unicode.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871
  1. #if defined(_MSC_VER)
  2. #define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
  3. #endif
  4. #if defined(_WIN32)
  5. #define WIN32_LEAN_AND_MEAN
  6. #include <windows.h>
  7. #endif
  8. #include "unicode.h"
  9. #include "unicode-data.h"
  10. #include <algorithm>
  11. #include <cassert>
  12. #include <codecvt>
  13. #include <cstddef>
  14. #include <cstdint>
  15. #include <locale>
  16. #include <map>
  17. #include <regex>
  18. #include <stdexcept>
  19. #include <string>
  20. #include <unordered_map>
  21. #include <utility>
  22. #include <vector>
  23. size_t unicode_len_utf8(char src) {
  24. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  25. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  26. return lookup[highbits];
  27. }
  28. static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) {
  29. std::string result;
  30. for (size_t i = 0; i < cps.size(); ++i) {
  31. result.append(unicode_cpt_to_utf8(cps[i]));
  32. }
  33. return result;
  34. }
  35. uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) {
  36. assert(offset < utf8.size());
  37. if (!(utf8[offset + 0] & 0x80)) {
  38. auto result = utf8[offset + 0];
  39. offset += 1;
  40. return result;
  41. }
  42. if (!(utf8[offset + 0] & 0x40)) {
  43. throw std::invalid_argument("invalid character");
  44. }
  45. if (!(utf8[offset + 0] & 0x20)) {
  46. if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80)) {
  47. throw std::invalid_argument("invalid character");
  48. }
  49. auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f);
  50. offset += 2;
  51. return result;
  52. }
  53. if (!(utf8[offset + 0] & 0x10)) {
  54. if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80)) {
  55. throw std::invalid_argument("invalid character");
  56. }
  57. auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f);
  58. offset += 3;
  59. return result;
  60. }
  61. if (!(utf8[offset + 0] & 0x08)) {
  62. if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) {
  63. throw std::invalid_argument("invalid character");
  64. }
  65. auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f);
  66. offset += 4;
  67. return result;
  68. }
  69. throw std::invalid_argument("failed to convert utf8 to codepoint");
  70. }
  71. //static std::vector<uint16_t> unicode_cpt_to_utf16(uint32_t cpt) {
  72. // std::vector<uint16_t> result;
  73. // if (/* 0x0000 <= cpt && */ cpt <= 0xffff) {
  74. // result.emplace_back(cpt);
  75. // return result;
  76. // }
  77. // if (0x10000 <= cpt && cpt <= 0x10ffff) {
  78. // result.emplace_back(0xd800 | ((cpt - 0x10000) >> 10));
  79. // result.emplace_back(0xdc00 | ((cpt - 0x10000) & 0x03ff));
  80. // return result;
  81. // }
  82. // throw std::invalid_argument("failed to convert codepoint to utf16");
  83. //}
  84. //static std::vector<uint16_t> unicode_cpts_to_utf16(const std::vector<uint32_t> & cps) {
  85. // std::vector<uint16_t> result;
  86. // for (size_t i = 0; i < cps.size(); ++i) {
  87. // auto temp = unicode_cpt_to_utf16(cps[i]);
  88. // result.insert(result.end(), temp.begin(), temp.end());
  89. // }
  90. // return result;
  91. //}
  92. //static uint32_t unicode_cpt_from_utf16(const std::vector<uint16_t> & utf16, size_t & offset) {
  93. // assert(offset < utf16.size());
  94. // if (((utf16[0] >> 10) << 10) != 0xd800) {
  95. // auto result = utf16[offset + 0];
  96. // offset += 1;
  97. // return result;
  98. // }
