ggml.c 592 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453
  1. /**
  2. * llama.cpp - git 7c529cede6e84054e77a3eceab31c53de7b2f55b
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023 Georgi Gerganov
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  27. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  28. #include "ggml.h"
  29. #ifdef GGML_USE_K_QUANTS
  30. #include "k_quants.h"
  31. #endif
  32. #if defined(_MSC_VER) || defined(__MINGW32__)
  33. #include <malloc.h> // using malloc.h with MSC/MINGW
  34. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  35. #include <alloca.h>
  36. #endif
  37. #include <assert.h>
  38. #include <errno.h>
  39. #include <time.h>
  40. #include <math.h>
  41. #include <stdlib.h>
  42. #include <string.h>
  43. #include <stdint.h>
  44. #include <inttypes.h>
  45. #include <stdio.h>
  46. #include <float.h>
  47. #include <limits.h>
  48. #include <stdarg.h>
  49. #include <signal.h>
  50. #ifdef GGML_USE_METAL
  51. #include <unistd.h>
  52. #endif
  53. // static_assert should be a #define, but if it's not,
  54. // fall back to the _Static_assert C11 keyword.
  55. // if C99 - static_assert is noop
  56. // ref: https://stackoverflow.com/a/53923785/4039976
  57. #ifndef static_assert
  58. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  59. #define static_assert(cond, msg) _Static_assert(cond, msg)
  60. #else
  61. #define static_assert(cond, msg) struct global_scope_noop_trick
  62. #endif
  63. #endif
  64. #if defined(_MSC_VER)
  65. // disable "possible loss of data" to avoid hundreds of casts
  66. // we should just be careful :)
  67. #pragma warning(disable: 4244 4267)
  68. #endif
  69. #if defined(_WIN32)
  70. #include <windows.h>
  71. typedef volatile LONG atomic_int;
  72. typedef atomic_int atomic_bool;
  73. static void atomic_store(atomic_int * ptr, LONG val) {
  74. InterlockedExchange(ptr, val);
  75. }
  76. static LONG atomic_load(atomic_int * ptr) {
  77. return InterlockedCompareExchange(ptr, 0, 0);
  78. }
  79. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  80. return InterlockedExchangeAdd(ptr, inc);
  81. }
  82. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  83. return atomic_fetch_add(ptr, -(dec));
  84. }
  85. typedef HANDLE pthread_t;
  86. typedef DWORD thread_ret_t;
  87. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  88. (void) unused;
  89. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  90. if (handle == NULL)
  91. {
  92. return EAGAIN;
  93. }
  94. *out = handle;
  95. return 0;
  96. }
  97. static int pthread_join(pthread_t thread, void * unused) {
  98. (void) unused;
  99. return (int) WaitForSingleObject(thread, INFINITE);
  100. }
  101. static int sched_yield (void) {
  102. Sleep (0);
  103. return 0;
  104. }
  105. #else
  106. #include <pthread.h>
  107. #include <stdatomic.h>
  108. typedef void * thread_ret_t;
  109. #include <sys/types.h>
  110. #include <sys/stat.h>
  111. #include <unistd.h>
  112. #endif
  113. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  114. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  115. #ifndef __FMA__
  116. #define __FMA__
  117. #endif
  118. #ifndef __F16C__
  119. #define __F16C__
  120. #endif
  121. #ifndef __SSE3__
  122. #define __SSE3__
  123. #endif
  124. #endif
  125. /*#define GGML_PERF*/
  126. #define GGML_DEBUG 0
  127. #define GGML_GELU_FP16
  128. #define GGML_GELU_QUICK_FP16
  129. #define GGML_SILU_FP16
  130. #define GGML_SOFT_MAX_UNROLL 4
  131. #define GGML_VEC_DOT_UNROLL 2
  132. //
  133. // logging
  134. //
  135. #if (GGML_DEBUG >= 1)
  136. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  137. #else
  138. #define GGML_PRINT_DEBUG(...)
  139. #endif
  140. #if (GGML_DEBUG >= 5)
  141. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  142. #else
  143. #define GGML_PRINT_DEBUG_5(...)
  144. #endif
  145. #if (GGML_DEBUG >= 10)
  146. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  147. #else
  148. #define GGML_PRINT_DEBUG_10(...)
  149. #endif
  150. #define GGML_PRINT(...) printf(__VA_ARGS__)
  151. #ifdef GGML_USE_ACCELERATE
  152. // uncomment to use vDSP for soft max computation
  153. // note: not sure if it is actually faster
  154. //#define GGML_SOFT_MAX_ACCELERATE
  155. #endif
  156. #if UINTPTR_MAX == 0xFFFFFFFF
  157. #define GGML_MEM_ALIGN 4
  158. #else
  159. #define GGML_MEM_ALIGN 16
  160. #endif
  161. //
  162. // logging
  163. //
  164. #if (GGML_DEBUG >= 1)
  165. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  166. #else
  167. #define GGML_PRINT_DEBUG(...)
  168. #endif
  169. #if (GGML_DEBUG >= 5)
  170. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  171. #else
  172. #define GGML_PRINT_DEBUG_5(...)
  173. #endif
  174. #if (GGML_DEBUG >= 10)
  175. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  176. #else
  177. #define GGML_PRINT_DEBUG_10(...)
  178. #endif
  179. #define GGML_PRINT(...) printf(__VA_ARGS__)
  180. //
  181. // end of logging block
  182. //
  183. #if defined(_MSC_VER) || defined(__MINGW32__)
  184. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  185. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  186. #else
  187. inline static void* ggml_aligned_malloc(size_t size) {
  188. void* aligned_memory = NULL;
  189. #ifdef GGML_USE_METAL
  190. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  191. #else
  192. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  193. #endif
  194. if (result != 0) {
  195. // Handle allocation failure
  196. const char *error_desc = "unknown allocation error";
  197. switch (result) {
  198. case EINVAL:
  199. error_desc = "invalid alignment value";
  200. break;
  201. case ENOMEM:
  202. error_desc = "insufficient memory";
  203. break;
  204. }
  205. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  206. __func__, error_desc, size/(1024.0*1024.0));
  207. return NULL;
  208. }
  209. return aligned_memory;
  210. }
  211. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  212. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  213. #endif
  214. #define UNUSED GGML_UNUSED
  215. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  216. //
  217. // tensor access macros
  218. //
  219. #define GGML_TENSOR_UNARY_OP_LOCALS \
  220. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  221. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  222. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  223. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  224. #define GGML_TENSOR_BINARY_OP_LOCALS \
  225. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  226. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  227. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  228. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  229. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  230. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  231. #if defined(GGML_USE_ACCELERATE)
  232. #include <Accelerate/Accelerate.h>
  233. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  234. #include "ggml-opencl.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #endif
  247. #undef MIN
  248. #undef MAX
  249. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  250. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. // 16-bit float
  254. // on Arm, we use __fp16
  255. // on x86, we use uint16_t
  256. #ifdef __ARM_NEON
  257. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  258. //
  259. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  260. //
  261. #include <arm_neon.h>
  262. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  263. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  264. #define GGML_FP16_TO_FP32(x) ((float) (x))
  265. #define GGML_FP32_TO_FP16(x) (x)
  266. #else
  267. #ifdef __wasm_simd128__
  268. #include <wasm_simd128.h>
  269. #else
  270. #ifdef __POWER9_VECTOR__
  271. #include <altivec.h>
  272. #undef bool
  273. #define bool _Bool
  274. #else
  275. #if defined(_MSC_VER) || defined(__MINGW32__)
  276. #include <intrin.h>
  277. #else
  278. #if !defined(__riscv)
  279. #include <immintrin.h>
  280. #endif
  281. #endif
  282. #endif
  283. #endif
  284. #ifdef __F16C__
  285. #ifdef _MSC_VER
  286. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  287. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  288. #else
  289. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  290. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  291. #endif
  292. #elif defined(__POWER9_VECTOR__)
  293. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  294. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  295. /* the inline asm below is about 12% faster than the lookup method */
  296. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  297. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  298. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  299. register float f;
  300. register double d;
  301. __asm__(
  302. "mtfprd %0,%2\n"
  303. "xscvhpdp %0,%0\n"
  304. "frsp %1,%0\n" :
  305. /* temp */ "=d"(d),
  306. /* out */ "=f"(f):
  307. /* in */ "r"(h));
  308. return f;
  309. }
  310. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  311. register double d;
  312. register ggml_fp16_t r;
  313. __asm__( /* xscvdphp can work on double or single precision */
  314. "xscvdphp %0,%2\n"
  315. "mffprd %1,%0\n" :
  316. /* temp */ "=d"(d),
  317. /* out */ "=r"(r):
  318. /* in */ "f"(f));
  319. return r;
  320. }
  321. #else
  322. // FP16 <-> FP32
  323. // ref: https://github.com/Maratyszcza/FP16
  324. static inline float fp32_from_bits(uint32_t w) {
  325. union {
  326. uint32_t as_bits;
  327. float as_value;
  328. } fp32;
  329. fp32.as_bits = w;
  330. return fp32.as_value;
  331. }
  332. static inline uint32_t fp32_to_bits(float f) {
  333. union {
  334. float as_value;
  335. uint32_t as_bits;
  336. } fp32;
  337. fp32.as_value = f;
  338. return fp32.as_bits;
  339. }
  340. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  341. const uint32_t w = (uint32_t) h << 16;
  342. const uint32_t sign = w & UINT32_C(0x80000000);
  343. const uint32_t two_w = w + w;
  344. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  345. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  346. const float exp_scale = 0x1.0p-112f;
  347. #else
  348. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  349. #endif
  350. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  351. const uint32_t magic_mask = UINT32_C(126) << 23;
  352. const float magic_bias = 0.5f;
  353. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  354. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  355. const uint32_t result = sign |
  356. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  357. return fp32_from_bits(result);
  358. }
  359. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  360. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  361. const float scale_to_inf = 0x1.0p+112f;
  362. const float scale_to_zero = 0x1.0p-110f;
  363. #else
  364. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  365. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  366. #endif
  367. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  368. const uint32_t w = fp32_to_bits(f);
  369. const uint32_t shl1_w = w + w;
  370. const uint32_t sign = w & UINT32_C(0x80000000);
  371. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  372. if (bias < UINT32_C(0x71000000)) {
  373. bias = UINT32_C(0x71000000);
  374. }
  375. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  376. const uint32_t bits = fp32_to_bits(base);
  377. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  378. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  379. const uint32_t nonsign = exp_bits + mantissa_bits;
  380. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  381. }
  382. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  383. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  384. #endif // __F16C__
  385. #endif // __ARM_NEON
  386. //
  387. // global data
  388. //
  389. // precomputed gelu table for f16 (128 KB)
  390. static ggml_fp16_t table_gelu_f16[1 << 16];
  391. // precomputed quick gelu table for f16 (128 KB)
  392. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  393. // precomputed silu table for f16 (128 KB)
  394. static ggml_fp16_t table_silu_f16[1 << 16];
  395. // precomputed exp table for f16 (128 KB)
  396. static ggml_fp16_t table_exp_f16[1 << 16];
  397. // precomputed f32 table for f16 (256 KB)
  398. static float table_f32_f16[1 << 16];
  399. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  400. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  401. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  402. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  403. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  404. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  405. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  406. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  407. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  408. // precomputed tables for expanding 8bits to 8 bytes:
  409. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  410. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  411. #endif
  412. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  413. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  414. // This is also true for POWER9.
  415. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  416. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  417. uint16_t s;
  418. memcpy(&s, &f, sizeof(uint16_t));
  419. return table_f32_f16[s];
  420. }
  421. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  422. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  423. #endif
  424. // note: do not use these inside ggml.c
  425. // these are meant to be used via the ggml.h API
  426. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  427. return (float) GGML_FP16_TO_FP32(x);
  428. }
  429. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  430. return GGML_FP32_TO_FP16(x);
  431. }
  432. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  433. for (int i = 0; i < n; i++) {
  434. y[i] = GGML_FP16_TO_FP32(x[i]);
  435. }
  436. }
  437. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  438. int i = 0;
  439. #if defined(__F16C__)
  440. for (; i + 7 < n; i += 8) {
  441. __m256 x_vec = _mm256_loadu_ps(x + i);
  442. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  443. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  444. }
  445. for(; i + 3 < n; i += 4) {
  446. __m128 x_vec = _mm_loadu_ps(x + i);
  447. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  448. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  449. }
  450. #endif
  451. for (; i < n; i++) {
  452. y[i] = GGML_FP32_TO_FP16(x[i]);
  453. }
  454. }
  455. //
  456. // timing
  457. //
  458. #if defined(_MSC_VER) || defined(__MINGW32__)
  459. static int64_t timer_freq, timer_start;
  460. void ggml_time_init(void) {
  461. LARGE_INTEGER t;
  462. QueryPerformanceFrequency(&t);
  463. timer_freq = t.QuadPart;
  464. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  465. // and the uptime is high enough.
  466. // We subtract the program start time to reduce the likelihood of that happening.
