. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1038. continue;
  1039. }
  1040. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1041. if (embd == NULL) {
  1042. embd = llama_get_embeddings_ith(ctx, i);
  1043. if (embd == NULL) {
  1044. LOG_ERROR("failed to get embeddings for token", {{"token", batch.token[i]}, {"seq_id", batch.seq_id[i][0]}});
  1045. res.result_json = json
  1046. {
  1047. {"embedding", std::vector<float>(n_embd, 0.0f)},
  1048. };
  1049. continue;
  1050. }
  1051. }
  1052. res.result_json = json
  1053. {
  1054. {"embedding", std::vector<float>(embd, embd + n_embd)},
  1055. };
  1056. }
  1057. }
  1058. queue_results.send(res);
  1059. }
  1060. void request_completion(int task_id, json data, bool infill, bool embedding, int multitask_id)
  1061. {
  1062. task_server task;
  1063. task.id = task_id;
  1064. task.target_id = 0;
  1065. task.data = std::move(data);
  1066. task.infill_mode = infill;
  1067. task.embedding_mode = embedding;
  1068. task.type = TASK_TYPE_COMPLETION;
  1069. task.multitask_id = multitask_id;
  1070. // when a completion task's prompt array is not a singleton, we split it into multiple requests
  1071. // otherwise, it's a single-prompt task, we actually queue it
  1072. // if there's numbers in the prompt array it will be treated as an array of tokens
  1073. if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
  1074. bool numbers = false;
  1075. for (const auto& e : task.data.at("prompt")) {
  1076. if (e.is_number()) {
  1077. numbers = true;
  1078. break;
  1079. }
  1080. }
  1081. // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
  1082. // it will completely stall the server. I don't know where the bug for this is.
  1083. //
  1084. // if there are numbers, it needs to be treated like a single prompt,
  1085. // queue_tasks handles a mix of strings and numbers just fine.
  1086. if (numbers) {
  1087. queue_tasks.post(task);
  1088. } else {
  1089. split_multiprompt_task(task_id, task);
  1090. }
  1091. } else {
  1092. // an empty prompt can make slot become buggy
  1093. if (task.data.contains("prompt") && task.data["prompt"].is_string() && task.data["prompt"].get<std::string>().empty()) {
  1094. task.data["prompt"] = " "; // add a space so that we have one token
  1095. }
  1096. queue_tasks.post(task);
  1097. }
  1098. }
  1099. // for multiple images processing
  1100. bool ingest_images(server_slot &slot, int n_batch)
  1101. {
  1102. int image_idx = 0;
  1103. while (image_idx < (int) slot.images.size())
  1104. {
  1105. slot_image &img = slot.images[image_idx];
  1106. // process prefix prompt
  1107. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
  1108. {
  1109. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  1110. llama_batch batch_view = {
  1111. n_tokens,
  1112. batch.token + i,
  1113. nullptr,
  1114. batch.pos + i,
  1115. batch.n_seq_id + i,
  1116. batch.seq_id + i,
  1117. batch.logits + i,
  1118. 0, 0, 0, // unused
  1119. };
  1120. if (llama_decode(ctx, batch_view))
  1121. {
  1122. LOG_TEE("%s : failed to eval\n", __func__);
  1123. return false;
  1124. }
  1125. }
  1126. // process image with llm
  1127. for (int i = 0; i < img.image_tokens; i += n_batch)
  1128. {
  1129. int n_eval = img.image_tokens - i;
  1130. if (n_eval > n_batch)
  1131. {
  1132. n_eval = n_batch;
  1133. }
  1134. const int n_embd = llama_n_embd(model);
  1135. llama_batch batch_img = {
  1136. n_eval,
  1137. nullptr,
  1138. (img.image_embedding + i * n_embd),
  1139. nullptr,
  1140. nullptr,
  1141. nullptr,
  1142. nullptr,
  1143. slot.n_past,
  1144. 1, 0
  1145. };
  1146. if (llama_decode(ctx, batch_img))
  1147. {
  1148. LOG_TEE("%s : failed to eval image\n", __func__);
  1149. return false;
  1150. }
  1151. slot.n_past += n_eval;
  1152. }
  1153. image_idx++;
  1154. llama_batch_clear(batch);
  1155. // append prefix of next image
  1156. const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
  1157. slot.params.input_suffix : // no more images, then process suffix prompt
  1158. (json)(slot.images[image_idx].prefix_prompt);
  1159. std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
  1160. for (int i = 0; i < (int) append_tokens.size(); ++i)
  1161. {
  1162. llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
  1163. slot.n_past += 1;
  1164. }
  1165. }
  1166. return true;
  1167. }
  1168. void request_cancel(int task_id)
  1169. {
  1170. task_server task;
  1171. task.type = TASK_TYPE_CANCEL;
  1172. task.target_id = task_id;
  1173. queue_tasks.post(task);
  1174. }
  1175. void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
  1176. {
  1177. int prompt_count = multiprompt_task.data.at("prompt").size();
  1178. if (prompt_count <= 1) {
  1179. send_error(multiprompt_task, "error while handling multiple prompts");
  1180. return;
  1181. }
  1182. // generate all the ID for subtask
  1183. std::vector<int> subtask_ids(prompt_count);
  1184. for (int i = 0; i < prompt_count; i++)
  1185. {
  1186. subtask_ids[i] = queue_tasks.get_new_id();
  1187. }
  1188. // queue up the multitask so we can track its subtask progression
  1189. queue_tasks.add_multitask(multitask_id, subtask_ids);
  1190. // add subtasks
  1191. for (int i = 0; i < prompt_count; i++)
  1192. {
  1193. json subtask_data = multiprompt_task.data;
  1194. subtask_data["prompt"] = subtask_data["prompt"][i];
  1195. // subtasks inherit everything else (infill mode, embedding mode, etc.)