  99. //
  100. // if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) {
  101. // throw std::invalid_argument("invalid character");
  102. // }
  103. //
  104. // auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff));
  105. // offset += 2;
  106. // return result;
  107. //}
  108. //static std::vector<uint32_t> unicode_cpts_from_utf16(const std::vector<uint16_t> & utf16) {
  109. // std::vector<uint32_t> result;
  110. // size_t offset = 0;
  111. // while (offset < utf16.size()) {
  112. // result.push_back(unicode_cpt_from_utf16(utf16, offset));
  113. // }
  114. // return result;
  115. //}
  116. static std::vector<unicode_cpt_flags> unicode_cpt_flags_array() {
  117. std::vector<unicode_cpt_flags> cpt_flags(MAX_CODEPOINTS, unicode_cpt_flags::UNDEFINED);
  118. assert (unicode_ranges_flags.begin()[0].first == 0);
  119. assert (unicode_ranges_flags.begin()[unicode_ranges_flags.size()-1].first == MAX_CODEPOINTS);
  120. for (size_t i = 1; i < unicode_ranges_flags.size(); ++i) {
  121. const auto range_ini = unicode_ranges_flags.begin()[i-1]; // codepoint_ini, flags
  122. const auto range_end = unicode_ranges_flags.begin()[i]; // codepoint_end, flags
  123. for (uint32_t cpt = range_ini.first; cpt < range_end.first; ++cpt) {
  124. cpt_flags[cpt] = range_ini.second;
  125. }
  126. }
  127. for (auto cpt : unicode_set_whitespace) {
  128. cpt_flags[cpt].is_whitespace = true;
  129. }
  130. for (auto p : unicode_map_lowercase) {
  131. cpt_flags[p.second].is_lowercase = true;
  132. }
  133. for (auto p : unicode_map_uppercase) {
  134. cpt_flags[p.second].is_uppercase = true;
  135. }
  136. for (auto &range : unicode_ranges_nfd) { // start, last, nfd
  137. cpt_flags[range.nfd].is_nfd = true;
  138. }
  139. return cpt_flags;
  140. }
  141. static std::unordered_map<uint8_t, std::string> unicode_byte_to_utf8_map() {
  142. std::unordered_map<uint8_t, std::string> map;
  143. for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
  144. assert(0 <= ch && ch < 256);
  145. map[ch] = unicode_cpt_to_utf8(ch);
  146. }
  147. for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
  148. assert(0 <= ch && ch < 256);
  149. map[ch] = unicode_cpt_to_utf8(ch);
  150. }
  151. for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
  152. assert(0 <= ch && ch < 256);
  153. map[ch] = unicode_cpt_to_utf8(ch);
  154. }
  155. auto n = 0;
  156. for (int ch = 0; ch < 256; ++ch) {
  157. if (map.find(ch) == map.end()) {
  158. map[ch] = unicode_cpt_to_utf8(256 + n);
  159. ++n;
  160. }
  161. }
  162. return map;
  163. }
  164. static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
  165. std::unordered_map<std::string, uint8_t> map;
  166. for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
  167. assert(0 <= ch && ch < 256);
  168. map[unicode_cpt_to_utf8(ch)] = ch;
  169. }
  170. for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
  171. assert(0 <= ch && ch < 256);
  172. map[unicode_cpt_to_utf8(ch)] = ch;
  173. }
  174. for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
  175. assert(0 <= ch && ch < 256);
  176. map[unicode_cpt_to_utf8(ch)] = ch;
  177. }
  178. auto n = 0;
  179. for (int ch = 0; ch < 256; ++ch) {
  180. if (map.find(unicode_cpt_to_utf8(ch)) == map.end()) {
  181. map[unicode_cpt_to_utf8(256 + n)] = ch;
  182. ++n;
  183. }
  184. }
  185. return map;
  186. }
  187. static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
  188. #ifdef _WIN32
  189. int wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, NULL, 0);