  467. QueryPerformanceCounter(&t);
  468. timer_start = t.QuadPart;
  469. }
  470. int64_t ggml_time_ms(void) {
  471. LARGE_INTEGER t;
  472. QueryPerformanceCounter(&t);
  473. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  474. }
  475. int64_t ggml_time_us(void) {
  476. LARGE_INTEGER t;
  477. QueryPerformanceCounter(&t);
  478. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  479. }
  480. #else
  481. void ggml_time_init(void) {}
  482. int64_t ggml_time_ms(void) {
  483. struct timespec ts;
  484. clock_gettime(CLOCK_MONOTONIC, &ts);
  485. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  486. }
  487. int64_t ggml_time_us(void) {
  488. struct timespec ts;
  489. clock_gettime(CLOCK_MONOTONIC, &ts);
  490. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  491. }
  492. #endif
  493. int64_t ggml_cycles(void) {
  494. return clock();
  495. }
  496. int64_t ggml_cycles_per_ms(void) {
  497. return CLOCKS_PER_SEC/1000;
  498. }
  499. #ifdef GGML_PERF
  500. #define ggml_perf_time_ms() ggml_time_ms()
  501. #define ggml_perf_time_us() ggml_time_us()
  502. #define ggml_perf_cycles() ggml_cycles()
  503. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  504. #else
  505. #define ggml_perf_time_ms() 0
  506. #define ggml_perf_time_us() 0
  507. #define ggml_perf_cycles() 0
  508. #define ggml_perf_cycles_per_ms() 0
  509. #endif
  510. //
  511. // cache line
  512. //
  513. #if defined(__cpp_lib_hardware_interference_size)
  514. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  515. #else
  516. #if defined(__POWER9_VECTOR__)
  517. #define CACHE_LINE_SIZE 128
  518. #else
  519. #define CACHE_LINE_SIZE 64
  520. #endif
  521. #endif
  522. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  523. //
  524. // quantization
  525. //
  526. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  527. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  528. // multiply int8_t, add results pairwise twice
  529. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  530. // Get absolute values of x vectors
  531. const __m128i ax = _mm_sign_epi8(x, x);
  532. // Sign the values of the y vectors
  533. const __m128i sy = _mm_sign_epi8(y, x);
  534. // Perform multiplication and create 16-bit values
  535. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  536. const __m128i ones = _mm_set1_epi16(1);
  537. return _mm_madd_epi16(ones, dot);
  538. }
  539. #if __AVX__ || __AVX2__ || __AVX512F__
  540. // horizontally add 8 floats
  541. static inline float hsum_float_8(const __m256 x) {
  542. __m128 res = _mm256_extractf128_ps(x, 1);
  543. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  544. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  545. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  546. return _mm_cvtss_f32(res);
  547. }
  548. // horizontally add 8 int32_t
  549. static inline int hsum_i32_8(const __m256i a) {
  550. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  551. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  552. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  553. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  554. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  555. }
  556. // horizontally add 4 int32_t
  557. static inline int hsum_i32_4(const __m128i a) {
  558. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  559. const __m128i sum64 = _mm_add_epi32(hi64, a);
  560. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  561. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  562. }
  563. #if defined(__AVX2__) || defined(__AVX512F__)
  564. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  565. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  566. uint32_t x32;
  567. memcpy(&x32, x, sizeof(uint32_t));
  568. const __m256i shuf_mask = _mm256_set_epi64x(
  569. 0x0303030303030303, 0x0202020202020202,
  570. 0x0101010101010101, 0x0000000000000000);
  571. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  572. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  573. bytes = _mm256_or_si256(bytes, bit_mask);
  574. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  575. }
  576. // Unpack 32 4-bit fields into 32 bytes
  577. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  578. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  579. {
  580. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  581. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  582. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  583. return _mm256_and_si256(lowMask, bytes);
  584. }
  585. // add int16_t pairwise and return as float vector
  586. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  587. const __m256i ones = _mm256_set1_epi16(1);
  588. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  589. return _mm256_cvtepi32_ps(summed_pairs);
  590. }
  591. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  592. #if __AVXVNNI__
  593. const __m256i zero = _mm256_setzero_si256();
  594. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  595. return _mm256_cvtepi32_ps(summed_pairs);
  596. #else
  597. // Perform multiplication and create 16-bit values
  598. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  599. return sum_i16_pairs_float(dot);
  600. #endif
  601. }
  602. // multiply int8_t, add results pairwise twice and return as float vector
  603. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  604. #if __AVXVNNIINT8__
  605. const __m256i zero = _mm256_setzero_si256();
  606. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  607. return _mm256_cvtepi32_ps(summed_pairs);
  608. #else
  609. // Get absolute values of x vectors
  610. const __m256i ax = _mm256_sign_epi8(x, x);
  611. // Sign the values of the y vectors
  612. const __m256i sy = _mm256_sign_epi8(y, x);
  613. return mul_sum_us8_pairs_float(ax, sy);
  614. #endif
  615. }
  616. static inline __m128i packNibbles( __m256i bytes )
  617. {
  618. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  619. #if __AVX512F__
  620. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  621. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  622. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  623. #else
  624. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  625. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  626. __m256i low = _mm256_and_si256( lowByte, bytes );
  627. high = _mm256_srli_epi16( high, 4 );
  628. bytes = _mm256_or_si256( low, high );
  629. // Compress uint16_t lanes into bytes
  630. __m128i r0 = _mm256_castsi256_si128( bytes );
  631. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  632. return _mm_packus_epi16( r0, r1 );
  633. #endif
  634. }
  635. #elif defined(__AVX__)
  636. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  637. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  638. uint32_t x32;
  639. memcpy(&x32, x, sizeof(uint32_t));
  640. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  641. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  642. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  643. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  644. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  645. bytesl = _mm_or_si128(bytesl, bit_mask);
  646. bytesh = _mm_or_si128(bytesh, bit_mask);
  647. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  648. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  649. return MM256_SET_M128I(bytesh, bytesl);
  650. }
  651. // Unpack 32 4-bit fields into 32 bytes
  652. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  653. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  654. {
  655. // Load 16 bytes from memory
  656. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  657. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  658. const __m128i lowMask = _mm_set1_epi8(0xF);
  659. tmpl = _mm_and_si128(lowMask, tmpl);
  660. tmph = _mm_and_si128(lowMask, tmph);
  661. return MM256_SET_M128I(tmph, tmpl);
  662. }
  663. // add int16_t pairwise and return as float vector
  664. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  665. const __m128i ones = _mm_set1_epi16(1);
  666. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  667. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  668. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  669. return _mm256_cvtepi32_ps(summed_pairs);
  670. }
  671. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  672. const __m128i axl = _mm256_castsi256_si128(ax);
  673. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  674. const __m128i syl = _mm256_castsi256_si128(sy);
  675. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  676. // Perform multiplication and create 16-bit values
  677. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  678. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  679. return sum_i16_pairs_float(doth, dotl);
  680. }
  681. // multiply int8_t, add results pairwise twice and return as float vector
  682. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  683. const __m128i xl = _mm256_castsi256_si128(x);
  684. const __m128i xh = _mm256_extractf128_si256(x, 1);
  685. const __m128i yl = _mm256_castsi256_si128(y);
  686. const __m128i yh = _mm256_extractf128_si256(y, 1);
  687. // Get absolute values of x vectors
  688. const __m128i axl = _mm_sign_epi8(xl, xl);
  689. const __m128i axh = _mm_sign_epi8(xh, xh);
  690. // Sign the values of the y vectors
  691. const __m128i syl = _mm_sign_epi8(yl, xl);
  692. const __m128i syh = _mm_sign_epi8(yh, xh);
  693. // Perform multiplication and create 16-bit values
  694. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  695. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  696. return sum_i16_pairs_float(doth, dotl);
  697. }
  698. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  699. {
  700. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  701. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  702. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  703. __m128i low = _mm_and_si128( lowByte, bytes1 );
  704. high = _mm_srli_epi16( high, 4 );
  705. bytes1 = _mm_or_si128( low, high );
  706. high = _mm_andnot_si128( lowByte, bytes2 );
  707. low = _mm_and_si128( lowByte, bytes2 );
  708. high = _mm_srli_epi16( high, 4 );
  709. bytes2 = _mm_or_si128( low, high );
  710. return _mm_packus_epi16( bytes1, bytes2);
  711. }
  712. #endif
  713. #elif defined(__SSSE3__)
  714. // horizontally add 4x4 floats
  715. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  716. __m128 res_0 =_mm_hadd_ps(a, b);
  717. __m128 res_1 =_mm_hadd_ps(c, d);
  718. __m128 res =_mm_hadd_ps(res_0, res_1);
  719. res =_mm_hadd_ps(res, res);
  720. res =_mm_hadd_ps(res, res);
  721. return _mm_cvtss_f32(res);
  722. }
  723. #endif // __AVX__ || __AVX2__ || __AVX512F__
  724. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  725. #if defined(__ARM_NEON)
  726. #if !defined(__aarch64__)
  727. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  728. return
  729. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  730. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  731. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  732. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  733. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  734. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  735. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  736. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  737. }
  738. inline static int16_t vaddvq_s8(int8x16_t v) {
  739. return
  740. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  741. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  742. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  743. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  744. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  745. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  746. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  747. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  748. }
  749. inline static int32_t vaddvq_s16(int16x8_t v) {
  750. return
  751. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  752. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  753. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  754. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  755. }
  756. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  757. return
  758. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  759. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  760. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  761. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  762. }
  763. inline static int32_t vaddvq_s32(int32x4_t v) {
  764. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  765. }
  766. inline static float vaddvq_f32(float32x4_t v) {
  767. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  768. }
  769. inline static float vminvq_f32(float32x4_t v) {
  770. return
  771. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  772. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  773. }
  774. inline static float vmaxvq_f32(float32x4_t v) {
  775. return
  776. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  777. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  778. }
  779. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  780. int32x4_t res;
  781. res[0] = roundf(vgetq_lane_f32(v, 0));
  782. res[1] = roundf(vgetq_lane_f32(v, 1));
  783. res[2] = roundf(vgetq_lane_f32(v, 2));
  784. res[3] = roundf(vgetq_lane_f32(v, 3));
  785. return res;
  786. }
  787. #endif
  788. #endif
  789. #define QK4_0 32
  790. typedef struct {
  791. ggml_fp16_t d; // delta
  792. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  793. } block_q4_0;
  794. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  795. #define QK4_1 32
  796. typedef struct {
  797. ggml_fp16_t d; // delta
  798. ggml_fp16_t m; // min
  799. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  800. } block_q4_1;
  801. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  802. #define QK5_0 32
  803. typedef struct {
  804. ggml_fp16_t d; // delta
  805. uint8_t qh[4]; // 5-th bit of quants
  806. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  807. } block_q5_0;
  808. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  809. #define QK5_1 32
  810. typedef struct {
  811. ggml_fp16_t d; // delta
  812. ggml_fp16_t m; // min
  813. uint8_t qh[4]; // 5-th bit of quants
  814. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  815. } block_q5_1;
  816. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  817. #define QK8_0 32
  818. typedef struct {
  819. ggml_fp16_t d; // delta
  820. int8_t qs[QK8_0]; // quants
  821. } block_q8_0;
  822. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  823. #define QK8_1 32
  824. typedef struct {
  825. float d; // delta
  826. float s; // d * sum(qs[i])
  827. int8_t qs[QK8_1]; // quants
  828. } block_q8_1;
  829. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  830. // reference implementation for deterministic creation of model files
  831. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  832. static const int qk = QK4_0;
  833. assert(k % qk == 0);
  834. const int nb = k / qk;
  835. for (int i = 0; i < nb; i++) {
  836. float amax = 0.0f; // absolute max
  837. float max = 0.0f;
  838. for (int j = 0; j < qk; j++) {
  839. const float v = x[i*qk + j];
  840. if (amax < fabsf(v)) {
  841. amax = fabsf(v);
  842. max = v;
  843. }
  844. }
  845. const float d = max / -8;
  846. const float id = d ? 1.0f/d : 0.0f;
  847. y[i].d = GGML_FP32_TO_FP16(d);
  848. for (int j = 0; j < qk/2; ++j) {
  849. const float x0 = x[i*qk + 0 + j]*id;
  850. const float x1 = x[i*qk + qk/2 + j]*id;
  851. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  852. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  853. y[i].qs[j] = xi0;
  854. y[i].qs[j] |= xi1 << 4;
  855. }
  856. }
  857. }
  858. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  859. quantize_row_q4_0_reference(x, y, k);
  860. }
  861. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  862. const int qk = QK4_1;
  863. assert(k % qk == 0);
  864. const int nb = k / qk;
  865. for (int i = 0; i < nb; i++) {
  866. float min = FLT_MAX;
  867. float max = -FLT_MAX;
  868. for (int j = 0; j < qk; j++) {
  869. const float v = x[i*qk + j];
  870. if (v < min) min = v;
  871. if (v > max) max = v;
  872. }
  873. const float d = (max - min) / ((1 << 4) - 1);
  874. const float id = d ? 1.0f/d : 0.0f;
  875. y[i].d = GGML_FP32_TO_FP16(d);
  876. y[i].m = GGML_FP32_TO_FP16(min);
  877. for (int j = 0; j < qk/2; ++j) {
  878. const float x0 = (x[i*qk + 0 + j] - min)*id;
  879. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  880. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  881. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  882. y[i].qs[j] = xi0;
  883. y[i].qs[j] |= xi1 << 4;
  884. }
  885. }
  886. }
  887. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  888. quantize_row_q4_1_reference(x, y, k);
  889. }
  890. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  891. static const int qk = QK5_0;
  892. assert(k % qk == 0);
  893. const int nb = k / qk;
  894. for (int i = 0; i < nb; i++) {
  895. float amax = 0.0f; // absolute max
  896. float max = 0.0f;
  897. for (int j = 0; j < qk; j++) {
  898. const float v = x[i*qk + j];
  899. if (amax < fabsf(v)) {
  900. amax = fabsf(v);
  901. max = v;
  902. }
  903. }
  904. const float d = max / -16;
  905. const float id = d ? 1.0f/d : 0.0f;
  906. y[i].d = GGML_FP32_TO_FP16(d);
  907. uint32_t qh = 0;
  908. for (int j = 0; j < qk/2; ++j) {
  909. const float x0 = x[i*qk + 0 + j]*id;
  910. const float x1 = x[i*qk + qk/2 + j]*id;
  911. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  912. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  913. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  914. // get the 5-th bit and store it in qh at the right position
  915. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  916. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  917. }
  918. memcpy(&y[i].qh, &qh, sizeof(qh));
  919. }
  920. }
  921. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  922. quantize_row_q5_0_reference(x, y, k);
  923. }
  924. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  925. const int qk = QK5_1;
  926. assert(k % qk == 0);
  927. const int nb = k / qk;
  928. for (int i = 0; i < nb; i++) {
  929. float min = FLT_MAX;
  930. float max = -FLT_MAX;
  931. for (int j = 0; j < qk; j++) {
  932. const float v = x[i*qk + j];
  933. if (v < min) min = v;
  934. if (v > max) max = v;
  935. }
  936. const float d = (max - min) / ((1 << 5) - 1);
  937. const float id = d ? 1.0f/d : 0.0f;
  938. y[i].d = GGML_FP32_TO_FP16(d);
  939. y[i].m = GGML_FP32_TO_FP16(min);
  940. uint32_t qh = 0;
  941. for (int j = 0; j < qk/2; ++j) {
  942. const float x0 = (x[i*qk + 0 + j] - min)*id;
  943. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  944. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  945. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  946. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  947. // get the 5-th bit and store it in qh at the right position
  948. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  949. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  950. }
  951. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  952. }
  953. }
  954. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  955. quantize_row_q5_1_reference(x, y, k);
  956. }
  957. // reference implementation for deterministic creation of model files
  958. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  959. assert(k % QK8_0 == 0);
  960. const int nb = k / QK8_0;
  961. for (int i = 0; i < nb; i++) {
  962. float amax = 0.0f; // absolute max
  963. for (int j = 0; j < QK8_0; j++) {
  964. const float v = x[i*QK8_0 + j];
  965. amax = MAX(amax, fabsf(v));
  966. }
  967. const float d = amax / ((1 << 7) - 1);
  968. const float id = d ? 1.0f/d : 0.0f;
  969. y[i].d = GGML_FP32_TO_FP16(d);
  970. for (int j = 0; j < QK8_0; ++j) {
  971. const float x0 = x[i*QK8_0 + j]*id;
  972. y[i].qs[j] = roundf(x0);
  973. }
  974. }
  975. }
  976. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  977. assert(QK8_0 == 32);
  978. assert(k % QK8_0 == 0);
  979. const int nb = k / QK8_0;
  980. block_q8_0 * restrict y = vy;
  981. #if defined(__ARM_NEON)
  982. for (int i = 0; i < nb; i++) {
  983. float32x4_t srcv [8];
  984. float32x4_t asrcv[8];
  985. float32x4_t amaxv[8];
  986. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  987. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  988. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  989. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  990. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  991. const float amax = vmaxvq_f32(amaxv[0]);
  992. const float d = amax / ((1 << 7) - 1);
  993. const float id = d ? 1.0f/d : 0.0f;
  994. y[i].d = GGML_FP32_TO_FP16(d);
  995. for (int j = 0; j < 8; j++) {
  996. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  997. const int32x4_t vi = vcvtnq_s32_f32(v);
  998. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  999. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1000. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1001. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1002. }
  1003. }
  1004. #elif defined(__wasm_simd128__)
  1005. for (int i = 0; i < nb; i++) {
  1006. v128_t srcv [8];
  1007. v128_t asrcv[8];
  1008. v128_t amaxv[8];
  1009. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1010. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1011. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1012. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1013. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1014. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1015. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1016. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1017. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1018. const float d = amax / ((1 << 7) - 1);
  1019. const float id = d ? 1.0f/d : 0.0f;
  1020. y[i].d = GGML_FP32_TO_FP16(d);
  1021. for (int j = 0; j < 8; j++) {
  1022. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1023. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1024. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1025. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1026. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1027. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1028. }
  1029. }
  1030. #elif defined(__AVX2__) || defined(__AVX__)
  1031. for (int i = 0; i < nb; i++) {
  1032. // Load elements into 4 AVX vectors
  1033. __m256 v0 = _mm256_loadu_ps( x );
  1034. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1035. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1036. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1037. x += 32;
  1038. // Compute max(abs(e)) for the block
  1039. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1040. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1041. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1042. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1043. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1044. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1045. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1046. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1047. const float maxScalar = _mm_cvtss_f32( max4 );
  1048. // Quantize these floats
  1049. const float d = maxScalar / 127.f;
  1050. y[i].d = GGML_FP32_TO_FP16(d);
  1051. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1052. const __m256 mul = _mm256_set1_ps( id );
  1053. // Apply the multiplier
  1054. v0 = _mm256_mul_ps( v0, mul );
  1055. v1 = _mm256_mul_ps( v1, mul );
  1056. v2 = _mm256_mul_ps( v2, mul );
  1057. v3 = _mm256_mul_ps( v3, mul );
  1058. // Round to nearest integer
  1059. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1060. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1061. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1062. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1063. // Convert floats to integers
  1064. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1065. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1066. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1067. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1068. #if defined(__AVX2__)
  1069. // Convert int32 to int16
  1070. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1071. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1072. // Convert int16 to int8
  1073. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1074. // We got our precious signed bytes, but the order is now wrong
  1075. // These AVX2 pack instructions process 16-byte pieces independently
  1076. // The following instruction is fixing the order
  1077. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1078. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1079. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1080. #else
  1081. // Since we don't have in AVX some necessary functions,
  1082. // we split the registers in half and call AVX2 analogs from SSE
  1083. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1084. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1085. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1086. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1087. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1088. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1089. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1090. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1091. // Convert int32 to int16
  1092. ni0 = _mm_packs_epi32( ni0, ni1 );
  1093. ni2 = _mm_packs_epi32( ni2, ni3 );
  1094. ni4 = _mm_packs_epi32( ni4, ni5 );
  1095. ni6 = _mm_packs_epi32( ni6, ni7 );
  1096. // Convert int16 to int8
  1097. ni0 = _mm_packs_epi16( ni0, ni2 );
  1098. ni4 = _mm_packs_epi16( ni4, ni6 );
  1099. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1100. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1101. #endif
  1102. }
  1103. #else
  1104. // scalar
  1105. quantize_row_q8_0_reference(x, y, k);
  1106. #endif
  1107. }
  1108. // reference implementation for deterministic creation of model files
  1109. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1110. assert(QK8_1 == 32);
  1111. assert(k % QK8_1 == 0);
  1112. const int nb = k / QK8_1;
  1113. for (int i = 0; i < nb; i++) {
  1114. float amax = 0.0f; // absolute max
  1115. for (int j = 0; j < QK8_1; j++) {
  1116. const float v = x[i*QK8_1 + j];
  1117. amax = MAX(amax, fabsf(v));
  1118. }
  1119. const float d = amax / ((1 << 7) - 1);
  1120. const float id = d ? 1.0f/d : 0.0f;
  1121. y[i].d = d;
  1122. int sum = 0;
  1123. for (int j = 0; j < QK8_1/2; ++j) {
  1124. const float v0 = x[i*QK8_1 + j]*id;
  1125. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1126. y[i].qs[ j] = roundf(v0);
  1127. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1128. sum += y[i].qs[ j];
  1129. sum += y[i].qs[QK8_1/2 + j];
  1130. }
  1131. y[i].s = sum*d;
  1132. }
  1133. }
  1134. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1135. assert(k % QK8_1 == 0);
  1136. const int nb = k / QK8_1;
  1137. block_q8_1 * restrict y = vy;
  1138. #if defined(__ARM_NEON)
  1139. for (int i = 0; i < nb; i++) {
  1140. float32x4_t srcv [8];
  1141. float32x4_t asrcv[8];
  1142. float32x4_t amaxv[8];
  1143. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1144. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1145. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1146. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1147. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1148. const float amax = vmaxvq_f32(amaxv[0]);
  1149. const float d = amax / ((1 << 7) - 1);
  1150. const float id = d ? 1.0f/d : 0.0f;
  1151. y[i].d = d;
  1152. int32x4_t accv = vdupq_n_s32(0);
  1153. for (int j = 0; j < 8; j++) {
  1154. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1155. const int32x4_t vi = vcvtnq_s32_f32(v);
  1156. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1157. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1158. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1159. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1160. accv = vaddq_s32(accv, vi);
