123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- package main
- import (
- "flag"
- "fmt"
- "io"
- "log"
- "os"
- "strings"
- "github.com/ollama/ollama/llama"
- )
- func main() {
- mp := flag.String("model", "", "Path to model binary file")
- pp := flag.String("projector", "", "Path to projector binary file")
- image := flag.String("image", "", "Path to image file")
- prompt := flag.String("prompt", " [INST] What is in the picture? <image> [/INST]", "Prompt including <image> tag")
- flag.Parse()
- // load the model
- llama.BackendInit()
- params := llama.NewModelParams()
- model := llama.LoadModelFromFile(*mp, params)
- ctxParams := llama.NewContextParams()
- // language model context
- lc := llama.NewContextWithModel(model, ctxParams)
- // clip context
- clipCtx := llama.NewClipContext(*pp)
- // open image file
- file, err := os.Open(*image)
- if err != nil {
- panic(err)
- }
- defer file.Close()
- data, err := io.ReadAll(file)
- if err != nil {
- log.Fatal(err)
- }
- embedding := llama.NewLlavaImageEmbed(clipCtx, data)
- parts := strings.Split(*prompt, "<image>")
- if len(parts) != 2 {
- panic("prompt must contain exactly one <image>")
- }
- err = eval(lc, parts[0], embedding, parts[1])
- if err != nil {
- panic(err)
- }
- }
- func eval(lc *llama.Context, before string, embedding *llama.LlavaImageEmbed, after string) error {
- beforeTokens, err := lc.Model().Tokenize(before, 2048, true, true)
- if err != nil {
- return err
- }
- afterTokens, err := lc.Model().Tokenize(after, 2048, true, true)
- if err != nil {
- return err
- }
- // eval before
- batch := llama.NewBatch(512, 0, 1)
- var nPast int
- // prompt eval
- for _, t := range beforeTokens {
- batch.Add(t, nPast, []int{0}, true)
- nPast++
- }
- err = lc.Decode(batch)
- if err != nil {
- return err
- }
- // batch.Clear()
- llama.LlavaEvalImageEmbed(lc, embedding, 512, &nPast)
- batch = llama.NewBatch(512, 0, 1)
- for _, t := range afterTokens {
- batch.Add(t, nPast, []int{0}, true)
- }
- // main loop
- for n := nPast; n < 4096; n++ {
- err = lc.Decode(batch)
- if err != nil {
- panic("Failed to decode")
- }
- // sample a token
- token := lc.SampleTokenGreedy(batch)
- // if it's an end of sequence token, break
- if lc.Model().TokenIsEog(token) {
- break
- }
- // print the token
- str := lc.Model().TokenToPiece(token)
- fmt.Print(str)
- batch.Clear()
- batch.Add(token, n, []int{0}, true)
- }
- return nil
- }
|