  1196. request_completion(subtask_ids[i], subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
  1197. }
  1198. }
  1199. void process_single_task(task_server& task)
  1200. {
  1201. switch (task.type)
  1202. {
  1203. case TASK_TYPE_COMPLETION: {
  1204. server_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
  1205. if (slot == nullptr)
  1206. {
  1207. // if no slot is available, we defer this task for processing later
  1208. LOG_VERBOSE("no slot is available", {{"task_id", task.id}});
  1209. queue_tasks.defer(task);
  1210. break;
  1211. }
  1212. if (task.data.contains("system_prompt"))
  1213. {
  1214. if (!all_slots_are_idle) {
  1215. send_error(task, "system prompt can only be updated when all slots are idle");
  1216. break;
  1217. }
  1218. system_prompt_process(task.data["system_prompt"]);
  1219. // reset cache_tokens for all slots
  1220. for (server_slot &slot : slots)
  1221. {
  1222. slot.cache_tokens.clear();
  1223. slot.n_past = 0;
  1224. slot.n_past_se = 0;
  1225. }
  1226. }
  1227. slot->reset();
  1228. slot->infill = task.infill_mode;
  1229. slot->embedding = task.embedding_mode;
  1230. slot->task_id = task.id;
  1231. slot->multitask_id = task.multitask_id;
  1232. if (!launch_slot_with_data(slot, task.data))
  1233. {
  1234. // send error result
  1235. send_error(task, "internal_error");
  1236. break;
  1237. }
  1238. } break;
  1239. case TASK_TYPE_CANCEL: { // release slot linked with the task id
  1240. for (auto & slot : slots)
  1241. {
  1242. if (slot.task_id == task.target_id)
  1243. {
  1244. slot.release();
  1245. break;
  1246. }
  1247. }
  1248. } break;
  1249. case TASK_TYPE_NEXT_RESPONSE: {
  1250. // do nothing
  1251. } break;
  1252. case TASK_TYPE_METRICS: {
  1253. json slots_data = json::array();
  1254. int n_idle_slots = 0;
  1255. int n_processing_slots = 0;
  1256. for (server_slot &slot: slots) {
  1257. json slot_data = get_formated_generation(slot);
  1258. slot_data["id"] = slot.id;
  1259. slot_data["task_id"] = slot.task_id;
  1260. slot_data["state"] = slot.state;
  1261. slot_data["prompt"] = slot.prompt;
  1262. slot_data["next_token"] = {
  1263. {"has_next_token", slot.has_next_token},
  1264. {"n_remain", slot.n_remaining},
  1265. {"num_tokens_predicted", slot.n_decoded},
  1266. {"stopped_eos", slot.stopped_eos},
  1267. {"stopped_word", slot.stopped_word},
  1268. {"stopped_limit", slot.stopped_limit},
  1269. {"stopping_word", slot.stopping_word},
  1270. };
  1271. if (slot_data["state"] == IDLE) {
  1272. n_idle_slots++;
  1273. } else {
  1274. n_processing_slots++;
  1275. }
  1276. slots_data.push_back(slot_data);
  1277. }
  1278. LOG_INFO("slot data", {
  1279. {"task_id", task.id},
  1280. {"n_idle_slots", n_idle_slots},
  1281. {"n_processing_slots", n_processing_slots}
  1282. });
  1283. LOG_VERBOSE("slot data", {
  1284. {"task_id", task.id},
  1285. {"n_idle_slots", n_idle_slots},
  1286. {"n_processing_slots", n_processing_slots},
  1287. {"slots", slots_data}
  1288. });
  1289. task_result res;
  1290. res.id = task.id;
  1291. res.multitask_id = task.multitask_id;
  1292. res.stop = true;
  1293. res.error = false;
  1294. res.result_json = {
  1295. { "idle", n_idle_slots },
  1296. { "processing", n_processing_slots },
  1297. { "deferred", queue_tasks.queue_tasks_deferred.size() },
  1298. { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
  1299. { "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
  1300. { "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
  1301. { "t_prompt_processing", metrics.t_prompt_processing},
  1302. { "n_tokens_predicted", metrics.n_tokens_predicted},
  1303. { "t_tokens_generation", metrics.t_tokens_generation},
  1304. { "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
  1305. { "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
  1306. { "slots", slots_data },
  1307. };
  1308. metrics.reset_bucket();
  1309. queue_results.send(res);
  1310. } break;
  1311. }
  1312. }
  1313. void on_finish_multitask(task_multi& multitask)
  1314. {
  1315. // all subtasks done == multitask is done
  1316. task_result result;
  1317. result.id = multitask.id;
  1318. result.stop = true;
  1319. result.error = false;
  1320. // collect json results into one json result
  1321. std::vector<json> result_jsons;
  1322. for (auto& subres : multitask.results)
  1323. {
  1324. result_jsons.push_back(subres.result_json);
  1325. result.error = result.error && subres.error;
  1326. }
  1327. result.result_json = json{ { "results", result_jsons } };
  1328. queue_results.send(result);
  1329. }
  1330. bool update_slots() {
  1331. if (system_need_update)
  1332. {
  1333. LOG_INFO("updating system prompt", {});
  1334. system_prompt_update();
  1335. }
  1336. llama_batch_clear(batch);
  1337. if (all_slots_are_idle)
  1338. {
  1339. if (system_prompt.empty() && clean_kv_cache)
  1340. {
  1341. LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {});
  1342. kv_cache_clear();
  1343. }
  1344. return true;
  1345. }
  1346. LOG_VERBOSE("posting NEXT_RESPONSE", {});
  1347. task_server task;
  1348. task.type = TASK_TYPE_NEXT_RESPONSE;
  1349. task.target_id = -1;
  1350. queue_tasks.post(task);
  1351. for (server_slot &slot : slots)
  1352. {
  1353. if (slot.ga_n == 1)
  1354. {
  1355. if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
  1356. {
  1357. // Shift context
  1358. const int n_keep = slot.params.n_keep + add_bos_token;
  1359. const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
  1360. const int n_discard = n_left / 2;
  1361. LOG_INFO("slot context shift", {
  1362. {"slot_id", slot.id},
  1363. {"task_id", slot.task_id},
  1364. {"n_keep", n_keep},
  1365. {"n_left", n_left},
  1366. {"n_discard", n_discard},
  1367. {"n_ctx", n_ctx},
  1368. {"n_past", slot.n_past},
  1369. {"n_system_tokens", system_tokens.size()},
  1370. {"n_cache_tokens", slot.cache_tokens.size()}
  1371. });
  1372. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  1373. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
  1374. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++)
  1375. {
  1376. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1377. }
  1378. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1379. slot.n_past -= n_discard;
  1380. slot.truncated = true;
  1381. }
  1382. }
  1383. }
  1384. // decode any currently ongoing sequences
  1385. LOG_VERBOSE("decoding ongoing sequences", {});
  1386. for (auto & slot : slots)
  1387. {
  1388. // release the slot
  1389. if (slot.command == RELEASE)
  1390. {
  1391. slot.state = IDLE;
  1392. slot.command = NONE;
  1393. slot.t_last_used = ggml_time_us();
  1394. LOG_INFO("slot released", {
  1395. {"slot_id", slot.id},
  1396. {"task_id", slot.task_id},
  1397. {"n_ctx", n_ctx},
  1398. {"n_past", slot.n_past},
  1399. {"n_system_tokens", system_tokens.size()},
  1400. {"n_cache_tokens", slot.cache_tokens.size()},
  1401. {"truncated", slot.truncated}
  1402. });
  1403. queue_tasks.notify_slot_changed();
  1404. continue;
  1405. }
  1406. if (slot.state == IDLE)
  1407. {
  1408. continue;
  1409. }
  1410. slot.i_batch = batch.n_tokens;
  1411. const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
  1412. // TODO: we always have to take into account the "system_tokens"
  1413. // this is not great and needs to be improved somehow
  1414. llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
  1415. slot.n_past += 1;
  1416. }
  1417. // process in chunks of params.n_batch
  1418. int32_t n_batch = params.n_batch;
  1419. // assign workload to the slots
  1420. if (params.cont_batching || batch.n_tokens == 0)
  1421. {
  1422. for (auto & slot : slots)
  1423. {
  1424. const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
  1425. // empty prompt passed -> release the slot and send empty response
  1426. // note: infill mode allows empty prompt
  1427. if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt && !slot.infill)
  1428. {
  1429. slot.release();
  1430. slot.print_timings();
  1431. send_final_response(slot);
  1432. continue;