  1161. }
  1162. y[i].s = d * vaddvq_s32(accv);
  1163. }
  1164. #elif defined(__wasm_simd128__)
  1165. for (int i = 0; i < nb; i++) {
  1166. v128_t srcv [8];
  1167. v128_t asrcv[8];
  1168. v128_t amaxv[8];
  1169. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1170. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1171. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1172. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1173. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1174. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1175. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1176. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1177. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1178. const float d = amax / ((1 << 7) - 1);
  1179. const float id = d ? 1.0f/d : 0.0f;
  1180. y[i].d = d;
  1181. v128_t accv = wasm_i32x4_splat(0);
  1182. for (int j = 0; j < 8; j++) {
  1183. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1184. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1185. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1186. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1187. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1188. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1189. accv = wasm_i32x4_add(accv, vi);
  1190. }
  1191. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1192. wasm_i32x4_extract_lane(accv, 1) +
  1193. wasm_i32x4_extract_lane(accv, 2) +
  1194. wasm_i32x4_extract_lane(accv, 3));
  1195. }
  1196. #elif defined(__AVX2__) || defined(__AVX__)
  1197. for (int i = 0; i < nb; i++) {
  1198. // Load elements into 4 AVX vectors
  1199. __m256 v0 = _mm256_loadu_ps( x );
  1200. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1201. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1202. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1203. x += 32;
  1204. // Compute max(abs(e)) for the block
  1205. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1206. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1207. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1208. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1209. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1210. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1211. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1212. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1213. const float maxScalar = _mm_cvtss_f32( max4 );
  1214. // Quantize these floats
  1215. const float d = maxScalar / 127.f;
  1216. y[i].d = d;
  1217. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1218. const __m256 mul = _mm256_set1_ps( id );
  1219. // Apply the multiplier
  1220. v0 = _mm256_mul_ps( v0, mul );
  1221. v1 = _mm256_mul_ps( v1, mul );
  1222. v2 = _mm256_mul_ps( v2, mul );
  1223. v3 = _mm256_mul_ps( v3, mul );
  1224. // Round to nearest integer
  1225. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1226. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1227. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1228. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1229. // Convert floats to integers
  1230. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1231. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1232. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1233. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1234. #if defined(__AVX2__)
  1235. // Compute the sum of the quants and set y[i].s
  1236. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1237. // Convert int32 to int16
  1238. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1239. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1240. // Convert int16 to int8
  1241. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1242. // We got our precious signed bytes, but the order is now wrong
  1243. // These AVX2 pack instructions process 16-byte pieces independently
  1244. // The following instruction is fixing the order
  1245. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1246. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1247. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1248. #else
  1249. // Since we don't have in AVX some necessary functions,
  1250. // we split the registers in half and call AVX2 analogs from SSE
  1251. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1252. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1253. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1254. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1255. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1256. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1257. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1258. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1259. // Compute the sum of the quants and set y[i].s
  1260. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1261. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1262. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1263. // Convert int32 to int16
  1264. ni0 = _mm_packs_epi32( ni0, ni1 );
  1265. ni2 = _mm_packs_epi32( ni2, ni3 );
  1266. ni4 = _mm_packs_epi32( ni4, ni5 );
  1267. ni6 = _mm_packs_epi32( ni6, ni7 );
  1268. // Convert int16 to int8
  1269. ni0 = _mm_packs_epi16( ni0, ni2 );
  1270. ni4 = _mm_packs_epi16( ni4, ni6 );
  1271. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1272. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1273. #endif
  1274. }
  1275. #else
  1276. // scalar
  1277. quantize_row_q8_1_reference(x, y, k);
  1278. #endif
  1279. }
  1280. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1281. static const int qk = QK4_0;
  1282. assert(k % qk == 0);
  1283. const int nb = k / qk;
  1284. for (int i = 0; i < nb; i++) {
  1285. const float d = GGML_FP16_TO_FP32(x[i].d);
  1286. for (int j = 0; j < qk/2; ++j) {
  1287. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1288. const int x1 = (x[i].qs[j] >> 4) - 8;
  1289. y[i*qk + j + 0 ] = x0*d;
  1290. y[i*qk + j + qk/2] = x1*d;
  1291. }
  1292. }
  1293. }
  1294. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1295. static const int qk = QK4_1;
  1296. assert(k % qk == 0);
  1297. const int nb = k / qk;
  1298. for (int i = 0; i < nb; i++) {
  1299. const float d = GGML_FP16_TO_FP32(x[i].d);
  1300. const float m = GGML_FP16_TO_FP32(x[i].m);
  1301. for (int j = 0; j < qk/2; ++j) {
  1302. const int x0 = (x[i].qs[j] & 0x0F);
  1303. const int x1 = (x[i].qs[j] >> 4);
  1304. y[i*qk + j + 0 ] = x0*d + m;
  1305. y[i*qk + j + qk/2] = x1*d + m;
  1306. }
  1307. }
  1308. }
  1309. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1310. static const int qk = QK5_0;
  1311. assert(k % qk == 0);
  1312. const int nb = k / qk;
  1313. for (int i = 0; i < nb; i++) {
  1314. const float d = GGML_FP16_TO_FP32(x[i].d);
  1315. uint32_t qh;
  1316. memcpy(&qh, x[i].qh, sizeof(qh));
  1317. for (int j = 0; j < qk/2; ++j) {
  1318. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1319. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1320. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1321. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1322. y[i*qk + j + 0 ] = x0*d;
  1323. y[i*qk + j + qk/2] = x1*d;
  1324. }
  1325. }
  1326. }
  1327. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1328. static const int qk = QK5_1;
  1329. assert(k % qk == 0);
  1330. const int nb = k / qk;
  1331. for (int i = 0; i < nb; i++) {
  1332. const float d = GGML_FP16_TO_FP32(x[i].d);
  1333. const float m = GGML_FP16_TO_FP32(x[i].m);
  1334. uint32_t qh;
  1335. memcpy(&qh, x[i].qh, sizeof(qh));
  1336. for (int j = 0; j < qk/2; ++j) {
  1337. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1338. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1339. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1340. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1341. y[i*qk + j + 0 ] = x0*d + m;
  1342. y[i*qk + j + qk/2] = x1*d + m;
  1343. }
  1344. }
  1345. }
  1346. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1347. static const int qk = QK8_0;
  1348. assert(k % qk == 0);
  1349. const int nb = k / qk;
  1350. const block_q8_0 * restrict x = vx;
  1351. for (int i = 0; i < nb; i++) {
  1352. const float d = GGML_FP16_TO_FP32(x[i].d);
  1353. for (int j = 0; j < qk; ++j) {
  1354. y[i*qk + j] = x[i].qs[j]*d;
  1355. }
  1356. }
  1357. }
  1358. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1359. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1360. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1361. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1362. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1363. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1364. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1365. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1366. [GGML_TYPE_F32] = {
  1367. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1368. .vec_dot_type = GGML_TYPE_F32,
  1369. },
  1370. [GGML_TYPE_F16] = {
  1371. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1372. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1373. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1374. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1375. .vec_dot_type = GGML_TYPE_F16,
  1376. },
  1377. [GGML_TYPE_Q4_0] = {
  1378. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1379. .from_float = quantize_row_q4_0,
  1380. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1381. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1382. .vec_dot_type = GGML_TYPE_Q8_0,
  1383. },
  1384. [GGML_TYPE_Q4_1] = {
  1385. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1386. .from_float = quantize_row_q4_1,
  1387. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1388. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1389. .vec_dot_type = GGML_TYPE_Q8_1,
  1390. },
  1391. [GGML_TYPE_Q5_0] = {
  1392. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1393. .from_float = quantize_row_q5_0,
  1394. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1395. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1396. .vec_dot_type = GGML_TYPE_Q8_0,
  1397. },
  1398. [GGML_TYPE_Q5_1] = {
  1399. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1400. .from_float = quantize_row_q5_1,
  1401. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1402. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1403. .vec_dot_type = GGML_TYPE_Q8_1,
  1404. },
  1405. [GGML_TYPE_Q8_0] = {
  1406. .to_float = dequantize_row_q8_0,
  1407. .from_float = quantize_row_q8_0,
  1408. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1409. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1410. .vec_dot_type = GGML_TYPE_Q8_0,
  1411. },
  1412. [GGML_TYPE_Q8_1] = {
  1413. .from_float = quantize_row_q8_1,
  1414. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1415. .vec_dot_type = GGML_TYPE_Q8_1,
  1416. },
  1417. #ifdef GGML_USE_K_QUANTS
  1418. [GGML_TYPE_Q2_K] = {
  1419. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1420. .from_float = quantize_row_q2_K,
  1421. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1422. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1423. .vec_dot_type = GGML_TYPE_Q8_K,
  1424. },
  1425. [GGML_TYPE_Q3_K] = {
  1426. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1427. .from_float = quantize_row_q3_K,
  1428. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1429. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1430. .vec_dot_type = GGML_TYPE_Q8_K,
  1431. },
  1432. [GGML_TYPE_Q4_K] = {
  1433. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1434. .from_float = quantize_row_q4_K,
  1435. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1436. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1437. .vec_dot_type = GGML_TYPE_Q8_K,
  1438. },
  1439. [GGML_TYPE_Q5_K] = {
  1440. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1441. .from_float = quantize_row_q5_K,
  1442. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1443. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1444. .vec_dot_type = GGML_TYPE_Q8_K,
  1445. },
  1446. [GGML_TYPE_Q6_K] = {
  1447. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1448. .from_float = quantize_row_q6_K,
  1449. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1450. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1451. .vec_dot_type = GGML_TYPE_Q8_K,
  1452. },
  1453. [GGML_TYPE_Q8_K] = {
  1454. .from_float = quantize_row_q8_K,
  1455. }
  1456. #endif
  1457. };
  1458. // For internal test use
  1459. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1460. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1461. return type_traits[i];
  1462. }
  1463. //
  1464. // simd mappings
  1465. //
  1466. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1467. // we then implement the fundamental computation operations below using only these macros
  1468. // adding support for new architectures requires to define the corresponding SIMD macros
  1469. //
  1470. // GGML_F32_STEP / GGML_F16_STEP
  1471. // number of elements to process in a single step
  1472. //
  1473. // GGML_F32_EPR / GGML_F16_EPR
  1474. // number of elements to fit in a single register
  1475. //
  1476. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1477. #define GGML_SIMD
  1478. // F32 NEON
  1479. #define GGML_F32_STEP 16
  1480. #define GGML_F32_EPR 4
  1481. #define GGML_F32x4 float32x4_t
  1482. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1483. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1484. #define GGML_F32x4_LOAD vld1q_f32
  1485. #define GGML_F32x4_STORE vst1q_f32
  1486. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1487. #define GGML_F32x4_ADD vaddq_f32
  1488. #define GGML_F32x4_MUL vmulq_f32
  1489. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1490. #define GGML_F32x4_REDUCE(res, x) \
  1491. { \
  1492. int offset = GGML_F32_ARR >> 1; \
  1493. for (int i = 0; i < offset; ++i) { \
  1494. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1495. } \
  1496. offset >>= 1; \
  1497. for (int i = 0; i < offset; ++i) { \
  1498. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1499. } \
  1500. offset >>= 1; \
  1501. for (int i = 0; i < offset; ++i) { \
  1502. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1503. } \
  1504. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1505. }
  1506. #define GGML_F32_VEC GGML_F32x4
  1507. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1508. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1509. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1510. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1511. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1512. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1513. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1514. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1515. // F16 NEON
  1516. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1517. #define GGML_F16_STEP 32
  1518. #define GGML_F16_EPR 8
  1519. #define GGML_F16x8 float16x8_t
  1520. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1521. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1522. #define GGML_F16x8_LOAD vld1q_f16
  1523. #define GGML_F16x8_STORE vst1q_f16
  1524. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1525. #define GGML_F16x8_ADD vaddq_f16
  1526. #define GGML_F16x8_MUL vmulq_f16
  1527. #define GGML_F16x8_REDUCE(res, x) \
  1528. { \
  1529. int offset = GGML_F16_ARR >> 1; \
  1530. for (int i = 0; i < offset; ++i) { \
  1531. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1532. } \
  1533. offset >>= 1; \
  1534. for (int i = 0; i < offset; ++i) { \
  1535. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1536. } \
  1537. offset >>= 1; \
  1538. for (int i = 0; i < offset; ++i) { \
  1539. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1540. } \
  1541. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1542. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1543. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1544. }
  1545. #define GGML_F16_VEC GGML_F16x8
  1546. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1547. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1548. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1549. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1550. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1551. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1552. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1553. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1554. #else
  1555. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1556. // and take advantage of the vcvt_ functions to convert to/from FP16
  1557. #define GGML_F16_STEP 16
  1558. #define GGML_F16_EPR 4
  1559. #define GGML_F32Cx4 float32x4_t
  1560. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1561. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1562. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1563. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1564. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1565. #define GGML_F32Cx4_ADD vaddq_f32
  1566. #define GGML_F32Cx4_MUL vmulq_f32
  1567. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1568. #define GGML_F16_VEC GGML_F32Cx4
  1569. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1570. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1571. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1572. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1573. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1574. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1575. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1576. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1577. #endif
  1578. #elif defined(__AVX__)
  1579. #define GGML_SIMD
  1580. // F32 AVX
  1581. #define GGML_F32_STEP 32
  1582. #define GGML_F32_EPR 8
  1583. #define GGML_F32x8 __m256
  1584. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1585. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1586. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1587. #define GGML_F32x8_STORE _mm256_storeu_ps
  1588. #if defined(__FMA__)
  1589. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1590. #else
  1591. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1592. #endif
  1593. #define GGML_F32x8_ADD _mm256_add_ps
  1594. #define GGML_F32x8_MUL _mm256_mul_ps
  1595. #define GGML_F32x8_REDUCE(res, x) \
  1596. { \
  1597. int offset = GGML_F32_ARR >> 1; \
  1598. for (int i = 0; i < offset; ++i) { \
  1599. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1600. } \
  1601. offset >>= 1; \
  1602. for (int i = 0; i < offset; ++i) { \
  1603. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1604. } \
  1605. offset >>= 1; \
  1606. for (int i = 0; i < offset; ++i) { \
  1607. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1608. } \
  1609. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1610. _mm256_extractf128_ps(x[0], 1)); \
  1611. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1612. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1613. }
  1614. // TODO: is this optimal ?
  1615. #define GGML_F32_VEC GGML_F32x8
  1616. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1617. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1618. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1619. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1620. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1621. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1622. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1623. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1624. // F16 AVX
  1625. #define GGML_F16_STEP 32
  1626. #define GGML_F16_EPR 8
  1627. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1628. #define GGML_F32Cx8 __m256
  1629. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1630. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1631. #if defined(__F16C__)
  1632. // the _mm256_cvt intrinsics require F16C
  1633. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1634. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1635. #else
  1636. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1637. float tmp[8];
  1638. for (int i = 0; i < 8; i++) {
  1639. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1640. }
  1641. return _mm256_loadu_ps(tmp);
  1642. }
  1643. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1644. float arr[8];
  1645. _mm256_storeu_ps(arr, y);
  1646. for (int i = 0; i < 8; i++)
  1647. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1648. }
  1649. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1650. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1651. #endif
  1652. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1653. #define GGML_F32Cx8_ADD _mm256_add_ps
  1654. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1655. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1656. #define GGML_F16_VEC GGML_F32Cx8
  1657. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1658. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1659. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1660. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1661. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1662. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1663. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1664. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1665. #elif defined(__POWER9_VECTOR__)
  1666. #define GGML_SIMD
  1667. // F32 POWER9
  1668. #define GGML_F32_STEP 32
  1669. #define GGML_F32_EPR 4
  1670. #define GGML_F32x4 vector float
  1671. #define GGML_F32x4_ZERO 0.0f
  1672. #define GGML_F32x4_SET1 vec_splats
  1673. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1674. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1675. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1676. #define GGML_F32x4_ADD vec_add
  1677. #define GGML_F32x4_MUL vec_mul
  1678. #define GGML_F32x4_REDUCE(res, x) \
  1679. { \
  1680. int offset = GGML_F32_ARR >> 1; \
  1681. for (int i = 0; i < offset; ++i) { \
  1682. x[i] = vec_add(x[i], x[offset+i]); \
  1683. } \
  1684. offset >>= 1; \
  1685. for (int i = 0; i < offset; ++i) { \
  1686. x[i] = vec_add(x[i], x[offset+i]); \
  1687. } \
  1688. offset >>= 1; \
  1689. for (int i = 0; i < offset; ++i) { \
  1690. x[i] = vec_add(x[i], x[offset+i]); \
  1691. } \
  1692. res = vec_extract(x[0], 0) + \
  1693. vec_extract(x[0], 1) + \
  1694. vec_extract(x[0], 2) + \
  1695. vec_extract(x[0], 3); \
  1696. }
  1697. #define GGML_F32_VEC GGML_F32x4
  1698. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1699. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1700. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1701. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1702. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1703. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1704. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1705. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1706. // F16 POWER9
  1707. #define GGML_F16_STEP GGML_F32_STEP
  1708. #define GGML_F16_EPR GGML_F32_EPR
  1709. #define GGML_F16_VEC GGML_F32x4
  1710. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1711. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1712. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1713. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1714. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1715. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1716. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1717. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1718. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1719. #define GGML_F16_VEC_STORE(p, r, i) \
  1720. if (i & 0x1) \
  1721. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1722. r[i - GGML_ENDIAN_BYTE(0)]), \
  1723. 0, p - GGML_F16_EPR)
  1724. #elif defined(__wasm_simd128__)
  1725. #define GGML_SIMD
  1726. // F32 WASM
  1727. #define GGML_F32_STEP 16
  1728. #define GGML_F32_EPR 4
  1729. #define GGML_F32x4 v128_t
  1730. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1731. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1732. #define GGML_F32x4_LOAD wasm_v128_load
  1733. #define GGML_F32x4_STORE wasm_v128_store
  1734. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1735. #define GGML_F32x4_ADD wasm_f32x4_add
  1736. #define GGML_F32x4_MUL wasm_f32x4_mul
  1737. #define GGML_F32x4_REDUCE(res, x) \
  1738. { \
  1739. int offset = GGML_F32_ARR >> 1; \
  1740. for (int i = 0; i < offset; ++i) { \
  1741. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1742. } \
  1743. offset >>= 1; \
  1744. for (int i = 0; i < offset; ++i) { \
  1745. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1746. } \
  1747. offset >>= 1; \
  1748. for (int i = 0; i < offset; ++i) { \
  1749. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1750. } \
  1751. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1752. wasm_f32x4_extract_lane(x[0], 1) + \
  1753. wasm_f32x4_extract_lane(x[0], 2) + \
  1754. wasm_f32x4_extract_lane(x[0], 3); \
  1755. }
  1756. #define GGML_F32_VEC GGML_F32x4
  1757. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1758. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1759. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1760. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1761. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1762. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1763. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1764. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1765. // F16 WASM
  1766. #define GGML_F16_STEP 16
  1767. #define GGML_F16_EPR 4
  1768. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1769. float tmp[4];
  1770. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1771. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1772. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1773. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1774. return wasm_v128_load(tmp);
  1775. }
  1776. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1777. float tmp[4];
  1778. wasm_v128_store(tmp, x);
  1779. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1780. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1781. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1782. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1783. }
  1784. #define GGML_F16x4 v128_t
  1785. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1786. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1787. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1788. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1789. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1790. #define GGML_F16x4_ADD wasm_f32x4_add
  1791. #define GGML_F16x4_MUL wasm_f32x4_mul
  1792. #define GGML_F16x4_REDUCE(res, x) \
  1793. { \
  1794. int offset = GGML_F16_ARR >> 1; \
  1795. for (int i = 0; i < offset; ++i) { \
  1796. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1797. } \
  1798. offset >>= 1; \
  1799. for (int i = 0; i < offset; ++i) { \
  1800. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1801. } \
  1802. offset >>= 1; \
  1803. for (int i = 0; i < offset; ++i) { \
  1804. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1805. } \
  1806. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1807. wasm_f32x4_extract_lane(x[0], 1) + \
  1808. wasm_f32x4_extract_lane(x[0], 2) + \
  1809. wasm_f32x4_extract_lane(x[0], 3); \
  1810. }
  1811. #define GGML_F16_VEC GGML_F16x4
  1812. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1813. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1814. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1815. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1816. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1817. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1818. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1819. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1820. #elif defined(__SSE3__)
  1821. #define GGML_SIMD
  1822. // F32 SSE
  1823. #define GGML_F32_STEP 32
  1824. #define GGML_F32_EPR 4
  1825. #define GGML_F32x4 __m128
  1826. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1827. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1828. #define GGML_F32x4_LOAD _mm_loadu_ps
  1829. #define GGML_F32x4_STORE _mm_storeu_ps
  1830. #if defined(__FMA__)
  1831. // TODO: Does this work?