  190. if (!wlen) {
  191. throw std::invalid_argument("failed to convert regex");
  192. }
  193. wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
  194. wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, wbuf, wlen);
  195. if (!wlen) {
  196. free(wbuf);
  197. throw std::invalid_argument("failed to convert regex");
  198. }
  199. std::wstring ret = std::wstring(wbuf);
  200. free(wbuf);
  201. return ret;
  202. #else
  203. #if defined(__clang__)
  204. // disable C++17 deprecation warning for std::codecvt_utf8
  205. # pragma clang diagnostic push
  206. # pragma clang diagnostic ignored "-Wdeprecated-declarations"
  207. #endif
  208. std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
  209. #if defined(__clang__)
  210. # pragma clang diagnostic pop
  211. #endif
  212. return conv.from_bytes(s);
  213. #endif
  214. }
  215. static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {
  216. std::vector<std::string> bpe_encoded_words;
  217. for (const auto & word : bpe_words) {
  218. std::string text_utf;
  219. auto utf_word = unicode_cpts_from_utf8(word);
  220. for (size_t i = 0; i < utf_word.size(); ++i) {
  221. text_utf += unicode_cpt_to_utf8(utf_word[i]);
  222. }
  223. std::string encoded_token;
  224. for (char & c : text_utf) {
  225. encoded_token += unicode_byte_to_utf8(c);
  226. }
  227. bpe_encoded_words.emplace_back(encoded_token);
  228. }
  229. return bpe_encoded_words;
  230. }
  231. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  232. static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & text, const std::vector<size_t> & offsets) {
  233. std::vector<size_t> bpe_offsets; // store the offset of each word
  234. bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
  235. const auto cpts = unicode_cpts_from_utf8(text);
  236. size_t start = 0;
  237. for (auto offset : offsets) {
  238. const size_t offset_ini = start;
  239. const size_t offset_end = start + offset;
  240. assert(offset_end <= cpts.size());
  241. start = offset_end;
  242. static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
  243. auto _get_cpt = [&] (const size_t pos) -> uint32_t {
  244. return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
  245. };
  246. auto _get_flags = [&] (const size_t pos) -> unicode_cpt_flags {
  247. return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags_from_cpt(cpts[pos]) : unicode_cpt_flags{};
  248. };
  249. size_t _prev_end = offset_ini;
  250. auto _add_token = [&] (const size_t end) -> size_t {
  251. assert(_prev_end <= end && end <= offset_end);
  252. size_t len = end - _prev_end;
  253. if (len > 0) {
  254. bpe_offsets.push_back(len);
  255. }
  256. _prev_end = end;
  257. //if (len > 0) {
  258. // std::string s = "";
  259. // for(size_t p = end-len; p < end; p++)
  260. // s += unicode_cpt_to_utf8(cpts[p]);
  261. // printf(">>> '%s'\n", s.c_str());
  262. //}
  263. return len;
  264. };
  265. for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
  266. const uint32_t cpt = _get_cpt(pos);
  267. const auto flags = _get_flags(pos);
  268. // regex: 's|'t|'re|'ve|'m|'ll|'d
  269. if (cpt == '\'' && pos+1 < offset_end) {
  270. uint32_t cpt_next = _get_cpt(pos+1);
  271. if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
  272. pos += _add_token(pos+2);
  273. continue;
  274. }
  275. if (pos+2 < offset_end) {
  276. uint32_t cpt_next_next = _get_cpt(pos+2);
  277. if ((cpt_next == 'r' && cpt_next_next == 'e') ||