  1433. }
  1434. // need process the prompt
  1435. if (slot.state == IDLE && slot.command == LOAD_PROMPT)
  1436. {
  1437. slot.state = PROCESSING;
  1438. slot.command = NONE;
  1439. std::vector<llama_token> prompt_tokens;
  1440. slot.t_start_process_prompt = ggml_time_us();
  1441. slot.t_start_genereration = 0;
  1442. if (slot.infill)
  1443. {
  1444. bool suff_rm_leading_spc = true;
  1445. if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1)
  1446. {
  1447. params.input_suffix.erase(0, 1);
  1448. suff_rm_leading_spc = false;
  1449. }
  1450. auto prefix_tokens = tokenize(slot.params.input_prefix, false);
  1451. auto suffix_tokens = tokenize(slot.params.input_suffix, false);
  1452. const int space_token = 29871; // TODO: this should not be hardcoded
  1453. if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
  1454. suffix_tokens.erase(suffix_tokens.begin());
  1455. }
  1456. prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
  1457. prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
  1458. prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
  1459. prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
  1460. prefix_tokens.push_back(llama_token_middle(model));
  1461. prompt_tokens = prefix_tokens;
  1462. }
  1463. else
  1464. {
  1465. prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
  1466. }
  1467. slot.n_prompt_tokens = prompt_tokens.size();
  1468. if (slot.params.n_keep < 0)
  1469. {
  1470. slot.params.n_keep = slot.n_prompt_tokens;
  1471. }
  1472. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  1473. // if input prompt is too big, truncate it, if group attention self-extend is disabled
  1474. if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx)
  1475. {
  1476. const int n_left = slot.n_ctx - slot.params.n_keep;
  1477. const int n_block_size = n_left / 2;
  1478. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  1479. std::vector<llama_token> new_tokens(
  1480. prompt_tokens.begin(),
  1481. prompt_tokens.begin() + slot.params.n_keep);
  1482. new_tokens.insert(
  1483. new_tokens.end(),
  1484. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  1485. prompt_tokens.end());
  1486. LOG_VERBOSE("input truncated", {
  1487. {"n_ctx", slot.n_ctx},
  1488. {"n_keep", slot.params.n_keep},
  1489. {"n_left", n_left},
  1490. {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
  1491. });
  1492. slot.truncated = true;
  1493. prompt_tokens = new_tokens;
  1494. slot.n_prompt_tokens = prompt_tokens.size();
  1495. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  1496. }
  1497. if (!slot.params.cache_prompt)
  1498. {
  1499. llama_sampling_reset(slot.ctx_sampling);
  1500. slot.n_past = 0;
  1501. slot.n_past_se = 0;
  1502. slot.ga_i = 0;
  1503. slot.n_prompt_tokens_processed = slot.n_prompt_tokens;
  1504. }
  1505. else
  1506. {
  1507. // push the prompt into the sampling context (do not apply grammar)
  1508. for (auto &token : prompt_tokens)
  1509. {
  1510. llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
  1511. }
  1512. slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
  1513. // the last token of the cache is not in the KV cache until the next call to llama_decode
  1514. // (it was sampled, pushed into the "cache_tokens", but not yet put in the context)
  1515. if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size())
  1516. {
  1517. slot.n_past -= 1;
  1518. }
  1519. slot.n_prompt_tokens_processed = slot.n_prompt_tokens - slot.n_past;
  1520. if (slot.ga_n != 1)
  1521. {
  1522. int ga_i = 0;
  1523. int32_t ga_n = slot.ga_n;
  1524. int32_t ga_w = slot.ga_w;
  1525. int32_t slot_npast = 0;
  1526. for (int k = 0; k < slot.n_past; ++k)
  1527. {
  1528. while (slot_npast >= ga_i + ga_w) {
  1529. const int bd = (ga_w/ga_n)*(ga_n - 1);
  1530. slot_npast -= bd;
  1531. ga_i += ga_w/ga_n;
  1532. }
  1533. slot_npast++;
  1534. }
  1535. slot.n_past_se = slot_npast;
  1536. slot.ga_i = ga_i;
  1537. }
  1538. LOG_INFO("slot progression", {
  1539. { "slot_id", slot.id },
  1540. { "task_id", slot.task_id },
  1541. { "n_past", slot.n_past },
  1542. { "n_past_se", slot.n_past_se },
  1543. { "ga_i", slot.ga_i },
  1544. { "n_prompt_tokens_processed", slot.n_prompt_tokens_processed }
  1545. });
  1546. }
  1547. slot.cache_tokens = prompt_tokens;
  1548. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0)
  1549. {
  1550. // we have to evaluate at least 1 token to generate logits.
  1551. LOG_INFO("we have to evaluate at least 1 token to generate logits", {
  1552. { "slot_id", slot.id },
  1553. { "task_id", slot.task_id }
  1554. });
  1555. slot.n_past--;
  1556. if (slot.ga_i > 0)
  1557. {
  1558. slot.n_past_se--;
  1559. }
  1560. }
  1561. int p0 = (int) system_tokens.size() + slot.n_past;
  1562. LOG_INFO("kv cache rm [p0, end)", {
  1563. { "slot_id", slot.id },
  1564. { "task_id", slot.task_id },
  1565. { "p0", p0 }
  1566. });
  1567. llama_kv_cache_seq_rm(ctx, slot.id, p0, -1);
  1568. LOG_VERBOSE("prompt ingested", {
  1569. {"n_past", slot.n_past},
  1570. {"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
  1571. {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
  1572. });
  1573. const bool has_images = process_images(slot);
  1574. // process the prefix of first image
  1575. std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
  1576. int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
  1577. int32_t ga_i = slot.ga_i;
  1578. int32_t ga_n = slot.ga_n;
  1579. int32_t ga_w = slot.ga_w;
  1580. for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
  1581. {
  1582. if (slot.ga_n != 1)
  1583. {
  1584. while (slot_npast >= ga_i + ga_w) {
  1585. const int bd = (ga_w/ga_n)*(ga_n - 1);
  1586. slot_npast -= bd;
  1587. ga_i += ga_w/ga_n;
  1588. }
  1589. }
  1590. llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id }, false);
  1591. slot_npast++;
  1592. }
  1593. if (has_images && !ingest_images(slot, n_batch))
  1594. {
  1595. LOG_ERROR("failed processing images", {
  1596. {"slot_id", slot.id},
  1597. {"task_id", slot.task_id},
  1598. });
  1599. // FIXME @phymbert: to be properly tested
  1600. // early returning without changing the slot state will block the slot for ever
  1601. // no one at the moment is checking the return value
  1602. return false;
  1603. }
  1604. // extract the logits only for the last token
  1605. if (batch.n_tokens > 0)
  1606. {
  1607. batch.logits[batch.n_tokens - 1] = true;
  1608. }
  1609. slot.n_decoded = 0;
  1610. slot.i_batch = batch.n_tokens - 1;
  1611. }
  1612. }
  1613. }
  1614. if (batch.n_tokens == 0)
  1615. {
  1616. all_slots_are_idle = true;
  1617. return true;
  1618. }
  1619. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
  1620. {
  1621. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  1622. for (auto & slot : slots)
  1623. {
  1624. if (slot.ga_n != 1)
  1625. {
  1626. // context extension via Self-Extend
  1627. while (slot.n_past_se >= slot.ga_i + slot.ga_w)
  1628. {
  1629. const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
  1630. const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
  1631. const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
  1632. LOG_TEE("\n");
  1633. LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
  1634. LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
  1635. LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
  1636. llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
  1637. llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
  1638. llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
  1639. slot.n_past_se -= bd;
  1640. slot.ga_i += slot.ga_w / slot.ga_n;
  1641. LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
  1642. }
  1643. slot.n_past_se += n_tokens;
  1644. }
  1645. }
  1646. llama_batch batch_view =
  1647. {
  1648. n_tokens,
  1649. batch.token + i,
  1650. nullptr,
  1651. batch.pos + i,
  1652. batch.n_seq_id + i,
  1653. batch.seq_id + i,
  1654. batch.logits + i,
  1655. 0, 0, 0, // unused
  1656. };
  1657. const int ret = llama_decode(ctx, batch_view);