  1832. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1833. #else
  1834. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1835. #endif
  1836. #define GGML_F32x4_ADD _mm_add_ps
  1837. #define GGML_F32x4_MUL _mm_mul_ps
  1838. #define GGML_F32x4_REDUCE(res, x) \
  1839. { \
  1840. int offset = GGML_F32_ARR >> 1; \
  1841. for (int i = 0; i < offset; ++i) { \
  1842. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1843. } \
  1844. offset >>= 1; \
  1845. for (int i = 0; i < offset; ++i) { \
  1846. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1847. } \
  1848. offset >>= 1; \
  1849. for (int i = 0; i < offset; ++i) { \
  1850. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1851. } \
  1852. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1853. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1854. }
  1855. // TODO: is this optimal ?
  1856. #define GGML_F32_VEC GGML_F32x4
  1857. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1858. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1859. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1860. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1861. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1862. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1863. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1864. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1865. // F16 SSE
  1866. #define GGML_F16_STEP 32
  1867. #define GGML_F16_EPR 4
  1868. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1869. float tmp[4];
  1870. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1871. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1872. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1873. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1874. return _mm_loadu_ps(tmp);
  1875. }
  1876. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1877. float arr[4];
  1878. _mm_storeu_ps(arr, y);
  1879. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1880. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1881. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1882. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1883. }
  1884. #define GGML_F32Cx4 __m128
  1885. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1886. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1887. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1888. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1889. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1890. #define GGML_F32Cx4_ADD _mm_add_ps
  1891. #define GGML_F32Cx4_MUL _mm_mul_ps
  1892. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1893. #define GGML_F16_VEC GGML_F32Cx4
  1894. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1895. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1896. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1897. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1898. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1899. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1900. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1901. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1902. #endif
  1903. // GGML_F32_ARR / GGML_F16_ARR
  1904. // number of registers to use per step
  1905. #ifdef GGML_SIMD
  1906. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1907. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1908. #endif
  1909. //
  1910. // fundamental operations
  1911. //
  1912. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1913. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1914. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1915. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1916. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1917. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1918. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1919. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1920. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1921. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1922. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1923. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1924. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1925. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1926. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1927. #ifdef GGML_SIMD
  1928. float sumf = 0.0f;
  1929. const int np = (n & ~(GGML_F32_STEP - 1));
  1930. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1931. GGML_F32_VEC ax[GGML_F32_ARR];
  1932. GGML_F32_VEC ay[GGML_F32_ARR];
  1933. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1934. for (int j = 0; j < GGML_F32_ARR; j++) {
  1935. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1936. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1937. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1938. }
  1939. }
  1940. // reduce sum0..sum3 to sum0
  1941. GGML_F32_VEC_REDUCE(sumf, sum);
  1942. // leftovers
  1943. for (int i = np; i < n; ++i) {
  1944. sumf += x[i]*y[i];
  1945. }
  1946. #else
  1947. // scalar
  1948. ggml_float sumf = 0.0;
  1949. for (int i = 0; i < n; ++i) {
  1950. sumf += (ggml_float)(x[i]*y[i]);
  1951. }
  1952. #endif
  1953. *s = sumf;
  1954. }
  1955. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1956. ggml_float sumf = 0.0;
  1957. #if defined(GGML_SIMD)
  1958. const int np = (n & ~(GGML_F16_STEP - 1));
  1959. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1960. GGML_F16_VEC ax[GGML_F16_ARR];
  1961. GGML_F16_VEC ay[GGML_F16_ARR];
  1962. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1963. for (int j = 0; j < GGML_F16_ARR; j++) {
  1964. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1965. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1966. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1967. }
  1968. }
  1969. // reduce sum0..sum3 to sum0
  1970. GGML_F16_VEC_REDUCE(sumf, sum);
  1971. // leftovers
  1972. for (int i = np; i < n; ++i) {
  1973. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1974. }
  1975. #else
  1976. for (int i = 0; i < n; ++i) {
  1977. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1978. }
  1979. #endif
  1980. *s = sumf;
  1981. }
  1982. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1983. const int qk = QK8_0;
  1984. const int nb = n / qk;
  1985. assert(n % qk == 0);
  1986. assert(nb % 2 == 0);
  1987. const block_q4_0 * restrict x = vx;
  1988. const block_q8_0 * restrict y = vy;
  1989. #if defined(__ARM_NEON)
  1990. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1991. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1992. for (int i = 0; i < nb; i += 2) {
  1993. const block_q4_0 * restrict x0 = &x[i + 0];
  1994. const block_q4_0 * restrict x1 = &x[i + 1];
  1995. const block_q8_0 * restrict y0 = &y[i + 0];
  1996. const block_q8_0 * restrict y1 = &y[i + 1];
  1997. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1998. const int8x16_t s8b = vdupq_n_s8(0x8);
  1999. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2000. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2001. // 4-bit -> 8-bit
  2002. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2003. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2004. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2005. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2006. // sub 8
  2007. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2008. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2009. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2010. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2011. // load y
  2012. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2013. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2014. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2015. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2016. #if defined(__ARM_FEATURE_DOTPROD)
  2017. // dot product into int32x4_t
  2018. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2019. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2020. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2021. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2022. #else
  2023. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2024. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2025. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2026. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2027. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2028. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2029. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2030. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2031. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2032. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2033. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2034. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2035. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2036. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2037. #endif
  2038. }
  2039. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2040. #elif defined(__AVX2__)
  2041. // Initialize accumulator with zeros
  2042. __m256 acc = _mm256_setzero_ps();
  2043. // Main loop
  2044. for (int i = 0; i < nb; ++i) {
  2045. /* Compute combined scale for the block */
  2046. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2047. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2048. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2049. const __m256i off = _mm256_set1_epi8( 8 );
  2050. bx = _mm256_sub_epi8( bx, off );
  2051. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2052. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2053. /* Multiply q with scale and accumulate */
  2054. acc = _mm256_fmadd_ps( d, q, acc );
  2055. }
  2056. *s = hsum_float_8(acc);
  2057. #elif defined(__AVX__)
  2058. // Initialize accumulator with zeros
  2059. __m256 acc = _mm256_setzero_ps();
  2060. // Main loop
  2061. for (int i = 0; i < nb; ++i) {
  2062. // Compute combined scale for the block
  2063. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2064. const __m128i lowMask = _mm_set1_epi8(0xF);
  2065. const __m128i off = _mm_set1_epi8(8);
  2066. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2067. __m128i bx = _mm_and_si128(lowMask, tmp);
  2068. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2069. bx = _mm_sub_epi8(bx, off);
  2070. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2071. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2072. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2073. bx = _mm_sub_epi8(bx, off);
  2074. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2075. // Convert int32_t to float
  2076. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2077. // Apply the scale, and accumulate
  2078. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2079. }
  2080. *s = hsum_float_8(acc);
  2081. #elif defined(__SSSE3__)
  2082. // set constants
  2083. const __m128i lowMask = _mm_set1_epi8(0xF);
  2084. const __m128i off = _mm_set1_epi8(8);
  2085. // Initialize accumulator with zeros
  2086. __m128 acc_0 = _mm_setzero_ps();
  2087. __m128 acc_1 = _mm_setzero_ps();
  2088. __m128 acc_2 = _mm_setzero_ps();
  2089. __m128 acc_3 = _mm_setzero_ps();
  2090. // First round without accumulation
  2091. {
  2092. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2093. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2094. // Compute combined scale for the block 0 and 1
  2095. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2096. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2097. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2098. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2099. bx_0 = _mm_sub_epi8(bx_0, off);
  2100. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2101. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2102. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2103. bx_1 = _mm_sub_epi8(bx_1, off);
  2104. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2105. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2106. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2107. // Compute combined scale for the block 2 and 3
  2108. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2109. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2110. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2111. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2112. bx_2 = _mm_sub_epi8(bx_2, off);
  2113. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2114. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2115. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2116. bx_3 = _mm_sub_epi8(bx_3, off);
  2117. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2118. // Convert int32_t to float
  2119. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2120. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2121. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2122. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2123. // Apply the scale
  2124. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2125. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2126. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2127. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2128. }
  2129. // Main loop
  2130. for (int i = 2; i < nb; i+=2) {
  2131. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2132. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2133. // Compute combined scale for the block 0 and 1
  2134. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2135. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2136. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2137. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2138. bx_0 = _mm_sub_epi8(bx_0, off);
  2139. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2140. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2141. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2142. bx_1 = _mm_sub_epi8(bx_1, off);
  2143. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2144. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2145. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2146. // Compute combined scale for the block 2 and 3
  2147. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2148. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2149. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2150. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2151. bx_2 = _mm_sub_epi8(bx_2, off);
  2152. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2153. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2154. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2155. bx_3 = _mm_sub_epi8(bx_3, off);
  2156. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2157. // Convert int32_t to float
  2158. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2159. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2160. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2161. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2162. // Apply the scale
  2163. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2164. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2165. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2166. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2167. // Acummulate
  2168. acc_0 = _mm_add_ps(p0_d, acc_0);
  2169. acc_1 = _mm_add_ps(p1_d, acc_1);
  2170. acc_2 = _mm_add_ps(p2_d, acc_2);
  2171. acc_3 = _mm_add_ps(p3_d, acc_3);
  2172. }
  2173. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2174. #else
  2175. // scalar
  2176. float sumf = 0.0;
  2177. for (int i = 0; i < nb; i++) {
  2178. int sumi = 0;
  2179. for (int j = 0; j < qk/2; ++j) {
  2180. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2181. const int v1 = (x[i].qs[j] >> 4) - 8;
  2182. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2183. }
  2184. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2185. }
  2186. *s = sumf;
  2187. #endif
  2188. }
  2189. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2190. const int qk = QK8_1;
  2191. const int nb = n / qk;
  2192. assert(n % qk == 0);
  2193. assert(nb % 2 == 0);
  2194. const block_q4_1 * restrict x = vx;
  2195. const block_q8_1 * restrict y = vy;
  2196. // TODO: add WASM SIMD
  2197. #if defined(__ARM_NEON)
  2198. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2199. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2200. float summs = 0;
  2201. for (int i = 0; i < nb; i += 2) {
  2202. const block_q4_1 * restrict x0 = &x[i + 0];
  2203. const block_q4_1 * restrict x1 = &x[i + 1];
  2204. const block_q8_1 * restrict y0 = &y[i + 0];
  2205. const block_q8_1 * restrict y1 = &y[i + 1];
  2206. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2207. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2208. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2209. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2210. // 4-bit -> 8-bit
  2211. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2212. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2213. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2214. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2215. // load y
  2216. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2217. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2218. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2219. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2220. #if defined(__ARM_FEATURE_DOTPROD)
  2221. // dot product into int32x4_t
  2222. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2223. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2224. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2225. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2226. #else
  2227. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2228. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2229. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2230. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2231. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2232. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2233. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2234. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2235. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2236. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2237. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2238. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2239. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2240. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2241. #endif
  2242. }
  2243. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2244. #elif defined(__AVX2__) || defined(__AVX__)
  2245. // Initialize accumulator with zeros
  2246. __m256 acc = _mm256_setzero_ps();
  2247. float summs = 0;
  2248. // Main loop
  2249. for (int i = 0; i < nb; ++i) {
  2250. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2251. const float d1 = y[i].d;
  2252. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2253. const __m256 d0v = _mm256_set1_ps( d0 );
  2254. const __m256 d1v = _mm256_set1_ps( d1 );
  2255. // Compute combined scales
  2256. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2257. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2258. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2259. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2260. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2261. // Accumulate d0*d1*x*y
  2262. #if defined(__AVX2__)
  2263. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2264. #else
  2265. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2266. #endif
  2267. }
  2268. *s = hsum_float_8(acc) + summs;
  2269. #else
  2270. // scalar
  2271. float sumf = 0.0;
  2272. for (int i = 0; i < nb; i++) {
  2273. int sumi = 0;
  2274. for (int j = 0; j < qk/2; ++j) {
  2275. const int v0 = (x[i].qs[j] & 0x0F);
  2276. const int v1 = (x[i].qs[j] >> 4);
  2277. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2278. }
  2279. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2280. }
  2281. *s = sumf;
  2282. #endif
  2283. }
  2284. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2285. const int qk = QK8_0;
  2286. const int nb = n / qk;
  2287. assert(n % qk == 0);
  2288. assert(nb % 2 == 0);
  2289. assert(qk == QK5_0);
  2290. const block_q5_0 * restrict x = vx;
  2291. const block_q8_0 * restrict y = vy;
  2292. #if defined(__ARM_NEON)
  2293. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2294. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2295. uint32_t qh0;
  2296. uint32_t qh1;
  2297. uint64_t tmp0[4];
  2298. uint64_t tmp1[4];
  2299. for (int i = 0; i < nb; i += 2) {
  2300. const block_q5_0 * restrict x0 = &x[i];
  2301. const block_q5_0 * restrict x1 = &x[i + 1];
  2302. const block_q8_0 * restrict y0 = &y[i];
  2303. const block_q8_0 * restrict y1 = &y[i + 1];
  2304. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2305. // extract the 5th bit via lookup table ((!b) << 4)
  2306. memcpy(&qh0, x0->qh, sizeof(qh0));
  2307. memcpy(&qh1, x1->qh, sizeof(qh1));
  2308. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2309. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2310. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2311. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2312. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2313. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2314. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2315. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2316. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2317. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2318. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2319. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2320. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2321. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2322. // 4-bit -> 8-bit
