ggml.go 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628
  1. package ggml
  2. // #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
  3. // #include <stdlib.h>
  4. // #include <stdint.h>
  5. // #include "ggml.h"
  6. // #include "ggml-cpu.h"
  7. // #include "ggml-backend.h"
  8. import "C"
  9. import (
  10. "fmt"
  11. "io"
  12. "log/slog"
  13. "os"
  14. "sync"
  15. "unsafe"
  16. "github.com/ollama/ollama/format"
  17. fs "github.com/ollama/ollama/fs/ggml"
  18. "github.com/ollama/ollama/ml"
  19. "golang.org/x/sync/errgroup"
  20. ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
  21. )
  22. type device struct {
  23. d *C.struct_ggml_backend_device
  24. }
  25. func (d device) LogValue() slog.Value {
  26. var free, total uint64
  27. C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
  28. kind := "unknown"
  29. switch C.ggml_backend_dev_type(d.d) {
  30. case C.GGML_BACKEND_DEVICE_TYPE_CPU:
  31. kind = "cpu"
  32. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  33. kind = "gpu"
  34. case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  35. kind = "accel"
  36. }
  37. return slog.GroupValue(
  38. slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
  39. slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
  40. slog.String("kind", kind),
  41. slog.String("free", format.HumanBytes2(free)),
  42. slog.String("total", format.HumanBytes2(total)),
  43. )
  44. }
  45. var devices = sync.OnceValue(func() []device {
  46. ggml.OnceLoad()
  47. s := make([]device, C.ggml_backend_dev_count())
  48. for i := range s {
  49. s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
  50. }
  51. return s
  52. })
  53. type Backend struct {
  54. meta *fs.GGML
  55. cpus, gpus []Context
  56. tensors map[string]*Context
  57. }
  58. func New(r *os.File) (ml.Backend, error) {
  59. meta, n, err := fs.Decode(r, -1)
  60. if err != nil {
  61. return nil, err
  62. }
  63. slog.Info(
  64. "",
  65. "architecture", meta.KV().Architecture(),
  66. "file_type", meta.KV().FileType(),
  67. "name", meta.KV().String("general.name"),
  68. "description", meta.KV().String("general.description"),
  69. "num_tensors", len(meta.Tensors().Items()),
  70. "num_key_values", len(meta.KV()),
  71. )
  72. var cpus, gpus []Context
  73. for _, d := range devices() {
  74. switch C.ggml_backend_dev_type(d.d) {
  75. case C.GGML_BACKEND_DEVICE_TYPE_CPU,
  76. C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  77. slog.Info("cpu", "device", d)
  78. cpus = append(cpus, Context{
  79. ctx: C.ggml_init(C.struct_ggml_init_params{
  80. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  81. no_alloc: true,
  82. }),
  83. backend: C.ggml_backend_dev_init(d.d, nil),
  84. })
  85. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  86. slog.Info("gpu", "device", d)
  87. gpus = append(gpus, Context{
  88. ctx: C.ggml_init(C.struct_ggml_init_params{
  89. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  90. no_alloc: true,
  91. }),
  92. backend: C.ggml_backend_dev_init(d.d, nil),
  93. })
  94. }
  95. }
  96. ctxFunc := func(s []Context) (*Context, error) {
  97. for _, e := range s {
  98. return &e, nil
  99. }
  100. return nil, fmt.Errorf("no devices available")
  101. }
  102. tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
  103. for _, t := range meta.Tensors().Items() {
  104. c, err := ctxFunc(append(gpus, cpus...))