  1658. if (ret != 0)
  1659. {
  1660. if (n_batch == 1 || ret < 0)
  1661. {
  1662. // if you get here, it means the KV cache is full - try increasing it via the context size
  1663. LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
  1664. return false;
  1665. }
  1666. LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
  1667. // retry with half the batch size to try to find a free slot in the KV cache
  1668. n_batch /= 2;
  1669. i -= n_batch;
  1670. continue;
  1671. }
  1672. for (auto & slot : slots)
  1673. {
  1674. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
  1675. {
  1676. continue;
  1677. }
  1678. // prompt evaluated for embedding
  1679. if (slot.embedding)
  1680. {
  1681. send_embedding(slot, batch_view);
  1682. slot.release();
  1683. slot.i_batch = -1;
  1684. continue;
  1685. }
  1686. completion_token_output result;
  1687. const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
  1688. llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
  1689. slot.n_decoded += 1;
  1690. if (slot.n_decoded == 1)
  1691. {
  1692. slot.t_start_genereration = ggml_time_us();
  1693. slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
  1694. metrics.on_prompt_eval(slot);
  1695. }
  1696. llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
  1697. result.tok = id;
  1698. const int32_t n_probs = slot.sparams.n_probs;
  1699. if (slot.sparams.temp <= 0 && n_probs > 0)
  1700. {
  1701. // for llama_sample_token_greedy we need to sort candidates
  1702. llama_sample_softmax(ctx, &cur_p);
  1703. }
  1704. for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
  1705. {
  1706. result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
  1707. }
  1708. if (!process_token(result, slot))
  1709. {
  1710. slot.release();
  1711. slot.print_timings();
  1712. send_final_response(slot);
  1713. metrics.on_prediction(slot);
  1714. }
  1715. slot.i_batch = -1;
  1716. }
  1717. }
  1718. LOG_VERBOSE("slots updated", {});
  1719. return true;
  1720. }
  1721. json model_meta() {
  1722. return json{
  1723. {"vocab_type", llama_vocab_type(model)},
  1724. {"n_vocab", llama_n_vocab(model)},
  1725. {"n_ctx_train", llama_n_ctx_train(model)},
  1726. {"n_embd", llama_n_embd(model)},
  1727. {"n_params", llama_model_n_params(model)},
  1728. {"size", llama_model_size(model)},
  1729. };
  1730. }
  1731. };
  1732. static void server_print_usage(const char *argv0, const gpt_params &params,
  1733. const server_params &sparams)
  1734. {
  1735. printf("usage: %s [options]\n", argv0);
  1736. printf("\n");
  1737. printf("options:\n");
  1738. printf(" -h, --help show this help message and exit\n");
  1739. printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
  1740. printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
  1741. printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
  1742. printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
  1743. printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
  1744. printf(" --rope-scaling {none,linear,yarn}\n");
  1745. printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
  1746. printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
  1747. printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
  1748. printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
  1749. printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
  1750. printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
  1751. printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
  1752. printf(" --pooling {none,mean,cls}\n");
  1753. printf(" pooling type for embeddings, use model default if unspecified\n");
  1754. printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
  1755. printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
  1756. printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
  1757. if (llama_supports_mlock())
  1758. {
  1759. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  1760. }
  1761. if (llama_supports_mmap())
  1762. {
  1763. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  1764. }
  1765. printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
  1766. printf(" - distribute: spread execution evenly over all nodes\n");
  1767. printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
  1768. printf(" - numactl: use the CPU map provided my numactl\n");
  1769. if (llama_supports_gpu_offload()) {
  1770. printf(" -ngl N, --n-gpu-layers N\n");
  1771. printf(" number of layers to store in VRAM\n");
  1772. printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
  1773. printf(" how to split the model across multiple GPUs, one of:\n");
  1774. printf(" - none: use one GPU only\n");
  1775. printf(" - layer (default): split layers and KV across GPUs\n");
  1776. printf(" - row: split rows across GPUs\n");
  1777. printf(" -ts SPLIT --tensor-split SPLIT\n");
  1778. printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
  1779. printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
  1780. printf(" or for intermediate results and KV (with split-mode = row)\n");
  1781. }
  1782. printf(" -m FNAME, --model FNAME\n");
  1783. printf(" model path (default: %s)\n", params.model.c_str());
  1784. printf(" -a ALIAS, --alias ALIAS\n");
  1785. printf(" set an alias for the model, will be added as `model` field in completion response\n");
  1786. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  1787. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  1788. printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
  1789. printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
  1790. printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
  1791. printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
  1792. printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
  1793. printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
  1794. printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
  1795. printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
  1796. printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
  1797. printf(" -spf FNAME, --system-prompt-file FNAME\n");
  1798. printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
  1799. printf(" -ctk TYPE, --cache-type-k TYPE\n");
  1800. printf(" KV cache data type for K (default: f16)\n");
  1801. printf(" -ctv TYPE, --cache-type-v TYPE\n");
  1802. printf(" KV cache data type for V (default: f16)\n");
  1803. printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
  1804. printf(" --log-format log output format: json or text (default: json)\n");
  1805. printf(" --log-disable disables logging to a file.\n");
  1806. printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
  1807. printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
  1808. printf("\n");
  1809. printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
  1810. printf(" --override-kv KEY=TYPE:VALUE\n");
  1811. printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
  1812. printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
  1813. printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
  1814. printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
  1815. printf(" --chat-template JINJA_TEMPLATE\n");
  1816. printf(" set custom jinja chat template (default: template taken from model's metadata)\n");
  1817. printf(" Note: only commonly used templates are accepted, since we don't have jinja parser\n");
  1818. printf("\n");
  1819. }
  1820. static void server_params_parse(int argc, char **argv, server_params &sparams,
  1821. gpt_params &params, llama_server_context& llama)
  1822. {
  1823. gpt_params default_params;
  1824. server_params default_sparams;
  1825. std::string arg;
  1826. bool invalid_param = false;
  1827. for (int i = 1; i < argc; i++)
  1828. {
  1829. arg = argv[i];
  1830. if (arg == "--port")
  1831. {
  1832. if (++i >= argc)
  1833. {
  1834. invalid_param = true;
  1835. break;
  1836. }
  1837. sparams.port = std::stoi(argv[i]);
  1838. }
  1839. else if (arg == "--host")
  1840. {