  2323. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2324. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2325. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2326. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2327. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2328. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2329. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2330. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2331. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2332. // load y
  2333. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2334. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2335. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2336. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2337. #if defined(__ARM_FEATURE_DOTPROD)
  2338. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2339. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2340. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2341. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2342. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2343. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2344. #else
  2345. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2346. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2347. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2348. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2349. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2350. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2351. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2352. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2353. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2354. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2355. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2356. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2357. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2358. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2359. #endif
  2360. }
  2361. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2362. #elif defined(__wasm_simd128__)
  2363. v128_t sumv = wasm_f32x4_splat(0.0f);
  2364. uint32_t qh;
  2365. uint64_t tmp[4];
  2366. // TODO: check if unrolling this is better
  2367. for (int i = 0; i < nb; ++i) {
  2368. const block_q5_0 * restrict x0 = &x[i];
  2369. const block_q8_0 * restrict y0 = &y[i];
  2370. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2371. // extract the 5th bit
  2372. memcpy(&qh, x0->qh, sizeof(qh));
  2373. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2374. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2375. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2376. tmp[3] = table_b2b_1[(qh >> 24) ];
  2377. const v128_t qhl = wasm_v128_load(tmp + 0);
  2378. const v128_t qhh = wasm_v128_load(tmp + 2);
  2379. const v128_t v0 = wasm_v128_load(x0->qs);
  2380. // 4-bit -> 8-bit
  2381. const v128_t v0l = wasm_v128_and (v0, m4b);
  2382. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2383. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2384. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2385. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2386. // load y
  2387. const v128_t v1l = wasm_v128_load(y0->qs);
  2388. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2389. // int8x16 -> int16x8
  2390. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2391. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2392. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2393. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2394. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2395. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2396. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2397. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2398. // dot product
  2399. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2400. wasm_i32x4_add(
  2401. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2402. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2403. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2404. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2405. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2406. }
  2407. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2408. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2409. #elif defined(__AVX2__)
  2410. // Initialize accumulator with zeros
  2411. __m256 acc = _mm256_setzero_ps();
  2412. // Main loop
  2413. for (int i = 0; i < nb; i++) {
  2414. /* Compute combined scale for the block */
  2415. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2416. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2417. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2418. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2419. bx = _mm256_or_si256(bx, bxhi);
  2420. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2421. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2422. /* Multiply q with scale and accumulate */
  2423. acc = _mm256_fmadd_ps(d, q, acc);
  2424. }
  2425. *s = hsum_float_8(acc);
  2426. #elif defined(__AVX__)
  2427. // Initialize accumulator with zeros
  2428. __m256 acc = _mm256_setzero_ps();
  2429. __m128i mask = _mm_set1_epi8((char)0xF0);
  2430. // Main loop
  2431. for (int i = 0; i < nb; i++) {
  2432. /* Compute combined scale for the block */
  2433. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2434. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2435. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2436. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2437. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2438. bxhil = _mm_andnot_si128(bxhil, mask);
  2439. bxhih = _mm_andnot_si128(bxhih, mask);
  2440. __m128i bxl = _mm256_castsi256_si128(bx);
  2441. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2442. bxl = _mm_or_si128(bxl, bxhil);
  2443. bxh = _mm_or_si128(bxh, bxhih);
  2444. bx = MM256_SET_M128I(bxh, bxl);
  2445. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2446. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2447. /* Multiply q with scale and accumulate */
  2448. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2449. }
  2450. *s = hsum_float_8(acc);
  2451. #else
  2452. // scalar
  2453. float sumf = 0.0;
  2454. for (int i = 0; i < nb; i++) {
  2455. uint32_t qh;
  2456. memcpy(&qh, x[i].qh, sizeof(qh));
  2457. int sumi = 0;
  2458. for (int j = 0; j < qk/2; ++j) {
  2459. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2460. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2461. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2462. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2463. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2464. }
  2465. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2466. }
  2467. *s = sumf;
  2468. #endif
  2469. }
  2470. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2471. const int qk = QK8_1;
  2472. const int nb = n / qk;
  2473. assert(n % qk == 0);
  2474. assert(nb % 2 == 0);
  2475. assert(qk == QK5_1);
  2476. const block_q5_1 * restrict x = vx;
  2477. const block_q8_1 * restrict y = vy;
  2478. #if defined(__ARM_NEON)
  2479. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2480. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2481. float summs0 = 0.0f;
  2482. float summs1 = 0.0f;
  2483. uint32_t qh0;
  2484. uint32_t qh1;
  2485. uint64_t tmp0[4];
  2486. uint64_t tmp1[4];
  2487. for (int i = 0; i < nb; i += 2) {
  2488. const block_q5_1 * restrict x0 = &x[i];
  2489. const block_q5_1 * restrict x1 = &x[i + 1];
  2490. const block_q8_1 * restrict y0 = &y[i];
  2491. const block_q8_1 * restrict y1 = &y[i + 1];
  2492. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2493. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2494. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2495. // extract the 5th bit via lookup table ((b) << 4)
  2496. memcpy(&qh0, x0->qh, sizeof(qh0));
  2497. memcpy(&qh1, x1->qh, sizeof(qh1));
  2498. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2499. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2500. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2501. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2502. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2503. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2504. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2505. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2506. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2507. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2508. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2509. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2510. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2511. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2512. // 4-bit -> 8-bit
  2513. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2514. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2515. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2516. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2517. // add high bit
  2518. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2519. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2520. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2521. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2522. // load y
  2523. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2524. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2525. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2526. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2527. #if defined(__ARM_FEATURE_DOTPROD)
  2528. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2529. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2530. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2531. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2532. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2533. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2534. #else
  2535. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2536. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2537. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2538. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2539. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2540. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2541. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2542. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2543. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2544. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2545. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2546. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2547. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2548. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2549. #endif
  2550. }
  2551. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2552. #elif defined(__wasm_simd128__)
  2553. v128_t sumv = wasm_f32x4_splat(0.0f);
  2554. float summs = 0.0f;
  2555. uint32_t qh;
  2556. uint64_t tmp[4];
  2557. // TODO: check if unrolling this is better
  2558. for (int i = 0; i < nb; ++i) {
  2559. const block_q5_1 * restrict x0 = &x[i];
  2560. const block_q8_1 * restrict y0 = &y[i];
  2561. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2562. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2563. // extract the 5th bit
  2564. memcpy(&qh, x0->qh, sizeof(qh));
  2565. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2566. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2567. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2568. tmp[3] = table_b2b_0[(qh >> 24) ];
  2569. const v128_t qhl = wasm_v128_load(tmp + 0);
  2570. const v128_t qhh = wasm_v128_load(tmp + 2);
  2571. const v128_t v0 = wasm_v128_load(x0->qs);
  2572. // 4-bit -> 8-bit
  2573. const v128_t v0l = wasm_v128_and (v0, m4b);
  2574. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2575. // add high bit
  2576. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2577. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2578. // load y
  2579. const v128_t v1l = wasm_v128_load(y0->qs);
  2580. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2581. // int8x16 -> int16x8
  2582. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2583. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2584. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2585. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2586. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2587. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2588. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2589. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2590. // dot product
  2591. sumv = wasm_f32x4_add(sumv,
  2592. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2593. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2594. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2595. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2596. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2597. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2598. }
  2599. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2600. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2601. #elif defined(__AVX2__)
  2602. // Initialize accumulator with zeros
  2603. __m256 acc = _mm256_setzero_ps();
  2604. float summs = 0.0f;
  2605. // Main loop
  2606. for (int i = 0; i < nb; i++) {
  2607. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2608. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2609. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2610. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2611. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2612. bx = _mm256_or_si256(bx, bxhi);
  2613. const __m256 dy = _mm256_set1_ps(y[i].d);
  2614. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2615. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2616. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2617. }
  2618. *s = hsum_float_8(acc) + summs;
  2619. #elif defined(__AVX__)
  2620. // Initialize accumulator with zeros
  2621. __m256 acc = _mm256_setzero_ps();
  2622. __m128i mask = _mm_set1_epi8(0x10);
  2623. float summs = 0.0f;
  2624. // Main loop
  2625. for (int i = 0; i < nb; i++) {
  2626. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2627. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2628. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2629. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2630. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2631. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2632. bxhil = _mm_and_si128(bxhil, mask);
  2633. bxhih = _mm_and_si128(bxhih, mask);
  2634. __m128i bxl = _mm256_castsi256_si128(bx);
  2635. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2636. bxl = _mm_or_si128(bxl, bxhil);
  2637. bxh = _mm_or_si128(bxh, bxhih);
  2638. bx = MM256_SET_M128I(bxh, bxl);
  2639. const __m256 dy = _mm256_set1_ps(y[i].d);
  2640. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2641. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2642. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2643. }
  2644. *s = hsum_float_8(acc) + summs;
  2645. #else
  2646. // scalar
  2647. float sumf = 0.0;
  2648. for (int i = 0; i < nb; i++) {
  2649. uint32_t qh;
  2650. memcpy(&qh, x[i].qh, sizeof(qh));
  2651. int sumi = 0;
  2652. for (int j = 0; j < qk/2; ++j) {
  2653. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2654. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2655. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2656. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2657. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2658. }
  2659. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2660. }
  2661. *s = sumf;
  2662. #endif
  2663. }
  2664. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2665. const int qk = QK8_0;
  2666. const int nb = n / qk;
  2667. assert(n % qk == 0);
  2668. assert(nb % 2 == 0);
  2669. const block_q8_0 * restrict x = vx;
  2670. const block_q8_0 * restrict y = vy;
  2671. #if defined(__ARM_NEON)
  2672. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2673. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2674. for (int i = 0; i < nb; i += 2) {
  2675. const block_q8_0 * restrict x0 = &x[i + 0];
  2676. const block_q8_0 * restrict x1 = &x[i + 1];
  2677. const block_q8_0 * restrict y0 = &y[i + 0];
  2678. const block_q8_0 * restrict y1 = &y[i + 1];
  2679. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2680. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2681. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2682. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2683. // load y
  2684. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2685. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2686. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2687. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2688. #if defined(__ARM_FEATURE_DOTPROD)
  2689. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2690. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2691. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2692. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2693. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2694. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2695. #else
  2696. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2697. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2698. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2699. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2700. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2701. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2702. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2703. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2704. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2705. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2706. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2707. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2708. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2709. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2710. #endif
  2711. }
  2712. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2713. #elif defined(__AVX2__) || defined(__AVX__)
  2714. // Initialize accumulator with zeros
  2715. __m256 acc = _mm256_setzero_ps();
  2716. // Main loop
  2717. for (int i = 0; i < nb; ++i) {
  2718. // Compute combined scale for the block
  2719. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2720. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2721. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2722. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2723. // Multiply q with scale and accumulate
  2724. #if defined(__AVX2__)
  2725. acc = _mm256_fmadd_ps( d, q, acc );
  2726. #else
  2727. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2728. #endif
  2729. }
  2730. *s = hsum_float_8(acc);
  2731. #else
  2732. // scalar
  2733. float sumf = 0.0;
  2734. for (int i = 0; i < nb; i++) {
  2735. int sumi = 0;
  2736. for (int j = 0; j < qk; j++) {
  2737. sumi += x[i].qs[j]*y[i].qs[j];
  2738. }
  2739. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2740. }
  2741. *s = sumf;
  2742. #endif
  2743. }
  2744. // compute GGML_VEC_DOT_UNROLL dot products at once
  2745. // xs - x row stride in bytes
  2746. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2747. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2748. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2749. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2750. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2751. }
  2752. #if defined(GGML_SIMD)
  2753. const int np = (n & ~(GGML_F16_STEP - 1));
  2754. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2755. GGML_F16_VEC ax[GGML_F16_ARR];
  2756. GGML_F16_VEC ay[GGML_F16_ARR];
  2757. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2758. for (int j = 0; j < GGML_F16_ARR; j++) {
  2759. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2760. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2761. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2762. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2763. }
  2764. }
  2765. }
  2766. // reduce sum0..sum3 to sum0
  2767. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2768. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2769. }
  2770. // leftovers
  2771. for (int i = np; i < n; ++i) {
  2772. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2773. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2774. }
  2775. }
  2776. #else
  2777. for (int i = 0; i < n; ++i) {
  2778. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2779. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2780. }
  2781. }
  2782. #endif
  2783. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2784. s[i] = sumf[i];
  2785. }
  2786. }
  2787. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2788. #if defined(GGML_SIMD)
  2789. const int np = (n & ~(GGML_F32_STEP - 1));
  2790. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2791. GGML_F32_VEC ax[GGML_F32_ARR];
  2792. GGML_F32_VEC ay[GGML_F32_ARR];
  2793. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2794. for (int j = 0; j < GGML_F32_ARR; j++) {
