123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678 |
- package ggml
- import (
- "encoding/binary"
- "errors"
- "fmt"
- "io"
- "log/slog"
- "slices"
- "strings"
- "github.com/ollama/ollama/fs/util/bufioutil"
- )
- type GGML struct {
- container
- model
- }
- type model interface {
- KV() KV
- Tensors() Tensors
- }
- type KV map[string]any
- func (kv KV) Architecture() string {
- return kv.String("general.architecture", "unknown")
- }
- func (kv KV) Kind() string {
- return kv.String("general.type", "unknown")
- }
- func (kv KV) ParameterCount() uint64 {
- return keyValue[uint64](kv, "general.parameter_count")
- }
- func (kv KV) FileType() fileType {
- if t := kv.Uint("general.file_type"); t > 0 {
- return fileType(t)
- }
- return fileTypeUnknown
- }
- func (kv KV) BlockCount() uint64 {
- return uint64(kv.Uint("block_count"))
- }
- func (kv KV) EmbeddingLength() uint64 {
- return uint64(kv.Uint("embedding_length"))
- }
- func (kv KV) HeadCount() uint64 {
- return uint64(kv.Uint("attention.head_count"))
- }
- func (kv KV) HeadCountKV() uint64 {
- return uint64(kv.Uint("attention.head_count_kv", 1))
- }
- func (kv KV) EmbeddingHeadCount() uint64 {
- if heads := kv.HeadCount(); heads > 0 {
- return kv.EmbeddingLength() / heads
- }
- return 0
- }
- func (kv KV) EmbeddingHeadCountK() uint64 {
- return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
- }
- func (kv KV) EmbeddingHeadCountV() uint64 {
- return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
- }
- func (kv KV) GQA() uint64 {
- return kv.HeadCount() / kv.HeadCountKV()
- }
- func (kv KV) ContextLength() uint64 {
- return uint64(kv.Uint("context_length"))
- }
- func (kv KV) ChatTemplate() string {
- return kv.String("tokenizer.chat_template")
- }
- func (kv KV) String(key string, defaultValue ...string) string {
- return keyValue(kv, key, append(defaultValue, "")...)
- }
- func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
- return keyValue(kv, key, append(defaultValue, 0)...)
- }
- func (kv KV) Float(key string, defaultValue ...float32) float32 {
- return keyValue(kv, key, append(defaultValue, 0)...)
- }
- func (kv KV) Bool(key string, defaultValue ...bool) bool {
- return keyValue(kv, key, append(defaultValue, false)...)
- }
- func (kv KV) Strings(key string, defaultValue ...[]string) []string {
- r := keyValue(kv, key, &array{})
- s := make([]string, r.size)
- for i := range r.size {
- s[i] = r.values[i].(string)
- }
- return s
- }
- func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
- r := keyValue(kv, key, &array{})
- s := make([]uint32, r.size)
- for i := range r.size {
- s[i] = uint32(r.values[i].(int32))
- }
- return s
- }
- func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
- r := keyValue(kv, key, &array{})
- s := make([]float32, r.size)
- for i := range r.size {
- s[i] = float32(r.values[i].(float32))
- }
- return s
- }
- func (kv KV) OllamaEngineRequired() bool {
- return kv.Architecture() == "gemma3"
- }
- func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
- if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
- key = kv.Architecture() + "." + key
- }
- if val, ok := kv[key]; ok {
- return val.(T)
- }
- slog.Warn("key not found", "key", key, "default", defaultValue[0])
- return defaultValue[0]
- }
- type Tensors struct {
- items []*Tensor
- Offset uint64
- }
- func (s Tensors) Items(prefix ...string) []*Tensor {
- if len(prefix) == 0 {
- return s.items
- }
- var items []*Tensor
- for _, t := range s.items {
- if strings.HasPrefix(t.Name, prefix[0]) {
- items = append(items, t)
- }
- }
- return items
- }
- func (ts Tensors) GroupLayers() map[string]Layer {
- layers := make(map[string]Layer)
- for _, t := range ts.items {
- parts := strings.Split(t.Name, ".")
- if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
- if len(parts) > index+2 {
- // blk and mm should have a number after them, join it
- parts = append(
- []string{strings.Join(parts[:index+2], ".")},
- parts[index+2:]...)