  278. (cpt_next == 'v' && cpt_next_next == 'e') ||
  279. (cpt_next == 'l' && cpt_next_next == 'l')) {
  280. pos += _add_token(pos+3);
  281. continue;
  282. }
  283. }
  284. }
  285. auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
  286. // regex: <space>?\p{L}+
  287. if (flags2.is_letter) {
  288. pos += (cpt == ' ');
  289. while (flags2.is_letter) {
  290. flags2 = _get_flags(++pos);
  291. }
  292. _add_token(pos);
  293. continue;
  294. }
  295. // regex: <space>?\p{N}+
  296. if (flags2.is_number) {
  297. pos += (cpt == ' ');
  298. while (flags2.is_number) {
  299. flags2 = _get_flags(++pos);
  300. }
  301. _add_token(pos);
  302. continue;
  303. }
  304. // regex: <space>?[^\s\p{L}\p{N}]+
  305. if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
  306. pos += (cpt == ' ');
  307. while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
  308. flags2 = _get_flags(++pos);
  309. }
  310. _add_token(pos);
  311. continue;
  312. }
  313. size_t num_whitespaces = 0;
  314. while (_get_flags(pos+num_whitespaces).is_whitespace) {
  315. num_whitespaces++;
  316. }
  317. // regex: \s+(?!\S)
  318. if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
  319. pos += num_whitespaces - 1;
  320. _add_token(pos);
  321. continue;
  322. }
  323. // regex: \s+
  324. if (num_whitespaces > 0) {
  325. pos += num_whitespaces;
  326. _add_token(pos);
  327. continue;
  328. }
  329. // no matches
  330. _add_token(++pos);
  331. }
  332. }
  333. return bpe_offsets;
  334. }
  335. // LLAMA3 system regex: "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"
  336. static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & text, const std::vector<size_t> & offsets) {
  337. std::vector<size_t> bpe_offsets; // store the offset of each word
  338. bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
  339. const auto cpts = unicode_cpts_from_utf8(text);
  340. size_t start = 0;
  341. for (auto offset : offsets) {
  342. const size_t offset_ini = start;
  343. const size_t offset_end = start + offset;
  344. assert(offset_end <= cpts.size());
  345. start = offset_end;
  346. static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
  347. auto _get_cpt = [&] (const size_t pos) -> uint32_t {
  348. return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
  349. };
  350. auto _get_flags = [&] (const size_t pos) -> unicode_cpt_flags {
  351. return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags_from_cpt(cpts[pos]) : unicode_cpt_flags{};
  352. };
  353. size_t _prev_end = offset_ini;
  354. auto _add_token = [&] (const size_t end) -> size_t {
  355. assert(_prev_end <= end && end <= offset_end);
  356. size_t len = end - _prev_end;
  357. if (len > 0) {
  358. bpe_offsets.push_back(len);
  359. }
  360. _prev_end = end;
  361. //if (len > 0) {
  362. // std::string s = "";
  363. // for(size_t p = end-len; p < end; p++)
  364. // s += unicode_cpt_to_utf8(cpts[p]);
  365. // printf(">>> '%s'\n", s.c_str());
  366. //}
  367. return len;
  368. };
  369. for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
  370. const uint32_t cpt = _get_cpt(pos);
  371. const auto flags = _get_flags(pos);
  372. // regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
  373. if (cpt == '\'' && pos+1 < offset_end) {
  374. uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
  375. if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
  376. pos += _add_token(pos+2);
  377. continue;
  378. }
  379. if (pos+2 < offset_end) {