  2795. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2796. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2797. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2798. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2799. }
  2800. }
  2801. // leftovers
  2802. for (int i = np; i < n; ++i) {
  2803. y[i] += x[i]*v;
  2804. }
  2805. #else
  2806. // scalar
  2807. for (int i = 0; i < n; ++i) {
  2808. y[i] += x[i]*v;
  2809. }
  2810. #endif
  2811. }
  2812. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2813. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2814. #if defined(GGML_USE_ACCELERATE)
  2815. vDSP_vsmul(y, 1, &v, y, 1, n);
  2816. #elif defined(GGML_SIMD)
  2817. const int np = (n & ~(GGML_F32_STEP - 1));
  2818. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2819. GGML_F32_VEC ay[GGML_F32_ARR];
  2820. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2821. for (int j = 0; j < GGML_F32_ARR; j++) {
  2822. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2823. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2824. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2825. }
  2826. }
  2827. // leftovers
  2828. for (int i = np; i < n; ++i) {
  2829. y[i] *= v;
  2830. }
  2831. #else
  2832. // scalar
  2833. for (int i = 0; i < n; ++i) {
  2834. y[i] *= v;
  2835. }
  2836. #endif
  2837. }
  2838. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2839. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2840. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2841. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2842. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2843. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2844. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2845. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2846. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2847. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2848. static const float GELU_COEF_A = 0.044715f;
  2849. static const float GELU_QUICK_COEF = -1.702f;
  2850. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2851. inline static float ggml_gelu_f32(float x) {
  2852. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2853. }
  2854. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2855. const uint16_t * i16 = (const uint16_t *) x;
  2856. for (int i = 0; i < n; ++i) {
  2857. y[i] = table_gelu_f16[i16[i]];
  2858. }
  2859. }
  2860. #ifdef GGML_GELU_FP16
  2861. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2862. uint16_t t;
  2863. for (int i = 0; i < n; ++i) {
  2864. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2865. memcpy(&t, &fp16, sizeof(uint16_t));
  2866. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2867. }
  2868. }
  2869. #else
  2870. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2871. for (int i = 0; i < n; ++i) {
  2872. y[i] = ggml_gelu_f32(x[i]);
  2873. }
  2874. }
  2875. #endif
  2876. inline static float ggml_gelu_quick_f32(float x) {
  2877. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2878. }
  2879. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2880. // const uint16_t * i16 = (const uint16_t *) x;
  2881. // for (int i = 0; i < n; ++i) {
  2882. // y[i] = table_gelu_quick_f16[i16[i]];
  2883. // }
  2884. //}
  2885. #ifdef GGML_GELU_QUICK_FP16
  2886. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2887. uint16_t t;
  2888. for (int i = 0; i < n; ++i) {
  2889. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2890. memcpy(&t, &fp16, sizeof(uint16_t));
  2891. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2892. }
  2893. }
  2894. #else
  2895. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2896. for (int i = 0; i < n; ++i) {
  2897. y[i] = ggml_gelu_quick_f32(x[i]);
  2898. }
  2899. }
  2900. #endif
  2901. // Sigmoid Linear Unit (SiLU) function
  2902. inline static float ggml_silu_f32(float x) {
  2903. return x/(1.0f + expf(-x));
  2904. }
  2905. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2906. // const uint16_t * i16 = (const uint16_t *) x;
  2907. // for (int i = 0; i < n; ++i) {
  2908. // y[i] = table_silu_f16[i16[i]];
  2909. // }
  2910. //}
  2911. #ifdef GGML_SILU_FP16
  2912. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2913. uint16_t t;
  2914. for (int i = 0; i < n; ++i) {
  2915. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2916. memcpy(&t, &fp16, sizeof(uint16_t));
  2917. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2918. }
  2919. }
  2920. #else
  2921. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2922. for (int i = 0; i < n; ++i) {
  2923. y[i] = ggml_silu_f32(x[i]);
  2924. }
  2925. }
  2926. #endif
  2927. inline static float ggml_silu_backward_f32(float x, float dy) {
  2928. const float s = 1.0f/(1.0f + expf(-x));
  2929. return dy*s*(1.0f + x*(1.0f - s));
  2930. }
  2931. #ifdef GGML_SILU_FP16
  2932. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2933. for (int i = 0; i < n; ++i) {
  2934. // we did not use x[i] to compute forward silu but its f16 equivalent
  2935. // take derivative at f16 of x[i]:
  2936. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2937. float usedx = GGML_FP16_TO_FP32(fp16);
  2938. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2939. }
  2940. }
  2941. #else
  2942. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2943. for (int i = 0; i < n; ++i) {
  2944. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2945. }
  2946. }
  2947. #endif
  2948. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2949. #ifndef GGML_USE_ACCELERATE
  2950. ggml_float sum = 0.0;
  2951. for (int i = 0; i < n; ++i) {
  2952. sum += (ggml_float)x[i];
  2953. }
  2954. *s = sum;
  2955. #else
  2956. vDSP_sve(x, 1, s, n);
  2957. #endif
  2958. }
  2959. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2960. ggml_float sum = 0.0;
  2961. for (int i = 0; i < n; ++i) {
  2962. sum += (ggml_float)x[i];
  2963. }
  2964. *s = sum;
  2965. }
  2966. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2967. float sum = 0.0f;
  2968. for (int i = 0; i < n; ++i) {
  2969. sum += GGML_FP16_TO_FP32(x[i]);
  2970. }
  2971. *s = sum;
  2972. }
  2973. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2974. #ifndef GGML_USE_ACCELERATE
  2975. float max = -INFINITY;
  2976. for (int i = 0; i < n; ++i) {
  2977. max = MAX(max, x[i]);
  2978. }
  2979. *s = max;
  2980. #else
  2981. vDSP_maxv(x, 1, s, n);
  2982. #endif
  2983. }
  2984. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2985. ggml_vec_norm_f32(n, s, x);
  2986. *s = 1.f/(*s);
  2987. }
  2988. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2989. float max = -INFINITY;
  2990. int idx = 0;
  2991. for (int i = 0; i < n; ++i) {
  2992. max = MAX(max, x[i]);
  2993. if (max == x[i]) { idx = i; }
  2994. }
  2995. *s = idx;
  2996. }
  2997. //
  2998. // data types
  2999. //
  3000. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3001. [GGML_TYPE_F32] = 1,
  3002. [GGML_TYPE_F16] = 1,
  3003. [GGML_TYPE_Q4_0] = QK4_0,
  3004. [GGML_TYPE_Q4_1] = QK4_1,
  3005. [GGML_TYPE_Q5_0] = QK5_0,
  3006. [GGML_TYPE_Q5_1] = QK5_1,
  3007. [GGML_TYPE_Q8_0] = QK8_0,
  3008. [GGML_TYPE_Q8_1] = QK8_1,
  3009. #ifdef GGML_USE_K_QUANTS
  3010. [GGML_TYPE_Q2_K] = QK_K,
  3011. [GGML_TYPE_Q3_K] = QK_K,
  3012. [GGML_TYPE_Q4_K] = QK_K,
  3013. [GGML_TYPE_Q5_K] = QK_K,
  3014. [GGML_TYPE_Q6_K] = QK_K,
  3015. [GGML_TYPE_Q8_K] = QK_K,
  3016. #endif
  3017. [GGML_TYPE_I8] = 1,
  3018. [GGML_TYPE_I16] = 1,
  3019. [GGML_TYPE_I32] = 1,
  3020. };
  3021. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  3022. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3023. [GGML_TYPE_F32] = sizeof(float),
  3024. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3025. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3026. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3027. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3028. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3029. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3030. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3031. #ifdef GGML_USE_K_QUANTS
  3032. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  3033. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  3034. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  3035. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  3036. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  3037. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3038. #endif
  3039. [GGML_TYPE_I8] = sizeof(int8_t),
  3040. [GGML_TYPE_I16] = sizeof(int16_t),
  3041. [GGML_TYPE_I32] = sizeof(int32_t),
  3042. };
  3043. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3044. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3045. [GGML_TYPE_F32] = "f32",
  3046. [GGML_TYPE_F16] = "f16",
  3047. [GGML_TYPE_Q4_0] = "q4_0",
  3048. [GGML_TYPE_Q4_1] = "q4_1",
  3049. [GGML_TYPE_Q5_0] = "q5_0",
  3050. [GGML_TYPE_Q5_1] = "q5_1",
  3051. [GGML_TYPE_Q8_0] = "q8_0",
  3052. [GGML_TYPE_Q8_1] = "q8_1",
  3053. [GGML_TYPE_Q2_K] = "q2_K",
  3054. [GGML_TYPE_Q3_K] = "q3_K",
  3055. [GGML_TYPE_Q4_K] = "q4_K",
  3056. [GGML_TYPE_Q5_K] = "q5_K",
  3057. [GGML_TYPE_Q6_K] = "q6_K",
  3058. [GGML_TYPE_Q8_K] = "q8_K",
  3059. [GGML_TYPE_I8] = "i8",
  3060. [GGML_TYPE_I16] = "i16",
  3061. [GGML_TYPE_I32] = "i32",
  3062. };
  3063. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3064. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3065. [GGML_TYPE_F32] = false,
  3066. [GGML_TYPE_F16] = false,
  3067. [GGML_TYPE_Q4_0] = true,
  3068. [GGML_TYPE_Q4_1] = true,
  3069. [GGML_TYPE_Q5_0] = true,
  3070. [GGML_TYPE_Q5_1] = true,
  3071. [GGML_TYPE_Q8_0] = true,
  3072. [GGML_TYPE_Q8_1] = true,
  3073. [GGML_TYPE_Q2_K] = true,
  3074. [GGML_TYPE_Q3_K] = true,
  3075. [GGML_TYPE_Q4_K] = true,
  3076. [GGML_TYPE_Q5_K] = true,
  3077. [GGML_TYPE_Q6_K] = true,
  3078. [GGML_TYPE_Q8_K] = true,
  3079. [GGML_TYPE_I8] = false,
  3080. [GGML_TYPE_I16] = false,
  3081. [GGML_TYPE_I32] = false,
  3082. };
  3083. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3084. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3085. "NONE",
  3086. "DUP",
  3087. "ADD",
  3088. "ADD1",
  3089. "ACC",
  3090. "SUB",
  3091. "MUL",
  3092. "DIV",
  3093. "SQR",
  3094. "SQRT",
  3095. "LOG",
  3096. "SUM",
  3097. "SUM_ROWS",
  3098. "MEAN",
  3099. "ARGMAX",
  3100. "REPEAT",
  3101. "REPEAT_BACK",
  3102. "SILU_BACK",
  3103. "NORM",
  3104. "RMS_NORM",
  3105. "RMS_NORM_BACK",
  3106. "MUL_MAT",
  3107. "OUT_PROD",
  3108. "SCALE",
  3109. "SET",
  3110. "CPY",
  3111. "CONT",
  3112. "RESHAPE",
  3113. "VIEW",
  3114. "PERMUTE",
  3115. "TRANSPOSE",
  3116. "GET_ROWS",
  3117. "GET_ROWS_BACK",
  3118. "DIAG",
  3119. "DIAG_MASK_INF",
  3120. "DIAG_MASK_ZERO",
  3121. "SOFT_MAX",
  3122. "SOFT_MAX_BACK",
  3123. "ROPE",
  3124. "ROPE_BACK",
  3125. "ALIBI",
  3126. "CLAMP",
  3127. "CONV_1D",
  3128. "CONV_2D",
  3129. "POOL_1D",
  3130. "POOL_2D",
  3131. "FLASH_ATTN",
  3132. "FLASH_FF",
  3133. "FLASH_ATTN_BACK",
  3134. "WIN_PART",
  3135. "WIN_UNPART",
  3136. "UNARY",
  3137. "MAP_UNARY",
  3138. "MAP_BINARY",
  3139. "MAP_CUSTOM1",
  3140. "MAP_CUSTOM2",
  3141. "MAP_CUSTOM3",
  3142. "CROSS_ENTROPY_LOSS",
  3143. "CROSS_ENTROPY_LOSS_BACK",
  3144. };
  3145. static_assert(GGML_OP_COUNT == 59, "GGML_OP_COUNT != 59");
  3146. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3147. "none",
  3148. "x",
  3149. "x+y",
  3150. "x+y",
  3151. "view(x,nb,offset)+=y->x",
  3152. "x-y",
  3153. "x*y",
  3154. "x/y",
  3155. "x^2",
  3156. "√x",
  3157. "log(x)",
  3158. "Σx",
  3159. "Σx_k",
  3160. "Σx/n",
  3161. "argmax(x)",
  3162. "repeat(x)",
  3163. "repeat_back(x)",
  3164. "silu_back(x)",
  3165. "norm(x)",
  3166. "rms_norm(x)",
  3167. "rms_norm_back(x)",
  3168. "X*Y",
  3169. "X*Y",
  3170. "x*v",
  3171. "y-\\>view(x)",
  3172. "x-\\>y",
  3173. "cont(x)",
  3174. "reshape(x)",
  3175. "view(x)",
  3176. "permute(x)",
  3177. "transpose(x)",
  3178. "get_rows(x)",
  3179. "get_rows_back(x)",
  3180. "diag(x)",
  3181. "diag_mask_inf(x)",
  3182. "diag_mask_zero(x)",
  3183. "soft_max(x)",
  3184. "soft_max_back(x)",
  3185. "rope(x)",
  3186. "rope_back(x)",
  3187. "alibi(x)",
  3188. "clamp(x)",
  3189. "conv_1d(x)",
  3190. "conv_2d(x)",
  3191. "pool_1d(x)",
  3192. "pool_2d(x)",
  3193. "flash_attn(x)",
  3194. "flash_ff(x)",
  3195. "flash_attn_back(x)",
  3196. "win_part(x)",
  3197. "win_unpart(x)",
  3198. "unary(x)",
  3199. "f(x)",
  3200. "f(x,y)",
  3201. "custom(x)",
  3202. "custom(x,y)",
  3203. "custom(x,y,z)",
  3204. "cross_entropy_loss(x,y)",
  3205. "cross_entropy_loss_back(x,y)",
  3206. };
  3207. static_assert(GGML_OP_COUNT == 59, "GGML_OP_COUNT != 59");
  3208. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3209. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3210. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3211. // WARN:
  3212. // Mis-confguration can lead to problem that's hard to reason about:
  3213. // * At best it crash or talks nosense.
  3214. // * At worst it talks slightly difference but hard to perceive.
  3215. //
  3216. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3217. // Take care about compile options (e.g., GGML_USE_xxx).
  3218. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3219. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3220. static void ggml_setup_op_has_task_pass(void) {
  3221. { // INIT
  3222. bool * p = GGML_OP_HAS_INIT;
  3223. p[GGML_OP_ACC ] = true;
  3224. p[GGML_OP_MUL_MAT ] = true;
  3225. p[GGML_OP_OUT_PROD ] = true;
  3226. p[GGML_OP_SET ] = true;
  3227. p[GGML_OP_GET_ROWS_BACK ] = true;
  3228. p[GGML_OP_DIAG_MASK_INF ] = true;
  3229. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3230. p[GGML_OP_CONV_1D ] = true;
  3231. p[GGML_OP_CONV_2D ] = true;
  3232. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3233. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3234. }
  3235. { // FINALIZE
  3236. bool * p = GGML_OP_HAS_FINALIZE;
  3237. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3238. }
  3239. }
  3240. //
  3241. // ggml context
  3242. //
  3243. struct ggml_context {
  3244. size_t mem_size;
  3245. void * mem_buffer;
  3246. bool mem_buffer_owned;
  3247. bool no_alloc;
  3248. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3249. int n_objects;
  3250. struct ggml_object * objects_begin;
  3251. struct ggml_object * objects_end;
  3252. struct ggml_scratch scratch;
  3253. struct ggml_scratch scratch_save;
  3254. };
  3255. struct ggml_context_container {
  3256. bool used;
  3257. struct ggml_context context;
  3258. };
  3259. //
  3260. // NUMA support
  3261. //
  3262. #define GGML_NUMA_MAX_NODES 8
  3263. #define GGML_NUMA_MAX_CPUS 512
  3264. struct ggml_numa_node {
  3265. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3266. uint32_t n_cpus;
  3267. };
  3268. struct ggml_numa_nodes {
  3269. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3270. uint32_t n_nodes;
  3271. uint32_t total_cpus; // hardware threads on system
  3272. };
  3273. //
  3274. // ggml state
  3275. //
  3276. struct ggml_state {
  3277. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3278. struct ggml_numa_nodes numa;
  3279. };
  3280. // global state
  3281. static struct ggml_state g_state;
  3282. static atomic_int g_state_barrier = 0;
  3283. // barrier via spin lock
  3284. inline static void ggml_critical_section_start(void) {
  3285. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3286. while (processing > 0) {
  3287. // wait for other threads to finish
  3288. atomic_fetch_sub(&g_state_barrier, 1);
  3289. sched_yield(); // TODO: reconsider this
  3290. processing = atomic_fetch_add(&g_state_barrier, 1);
  3291. }
  3292. }
  3293. // TODO: make this somehow automatically executed
  3294. // some sort of "sentry" mechanism
  3295. inline static void ggml_critical_section_end(void) {
  3296. atomic_fetch_sub(&g_state_barrier, 1);
  3297. }
  3298. void ggml_numa_init(void) {
  3299. if (g_state.numa.n_nodes > 0) {
  3300. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3301. return;
  3302. }
  3303. #ifdef __linux__
  3304. struct stat st;
  3305. char path[256];
  3306. int rv;
  3307. // enumerate nodes
  3308. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3309. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3310. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3311. if (stat(path, &st) != 0) { break; }
  3312. ++g_state.numa.n_nodes;
  3313. }
  3314. // enumerate CPUs
  3315. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3316. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3317. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3318. if (stat(path, &st) != 0) { break; }
  3319. ++g_state.numa.total_cpus;
  3320. }
  3321. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3322. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3323. g_state.numa.n_nodes = 0;
  3324. return;
  3325. }
  3326. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3327. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3328. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3329. node->n_cpus = 0;
  3330. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3331. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3332. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3333. if (stat(path, &st) == 0) {
  3334. node->cpus[node->n_cpus++] = c;
  3335. GGML_PRINT_DEBUG(" %u", c);
  3336. }
  3337. }
  3338. GGML_PRINT_DEBUG("\n");
  3339. }
  3340. if (ggml_is_numa()) {
  3341. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3342. if (fptr != NULL) {
  3343. char buf[42];
  3344. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3345. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3346. }
  3347. fclose(fptr);
  3348. }
  3349. }
  3350. #else
  3351. // TODO
  3352. #endif
  3353. }
  3354. bool ggml_is_numa(void) {
  3355. return g_state.numa.n_nodes > 1;
  3356. }
  3357. ////////////////////////////////////////////////////////////////////////////////
  3358. void ggml_print_object(const struct ggml_object * obj) {
  3359. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3360. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3361. }
  3362. void ggml_print_objects(const struct ggml_context * ctx) {
  3363. struct ggml_object * obj = ctx->objects_begin;
  3364. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3365. while (obj != NULL) {
  3366. ggml_print_object(obj);
  3367. obj = obj->next;
  3368. }
  3369. GGML_PRINT("%s: --- end ---\n", __func__);
  3370. }
  3371. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3372. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3373. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3374. }
  3375. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3376. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3377. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3378. }
  3379. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3380. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3381. // this should handle cases where the tensor is not contiguous in memory
  3382. // probaby just:
  3383. //
  3384. // return tensor->ne[3]*tensor->nb[3]
  3385. //
  3386. // is enough, but just in case, adding the second part
  3387. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3388. }
  3389. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3390. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3391. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3392. }
  3393. int ggml_blck_size(enum ggml_type type) {
  3394. return GGML_BLCK_SIZE[type];
  3395. }
  3396. size_t ggml_type_size(enum ggml_type type) {
  3397. return GGML_TYPE_SIZE[type];
  3398. }
  3399. float ggml_type_sizef(enum ggml_type type) {
  3400. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3401. }
  3402. const char * ggml_type_name(enum ggml_type type) {
  3403. return GGML_TYPE_NAME[type];
  3404. }
  3405. const char * ggml_op_name(enum ggml_op op) {
  3406. return GGML_OP_NAME[op];
  3407. }
  3408. const char * ggml_op_symbol(enum ggml_op op) {
  3409. return GGML_OP_SYMBOL[op];
  3410. }
  3411. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3412. return GGML_TYPE_SIZE[tensor->type];
  3413. }
  3414. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3415. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3416. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3417. }
  3418. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3419. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3420. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3421. }
  3422. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3423. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3424. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3425. }
  3426. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3427. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3428. return (t0->ne[0] == t1->ne[0]) &&
  3429. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3430. (t1->ne[3]%t0->ne[3] == 0);
  3431. }
  3432. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3433. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3434. return
  3435. (t0->ne[1] == t1->ne[1]) &&
  3436. (t0->ne[2] == t1->ne[2]) &&
  3437. (t0->ne[3] == t1->ne[3]);
  3438. }
  3439. bool ggml_is_quantized(enum ggml_type type) {
  3440. return GGML_IS_QUANTIZED[type];
  3441. }
  3442. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3443. enum ggml_type wtype = GGML_TYPE_COUNT;
  3444. switch (ftype) {