  1841. if (++i >= argc)
  1842. {
  1843. invalid_param = true;
  1844. break;
  1845. }
  1846. sparams.hostname = argv[i];
  1847. }
  1848. else if (arg == "--path")
  1849. {
  1850. if (++i >= argc)
  1851. {
  1852. invalid_param = true;
  1853. break;
  1854. }
  1855. sparams.public_path = argv[i];
  1856. }
  1857. else if (arg == "--api-key")
  1858. {
  1859. if (++i >= argc)
  1860. {
  1861. invalid_param = true;
  1862. break;
  1863. }
  1864. sparams.api_keys.emplace_back(argv[i]);
  1865. }
  1866. else if (arg == "--api-key-file")
  1867. {
  1868. if (++i >= argc)
  1869. {
  1870. invalid_param = true;
  1871. break;
  1872. }
  1873. std::ifstream key_file(argv[i]);
  1874. if (!key_file) {
  1875. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1876. invalid_param = true;
  1877. break;
  1878. }
  1879. std::string key;
  1880. while (std::getline(key_file, key)) {
  1881. if (key.size() > 0) {
  1882. sparams.api_keys.push_back(key);
  1883. }
  1884. }
  1885. key_file.close();
  1886. }
  1887. else if (arg == "--timeout" || arg == "-to")
  1888. {
  1889. if (++i >= argc)
  1890. {
  1891. invalid_param = true;
  1892. break;
  1893. }
  1894. sparams.read_timeout = std::stoi(argv[i]);
  1895. sparams.write_timeout = std::stoi(argv[i]);
  1896. }
  1897. else if (arg == "-m" || arg == "--model")
  1898. {
  1899. if (++i >= argc)
  1900. {
  1901. invalid_param = true;
  1902. break;
  1903. }
  1904. params.model = argv[i];
  1905. }
  1906. else if (arg == "-a" || arg == "--alias")
  1907. {
  1908. if (++i >= argc)
  1909. {
  1910. invalid_param = true;
  1911. break;
  1912. }
  1913. params.model_alias = argv[i];
  1914. }
  1915. else if (arg == "-h" || arg == "--help")
  1916. {
  1917. server_print_usage(argv[0], default_params, default_sparams);
  1918. exit(0);
  1919. }
  1920. else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
  1921. {
  1922. if (++i >= argc)
  1923. {
  1924. invalid_param = true;
  1925. break;
  1926. }
  1927. params.n_ctx = std::stoi(argv[i]);
  1928. }
  1929. else if (arg == "--rope-scaling")
  1930. {
  1931. if (++i >= argc)
  1932. {
  1933. invalid_param = true;
  1934. break;
  1935. }
  1936. std::string value(argv[i]);
  1937. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  1938. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  1939. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  1940. else { invalid_param = true; break; }
  1941. }
  1942. else if (arg == "--rope-freq-base")
  1943. {
  1944. if (++i >= argc)
  1945. {
  1946. invalid_param = true;
  1947. break;
  1948. }
  1949. params.rope_freq_base = std::stof(argv[i]);
  1950. }
  1951. else if (arg == "--rope-freq-scale")
  1952. {
  1953. if (++i >= argc)
  1954. {
  1955. invalid_param = true;
  1956. break;
  1957. }
  1958. params.rope_freq_scale = std::stof(argv[i]);
  1959. }
  1960. else if (arg == "--yarn-ext-factor")
  1961. {
  1962. if (++i >= argc) {
  1963. invalid_param = true;
  1964. break;
  1965. }
  1966. params.yarn_ext_factor = std::stof(argv[i]);
  1967. }
  1968. else if (arg == "--yarn-attn-factor")
  1969. {
  1970. if (++i >= argc) {
  1971. invalid_param = true;
  1972. break;
  1973. }
  1974. params.yarn_attn_factor = std::stof(argv[i]);
  1975. }
  1976. else if (arg == "--yarn-beta-fast")
  1977. {
  1978. if (++i >= argc) {
  1979. invalid_param = true;
  1980. break;
  1981. }
  1982. params.yarn_beta_fast = std::stof(argv[i]);
  1983. }
  1984. else if (arg == "--yarn-beta-slow")
  1985. {
  1986. if (++i >= argc) {
  1987. invalid_param = true;
  1988. break;
  1989. }
  1990. params.yarn_beta_slow = std::stof(argv[i]);
  1991. }
  1992. else if (arg == "--pooling")
  1993. {
  1994. if (++i >= argc) {
  1995. invalid_param = true;
  1996. break;
  1997. }
  1998. std::string value(argv[i]);
  1999. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  2000. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  2001. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  2002. else { invalid_param = true; break; }
  2003. }
  2004. else if (arg == "--threads" || arg == "-t")
  2005. {
  2006. if (++i >= argc)
  2007. {
  2008. invalid_param = true;
  2009. break;
  2010. }
  2011. params.n_threads = std::stoi(argv[i]);
  2012. }
  2013. else if (arg == "--grp-attn-n" || arg == "-gan")
  2014. {
  2015. if (++i >= argc) {
  2016. invalid_param = true;
  2017. break;
  2018. }
  2019. params.grp_attn_n = std::stoi(argv[i]);
  2020. }
  2021. else if (arg == "--grp-attn-w" || arg == "-gaw")
  2022. {
  2023. if (++i >= argc)
  2024. {
  2025. invalid_param = true;
  2026. break;
  2027. }
  2028. params.grp_attn_w = std::stoi(argv[i]);
  2029. }
  2030. else if (arg == "--threads-batch" || arg == "-tb")
  2031. {
  2032. if (++i >= argc)
  2033. {
  2034. invalid_param = true;
  2035. break;
  2036. }
  2037. params.n_threads_batch = std::stoi(argv[i]);
  2038. }
  2039. else if (arg == "--threads-http")
  2040. {
  2041. if (++i >= argc)
  2042. {
  2043. invalid_param = true;
  2044. break;
  2045. }
  2046. sparams.n_threads_http = std::stoi(argv[i]);
  2047. }
  2048. else if (arg == "-b" || arg == "--batch-size")
  2049. {
  2050. if (++i >= argc)
  2051. {
  2052. invalid_param = true;
  2053. break;
  2054. }
  2055. params.n_batch = std::stoi(argv[i]);
  2056. }
  2057. else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
  2058. {
  2059. if (++i >= argc)
  2060. {
  2061. invalid_param = true;
  2062. break;
  2063. }
  2064. if (llama_supports_gpu_offload()) {
  2065. params.n_gpu_layers = std::stoi(argv[i]);
  2066. } else {
  2067. LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
  2068. "See main README.md for information on enabling GPU BLAS support",
  2069. {{"n_gpu_layers", params.n_gpu_layers}});
  2070. }
  2071. }
  2072. else if (arg == "--split-mode" || arg == "-sm")
  2073. {
  2074. if (++i >= argc) {
  2075. invalid_param = true;
  2076. break;
  2077. }
  2078. std::string arg_next = argv[i];
  2079. if (arg_next == "none")
  2080. {
  2081. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  2082. }
  2083. else if (arg_next == "layer")
  2084. {
  2085. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  2086. }
  2087. else if (arg_next == "row")
  2088. {
  2089. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  2090. }
  2091. else {
  2092. invalid_param = true;
  2093. break;
  2094. }
  2095. #ifndef GGML_USE_CUBLAS
  2096. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
  2097. #endif // GGML_USE_CUBLAS
  2098. }
  2099. else if (arg == "--tensor-split" || arg == "-ts")
  2100. {
  2101. if (++i >= argc)
  2102. {
  2103. invalid_param = true;
  2104. break;
  2105. }
  2106. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
  2107. std::string arg_next = argv[i];
  2108. // split string by , and /
  2109. const std::regex regex{R"([,/]+)"};
  2110. std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
  2111. std::vector<std::string> split_arg{it, {}};
  2112. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  2113. for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
  2114. {
  2115. if (i_device < split_arg.size())
  2116. {
  2117. params.tensor_split[i_device] = std::stof(split_arg[i_device]);
  2118. }
  2119. else
  2120. {
  2121. params.tensor_split[i_device] = 0.0f;
  2122. }
  2123. }
  2124. #else
  2125. LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
  2126. #endif // GGML_USE_CUBLAS
  2127. }
  2128. else if (arg == "--main-gpu" || arg == "-mg")
  2129. {
  2130. if (++i >= argc)
  2131. {
  2132. invalid_param = true;
  2133. break;
  2134. }
  2135. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
  2136. params.main_gpu = std::stoi(argv[i]);
  2137. #else
  2138. LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
  2139. #endif
  2140. }
  2141. else if (arg == "--lora")
  2142. {
  2143. if (++i >= argc)
  2144. {
  2145. invalid_param = true;
  2146. break;
  2147. }
  2148. params.lora_adapter.emplace_back(argv[i], 1.0f);
  2149. params.use_mmap = false;
  2150. }
  2151. else if (arg == "--lora-scaled")
