1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- package nn
- import (
- "fmt"
- "github.com/ollama/ollama/ml"
- )
- // Attention implements scaled dot-product attention for transformer models:
- // Attention(Q, K, V) = softmax(QK^T/√d_k)V
- //
- // Parameters:
- // - ctx: Context for tensor operations
- // - query: Query tensor (Q) with shape [d_k, seq_len_q, heads]
- // - key: Key tensor (K) with shape [d_k, seq_len_k, kv_heads]
- // - value: Value tensor (V) with shape [seq_len_k, d_v, kv_heads]
- // - mask: Optional attention mask that is added to the attention score. If
- // provided, should broadcast to [seq_len_k, seq_len_q, heads]
- // - scale: Scaling factor, typically 1/√d_k where d_k is the key dimension
- //
- // Returns:
- //
- // Attention output with shape [d_v, heads, seq_len_q]
- func Attention(ctx ml.Context, query, key, value, mask ml.Tensor, scale float64) ml.Tensor {
- if query.Dim(0) != key.Dim(0) {
- panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0)))
- }
- if mask != nil && query.Dim(1) != mask.Dim(1) {
- panic(fmt.Errorf("seq_len_q in attention operation does not match between query(%v) and mask(%v)", query.Dim(1), mask.Dim(1)))
- }
- if key.Dim(1) != value.Dim(0) {
- panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(1), value.Dim(0)))
- }
- if mask != nil && key.Dim(1) != mask.Dim(0) {
- panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and mask(%v)", key.Dim(1), mask.Dim(0)))
- }
- if key.Dim(2) != value.Dim(2) {
- panic(fmt.Errorf("kv_heads in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2)))
- }
- if sdpa, ok := query.(ml.ScaledDotProductAttention); ok {
- return sdpa.ScaledDotProductAttention(ctx, key, value, mask, scale)
- } else {
- kq := key.MulmatFullPrec(ctx, query)
- kq = kq.Scale(ctx, scale)
- if mask != nil {
- kq = kq.Add(ctx, mask)
- }
- kq = kq.Softmax(ctx)
- kqv := value.Mulmat(ctx, kq)
- return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
- }
- }
|