123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- package convert
- import "github.com/ollama/ollama/llm"
- type qwen2Model struct {
- ModelParameters
- MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
- HiddenSize uint32 `json:"hidden_size"`
- HiddenLayers uint32 `json:"num_hidden_layers"`
- IntermediateSize uint32 `json:"intermediate_size"`
- NumAttentionHeads uint32 `json:"num_attention_heads"`
- NumKeyValueHeads uint32 `json:"num_key_value_heads"`
- RopeTheta float32 `json:"rope_theta"`
- RopeScaling struct {
- Type string `json:"type"`
- Factor ropeFactor `json:"factor"`
- OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
- } `json:"rope_scaling"`
- RMSNormEPS float32 `json:"rms_norm_eps"`
- }
- var _ ModelConverter = (*qwen2Model)(nil)
- func (q *qwen2Model) KV(t *Tokenizer) llm.KV {
- kv := q.ModelParameters.KV(t)
- kv["general.architecture"] = "qwen2"
- kv["qwen2.block_count"] = q.HiddenLayers
- kv["qwen2.context_length"] = q.MaxPositionEmbeddings
- kv["qwen2.embedding_length"] = q.HiddenSize
- kv["qwen2.feed_forward_length"] = q.IntermediateSize
- kv["qwen2.attention.head_count"] = q.NumAttentionHeads
- kv["qwen2.attention.head_count_kv"] = q.NumKeyValueHeads
- kv["qwen2.rope.freq_base"] = q.RopeTheta
- kv["qwen2.attention.layer_norm_rms_epsilon"] = q.RMSNormEPS
- switch q.RopeScaling.Type {
- case "":
- // no scaling
- case "yarn":
- kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
- kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
- default:
- panic("unknown rope scaling type")
- }
- return kv
- }
- func (q *qwen2Model) Tensors(ts []Tensor) []llm.Tensor {
- var out []llm.Tensor
- for _, t := range ts {
- out = append(out, llm.Tensor{
- Name: t.Name(),
- Kind: t.Kind(),
- Shape: t.Shape(),
- WriterTo: t,
- })
- }
- return out
- }
- func (p *qwen2Model) Replacements() []string {
- return []string{
- "lm_head", "output",
- "model.embed_tokens", "token_embd",
- "model.layers", "blk",
- "input_layernorm", "attn_norm",
- "self_attn.k_proj", "attn_k",
- "self_attn.v_proj", "attn_v",
- "self_attn.q_proj", "attn_q",
- "self_attn.o_proj", "attn_output",
- "mlp.down_proj", "ffn_down",
- "mlp.gate_proj", "ffn_gate",
- "mlp.up_proj", "ffn_up",
- "post_attention_layernorm", "ffn_norm",
- "model.norm", "output_norm",
- }
- }
|