  2152. {
  2153. if (++i >= argc)
  2154. {
  2155. invalid_param = true;
  2156. break;
  2157. }
  2158. const char * lora_adapter = argv[i];
  2159. if (++i >= argc)
  2160. {
  2161. invalid_param = true;
  2162. break;
  2163. }
  2164. params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
  2165. params.use_mmap = false;
  2166. }
  2167. else if (arg == "--lora-base")
  2168. {
  2169. if (++i >= argc)
  2170. {
  2171. invalid_param = true;
  2172. break;
  2173. }
  2174. params.lora_base = argv[i];
  2175. }
  2176. else if (arg == "-v" || arg == "--verbose")
  2177. {
  2178. #if SERVER_VERBOSE != 1
  2179. LOG_WARNING("server.cpp is not built with verbose logging.", {});
  2180. #else
  2181. server_verbose = true;
  2182. #endif
  2183. }
  2184. else if (arg == "--mlock")
  2185. {
  2186. params.use_mlock = true;
  2187. }
  2188. else if (arg == "--no-mmap")
  2189. {
  2190. params.use_mmap = false;
  2191. }
  2192. else if (arg == "--numa") {
  2193. if (++i >= argc) {
  2194. invalid_param = true;
  2195. break;
  2196. } else {
  2197. std::string value(argv[i]);
  2198. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  2199. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  2200. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  2201. else { invalid_param = true; break; }
  2202. }
  2203. }
  2204. else if (arg == "--embedding")
  2205. {
  2206. params.embedding = true;
  2207. }
  2208. else if (arg == "-cb" || arg == "--cont-batching")
  2209. {
  2210. params.cont_batching = true;
  2211. }
  2212. else if (arg == "-np" || arg == "--parallel")
  2213. {
  2214. if (++i >= argc)
  2215. {
  2216. invalid_param = true;
  2217. break;
  2218. }
  2219. params.n_parallel = std::stoi(argv[i]);
  2220. } else if (arg == "-n" || arg == "--n-predict")
  2221. {
  2222. if (++i >= argc)
  2223. {
  2224. invalid_param = true;
  2225. break;
  2226. }
  2227. params.n_predict = std::stoi(argv[i]);
  2228. } else if (arg == "-spf" || arg == "--system-prompt-file")
  2229. {
  2230. if (++i >= argc)
  2231. {
  2232. invalid_param = true;
  2233. break;
  2234. }
  2235. std::ifstream file(argv[i]);
  2236. if (!file) {
  2237. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  2238. invalid_param = true;
  2239. break;
  2240. }
  2241. std::string systm_content;
  2242. std::copy(
  2243. std::istreambuf_iterator<char>(file),
  2244. std::istreambuf_iterator<char>(),
  2245. std::back_inserter(systm_content)
  2246. );
  2247. llama.system_prompt_process(json::parse(systm_content));
  2248. }
  2249. else if (arg == "-ctk" || arg == "--cache-type-k") {
  2250. params.cache_type_k = argv[++i];
  2251. }
  2252. else if (arg == "-ctv" || arg == "--cache-type-v") {
  2253. params.cache_type_v = argv[++i];
  2254. }
  2255. else if(arg == "--mmproj")
  2256. {
  2257. if (++i >= argc)
  2258. {
  2259. invalid_param = true;
  2260. break;
  2261. }
  2262. params.mmproj = argv[i];
  2263. }
  2264. else if (arg == "--log-format")
  2265. {
  2266. if (++i >= argc)
  2267. {
  2268. invalid_param = true;
  2269. break;
  2270. }
  2271. if (std::strcmp(argv[i], "json") == 0)
  2272. {
  2273. server_log_json = true;
  2274. }
  2275. else if (std::strcmp(argv[i], "text") == 0)
  2276. {
  2277. server_log_json = false;
  2278. }
  2279. else
  2280. {
  2281. invalid_param = true;
  2282. break;
  2283. }
  2284. }
  2285. else if (arg == "--log-disable")
  2286. {
  2287. log_set_target(stdout);
  2288. LOG_INFO("logging to file is disabled.", {});
  2289. }
  2290. else if (arg == "--slots-endpoint-disable")
  2291. {
  2292. sparams.slots_endpoint = false;
  2293. }
  2294. else if (arg == "--metrics")
  2295. {
  2296. sparams.metrics_endpoint = true;
  2297. }
  2298. else if (arg == "--chat-template")
  2299. {
  2300. if (++i >= argc)
  2301. {
  2302. invalid_param = true;
  2303. break;
  2304. }
  2305. if (!verify_custom_template(argv[i])) {
  2306. fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
  2307. fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
  2308. invalid_param = true;
  2309. break;
  2310. }
  2311. sparams.chat_template = argv[i];
  2312. }
  2313. else if (arg == "--override-kv")
  2314. {
  2315. if (++i >= argc) {
  2316. invalid_param = true;
  2317. break;
  2318. }
  2319. char * sep = strchr(argv[i], '=');
  2320. if (sep == nullptr || sep - argv[i] >= 128) {
  2321. fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
  2322. invalid_param = true;
  2323. break;
  2324. }
  2325. struct llama_model_kv_override kvo;
  2326. std::strncpy(kvo.key, argv[i], sep - argv[i]);
  2327. kvo.key[sep - argv[i]] = 0;
  2328. sep++;
  2329. if (strncmp(sep, "int:", 4) == 0) {
  2330. sep += 4;
  2331. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
  2332. kvo.int_value = std::atol(sep);
  2333. } else if (strncmp(sep, "float:", 6) == 0) {
  2334. sep += 6;
  2335. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
  2336. kvo.float_value = std::atof(sep);
  2337. } else if (strncmp(sep, "bool:", 5) == 0) {
  2338. sep += 5;
  2339. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
  2340. if (std::strcmp(sep, "true") == 0) {
  2341. kvo.bool_value = true;
  2342. } else if (std::strcmp(sep, "false") == 0) {
  2343. kvo.bool_value = false;
  2344. } else {
  2345. fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
  2346. invalid_param = true;
  2347. break;
  2348. }
  2349. } else {
  2350. fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
  2351. invalid_param = true;
  2352. break;
  2353. }
  2354. params.kv_overrides.push_back(kvo);
  2355. }
  2356. else
  2357. {
  2358. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  2359. server_print_usage(argv[0], default_params, default_sparams);
  2360. exit(1);
  2361. }
  2362. }
  2363. if (!params.kv_overrides.empty()) {
  2364. params.kv_overrides.emplace_back();
  2365. params.kv_overrides.back().key[0] = 0;
  2366. }
  2367. if (invalid_param)
  2368. {
  2369. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  2370. server_print_usage(argv[0], default_params, default_sparams);
  2371. exit(1);
  2372. }
  2373. }
  2374. /* llama.cpp completion api semantics */
  2375. static json format_partial_response(
  2376. llama_server_context &llama, server_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
  2377. ) {
  2378. json res = json
  2379. {
  2380. {"content", content },
  2381. {"stop", false},
  2382. {"slot_id", slot->id },
  2383. {"multimodal", llama.multimodal }
  2384. };
  2385. if (slot->sparams.n_probs > 0)
  2386. {
  2387. res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
  2388. }
  2389. return res;
  2390. }
  2391. static json format_tokenizer_response(const std::vector<llama_token> &tokens)
  2392. {
  2393. return json {
  2394. {"tokens", tokens}
  2395. };
  2396. }
  2397. static json format_detokenized_response(std::string content)
  2398. {
  2399. return json {
  2400. {"content", content}
  2401. };
  2402. }
  2403. static void log_server_request(const httplib::Request &req, const httplib::Response &res)
  2404. {
  2405. // skip GH copilot requests when using default port
  2406. if (req.path == "/v1/health" || req.path == "/v1/completions")
  2407. {
  2408. return;
  2409. }
  2410. LOG_INFO("request", {
  2411. {"remote_addr", req.remote_addr},
  2412. {"remote_port", req.remote_port},
  2413. {"status", res.status},
  2414. {"method", req.method},
  2415. {"path", req.path},
  2416. {"params", req.params},
  2417. });
  2418. LOG_VERBOSE("request", {
  2419. {"request", req.body},
  2420. {"response", res.body},
  2421. });
  2422. }
  2423. static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, server_slot *slot)
  2424. {
  2425. auto & gtps = slot->generated_token_probs;
  2426. auto translator = token_translator{llama.ctx};
  2427. auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
  2428. const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
  2429. if (slot->generated_text.capacity() < slot->generated_text.size() + len)
  2430. {