- }
- }
- if _, ok := layers[parts[0]]; !ok {
- layers[parts[0]] = make(Layer)
- }
- layers[parts[0]][strings.Join(parts[1:], ".")] = t
- }
- return layers
- }
- type Layer map[string]*Tensor
- func (l Layer) Size() (size uint64) {
- for _, t := range l {
- size += t.Size()
- }
- return size
- }
- type Tensor struct {
- Name string `json:"name"`
- Kind uint32 `json:"kind"`
- Offset uint64 `json:"-"`
- // Shape is the number of elements in each dimension
- Shape []uint64 `json:"shape"`
- io.WriterTo `json:"-"`
- }
- func (t Tensor) block() (n int) {
- if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
- return -1
- }
- return
- }
- func (t Tensor) blockSize() uint64 {
- switch t.Kind {
- case
- 0, // F32
- 1, // F16
- 24, // I8
- 25, // I16
- 26, // I32
- 27, // I64
- 28, // F64
- 30: // BF16
- return 1
- case
- 2, // Q4_0
- 3, // Q4_1
- 6, // Q5_0
- 7, // Q5_1
- 8, // Q8_0
- 9, // Q8_1
- 20: // IQ4_NL
- return 32
- default:
- return 256
- }
- }
- func (t Tensor) typeSize() uint64 {
- blockSize := t.blockSize()
- switch t.Kind {
- case 0: // FP32
- return 4
- case 1: // FP16
- return 2
- case 2: // Q4_0
- return 2 + blockSize/2
- case 3: // Q4_1
- return 2 + 2 + blockSize/2
- case 6: // Q5_0
- return 2 + 4 + blockSize/2
- case 7: // Q5_1
- return 2 + 2 + 4 + blockSize/2
- case 8: // Q8_0
- return 2 + blockSize
- case 9: // Q8_1
- return 2 + 2 + blockSize
- case 10: // Q2_K
- return blockSize/16 + blockSize/4 + 2 + 2
- case 11: // Q3_K
- return blockSize/8 + blockSize/4 + 12 + 2
- case 12: // Q4_K
- return 2 + 2 + 12 + blockSize/2
- case 13: // Q5_K
- return 2 + 2 + 12 + blockSize/8 + blockSize/2
- case 14: // Q6_K
- return blockSize/2 + blockSize/4 + blockSize/16 + 2
- case 15: // Q8_K
- return 4 + blockSize + 2*blockSize/16
- case 16: // IQ2_XXS
- return 2 + 2*blockSize/8
- case 17: // IQ2_XS
- return 2 + 2*blockSize/8 + blockSize/32
- case 18: // IQ3_XXS
- return 2 + blockSize/4 + blockSize/8
- case 19: // IQ1_S
- return 2 + blockSize/8 + blockSize/16
- case 20: // IQ4_NL
- return 2 + blockSize/2
- case 21: // IQ3_S
- return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
- case 22: // IQ2_S
- return 2 + blockSize/4 + blockSize/16
- case 23: // IQ4_XS
- return 2 + 2 + blockSize/2 + blockSize/64
- case 24: // I8
- return 1
- case 25: // I16
- return 2
- case 26: // I32
- return 4
- case 27: // I64
- return 8
- case 28: // F64
- return 8
- case 29: // IQ1_M
- return blockSize/8 + blockSize/16 + blockSize/32
- case 30: // BF16
- return 2
- default:
- return 0
- }
- }
- func (t Tensor) parameters() uint64 {
- var count uint64 = 1
- for _, n := range t.Shape {
- count *= n
- }
- return count
- }
- func (t Tensor) Size() uint64 {
- return t.parameters() * t.typeSize() / t.blockSize()
- }
- func (t Tensor) Type() string {
- return fileType(t.Kind).String()
- }
- type container interface {
- Name() string
- Decode(io.ReadSeeker) (model, error)
- }
- const (
- // Magic constant for `ggml` files (unversioned).
- FILE_MAGIC_GGML = 0x67676d6c
- // Magic constant for `ggml` files (versioned, ggmf).
- FILE_MAGIC_GGMF = 0x67676d66
- // Magic constant for `ggml` files (versioned, ggjt).
- FILE_MAGIC_GGJT = 0x67676a74
- // Magic constant for `ggla` files (LoRA adapter).