  380. uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
  381. if ((cpt_next == 'r' && cpt_next_next == 'e') ||
  382. (cpt_next == 'v' && cpt_next_next == 'e') ||
  383. (cpt_next == 'l' && cpt_next_next == 'l')) {
  384. pos += _add_token(pos+3);
  385. continue;
  386. }
  387. }
  388. }
  389. // regex: [^\r\n\p{L}\p{N}]?\p{L}+
  390. if (!(cpt == '\r' || cpt == '\n' || flags.is_number)) {
  391. if (flags.is_letter || _get_flags(pos+1).is_letter) { // one or more letters
  392. pos++;
  393. while (_get_flags(pos).is_letter) {
  394. pos++;
  395. }
  396. _add_token(pos);
  397. continue;
  398. }
  399. }
  400. // regex: \p{N}{1,3}
  401. if (flags.is_number) {
  402. size_t ini = pos;
  403. while (_get_flags(pos).is_number) {
  404. if (++pos - ini >= 3 ) {
  405. _add_token(pos);
  406. ini = pos;
  407. }
  408. }
  409. _add_token(pos);
  410. continue;
  411. }
  412. // regex: <space>?[^\s\p{L}\p{N}]+[\r\n]*
  413. auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
  414. if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags.as_uint()) {
  415. pos += (cpt == ' ');
  416. while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
  417. flags2 = _get_flags(++pos);
  418. }
  419. uint32_t cpt2 = _get_cpt(pos);
  420. while (cpt2 == '\r' || cpt2 == '\n') {
  421. cpt2 = _get_cpt(++pos);
  422. }
  423. _add_token(pos);
  424. continue;
  425. }
  426. size_t num_whitespaces = 0;
  427. size_t last_end_r_or_n = 0;
  428. while (_get_flags(pos+num_whitespaces).is_whitespace) {
  429. uint32_t cpt2 = _get_cpt(pos+num_whitespaces);
  430. if (cpt2 == '\r' || cpt2 == '\n') {
  431. last_end_r_or_n = pos + num_whitespaces + 1;
  432. }
  433. num_whitespaces++;
  434. }
  435. // regex: \s*[\r\n]+
  436. if (last_end_r_or_n > 0) {
  437. pos = last_end_r_or_n;
  438. _add_token(pos);
  439. continue;
  440. }
  441. // regex: \s+(?!\S)
  442. if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
  443. pos += num_whitespaces - 1;
  444. _add_token(pos);
  445. continue;
  446. }
  447. // regex: \s+
  448. if (num_whitespaces > 0) {
  449. pos += num_whitespaces;
  450. _add_token(pos);
  451. continue;
  452. }
  453. // no matches
  454. _add_token(++pos);
  455. }
  456. }
  457. return bpe_offsets;
  458. }
  459. // use std::wregex to split the text
  460. static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) {
  461. std::wregex expr(regex_expr);
  462. std::vector<size_t> bpe_offsets; // store the offset of each word
  463. bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
  464. size_t start = 0;
  465. for (auto offset : offsets) {
  466. std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr);
  467. std::wcregex_iterator end;
  468. int64_t start_idx = 0;
  469. while (it != end) {
  470. std::wcmatch match = *it;
  471. if (match.position() > start_idx) {
  472. bpe_offsets.emplace_back(match.position() - start_idx);
  473. }
  474. bpe_offsets.emplace_back(match.length());
  475. start_idx = match.position() + match.length();
  476. ++it;
  477. }
  478. if (start_idx < (int64_t) offset) {
  479. bpe_offsets.emplace_back(offset - start_idx);
  480. }
  481. start += offset;
  482. }
  483. return bpe_offsets;
  484. }
  485. // use std::regex to split the text
  486. static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
  487. std::regex expr(regex_expr);
  488. std::vector<size_t> bpe_offsets; // store the offset of each word
  489. bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