  2431. slot->generated_text.reserve(slot->generated_text.size() + len);
  2432. }
  2433. for (const completion_token_output & cto : gtps)
  2434. {
  2435. slot->generated_text += translator(cto);
  2436. }
  2437. }
  2438. std::function<void(int)> shutdown_handler;
  2439. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2440. inline void signal_handler(int signal) {
  2441. if (is_terminating.test_and_set()) {
  2442. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2443. // this is for better developer experience, we can remove when the server is stable enough
  2444. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2445. exit(1);
  2446. }
  2447. shutdown_handler(signal);
  2448. }
  2449. int _main(int argc, char **argv)
  2450. {
  2451. #if SERVER_VERBOSE != 1
  2452. log_disable();
  2453. #endif
  2454. // own arguments required by this example
  2455. gpt_params params;
  2456. server_params sparams;
  2457. // struct that contains llama context and inference
  2458. llama_server_context llama;
  2459. server_params_parse(argc, argv, sparams, params, llama);
  2460. if (params.model_alias == "unknown")
  2461. {
  2462. params.model_alias = params.model;
  2463. }
  2464. llama_backend_init();
  2465. llama_numa_init(params.numa);
  2466. LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
  2467. {"commit", LLAMA_COMMIT}});
  2468. LOG_INFO("system info", {
  2469. {"n_threads", params.n_threads},
  2470. {"n_threads_batch", params.n_threads_batch},
  2471. {"total_threads", std::thread::hardware_concurrency()},
  2472. {"system_info", llama_print_system_info()},
  2473. });
  2474. httplib::Server svr;
  2475. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2476. svr.set_default_headers({{"Server", "llama.cpp"}});
  2477. // CORS preflight
  2478. svr.Options(R"(.*)", [](const httplib::Request &req, httplib::Response &res) {
  2479. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2480. res.set_header("Access-Control-Allow-Credentials", "true");
  2481. res.set_header("Access-Control-Allow-Methods", "POST");
  2482. res.set_header("Access-Control-Allow-Headers", "*");
  2483. });
  2484. svr.Get("/health", [&](const httplib::Request& req, httplib::Response& res) {
  2485. server_state current_state = state.load();
  2486. switch(current_state) {
  2487. case SERVER_STATE_READY: {
  2488. // request slots data using task queue
  2489. task_server task;
  2490. task.id = llama.queue_tasks.get_new_id();
  2491. task.type = TASK_TYPE_METRICS;
  2492. task.target_id = -1;
  2493. llama.queue_results.add_waiting_task_id(task.id);
  2494. llama.queue_tasks.post(task);
  2495. // get the result
  2496. task_result result = llama.queue_results.recv(task.id);
  2497. llama.queue_results.remove_waiting_task_id(task.id);
  2498. int n_idle_slots = result.result_json["idle"];
  2499. int n_processing_slots = result.result_json["processing"];
  2500. json health = {
  2501. {"status", "ok"},
  2502. {"slots_idle", n_idle_slots},
  2503. {"slots_processing", n_processing_slots}};
  2504. res.status = 200; // HTTP OK
  2505. if (sparams.slots_endpoint && req.has_param("include_slots")) {
  2506. health["slots"] = result.result_json["slots"];
  2507. }
  2508. if (n_idle_slots == 0) {
  2509. health["status"] = "no slot available";
  2510. if (req.has_param("fail_on_no_slot")) {
  2511. res.status = 503; // HTTP Service Unavailable
  2512. }
  2513. }
  2514. res.set_content(health.dump(), "application/json");
  2515. break;
  2516. }
  2517. case SERVER_STATE_LOADING_MODEL:
  2518. res.set_content(R"({"status": "loading model"})", "application/json");
  2519. res.status = 503; // HTTP Service Unavailable
  2520. break;
  2521. case SERVER_STATE_ERROR:
  2522. res.set_content(R"({"status": "error", "error": "Model failed to load"})", "application/json");
  2523. res.status = 500; // HTTP Internal Server Error
  2524. break;
  2525. }
  2526. });
  2527. if (sparams.slots_endpoint) {
  2528. svr.Get("/slots", [&](const httplib::Request&, httplib::Response& res) {
  2529. // request slots data using task queue
  2530. task_server task;
  2531. task.id = llama.queue_tasks.get_new_id();
  2532. task.type = TASK_TYPE_METRICS;
  2533. task.target_id = -1;
  2534. llama.queue_results.add_waiting_task_id(task.id);
  2535. llama.queue_tasks.post(task);
  2536. // get the result
  2537. task_result result = llama.queue_results.recv(task.id);
  2538. llama.queue_results.remove_waiting_task_id(task.id);
  2539. res.set_content(result.result_json["slots"].dump(), "application/json");
  2540. res.status = 200; // HTTP OK
  2541. });
  2542. }
  2543. if (sparams.metrics_endpoint) {
  2544. svr.Get("/metrics", [&](const httplib::Request&, httplib::Response& res) {
  2545. // request slots data using task queue
  2546. task_server task;
  2547. task.id = llama.queue_tasks.get_new_id();
  2548. task.type = TASK_TYPE_METRICS;
  2549. task.target_id = -1;
  2550. llama.queue_results.add_waiting_task_id(task.id);
  2551. llama.queue_tasks.post(task);
  2552. // get the result
  2553. task_result result = llama.queue_results.recv(task.id);
  2554. llama.queue_results.remove_waiting_task_id(task.id);
  2555. json data = result.result_json;
  2556. uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"];
  2557. uint64_t t_prompt_processing = data["t_prompt_processing"];
  2558. uint64_t n_tokens_predicted = data["n_tokens_predicted"];
  2559. uint64_t t_tokens_generation = data["t_tokens_generation"];
  2560. int32_t kv_cache_used_cells = data["kv_cache_used_cells"];
  2561. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2562. json all_metrics_def = json {
  2563. {"counter", {{
  2564. {"name", "prompt_tokens_total"},
  2565. {"help", "Number of prompt tokens processed."},
  2566. {"value", data["n_prompt_tokens_processed_total"]}
  2567. }, {
  2568. {"name", "tokens_predicted_total"},
  2569. {"help", "Number of generation tokens processed."},
  2570. {"value", data["n_tokens_predicted_total"]}
  2571. }}},
  2572. {"gauge", {{
  2573. {"name", "prompt_tokens_seconds"},
  2574. {"help", "Average prompt throughput in tokens/s."},
  2575. {"value", n_prompt_tokens_processed ? 1e3 / t_prompt_processing * n_prompt_tokens_processed : 0}
  2576. },{
  2577. {"name", "predicted_tokens_seconds"},
  2578. {"help", "Average generation throughput in tokens/s."},
  2579. {"value", n_tokens_predicted ? 1e3 / t_tokens_generation * n_tokens_predicted : 0}
  2580. },{
  2581. {"name", "kv_cache_usage_ratio"},
  2582. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2583. {"value", 1. * kv_cache_used_cells / params.n_ctx}
  2584. },{
  2585. {"name", "kv_cache_tokens"},
  2586. {"help", "KV-cache tokens."},
  2587. {"value", data["kv_cache_tokens_count"]}
  2588. },{
  2589. {"name", "requests_processing"},
  2590. {"help", "Number of request processing."},
  2591. {"value", data["processing"]}
  2592. },{
  2593. {"name", "requests_deferred"},
  2594. {"help", "Number of request deferred."},
  2595. {"value", data["deferred"]}
  2596. }}}
  2597. };
  2598. std::stringstream prometheus;
  2599. for (const auto& el : all_metrics_def.items()) {
  2600. const auto& type = el.key();
  2601. const auto& metrics_def = el.value();
  2602. for (const auto& metric_def : metrics_def) {
  2603. std::string name = metric_def["name"];
  2604. std::string help = metric_def["help"];
  2605. auto value = json_value(metric_def, "value", 0);
  2606. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2607. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2608. << "llamacpp:" << name << " " << value << "\n";
  2609. }
  2610. }
  2611. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2612. res.status = 200; // HTTP OK
  2613. });
  2614. }
  2615. svr.set_logger(log_server_request);
  2616. svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
  2617. {
  2618. const char fmt[] = "500 Internal Server Error\n%s";
  2619. char buf[BUFSIZ];
  2620. try
  2621. {
  2622. std::rethrow_exception(std::move(ep));
  2623. }
  2624. catch (std::exception &e)
  2625. {
  2626. snprintf(buf, sizeof(buf), fmt, e.what());
  2627. }
  2628. catch (...)