  3445. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3446. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3447. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3448. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3449. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3450. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3451. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3452. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3453. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3454. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3455. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3456. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3457. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3458. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3459. }
  3460. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3461. return wtype;
  3462. }
  3463. size_t ggml_tensor_overhead(void) {
  3464. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3465. }
  3466. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3467. return tensor->nb[0] > tensor->nb[1];
  3468. }
  3469. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3470. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3471. return
  3472. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3473. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3474. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3475. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3476. }
  3477. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3478. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3479. return
  3480. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3481. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3482. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3483. }
  3484. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3485. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3486. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3487. }
  3488. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3489. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3490. return
  3491. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3492. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3493. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3494. }
  3495. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3496. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3497. return
  3498. (t0->ne[0] == t1->ne[0] ) &&
  3499. (t0->ne[1] == t1->ne[1] ) &&
  3500. (t0->ne[2] == t1->ne[2] ) &&
  3501. (t0->ne[3] == t1->ne[3] );
  3502. }
  3503. // check if t1 can be represented as a repeatition of t0
  3504. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3505. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3506. return
  3507. (t1->ne[0]%t0->ne[0] == 0) &&
  3508. (t1->ne[1]%t0->ne[1] == 0) &&
  3509. (t1->ne[2]%t0->ne[2] == 0) &&
  3510. (t1->ne[3]%t0->ne[3] == 0);
  3511. }
  3512. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3513. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3514. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3515. }
  3516. static inline int ggml_up32(int n) {
  3517. return (n + 31) & ~31;
  3518. }
  3519. //static inline int ggml_up64(int n) {
  3520. // return (n + 63) & ~63;
  3521. //}
  3522. static inline int ggml_up(int n, int m) {
  3523. // assert m is a power of 2
  3524. GGML_ASSERT((m & (m - 1)) == 0);
  3525. return (n + m - 1) & ~(m - 1);
  3526. }
  3527. // assert that pointer is aligned to GGML_MEM_ALIGN
  3528. #define ggml_assert_aligned(ptr) \
  3529. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3530. ////////////////////////////////////////////////////////////////////////////////
  3531. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3532. // make this function thread safe
  3533. ggml_critical_section_start();
  3534. static bool is_first_call = true;
  3535. if (is_first_call) {
  3536. // initialize time system (required on Windows)
  3537. ggml_time_init();
  3538. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3539. {
  3540. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3541. ggml_fp16_t ii;
  3542. for (int i = 0; i < (1 << 16); ++i) {
  3543. uint16_t ui = i;
  3544. memcpy(&ii, &ui, sizeof(ii));
  3545. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3546. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3547. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3548. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3549. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3550. }
  3551. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3552. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3553. }
  3554. // initialize g_state
  3555. {
  3556. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3557. g_state = (struct ggml_state) {
  3558. /*.contexts =*/ { { 0 } },
  3559. /*.numa =*/ {
  3560. .n_nodes = 0,
  3561. .total_cpus = 0,
  3562. },
  3563. };
  3564. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3565. g_state.contexts[i].used = false;
  3566. }
  3567. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3568. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3569. }
  3570. #if defined(GGML_USE_CUBLAS)
  3571. ggml_init_cublas();
  3572. #elif defined(GGML_USE_CLBLAST)
  3573. ggml_cl_init();
  3574. #endif
  3575. ggml_setup_op_has_task_pass();
  3576. is_first_call = false;
  3577. }
  3578. // find non-used context in g_state
  3579. struct ggml_context * ctx = NULL;
  3580. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3581. if (!g_state.contexts[i].used) {
  3582. g_state.contexts[i].used = true;
  3583. ctx = &g_state.contexts[i].context;
  3584. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3585. break;
  3586. }
  3587. }
  3588. if (ctx == NULL) {
  3589. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3590. ggml_critical_section_end();
  3591. return NULL;
  3592. }
  3593. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3594. *ctx = (struct ggml_context) {
  3595. /*.mem_size =*/ mem_size,
  3596. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3597. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3598. /*.no_alloc =*/ params.no_alloc,
  3599. /*.no_alloc_save =*/ params.no_alloc,
  3600. /*.n_objects =*/ 0,
  3601. /*.objects_begin =*/ NULL,
  3602. /*.objects_end =*/ NULL,
  3603. /*.scratch =*/ { 0, 0, NULL, },
  3604. /*.scratch_save =*/ { 0, 0, NULL, },
  3605. };
  3606. GGML_ASSERT(ctx->mem_buffer != NULL);
  3607. ggml_assert_aligned(ctx->mem_buffer);
  3608. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3609. ggml_critical_section_end();
  3610. return ctx;
  3611. }
  3612. void ggml_free(struct ggml_context * ctx) {
  3613. // make this function thread safe
  3614. ggml_critical_section_start();
  3615. bool found = false;
  3616. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3617. if (&g_state.contexts[i].context == ctx) {
  3618. g_state.contexts[i].used = false;
  3619. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3620. __func__, i, ggml_used_mem(ctx));
  3621. if (ctx->mem_buffer_owned) {
  3622. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3623. }
  3624. found = true;
  3625. break;
  3626. }
  3627. }
  3628. if (!found) {
  3629. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3630. }
  3631. ggml_critical_section_end();
  3632. }
  3633. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3634. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3635. }
  3636. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3637. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3638. ctx->scratch = scratch;
  3639. return result;
  3640. }
  3641. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3642. return ctx->no_alloc;
  3643. }
  3644. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3645. ctx->no_alloc = no_alloc;
  3646. }
  3647. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3648. return ctx->mem_buffer;
  3649. }
  3650. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3651. return ctx->mem_size;
  3652. }
  3653. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3654. size_t max_size = 0;
  3655. struct ggml_object * obj = ctx->objects_begin;
  3656. while (obj != NULL) {
  3657. if (obj->type == GGML_OBJECT_TENSOR) {
  3658. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3659. const size_t size = ggml_nbytes(tensor);
  3660. if (max_size < size) {
  3661. max_size = size;
  3662. }
  3663. }
  3664. obj = obj->next;
  3665. }
  3666. return max_size;
  3667. }
  3668. // IMPORTANT:
  3669. // when creating "opt" tensors, always save and load the scratch buffer
  3670. // this is an error prone process, but it is necessary to support inplace
  3671. // operators when using scratch buffers
  3672. // TODO: implement a better way
  3673. static void ggml_scratch_save(struct ggml_context * ctx) {
  3674. // this is needed to allow opt tensors to store their data
  3675. // TODO: again, need to find a better way
  3676. ctx->no_alloc_save = ctx->no_alloc;
  3677. ctx->no_alloc = false;
  3678. ctx->scratch_save = ctx->scratch;
  3679. ctx->scratch.data = NULL;
  3680. }
  3681. static void ggml_scratch_load(struct ggml_context * ctx) {
  3682. ctx->no_alloc = ctx->no_alloc_save;
  3683. ctx->scratch = ctx->scratch_save;
  3684. }
  3685. ////////////////////////////////////////////////////////////////////////////////
  3686. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3687. // always insert objects at the end of the context's memory pool
  3688. struct ggml_object * obj_cur = ctx->objects_end;
  3689. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3690. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3691. const size_t cur_end = cur_offs + cur_size;
  3692. // align to GGML_MEM_ALIGN
  3693. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3694. char * const mem_buffer = ctx->mem_buffer;
  3695. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3696. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3697. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3698. __func__, cur_end + size_needed, ctx->mem_size);
  3699. assert(false);
  3700. return NULL;
  3701. }
  3702. *obj_new = (struct ggml_object) {
  3703. .offs = cur_end + GGML_OBJECT_SIZE,
  3704. .size = size_needed,
  3705. .next = NULL,
  3706. .type = type,
  3707. };
  3708. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3709. if (obj_cur != NULL) {
  3710. obj_cur->next = obj_new;
  3711. } else {
  3712. // this is the first object in this context
  3713. ctx->objects_begin = obj_new;
  3714. }
  3715. ctx->objects_end = obj_new;
  3716. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3717. return obj_new;
  3718. }
  3719. static struct ggml_tensor * ggml_new_tensor_impl(
  3720. struct ggml_context * ctx,
  3721. enum ggml_type type,
  3722. int n_dims,
  3723. const int64_t* ne,
  3724. void* data) {
  3725. size_t data_size = 0;
  3726. if (data == NULL && !ctx->no_alloc) {
  3727. data_size += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3728. for (int i = 1; i < n_dims; i++) {
  3729. data_size *= ne[i];
  3730. }
  3731. }
  3732. if (ctx->scratch.data != NULL && data == NULL) {
  3733. // allocate tensor data in the scratch buffer
  3734. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3735. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3736. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3737. assert(false);
  3738. return NULL;
  3739. }
  3740. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3741. ctx->scratch.offs += data_size;
  3742. data_size = 0;
  3743. }
  3744. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size);
  3745. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3746. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3747. *result = (struct ggml_tensor) {
  3748. /*.type =*/ type,
  3749. /*.backend =*/ GGML_BACKEND_CPU,
  3750. /*.n_dims =*/ n_dims,
  3751. /*.ne =*/ { 1, 1, 1, 1 },
  3752. /*.nb =*/ { 0, 0, 0, 0 },
  3753. /*.op =*/ GGML_OP_NONE,
  3754. /*.op_params =*/ {0},
  3755. /*.is_param =*/ false,
  3756. /*.grad =*/ NULL,
  3757. /*.src =*/ { NULL },
  3758. /*.perf_runs =*/ 0,
  3759. /*.perf_cycles =*/ 0,
  3760. /*.perf_time_us =*/ 0,
  3761. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3762. /*.name =*/ { 0 },
  3763. /*.extra =*/ NULL,
  3764. /*.padding =*/ { 0 },
  3765. };
  3766. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3767. //ggml_assert_aligned(result->data);
  3768. for (int i = 0; i < n_dims; i++) {
  3769. result->ne[i] = ne[i];
  3770. }
  3771. result->nb[0] = GGML_TYPE_SIZE[type];
  3772. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3773. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3774. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3775. }
  3776. ctx->n_objects++;
  3777. return result;
  3778. }
  3779. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3780. assert(params_size <= GGML_MAX_OP_PARAMS);
  3781. memcpy(tensor->op_params, params, params_size);
  3782. }
  3783. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3784. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3785. return ((const int32_t *)(tensor->op_params))[i];
  3786. }
  3787. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3788. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3789. ((int32_t *)(tensor->op_params))[i] = value;
  3790. }
  3791. struct ggml_tensor * ggml_new_tensor(
  3792. struct ggml_context * ctx,
  3793. enum ggml_type type,
  3794. int n_dims,
  3795. const int64_t * ne) {
  3796. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3797. }
  3798. struct ggml_tensor * ggml_new_tensor_1d(
  3799. struct ggml_context * ctx,
  3800. enum ggml_type type,
  3801. int64_t ne0) {
  3802. return ggml_new_tensor(ctx, type, 1, &ne0);
  3803. }
  3804. struct ggml_tensor * ggml_new_tensor_2d(
  3805. struct ggml_context * ctx,
  3806. enum ggml_type type,
  3807. int64_t ne0,
  3808. int64_t ne1) {
  3809. const int64_t ne[2] = { ne0, ne1 };
  3810. return ggml_new_tensor(ctx, type, 2, ne);
  3811. }
  3812. struct ggml_tensor * ggml_new_tensor_3d(
  3813. struct ggml_context * ctx,
  3814. enum ggml_type type,
  3815. int64_t ne0,
  3816. int64_t ne1,
  3817. int64_t ne2) {
  3818. const int64_t ne[3] = { ne0, ne1, ne2 };
  3819. return ggml_new_tensor(ctx, type, 3, ne);
  3820. }
  3821. struct ggml_tensor * ggml_new_tensor_4d(
  3822. struct ggml_context * ctx,
  3823. enum ggml_type type,
  3824. int64_t ne0,
  3825. int64_t ne1,
  3826. int64_t ne2,
  3827. int64_t ne3) {
  3828. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3829. return ggml_new_tensor(ctx, type, 4, ne);
  3830. }
  3831. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3832. ggml_scratch_save(ctx);
  3833. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3834. ggml_scratch_load(ctx);
  3835. ggml_set_i32(result, value);
  3836. return result;
  3837. }
  3838. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3839. ggml_scratch_save(ctx);
  3840. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3841. ggml_scratch_load(ctx);
  3842. ggml_set_f32(result, value);
  3843. return result;
  3844. }
  3845. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3846. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3847. }
  3848. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3849. memset(tensor->data, 0, ggml_nbytes(tensor));
  3850. return tensor;
  3851. }
  3852. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3853. const int n = ggml_nrows(tensor);
  3854. const int nc = tensor->ne[0];
  3855. const size_t n1 = tensor->nb[1];
  3856. char * const data = tensor->data;
  3857. switch (tensor->type) {
  3858. case GGML_TYPE_I8:
  3859. {
  3860. assert(tensor->nb[0] == sizeof(int8_t));
  3861. for (int i = 0; i < n; i++) {
  3862. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3863. }
  3864. } break;
  3865. case GGML_TYPE_I16:
  3866. {
  3867. assert(tensor->nb[0] == sizeof(int16_t));
  3868. for (int i = 0; i < n; i++) {
  3869. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3870. }
  3871. } break;
  3872. case GGML_TYPE_I32:
  3873. {
  3874. assert(tensor->nb[0] == sizeof(int32_t));
  3875. for (int i = 0; i < n; i++) {
  3876. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3877. }
  3878. } break;
  3879. case GGML_TYPE_F16:
  3880. {
  3881. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3882. for (int i = 0; i < n; i++) {
  3883. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3884. }
  3885. } break;
  3886. case GGML_TYPE_F32:
  3887. {
  3888. assert(tensor->nb[0] == sizeof(float));
  3889. for (int i = 0; i < n; i++) {
  3890. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3891. }
  3892. } break;
  3893. default:
  3894. {
  3895. GGML_ASSERT(false);
  3896. } break;
  3897. }
  3898. return tensor;
  3899. }
  3900. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3901. const int n = ggml_nrows(tensor);
  3902. const int nc = tensor->ne[0];
  3903. const size_t n1 = tensor->nb[1];
  3904. char * const data = tensor->data;
  3905. switch (tensor->type) {
  3906. case GGML_TYPE_I8:
  3907. {
  3908. assert(tensor->nb[0] == sizeof(int8_t));
  3909. for (int i = 0; i < n; i++) {
  3910. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3911. }
  3912. } break;
  3913. case GGML_TYPE_I16:
  3914. {
  3915. assert(tensor->nb[0] == sizeof(int16_t));
  3916. for (int i = 0; i < n; i++) {
  3917. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3918. }
  3919. } break;
  3920. case GGML_TYPE_I32:
  3921. {
  3922. assert(tensor->nb[0] == sizeof(int32_t));
  3923. for (int i = 0; i < n; i++) {
  3924. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3925. }
  3926. } break;
  3927. case GGML_TYPE_F16:
  3928. {
  3929. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3930. for (int i = 0; i < n; i++) {
  3931. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3932. }
  3933. } break;
  3934. case GGML_TYPE_F32:
  3935. {
  3936. assert(tensor->nb[0] == sizeof(float));
  3937. for (int i = 0; i < n; i++) {
  3938. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3939. }
  3940. } break;
  3941. default:
  3942. {
  3943. GGML_ASSERT(false);
  3944. } break;
  3945. }
  3946. return tensor;
  3947. }
  3948. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3949. switch (tensor->type) {
  3950. case GGML_TYPE_I8:
  3951. {
  3952. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3953. return ((int8_t *)(tensor->data))[i];
  3954. } break;
  3955. case GGML_TYPE_I16:
  3956. {
  3957. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3958. return ((int16_t *)(tensor->data))[i];
  3959. } break;
  3960. case GGML_TYPE_I32:
  3961. {
  3962. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3963. return ((int32_t *)(tensor->data))[i];
  3964. } break;
  3965. case GGML_TYPE_F16:
  3966. {
  3967. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3968. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3969. } break;
  3970. case GGML_TYPE_F32:
  3971. {
  3972. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3973. return ((float *)(tensor->data))[i];
  3974. } break;
  3975. default:
  3976. {
  3977. GGML_ASSERT(false);
  3978. } break;
  3979. }
  3980. return 0.0f;
  3981. }
  3982. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3983. switch (tensor->type) {
  3984. case GGML_TYPE_I8:
  3985. {
  3986. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3987. ((int8_t *)(tensor->data))[i] = value;
  3988. } break;
  3989. case GGML_TYPE_I16:
  3990. {
  3991. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3992. ((int16_t *)(tensor->data))[i] = value;
  3993. } break;
  3994. case GGML_TYPE_I32:
  3995. {
  3996. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3997. ((int32_t *)(tensor->data))[i] = value;
  3998. } break;
  3999. case GGML_TYPE_F16:
  4000. {
  4001. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4002. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4003. } break;
  4004. case GGML_TYPE_F32:
  4005. {
  4006. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4007. ((float *)(tensor->data))[i] = value;
  4008. } break;
  4009. default:
  4010. {
  4011. GGML_ASSERT(false);
  4012. } break;
  4013. }
  4014. }
  4015. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4016. switch (tensor->type) {
  4017. case GGML_TYPE_I8:
  4018. {
  4019. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4020. return ((int8_t *)(tensor->data))[i];
  4021. } break;
  4022. case GGML_TYPE_I16:
  4023. {
  4024. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4025. return ((int16_t *)(tensor->data))[i];
  4026. } break;
  4027. case GGML_TYPE_I32:
  4028. {
  4029. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4030. return ((int32_t *)(tensor->data))[i];
  4031. } break;
  4032. case GGML_TYPE_F16:
  4033. {
  4034. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4035. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4036. } break;
  4037. case GGML_TYPE_F32:
  4038. {
  4039. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4040. return ((float *)(tensor->data))[i];
  4041. } break;
  4042. default:
  4043. {
  4044. GGML_ASSERT(false);
  4045. } break;
  4046. }
  4047. return 0.0f;
  4048. }
  4049. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4050. switch (tensor->type) {
  4051. case GGML_TYPE_I8:
  4052. {
  4053. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4054. ((int8_t *)(tensor->data))[i] = value;
  4055. } break;
  4056. case GGML_TYPE_I16:
  4057. {
  4058. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4059. ((int16_t *)(tensor->data))[i] = value;
  4060. } break;
  4061. case GGML_TYPE_I32:
  4062. {