  490. size_t start = 0;
  491. for (auto offset : offsets) {
  492. std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr);
  493. std::cregex_iterator end;
  494. int64_t start_idx = 0;
  495. while (it != end) {
  496. std::cmatch match = *it;
  497. if (match.position() > start_idx) {
  498. bpe_offsets.emplace_back(match.position() - start_idx);
  499. }
  500. bpe_offsets.emplace_back(match.length());
  501. start_idx = match.position() + match.length();
  502. ++it;
  503. }
  504. if (start_idx < (int64_t) offset) {
  505. bpe_offsets.emplace_back(offset - start_idx);
  506. }
  507. start += offset;
  508. }
  509. return bpe_offsets;
  510. }
  511. static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
  512. std::vector<size_t> bpe_offsets;
  513. if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") {
  514. bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets);
  515. } else if (
  516. regex_expr == "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" ||
  517. regex_expr == "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+") {
  518. bpe_offsets = unicode_regex_split_custom_llama3(text, offsets);
  519. }
  520. return bpe_offsets;
  521. }
  522. //
  523. // interface
  524. //
  525. std::string unicode_cpt_to_utf8(uint32_t cpt) {
  526. std::string result;
  527. if (/* 0x00 <= cpt && */ cpt <= 0x7f) {
  528. result.push_back(cpt);
  529. return result;
  530. }
  531. if (0x80 <= cpt && cpt <= 0x7ff) {
  532. result.push_back(0xc0 | ((cpt >> 6) & 0x1f));
  533. result.push_back(0x80 | (cpt & 0x3f));
  534. return result;
  535. }
  536. if (0x800 <= cpt && cpt <= 0xffff) {
  537. result.push_back(0xe0 | ((cpt >> 12) & 0x0f));
  538. result.push_back(0x80 | ((cpt >> 6) & 0x3f));
  539. result.push_back(0x80 | (cpt & 0x3f));
  540. return result;
  541. }
  542. if (0x10000 <= cpt && cpt <= 0x10ffff) {
  543. result.push_back(0xf0 | ((cpt >> 18) & 0x07));
  544. result.push_back(0x80 | ((cpt >> 12) & 0x3f));
  545. result.push_back(0x80 | ((cpt >> 6) & 0x3f));
  546. result.push_back(0x80 | (cpt & 0x3f));
  547. return result;
  548. }
  549. throw std::invalid_argument("invalid codepoint");
  550. }
  551. std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts) {
  552. auto comp = [] (const uint32_t cpt, const range_nfd & range) {
  553. return cpt < range.first;
  554. };
  555. std::vector<uint32_t> result(cpts.size());
  556. for (size_t i = 0; i < cpts.size(); ++i) {
  557. const uint32_t cpt = cpts[i];
  558. auto it = std::upper_bound(unicode_ranges_nfd.begin(), unicode_ranges_nfd.end(), cpt, comp) - 1;
  559. result[i] = (it->first <= cpt && cpt <= it->last) ? it->nfd : cpt;
  560. }
  561. return result;
  562. }
  563. std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
  564. std::vector<uint32_t> result;
  565. result.reserve(utf8.size());
  566. size_t offset = 0;
  567. while (offset < utf8.size()) {
  568. try {
  569. result.push_back(unicode_cpt_from_utf8(utf8, offset));
  570. }
  571. catch (const std::invalid_argument & /*ex*/) {
  572. // Silently ignore invalid UTF-8 input to avoid leaking the exception beyond llama_tokenize
  573. ++offset;
  574. result.emplace_back(0xFFFD); // replacement character
  575. }
  576. }
  577. return result;
  578. }
  579. unicode_cpt_flags unicode_cpt_flags_from_cpt(const uint32_t cpt) {
  580. static const unicode_cpt_flags undef(unicode_cpt_flags::UNDEFINED);
  581. static const auto cpt_flags = unicode_cpt_flags_array();