- FILE_MAGIC_GGLA = 0x67676C61
- // Magic constant for `gguf` files (versioned, gguf)
- FILE_MAGIC_GGUF_LE = 0x46554747
- FILE_MAGIC_GGUF_BE = 0x47475546
- )
- var ErrUnsupportedFormat = errors.New("unsupported model format")
- func DetectContentType(b []byte) string {
- switch binary.LittleEndian.Uint32(b[:4]) {
- case FILE_MAGIC_GGML:
- return "ggml"
- case FILE_MAGIC_GGMF:
- return "ggmf"
- case FILE_MAGIC_GGJT:
- return "ggjt"
- case FILE_MAGIC_GGLA:
- return "ggla"
- case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
- return "gguf"
- default:
- return ""
- }
- }
- // Decode decodes a GGML model from the given reader.
- //
- // It collects array values for arrays with a size less than or equal to
- // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
- // the maxArraySize is negative, all arrays are collected.
- func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
- if maxArraySize == 0 {
- maxArraySize = 1024
- }
- rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
- var magic uint32
- if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
- return nil, 0, err
- }
- var c container
- switch magic {
- case FILE_MAGIC_GGUF_LE:
- c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
- case FILE_MAGIC_GGUF_BE:
- c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
- default:
- return nil, 0, errors.New("invalid file magic")
- }
- model, err := c.Decode(rs)
- if err != nil {
- return nil, 0, err
- }
- offset, err := rs.Seek(0, io.SeekCurrent)
- if err != nil {
- return nil, 0, err
- }
- // final model type
- return &GGML{
- container: c,
- model: model,
- }, offset, nil
- }
- func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
- embedding := f.KV().EmbeddingLength()
- heads := f.KV().HeadCount()
- headsKV := f.KV().HeadCountKV()
- vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
- embeddingHeads := f.KV().EmbeddingHeadCount()
- embeddingHeadsK := f.KV().EmbeddingHeadCountK()
- embeddingHeadsV := f.KV().EmbeddingHeadCountV()
- layers := f.Tensors().GroupLayers()
- bytesPerElement := kvCacheBytesPerElement(kvCacheType)
- kv = make([]uint64, f.KV().BlockCount())
- for i := range kv {
- kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
- }
- switch f.KV().Architecture() {
- case "llama":
- fullOffload = max(
- 4*batch*(1+4*embedding+context*(1+heads)),
- 4*batch*(embedding+vocab),
- )
- partialOffload = 4 * batch * embedding
- partialOffload += max(
- 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
- 4*batch*(embedding+vocab)+embedding*vocab*105/128,
- )
- if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
- // mixtral 8x22b
- ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
- partialOffload = max(
- 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
- 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
- )
- } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
- // mixtral 8x7b
- ffnGateWeight1 := ffnGateWeight.Shape[1]
- fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
- partialOffload = max(
- 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
- 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
- )
- }
- case "mllama":
- var visionTokens, tiles uint64 = 1601, 4
- crossAttentionLayers := f.KV().Uints("attention.cross_attention_layers")
- for i := range kv {
- if slices.Contains(crossAttentionLayers, uint32(i)) {
- kv[i] = headsKV * (embeddingHeadsK + embeddingHeadsV) *
- 4 * // sizeof(float32)
- visionTokens *
- tiles
- }
- }
- fullOffload = max(
- 4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
- // vocab graph
- 4*batch*(embedding+vocab),
- )
- var ropeFreqsCount uint64
- if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
- if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
- ropeFreqsCount = ropeFreqsWeights.parameters()
- }
- }
- partialOffload = max(
- 4*(batch*
- (2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
- ropeFreqsCount+
- embeddingHeadsK*context*headsKV),
- // vocab graph
- 4*batch*(embedding+vocab)+embedding*vocab*105/128,
- )
- case "gemma", "gemma2", "gemma3":
- fullOffload = max(
- 4*batch*(embedding+vocab),
- 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
- )
- partialOffload = max(
- 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
- 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
- 4*embeddingHeadsK*context*8+
- embedding*embeddingHeadsK*heads*9/16,
- )
- // Gemma2 also has sliding window attention but we only have an optimized implementation in the Ollama
- // engine. Gemma3 always uses the Ollama engine.
- if f.KV().Architecture() == "gemma3" {
- const gemma3GlobalCacheCount = 6
- slidingWindow := (uint64(numParallel) * uint64(f.KV().Uint("attention.sliding_window"))) + batch
- for i := range kv {
- // Every 6th layer is a global layer, which is the full context size that has already been set. The other
- // layers are the smaller local (sliding) layers.