  105. if err != nil {
  106. return nil, err
  107. }
  108. func() {
  109. tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
  110. cname := C.CString(t.Name)
  111. defer C.free(unsafe.Pointer(cname))
  112. C.ggml_set_name(tt, cname)
  113. tensors[t] = c
  114. }()
  115. }
  116. for _, b := range append(gpus, cpus...) {
  117. C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
  118. }
  119. sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
  120. var g errgroup.Group
  121. for t, c := range tensors {
  122. g.Go(func() error {
  123. bts := make([]byte, t.Size())
  124. n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
  125. if err != nil {
  126. return err
  127. }
  128. if n != int(t.Size()) {
  129. return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
  130. }
  131. cname := C.CString(t.Name)
  132. defer C.free(unsafe.Pointer(cname))
  133. C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
  134. return nil
  135. })
  136. }
  137. if err := g.Wait(); err != nil {
  138. return nil, err
  139. }
  140. return &Backend{
  141. meta: meta,
  142. cpus: cpus,
  143. gpus: gpus,
  144. }, nil
  145. }
  146. func init() {
  147. ml.RegisterBackend("ggml", New)
  148. }
  149. func (b *Backend) Config() ml.Config {
  150. return b.meta.KV()
  151. }
  152. func (b *Backend) Get(name string) ml.Tensor {
  153. cname := C.CString(name)
  154. defer C.free(unsafe.Pointer(cname))
  155. for _, c := range append(b.gpus, b.cpus...) {
  156. if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
  157. return &Tensor{t: t}
  158. }
  159. }
  160. return nil
  161. }
  162. func (b *Backend) NewContext() ml.Context {
  163. nodes := max(8192, len(b.meta.Tensors().Items())*5)
  164. c := C.ggml_init(C.struct_ggml_init_params{
  165. mem_buffer: nil,
  166. mem_size: C.size_t(nodes)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(nodes), false),
  167. no_alloc: true,
  168. })
  169. backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
  170. bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
  171. for i, c := range append(b.gpus, b.cpus...) {
  172. backends[i] = c.backend
  173. bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
  174. }
  175. return &Context{
  176. ctx: c,
  177. backend: backends[0],
  178. nodes: nodes,
  179. sched: C.ggml_backend_sched_new(
  180. (*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
  181. (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
  182. C.int(len(backends)),
  183. C.size_t(nodes),
  184. true,
  185. ),
  186. }
  187. }
  188. type Context struct {
  189. ctx *C.struct_ggml_context
  190. backend *C.struct_ggml_backend
  191. sched *C.struct_ggml_backend_sched
  192. graph *C.struct_ggml_cgraph
  193. nodes int
  194. }
  195. func (c *Context) Forward(t ml.Tensor) {
  196. if c.graph == nil {
  197. c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
  198. }
  199. C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
  200. }
  201. func (c *Context) Compute(tensors ...ml.Tensor) {
  202. C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
  203. needSync := true
  204. sync := func() {
  205. if needSync {
  206. C.ggml_backend_sched_synchronize(c.sched)
  207. needSync = false
  208. }
  209. }
  210. for _, t := range tensors {
  211. if C.ggml_nbytes(t.(*Tensor).t) > 0 {
  212. t.(*Tensor).sync = sync
  213. }
  214. }
  215. }
  216. func (c *Context) MaxTensors() int {
  217. return c.nodes
  218. }
  219. func shapeToGGML(shape []int) *C.int64_t {
  220. sh := make([]C.int64_t, len(shape))
  221. for i, s := range shape {
  222. sh[i] = (C.int64_t)(s)
  223. }
  224. return &sh[0]
  225. }
  226. func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
  227. if len(shape) < 1 || len(shape) > 4 {
  228. panic("unsupported number of dimensions")
  229. }
  230. for _, dim := range shape {
  231. if dim < 1 {
  232. panic("invalid shape")
  233. }
  234. }
  235. var t *C.struct_ggml_tensor
  236. switch dtype {
  237. case ml.DTypeF32:
  238. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
  239. case ml.DTypeF16:
  240. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
  241. case ml.DTypeI32:
  242. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
  243. default:
  244. panic("unsupported dtype")
  245. }
  246. b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
  247. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  248. C.ggml_set_zero(t)
  249. return &Tensor{t: t}
  250. }
  251. func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
  252. n := len(s)
  253. if n == 0 {
  254. var shape C.int64_t = 0
  255. t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
  256. return &Tensor{t: t}, nil
  257. }
  258. for _, v := range shape {
  259. n /= v
  260. }
  261. if n != 1 {
  262. return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
  263. }
  264. t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
  265. b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
  266. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  267. C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
  268. return &Tensor{t: t}, nil
  269. }
  270. func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
  271. return fromSlice(c, s, shape, C.GGML_TYPE_F32)
  272. }
  273. func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
  274. return fromSlice(c, s, shape, C.GGML_TYPE_I32)
  275. }
  276. func (c *Context) Close() {
  277. if c != nil {
  278. C.ggml_backend_sched_free(c.sched)
  279. C.ggml_free(c.ctx)
  280. }
  281. }
  282. type Tensor struct {
  283. t *C.struct_ggml_tensor
  284. sync func()
  285. }
  286. func (t *Tensor) LogValue() slog.Value {
  287. return slog.GroupValue(
  288. slog.String("name", C.GoString(C.ggml_get_name(t.t))),
  289. slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
  290. slog.Any("shape", t.Shape()),
  291. )
  292. }
  293. func (t *Tensor) Dim(n int) int {
  294. return int(t.t.ne[n])
  295. }
  296. func (t *Tensor) Stride(n int) int {
  297. return int(t.t.nb[n])
  298. }
  299. func (t *Tensor) Shape() []int {
  300. shape := make([]int, C.ggml_n_dims(t.t))
  301. for i := range shape {
  302. shape[i] = t.Dim(i)
  303. }
  304. return shape
  305. }
  306. func (t *Tensor) Bytes() (data []byte) {
  307. if t.sync != nil {
  308. data = make([]byte, C.ggml_nbytes(t.t))
  309. t.sync()
  310. C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
  311. }
  312. return
  313. }