  582. return cpt < cpt_flags.size() ? cpt_flags[cpt] : undef;
  583. }
  584. unicode_cpt_flags unicode_cpt_flags_from_utf8(const std::string & utf8) {
  585. static const unicode_cpt_flags undef(unicode_cpt_flags::UNDEFINED);
  586. if (utf8.empty()) {
  587. return undef; // undefined
  588. }
  589. size_t offset = 0;
  590. return unicode_cpt_flags_from_cpt(unicode_cpt_from_utf8(utf8, offset));
  591. }
  592. std::string unicode_byte_to_utf8(uint8_t byte) {
  593. static std::unordered_map<uint8_t, std::string> map = unicode_byte_to_utf8_map();
  594. return map.at(byte);
  595. }
  596. uint8_t unicode_utf8_to_byte(const std::string & utf8) {
  597. static std::unordered_map<std::string, uint8_t> map = unicode_utf8_to_byte_map();
  598. return map.at(utf8);
  599. }
  600. uint32_t unicode_tolower(uint32_t cpt) {
  601. // binary search
  602. auto it = std::lower_bound(unicode_map_lowercase.begin(), unicode_map_lowercase.end(), cpt,
  603. [](const std::pair<uint32_t, uint32_t> & pair, uint32_t value) {
  604. return pair.first < value;
  605. });
  606. if (it != unicode_map_lowercase.end() && it->first == cpt) {
  607. return it->second;
  608. }
  609. return cpt; // Return the original code point if no lowercase mapping is found
  610. }
  611. std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) {
  612. // unicode categories
  613. static const std::map<std::string, int> k_ucat_enum = {
  614. { "\\p{N}", unicode_cpt_flags::NUMBER },
  615. { "\\p{L}", unicode_cpt_flags::LETTER },
  616. { "\\p{P}", unicode_cpt_flags::PUNCTUATION },
  617. { "\\p{M}", unicode_cpt_flags::ACCENT_MARK },
  618. { "\\p{S}", unicode_cpt_flags::SYMBOL },
  619. };
  620. static const std::map<int, int> k_ucat_cpt = {
  621. { unicode_cpt_flags::NUMBER, 0xD1 },
  622. { unicode_cpt_flags::LETTER, 0xD2 },
  623. { unicode_cpt_flags::PUNCTUATION, 0xD3 },
  624. { unicode_cpt_flags::ACCENT_MARK, 0xD4 },
  625. { unicode_cpt_flags::SYMBOL, 0xD5 },
  626. };
  627. static const std::map<int, std::string> k_ucat_map = {
  628. { unicode_cpt_flags::NUMBER, "\x30-\x39" }, // 0-9
  629. { unicode_cpt_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
  630. { unicode_cpt_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
  631. { unicode_cpt_flags::ACCENT_MARK, "" }, // no sub-128 codepoints
  632. { unicode_cpt_flags::SYMBOL, "\\\x24\\\x2B\x3C-\x3E\x5E\x60\\\x7C" }, // $+<=>^`|
  633. };
  634. // compute collapsed codepoints only if needed by at least one regex
  635. bool need_collapse = false;
  636. for (const auto & regex_expr : regex_exprs) {
  637. // search for unicode categories
  638. for (const auto & ucat : k_ucat_enum) {
  639. if (std::string::npos != regex_expr.find(ucat.first)) {
  640. need_collapse = true;
  641. break;
  642. }
  643. }
  644. }
  645. const auto cpts = unicode_cpts_from_utf8(text);
  646. // generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte
  647. // ref: https://github.com/ggml-org/llama.cpp/pull/6920#issuecomment-2081479935
  648. std::string text_collapsed;
  649. if (need_collapse) {
  650. // collapse all unicode categories
  651. text_collapsed.resize(cpts.size());
  652. for (size_t i = 0; i < cpts.size(); ++i) {
  653. // keep single-byte codepoints as is
  654. if (cpts[i] < 128) {
  655. text_collapsed[i] = cpts[i];
  656. continue;
  657. }
  658. const auto flags = unicode_cpt_flags_from_cpt(cpts[i]);
  659. if (flags.is_whitespace) {
  660. //NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does.