- if (i+1)%gemma3GlobalCacheCount != 0 {
- kv[i] = uint64(float64(slidingWindow*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
- }
- }
- }
- case "command-r":
- fullOffload = max(
- 4*batch*(embedding+vocab),
- 4*batch*(2+4*embedding+context*(1+heads)),
- )
- partialOffload = max(
- 4*batch*(embedding+vocab)+embedding*vocab*105/128,
- 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
- )
- case "qwen2":
- fullOffload = max(
- 4*batch*(embedding+vocab),
- 4*batch*(1+2*embedding+context+context*heads),
- )
- partialOffload = max(
- 4*batch*(embedding+vocab)+embedding*vocab*105/128,
- 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
- )
- case "phi2":
- fullOffload = max(
- 4*batch*(embedding+vocab),
- 4*batch*(1+4*embedding+context+context*heads),
- )
- partialOffload = max(
- 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
- 4*batch*(2+3*embedding+context+context*heads),
- )
- case "stablelm":
- fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
- partialOffload = max(
- 4*batch*(vocab+2*embedding),
- fullOffload,
- )
- case "deepseek2":
- fullOffload = max(
- 4*batch*(3*embedding+vocab),
- 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
- )
- partialOffload = max(
- 4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
- 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
- )
- case "chatglm":
- fullOffload = 4 * batch * (embedding + vocab)
- partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
- if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
- fullOffload = max(
- fullOffload,
- 4*batch*(2+
- 2*embedding+
- context+
- context*heads+
- embeddingHeadsK*heads+
- qkvBias.Shape[0]),
- )
- partialOffload = max(
- partialOffload,
- 4*batch*(1+
- 2*embedding+
- embeddingHeadsK*heads+
- context+
- context*heads)+
- 4*embeddingHeadsK*context+
- 4*context*embeddingHeadsK+
- 4*qkvBias.Shape[0],
- )
- }
- }
- return
- }
- func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
- if llm.KV().Uint("vision.block_count") == 0 {
- return
- }
- for name, layer := range llm.Tensors().GroupLayers() {
- if name == "v" || strings.HasPrefix(name, "v.") {
- for _, tensor := range layer {
- weights += tensor.Size()
- }
- }
- }
- imageSize := uint64(llm.KV().Uint("vision.image_size"))
- patchSize := uint64(llm.KV().Uint("vision.patch_size"))
- if patchSize == 0 {
- slog.Warn("unknown patch size for vision model")
- return
- }
- numChannels := uint64(llm.KV().Uint("vision.num_channels"))
- numPatches := (imageSize / patchSize) * (imageSize / patchSize)
- if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
- numPatches++
- }
- headCount := uint64(llm.KV().Uint("vision.attention.head_count"))
- embeddingLength := uint64(llm.KV().Uint("vision.embedding_length"))
- switch llm.KV().Architecture() {
- case "mllama":
- numPaddedPatches := numPatches + 8 - (numPatches%8)%8
- maxNumTiles := uint64(llm.KV().Uint("vision.max_num_tiles"))
- graphSize = 4 * (8 +
- imageSize*imageSize*numChannels*maxNumTiles +
- embeddingLength*numPatches*maxNumTiles +
- 9*embeddingLength*numPaddedPatches*maxNumTiles +
- numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
- case "gemma3":
- graphSize = 4 * (imageSize*imageSize*numChannels +
- embeddingLength*patchSize +
- numPatches*numPatches*headCount)
- }
- return weights, graphSize
- }
- // SupportsKVCacheType checks if the requested cache type is supported
- func (f GGML) SupportsKVCacheType(cacheType string) bool {
- return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
- }
- // SupportsFlashAttention checks if the model supports flash attention
- func (f GGML) SupportsFlashAttention() bool {
- _, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
- if isEmbedding {
- return false
- }
- // Check head counts match and are non-zero
- headCountK := f.KV().EmbeddingHeadCountK()
- headCountV := f.KV().EmbeddingHeadCountV()
- return headCountK != 0 && headCountV != 0 && headCountK == headCountV
- }
- // kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
- func kvCacheBytesPerElement(cacheType string) float64 {
- switch cacheType {
- case "q8_0":
- return 1 // 1/2 of fp16
- case "q4_0":
- return 0.5 // 1/4 of fp16
- default:
- return 2 // f16 (default)
- }
- }
|