  2629. {
  2630. snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
  2631. }
  2632. res.set_content(buf, "text/plain; charset=utf-8");
  2633. res.status = 500;
  2634. });
  2635. svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
  2636. {
  2637. if (res.status == 401)
  2638. {
  2639. res.set_content("Unauthorized", "text/plain; charset=utf-8");
  2640. }
  2641. if (res.status == 400)
  2642. {
  2643. res.set_content("Invalid request", "text/plain; charset=utf-8");
  2644. }
  2645. else if (res.status == 404)
  2646. {
  2647. res.set_content("File Not Found", "text/plain; charset=utf-8");
  2648. res.status = 404;
  2649. }
  2650. });
  2651. // set timeouts and change hostname and port
  2652. svr.set_read_timeout (sparams.read_timeout);
  2653. svr.set_write_timeout(sparams.write_timeout);
  2654. if (!svr.bind_to_port(sparams.hostname, sparams.port))
  2655. {
  2656. fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
  2657. return 1;
  2658. }
  2659. // Set the base directory for serving static files
  2660. svr.set_base_dir(sparams.public_path);
  2661. std::unordered_map<std::string, std::string> log_data;
  2662. log_data["hostname"] = sparams.hostname;
  2663. log_data["port"] = std::to_string(sparams.port);
  2664. if (sparams.api_keys.size() == 1) {
  2665. log_data["api_key"] = "api_key: ****" + sparams.api_keys[0].substr(sparams.api_keys[0].length() - 4);
  2666. } else if (sparams.api_keys.size() > 1) {
  2667. log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
  2668. }
  2669. // load the model
  2670. if (!llama.load_model(params))
  2671. {
  2672. state.store(SERVER_STATE_ERROR);
  2673. return 1;
  2674. } else {
  2675. llama.initialize();
  2676. state.store(SERVER_STATE_READY);
  2677. LOG_INFO("model loaded", {});
  2678. }
  2679. const auto model_meta = llama.model_meta();
  2680. if (sparams.chat_template.empty()) { // custom chat template is not supplied
  2681. // check if the template comes with the model is supported by us
  2682. llama.validate_model_chat_template(sparams);
  2683. }
  2684. // Middleware for API key validation
  2685. auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
  2686. // If API key is not set, skip validation
  2687. if (sparams.api_keys.empty()) {
  2688. return true;
  2689. }
  2690. // Check for API key in the header
  2691. auto auth_header = req.get_header_value("Authorization");
  2692. std::string prefix = "Bearer ";
  2693. if (auth_header.substr(0, prefix.size()) == prefix) {
  2694. std::string received_api_key = auth_header.substr(prefix.size());
  2695. if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) {
  2696. return true; // API key is valid
  2697. }
  2698. }
  2699. // API key is invalid or not provided
  2700. res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
  2701. res.status = 401; // Unauthorized
  2702. LOG_WARNING("Unauthorized: Invalid API Key", {});
  2703. return false;
  2704. };
  2705. // this is only called if no index.html is found in the public --path
  2706. svr.Get("/", [](const httplib::Request &, httplib::Response &res)
  2707. {
  2708. res.set_content("server running", "text/plain; charset=utf-8");
  2709. res.status = 200; // Unauthorized
  2710. return true;
  2711. });
  2712. svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
  2713. {
  2714. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2715. if (!validate_api_key(req, res)) {
  2716. return;
  2717. }
  2718. json data = json::parse(req.body);
  2719. const int task_id = llama.queue_tasks.get_new_id();
  2720. llama.queue_results.add_waiting_task_id(task_id);
  2721. llama.request_completion(task_id, data, false, false, -1);
  2722. if (!json_value(data, "stream", false)) {
  2723. std::string completion_text;
  2724. task_result result = llama.queue_results.recv(task_id);
  2725. if (!result.error && result.stop) {
  2726. res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
  2727. }
  2728. else
  2729. {
  2730. res.status = 404;
  2731. res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
  2732. }
  2733. llama.queue_results.remove_waiting_task_id(task_id);
  2734. } else {
  2735. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink)
  2736. {
  2737. while (true)
  2738. {
  2739. task_result result = llama.queue_results.recv(task_id);
  2740. if (!result.error) {
  2741. const std::string str =
  2742. "data: " +
  2743. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2744. "\n\n";
  2745. LOG_VERBOSE("data stream", {
  2746. { "to_send", str }
  2747. });
  2748. if (!sink.write(str.c_str(), str.size()))
  2749. {
  2750. llama.queue_results.remove_waiting_task_id(task_id);
  2751. return false;
  2752. }
  2753. if (result.stop) {
  2754. break;
  2755. }
  2756. } else {
  2757. const std::string str =
  2758. "error: " +
  2759. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2760. "\n\n";
  2761. LOG_VERBOSE("data stream", {
  2762. { "to_send", str }
  2763. });
  2764. if (!sink.write(str.c_str(), str.size()))
  2765. {
  2766. llama.queue_results.remove_waiting_task_id(task_id);
  2767. return false;
  2768. }
  2769. break;
  2770. }
  2771. }
  2772. llama.queue_results.remove_waiting_task_id(task_id);
  2773. sink.done();
  2774. return true;
  2775. };
  2776. auto on_complete = [task_id, &llama] (bool)
  2777. {
  2778. // cancel
  2779. llama.request_cancel(task_id);
  2780. llama.queue_results.remove_waiting_task_id(task_id);
  2781. };
  2782. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2783. }
  2784. });
  2785. svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
  2786. {
  2787. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2788. const json body = json::parse(req.body);
  2789. std::vector<llama_token> tokens;
  2790. if (body.count("content") != 0)
  2791. {
  2792. tokens = llama.tokenize(body["content"], false);
  2793. }
  2794. const json data = format_tokenizer_response(tokens);
  2795. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2796. });
  2797. svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
  2798. {
  2799. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2800. const json body = json::parse(req.body);
  2801. std::string content;
  2802. if (body.count("tokens") != 0)
  2803. {
  2804. const std::vector<llama_token> tokens = body["tokens"];
  2805. content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
  2806. }
  2807. const json data = format_detokenized_response(content);
  2808. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2809. });
  2810. svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
  2811. {
  2812. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2813. const json body = json::parse(req.body);
  2814. json prompt;
  2815. if (body.count("content") != 0)
  2816. {
  2817. prompt = body["content"];
  2818. }
  2819. else
  2820. {
  2821. prompt = "";
  2822. }
  2823. json image_data;
  2824. if (body.count("image_data") != 0) {
  2825. image_data = body["image_data"];
  2826. }
  2827. else
  2828. {
  2829. image_data = "";
  2830. }
  2831. // create and queue the task
  2832. const int task_id = llama.queue_tasks.get_new_id();
  2833. llama.queue_results.add_waiting_task_id(task_id);
  2834. llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, false, true, -1);
  2835. // get the result
  2836. task_result result = llama.queue_results.recv(task_id);
  2837. llama.queue_results.remove_waiting_task_id(task_id);
  2838. // send the result
  2839. return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
  2840. });
  2841. // GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
  2842. // "Bus error: 10" - this is on macOS, it does not crash on Linux
  2843. //std::thread t2([&]()
  2844. /*{
  2845. bool running = true;
  2846. while (running)
  2847. {
  2848. running = llama.update_slots();
  2849. }
  2850. }*/
  2851. //);
  2852. if (sparams.n_threads_http < 1) {
  2853. // +2 threads for monitoring endpoints
  2854. sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  2855. }
  2856. log_data["n_threads_http"] = std::to_string(sparams.n_threads_http);
  2857. svr.new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
  2858. LOG_INFO("HTTP server listening", log_data);
  2859. // run the HTTP server in a thread - see comment below
  2860. std::thread t([&]()
  2861. {
  2862. if (!svr.listen_after_bind())
  2863. {
  2864. state.store(SERVER_STATE_ERROR);
  2865. return 1;
  2866. }
  2867. return 0;
  2868. });
  2869. llama.queue_tasks.on_new_task(std::bind(
  2870. &llama_server_context::process_single_task, &llama, std::placeholders::_1));
  2871. llama.queue_tasks.on_finish_multitask(std::bind(
  2872. &llama_server_context::on_finish_multitask, &llama, std::placeholders::_1));
  2873. llama.queue_tasks.on_run_slots(std::bind(
  2874. &llama_server_context::update_slots, &llama));
  2875. llama.queue_results.on_multitask_update(std::bind(
  2876. &llama_server_queue::update_multitask,
  2877. &llama.queue_tasks,
  2878. std::placeholders::_1,
  2879. std::placeholders::_2,
  2880. std::placeholders::_3
  2881. ));
  2882. shutdown_handler = [&](int) {
  2883. llama.queue_tasks.terminate();
  2884. };
  2885. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  2886. struct sigaction sigint_action;
  2887. sigint_action.sa_handler = signal_handler;
  2888. sigemptyset (&sigint_action.sa_mask);
  2889. sigint_action.sa_flags = 0;
  2890. sigaction(SIGINT, &sigint_action, NULL);
  2891. #elif defined (_WIN32)
  2892. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  2893. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  2894. };
  2895. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  2896. #endif
  2897. llama.queue_tasks.start_loop();
  2898. svr.stop();
  2899. t.join();
  2900. llama_backend_free();
  2901. return 0;
  2902. }