  661. //text_collapsed[i] = (char) 0x85; // <Next Line> as whitespace fallback
  662. text_collapsed[i] = (char) 0x0B; // <vertical tab> as whitespace fallback
  663. } else if (k_ucat_cpt.find(flags.category_flag()) != k_ucat_cpt.end()) {
  664. text_collapsed[i] = k_ucat_cpt.at(flags.category_flag());
  665. } else {
  666. text_collapsed[i] = (char) 0xD0; // fallback
  667. }
  668. }
  669. }
  670. std::vector<size_t> bpe_offsets = { cpts.size() };
  671. for (const auto & regex_expr : regex_exprs) {
  672. // first, see if we have an efficient custom regex implementation
  673. auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets);
  674. if (!tmp.empty()) {
  675. bpe_offsets = std::move(tmp);
  676. continue;
  677. }
  678. // fallback to general-purpose std::regex / std::wregex
  679. try {
  680. // if a unicode category is used in the regex, we use the collapsed text and replace the unicode category
  681. // with the corresponding collapsed representation
  682. bool use_collapsed = false;
  683. for (const auto & ucat : k_ucat_enum) {
  684. if (std::string::npos != regex_expr.find(ucat.first)) {
  685. use_collapsed = true;
  686. break;
  687. }
  688. }
  689. if (use_collapsed) {
  690. // sanity-check that the original regex does not contain any non-ASCII characters
  691. const auto cpts_regex = unicode_cpts_from_utf8(regex_expr);
  692. for (size_t i = 0; i < cpts_regex.size(); ++i) {
  693. if (cpts_regex[i] >= 128) {
  694. throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported");
  695. }
  696. }
  697. // generate a collapsed representation of the regex
  698. std::string regex_expr_collapsed;
  699. // track if we are inside [], because nested [] are not allowed
  700. bool inside = false;
  701. for (size_t i = 0; i < regex_expr.size(); ++i) {
  702. if (regex_expr[i] == '[' && (i == 0 || regex_expr[i - 1] != '\\')) {
  703. regex_expr_collapsed += '[';
  704. inside = true;
  705. continue;
  706. }
  707. if (inside && regex_expr[i] == ']' && regex_expr[i - 1] != '\\') {
  708. regex_expr_collapsed += ']';
  709. inside = false;
  710. continue;
  711. }
  712. if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() &&
  713. regex_expr[i + 1] == 'p' &&
  714. regex_expr[i + 2] == '{' &&
  715. regex_expr[i + 4] == '}') {
  716. const std::string pat = regex_expr.substr(i, 5);
  717. if (k_ucat_enum.find(pat) != k_ucat_enum.end()) {
  718. if (!inside) {
  719. regex_expr_collapsed += '[';
  720. }
  721. regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat));
  722. regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat));
  723. if (!inside) {
  724. regex_expr_collapsed += ']';
  725. }
  726. i += 4;
  727. continue;
  728. }
  729. }
  730. regex_expr_collapsed += regex_expr[i];
  731. }
  732. //printf("text_collapsed: %s\n", text_collapsed.c_str());
  733. //printf("regex_expr_collapsed: %s\n", regex_expr_collapsed.c_str());
  734. bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
  735. } else {
  736. // no unicode category used, we can use std::wregex directly
  737. const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
  738. // std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback
  739. std::wstring wtext(cpts.begin(), cpts.end());
  740. for (size_t i = 0; i < wtext.size(); ++i) {
  741. if (wtext[i] > 0x7F && unicode_cpt_flags_from_cpt(wtext[i]).is_whitespace) {
  742. wtext[i] = 0x0B;
  743. }
  744. }
  745. //printf("text: %s\n", text.c_str());
  746. //printf("regex_expr: %s\n", regex_expr.c_str());
  747. bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets);
  748. }
  749. } catch (std::regex_error & e) {
  750. fprintf(stderr, "Failed to process regex: '%s'\n", regex_expr.c_str());
  751. fprintf(stderr, "Regex error: %s\n", e.what());
  752. throw std::runtime_error("Failed to process regex");
  753. }
  754. }
  755. std::vector<std::string> bpe_words;
  756. bpe_words.reserve(bpe_offsets.size()); // reserve memory for the approximate size
  757. size_t start = 0;
  758. for (size_t & offset : bpe_offsets) {
  759. bpe_words.emplace_back();
  760. for (size_t i = start; i < start + offset; ++i) {
  761. bpe_words.back() += unicode_cpt_to_utf8(cpts[i]);
  762. }
  763. start += offset;
  764. }
  765. return unicode_byte_encoding_process(bpe_words);
  766. }