  314. func (t *Tensor) Floats() (data []float32) {
  315. if t.sync != nil {
  316. data = make([]float32, C.ggml_nelements(t.t))
  317. t.sync()
  318. C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
  319. }
  320. return
  321. }
  322. func (t *Tensor) DType() ml.DType {
  323. switch t.t._type {
  324. case C.GGML_TYPE_F32:
  325. return ml.DTypeF32
  326. case C.GGML_TYPE_F16:
  327. return ml.DTypeF16
  328. case C.GGML_TYPE_I32:
  329. return ml.DTypeI32
  330. default:
  331. return ml.DTypeOther
  332. }
  333. }
  334. func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  335. return &Tensor{
  336. t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  337. }
  338. }
  339. func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
  340. if len(s) > 0 {
  341. return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
  342. }
  343. return t
  344. }
  345. func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
  346. return &Tensor{
  347. t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
  348. }
  349. }
  350. func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
  351. return &Tensor{
  352. t: C.ggml_cont(ctx.(*Context).ctx, t.t),
  353. }
  354. }
  355. func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  356. return &Tensor{
  357. t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  358. }
  359. }
  360. func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  361. return &Tensor{
  362. t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  363. }
  364. }
  365. func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  366. mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
  367. C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
  368. return &Tensor{
  369. t: mul,
  370. }
  371. }
  372. func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
  373. tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
  374. if b != nil {
  375. tt = tt.Add(ctx, b)
  376. }
  377. return tt
  378. }
  379. func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
  380. return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
  381. }
  382. func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
  383. if len(shape) != 4 {
  384. panic("expected 4 dimensions")
  385. }
  386. return &Tensor{
  387. t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  388. }
  389. }
  390. func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
  391. if len(shape) != 4 {
  392. panic("expected 4 dimensions")
  393. }
  394. return &Tensor{
  395. t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  396. }
  397. }
  398. func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  399. return &Tensor{
  400. t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  401. }
  402. }
  403. func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  404. return &Tensor{
  405. t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  406. }
  407. }
  408. func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
  409. switch len(shape) {
  410. case 1:
  411. return &Tensor{
  412. t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
  413. }
  414. case 2:
  415. return &Tensor{
  416. t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
  417. }
  418. case 3:
  419. return &Tensor{
  420. t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
  421. }
  422. case 4:
  423. return &Tensor{
  424. t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
  425. }
  426. default:
  427. panic("unsupported number of dimensions")
  428. }
  429. }
  430. func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
  431. return &Tensor{
  432. t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
  433. }
  434. }
  435. func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
  436. return &Tensor{
  437. t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
  438. }
  439. }
  440. func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
  441. return &Tensor{
  442. t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
  443. }
  444. }
  445. func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
  446. if len(shape) != 4 {
  447. panic("expected 4 dimensions")
  448. }
  449. return &Tensor{
  450. t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  451. }
  452. }
  453. func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
  454. switch len(shape) {
  455. case 1:
  456. return &Tensor{
  457. t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
  458. }
  459. case 3:
  460. return &Tensor{
  461. t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
  462. C.int64_t(shape[0]), C.int64_t(shape[2]),
  463. C.size_t(shape[1]),
  464. C.size_t(offset)),
  465. }
  466. case 5:
  467. return &Tensor{
  468. t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
  469. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
  470. C.size_t(shape[1]), C.size_t(shape[3]),
  471. C.size_t(offset)),
  472. }
  473. case 7:
  474. return &Tensor{
  475. t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
  476. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
  477. C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
  478. C.size_t(offset)),
  479. }
  480. default:
  481. panic("unsupported number of dimensions")
  482. }
  483. }
  484. const (
  485. ropeTypeNorm C.int = iota
  486. )
  487. func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
  488. if ropeFactors == nil {
  489. ropeFactors = &Tensor{}
  490. }
  491. dequant := t.t
  492. if C.ggml_is_quantized(t.t._type) {
  493. dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
  494. }
  495. return &Tensor{
  496. t: C.ggml_rope_ext(
  497. ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
  498. C.int(ropeDim),
  499. 131072, // YaRN n_ctx_train
  500. ropeTypeNorm, // ROPE_TYPE_NORM
  501. C.float(ropeBase),
  502. C.float(ropeScale),
  503. 0., // YaRN ext_factor
  504. 1., // YaRN attn_factor
  505. 32., // YaRN beta_fast
  506. 1., // YaRN beta_slow
  507. ),
  508. }
  509. }
  510. func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
  511. return &Tensor{
  512. t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
  513. }
  514. }
  515. func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
  516. return &Tensor{
  517. t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
  518. }
  519. }
  520. func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
  521. return &Tensor{
  522. t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
  523. }
  524. }