  4063. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4064. ((int32_t *)(tensor->data))[i] = value;
  4065. } break;
  4066. case GGML_TYPE_F16:
  4067. {
  4068. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4069. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4070. } break;
  4071. case GGML_TYPE_F32:
  4072. {
  4073. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4074. ((float *)(tensor->data))[i] = value;
  4075. } break;
  4076. default:
  4077. {
  4078. GGML_ASSERT(false);
  4079. } break;
  4080. }
  4081. }
  4082. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4083. return tensor->data;
  4084. }
  4085. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4086. assert(tensor->type == GGML_TYPE_F32);
  4087. return (float *)(tensor->data);
  4088. }
  4089. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4090. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4091. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4092. }
  4093. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4094. return tensor->name;
  4095. }
  4096. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4097. strncpy(tensor->name, name, sizeof(tensor->name));
  4098. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4099. return tensor;
  4100. }
  4101. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4102. va_list args;
  4103. va_start(args, fmt);
  4104. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4105. va_end(args);
  4106. return tensor;
  4107. }
  4108. struct ggml_tensor * ggml_view_tensor(
  4109. struct ggml_context * ctx,
  4110. const struct ggml_tensor * src) {
  4111. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4112. ggml_format_name(result, "%s (view)", src->name);
  4113. result->nb[0] = src->nb[0];
  4114. result->nb[1] = src->nb[1];
  4115. result->nb[2] = src->nb[2];
  4116. result->nb[3] = src->nb[3];
  4117. return result;
  4118. }
  4119. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4120. struct ggml_object * obj = ctx->objects_begin;
  4121. char * const mem_buffer = ctx->mem_buffer;
  4122. while (obj != NULL) {
  4123. if (obj->type == GGML_OBJECT_TENSOR) {
  4124. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4125. if (strcmp(cur->name, name) == 0) {
  4126. return cur;
  4127. }
  4128. }
  4129. obj = obj->next;
  4130. }
  4131. return NULL;
  4132. }
  4133. ////////////////////////////////////////////////////////////////////////////////
  4134. // ggml_dup
  4135. static struct ggml_tensor * ggml_dup_impl(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a,
  4138. bool inplace) {
  4139. bool is_node = false;
  4140. if (!inplace && (a->grad)) {
  4141. is_node = true;
  4142. }
  4143. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4144. result->op = GGML_OP_DUP;
  4145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4146. result->src[0] = a;
  4147. return result;
  4148. }
  4149. struct ggml_tensor * ggml_dup(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a) {
  4152. return ggml_dup_impl(ctx, a, false);
  4153. }
  4154. struct ggml_tensor * ggml_dup_inplace(
  4155. struct ggml_context * ctx,
  4156. struct ggml_tensor * a) {
  4157. return ggml_dup_impl(ctx, a, true);
  4158. }
  4159. // ggml_add
  4160. static struct ggml_tensor * ggml_add_impl(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a,
  4163. struct ggml_tensor * b,
  4164. bool inplace) {
  4165. // TODO: support less-strict constraint
  4166. // GGML_ASSERT(ggml_can_repeat(b, a));
  4167. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4168. bool is_node = false;
  4169. if (!inplace && (a->grad || b->grad)) {
  4170. // TODO: support backward pass for broadcasting
  4171. GGML_ASSERT(ggml_are_same_shape(a, b));
  4172. is_node = true;
  4173. }
  4174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4175. result->op = GGML_OP_ADD;
  4176. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4177. result->src[0] = a;
  4178. result->src[1] = b;
  4179. return result;
  4180. }
  4181. struct ggml_tensor * ggml_add(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a,
  4184. struct ggml_tensor * b) {
  4185. return ggml_add_impl(ctx, a, b, false);
  4186. }
  4187. struct ggml_tensor * ggml_add_inplace(
  4188. struct ggml_context * ctx,
  4189. struct ggml_tensor * a,
  4190. struct ggml_tensor * b) {
  4191. return ggml_add_impl(ctx, a, b, true);
  4192. }
  4193. // ggml_add1
  4194. static struct ggml_tensor * ggml_add1_impl(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a,
  4197. struct ggml_tensor * b,
  4198. bool inplace) {
  4199. GGML_ASSERT(ggml_is_scalar(b));
  4200. GGML_ASSERT(ggml_is_padded_1d(a));
  4201. bool is_node = false;
  4202. if (a->grad || b->grad) {
  4203. is_node = true;
  4204. }
  4205. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4206. result->op = GGML_OP_ADD1;
  4207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4208. result->src[0] = a;
  4209. result->src[1] = b;
  4210. return result;
  4211. }
  4212. struct ggml_tensor * ggml_add1(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a,
  4215. struct ggml_tensor * b) {
  4216. return ggml_add1_impl(ctx, a, b, false);
  4217. }
  4218. struct ggml_tensor * ggml_add1_inplace(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a,
  4221. struct ggml_tensor * b) {
  4222. return ggml_add1_impl(ctx, a, b, true);
  4223. }
  4224. // ggml_acc
  4225. static struct ggml_tensor * ggml_acc_impl(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a,
  4228. struct ggml_tensor * b,
  4229. size_t nb1,
  4230. size_t nb2,
  4231. size_t nb3,
  4232. size_t offset,
  4233. bool inplace) {
  4234. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4235. GGML_ASSERT(ggml_is_contiguous(a));
  4236. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4237. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4238. bool is_node = false;
  4239. if (!inplace && (a->grad || b->grad)) {
  4240. is_node = true;
  4241. }
  4242. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4243. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4244. ggml_set_op_params(result, params, sizeof(params));
  4245. result->op = GGML_OP_ACC;
  4246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4247. result->src[0] = a;
  4248. result->src[1] = b;
  4249. return result;
  4250. }
  4251. struct ggml_tensor * ggml_acc(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a,
  4254. struct ggml_tensor * b,
  4255. size_t nb1,
  4256. size_t nb2,
  4257. size_t nb3,
  4258. size_t offset) {
  4259. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4260. }
  4261. struct ggml_tensor * ggml_acc_inplace(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a,
  4264. struct ggml_tensor * b,
  4265. size_t nb1,
  4266. size_t nb2,
  4267. size_t nb3,
  4268. size_t offset) {
  4269. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4270. }
  4271. // ggml_sub
  4272. static struct ggml_tensor * ggml_sub_impl(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a,
  4275. struct ggml_tensor * b,
  4276. bool inplace) {
  4277. GGML_ASSERT(ggml_are_same_shape(a, b));
  4278. bool is_node = false;
  4279. if (!inplace && (a->grad || b->grad)) {
  4280. is_node = true;
  4281. }
  4282. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4283. result->op = GGML_OP_SUB;
  4284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4285. result->src[0] = a;
  4286. result->src[1] = b;
  4287. return result;
  4288. }
  4289. struct ggml_tensor * ggml_sub(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a,
  4292. struct ggml_tensor * b) {
  4293. return ggml_sub_impl(ctx, a, b, false);
  4294. }
  4295. struct ggml_tensor * ggml_sub_inplace(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a,
  4298. struct ggml_tensor * b) {
  4299. return ggml_sub_impl(ctx, a, b, true);
  4300. }
  4301. // ggml_mul
  4302. static struct ggml_tensor * ggml_mul_impl(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a,
  4305. struct ggml_tensor * b,
  4306. bool inplace) {
  4307. // TODO: support less-strict constraint
  4308. // GGML_ASSERT(ggml_can_repeat(b, a));
  4309. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4310. bool is_node = false;
  4311. if (!inplace && (a->grad || b->grad)) {
  4312. // TODO: support backward pass for broadcasting
  4313. GGML_ASSERT(ggml_are_same_shape(a, b));
  4314. is_node = true;
  4315. }
  4316. if (inplace) {
  4317. GGML_ASSERT(is_node == false);
  4318. }
  4319. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4320. result->op = GGML_OP_MUL;
  4321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4322. result->src[0] = a;
  4323. result->src[1] = b;
  4324. return result;
  4325. }
  4326. struct ggml_tensor * ggml_mul(
  4327. struct ggml_context * ctx,
  4328. struct ggml_tensor * a,
  4329. struct ggml_tensor * b) {
  4330. return ggml_mul_impl(ctx, a, b, false);
  4331. }
  4332. struct ggml_tensor * ggml_mul_inplace(
  4333. struct ggml_context * ctx,
  4334. struct ggml_tensor * a,
  4335. struct ggml_tensor * b) {
  4336. return ggml_mul_impl(ctx, a, b, true);
  4337. }
  4338. // ggml_div
  4339. static struct ggml_tensor * ggml_div_impl(
  4340. struct ggml_context * ctx,
  4341. struct ggml_tensor * a,
  4342. struct ggml_tensor * b,
  4343. bool inplace) {
  4344. GGML_ASSERT(ggml_are_same_shape(a, b));
  4345. bool is_node = false;
  4346. if (!inplace && (a->grad || b->grad)) {
  4347. is_node = true;
  4348. }
  4349. if (inplace) {
  4350. GGML_ASSERT(is_node == false);
  4351. }
  4352. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4353. result->op = GGML_OP_DIV;
  4354. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4355. result->src[0] = a;
  4356. result->src[1] = b;
  4357. return result;
  4358. }
  4359. struct ggml_tensor * ggml_div(
  4360. struct ggml_context * ctx,
  4361. struct ggml_tensor * a,
  4362. struct ggml_tensor * b) {
  4363. return ggml_div_impl(ctx, a, b, false);
  4364. }
  4365. struct ggml_tensor * ggml_div_inplace(
  4366. struct ggml_context * ctx,
  4367. struct ggml_tensor * a,
  4368. struct ggml_tensor * b) {
  4369. return ggml_div_impl(ctx, a, b, true);
  4370. }
  4371. // ggml_sqr
  4372. static struct ggml_tensor * ggml_sqr_impl(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a,
  4375. bool inplace) {
  4376. bool is_node = false;
  4377. if (!inplace && (a->grad)) {
  4378. is_node = true;
  4379. }
  4380. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4381. result->op = GGML_OP_SQR;
  4382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4383. result->src[0] = a;
  4384. return result;
  4385. }
  4386. struct ggml_tensor * ggml_sqr(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a) {
  4389. return ggml_sqr_impl(ctx, a, false);
  4390. }
  4391. struct ggml_tensor * ggml_sqr_inplace(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a) {
  4394. return ggml_sqr_impl(ctx, a, true);
  4395. }
  4396. // ggml_sqrt
  4397. static struct ggml_tensor * ggml_sqrt_impl(
  4398. struct ggml_context * ctx,
  4399. struct ggml_tensor * a,
  4400. bool inplace) {
  4401. bool is_node = false;
  4402. if (!inplace && (a->grad)) {
  4403. is_node = true;
  4404. }
  4405. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4406. result->op = GGML_OP_SQRT;
  4407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4408. result->src[0] = a;
  4409. return result;
  4410. }
  4411. struct ggml_tensor * ggml_sqrt(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a) {
  4414. return ggml_sqrt_impl(ctx, a, false);
  4415. }
  4416. struct ggml_tensor * ggml_sqrt_inplace(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a) {
  4419. return ggml_sqrt_impl(ctx, a, true);
  4420. }
  4421. // ggml_log
  4422. static struct ggml_tensor * ggml_log_impl(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. bool inplace) {
  4426. bool is_node = false;
  4427. if (!inplace && (a->grad)) {
  4428. is_node = true;
  4429. }
  4430. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4431. result->op = GGML_OP_LOG;
  4432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4433. result->src[0] = a;
  4434. return result;
  4435. }
  4436. struct ggml_tensor * ggml_log(
  4437. struct ggml_context * ctx,
  4438. struct ggml_tensor * a) {
  4439. return ggml_log_impl(ctx, a, false);
  4440. }
  4441. struct ggml_tensor * ggml_log_inplace(
  4442. struct ggml_context * ctx,
  4443. struct ggml_tensor * a) {
  4444. return ggml_log_impl(ctx, a, true);
  4445. }
  4446. // ggml_sum
  4447. struct ggml_tensor * ggml_sum(
  4448. struct ggml_context * ctx,
  4449. struct ggml_tensor * a) {
  4450. bool is_node = false;
  4451. if (a->grad) {
  4452. is_node = true;
  4453. }
  4454. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4455. result->op = GGML_OP_SUM;
  4456. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4457. result->src[0] = a;
  4458. return result;
  4459. }
  4460. // ggml_sum_rows
  4461. struct ggml_tensor * ggml_sum_rows(
  4462. struct ggml_context * ctx,
  4463. struct ggml_tensor * a) {
  4464. bool is_node = false;
  4465. if (a->grad) {
  4466. is_node = true;
  4467. }
  4468. int64_t ne[4] = {1,1,1,1};
  4469. for (int i=1; i<a->n_dims; ++i) {
  4470. ne[i] = a->ne[i];
  4471. }
  4472. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4473. result->op = GGML_OP_SUM_ROWS;
  4474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4475. result->src[0] = a;
  4476. return result;
  4477. }
  4478. // ggml_mean
  4479. struct ggml_tensor * ggml_mean(
  4480. struct ggml_context * ctx,
  4481. struct ggml_tensor * a) {
  4482. bool is_node = false;
  4483. if (a->grad) {
  4484. GGML_ASSERT(false); // TODO: implement
  4485. is_node = true;
  4486. }
  4487. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4488. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4489. result->op = GGML_OP_MEAN;
  4490. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4491. result->src[0] = a;
  4492. return result;
  4493. }
  4494. // ggml_argmax
  4495. struct ggml_tensor * ggml_argmax(
  4496. struct ggml_context * ctx,
  4497. struct ggml_tensor * a) {
  4498. GGML_ASSERT(ggml_is_matrix(a));
  4499. bool is_node = false;
  4500. if (a->grad) {
  4501. GGML_ASSERT(false);
  4502. is_node = true;
  4503. }
  4504. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4505. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4506. result->op = GGML_OP_ARGMAX;
  4507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4508. result->src[0] = a;
  4509. return result;
  4510. }
  4511. // ggml_repeat
  4512. struct ggml_tensor * ggml_repeat(
  4513. struct ggml_context * ctx,
  4514. struct ggml_tensor * a,
  4515. struct ggml_tensor * b) {
  4516. GGML_ASSERT(ggml_can_repeat(a, b));
  4517. bool is_node = false;
  4518. if (a->grad) {
  4519. is_node = true;
  4520. }
  4521. if (ggml_are_same_shape(a, b) && !is_node) {
  4522. return a;
  4523. }
  4524. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4525. result->op = GGML_OP_REPEAT;
  4526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4527. result->src[0] = a;
  4528. result->src[1] = b;
  4529. return result;
  4530. }
  4531. // ggml_repeat_back
  4532. struct ggml_tensor * ggml_repeat_back(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a,
  4535. struct ggml_tensor * b) {
  4536. GGML_ASSERT(ggml_can_repeat(b, a));
  4537. bool is_node = false;
  4538. if (a->grad) {
  4539. is_node = true;
  4540. }
  4541. if (ggml_are_same_shape(a, b) && !is_node) {
  4542. return a;
  4543. }
  4544. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4545. result->op = GGML_OP_REPEAT_BACK;
  4546. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4547. result->src[0] = a;
  4548. result->src[1] = b;
  4549. return result;
  4550. }
  4551. // ggml_abs
  4552. struct ggml_tensor * ggml_abs(
  4553. struct ggml_context * ctx,
  4554. struct ggml_tensor * a) {
  4555. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4556. }
  4557. struct ggml_tensor * ggml_abs_inplace(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a) {
  4560. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4561. }
  4562. // ggml_sgn
  4563. struct ggml_tensor * ggml_sgn(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a) {
  4566. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4567. }
  4568. struct ggml_tensor * ggml_sgn_inplace(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a) {
  4571. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4572. }
  4573. // ggml_neg
  4574. struct ggml_tensor * ggml_neg(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a) {
  4577. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4578. }
  4579. struct ggml_tensor * ggml_neg_inplace(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a) {
  4582. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4583. }
  4584. // ggml_step
  4585. struct ggml_tensor * ggml_step(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a) {
  4588. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4589. }
  4590. struct ggml_tensor * ggml_step_inplace(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a) {
  4593. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4594. }
  4595. // ggml_tanh
  4596. struct ggml_tensor * ggml_tanh(
  4597. struct ggml_context * ctx,
  4598. struct ggml_tensor * a) {
  4599. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4600. }
  4601. struct ggml_tensor * ggml_tanh_inplace(
  4602. struct ggml_context * ctx,
  4603. struct ggml_tensor * a) {
  4604. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4605. }
  4606. // ggml_elu
  4607. struct ggml_tensor * ggml_elu(
  4608. struct ggml_context * ctx,
  4609. struct ggml_tensor * a) {
  4610. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4611. }
  4612. struct ggml_tensor * ggml_elu_inplace(
  4613. struct ggml_context * ctx,
  4614. struct ggml_tensor * a) {
  4615. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4616. }
  4617. // ggml_relu
  4618. struct ggml_tensor * ggml_relu(
  4619. struct ggml_context * ctx,
  4620. struct ggml_tensor * a) {
  4621. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4622. }
  4623. struct ggml_tensor * ggml_relu_inplace(
  4624. struct ggml_context * ctx,
  4625. struct ggml_tensor * a) {
  4626. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4627. }
  4628. // ggml_gelu
  4629. struct ggml_tensor * ggml_gelu(
  4630. struct ggml_context * ctx,
  4631. struct ggml_tensor * a) {
  4632. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4633. }
  4634. struct ggml_tensor * ggml_gelu_inplace(
  4635. struct ggml_context * ctx,
  4636. struct ggml_tensor * a) {
  4637. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4638. }
  4639. // ggml_gelu_quick
  4640. struct ggml_tensor * ggml_gelu_quick(
  4641. struct ggml_context * ctx,
  4642. struct ggml_tensor * a) {
  4643. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4644. }
  4645. struct ggml_tensor * ggml_gelu_quick_inplace(
  4646. struct ggml_context * ctx,
  4647. struct ggml_tensor * a) {
  4648. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4649. }
  4650. // ggml_silu
  4651. struct ggml_tensor * ggml_silu(
  4652. struct ggml_context * ctx,
  4653. struct ggml_tensor * a) {
  4654. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4655. }
  4656. struct ggml_tensor * ggml_silu_inplace(
  4657. struct ggml_context * ctx,
  4658. struct ggml_tensor * a) {
  4659. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4660. }
  4661. // ggml_silu_back
  4662. struct ggml_tensor * ggml_silu_back(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. struct ggml_tensor * b) {
  4666. bool is_node = false;
  4667. if (a->grad || b->grad) {
  4668. // TODO: implement backward
  4669. is_node = true;
  4670. }
  4671. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4672. result->op = GGML_OP_SILU_BACK;
  4673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4674. result->src[0] = a;
  4675. result->src[1] = b;
  4676. return result;
  4677. }
  4678. // ggml_norm
  4679. static struct ggml_tensor * ggml_norm_impl(
  4680. struct ggml_context * ctx,
  4681. struct ggml_tensor * a,
  4682. bool inplace) {
  4683. bool is_node = false;
  4684. if (!inplace && (a->grad)) {
  4685. GGML_ASSERT(false); // TODO: implement backward
  4686. is_node = true;
  4687. }
  4688. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4689. // TODO: maybe store epsilon here?
  4690. result->op = GGML_OP_NORM;
  4691. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4692. result->src[0] = a;
  4693. return result;
  4694. }
  4695. struct ggml_tensor * ggml_norm(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a) {
  4698. return ggml_norm_impl(ctx, a, false);
  4699. }
  4700. struct ggml_tensor * ggml_norm_inplace(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * a) {
  4703. return ggml_norm_impl(ctx, a, true);
  4704. }
  4705. static struct ggml_tensor * ggml_rms_norm_impl(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a,
  4708. float eps,
  4709. bool inplace) {
  4710. bool is_node = false;
  4711. if (!inplace && (a->grad)) {
  4712. is_node = true;
  4713. }
  4714. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4715. ggml_set_op_params(result, &eps, sizeof(eps));
  4716. result->op = GGML_OP_RMS_NORM;
  4717. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4718. result->src[0] = a;
  4719. return result;
  4720. }
  4721. struct ggml_tensor * ggml_rms_norm(
  4722. struct ggml_context * ctx,
  4723. struct ggml_tensor * a,
  4724. float eps) {
  4725. return ggml_rms_norm_impl(ctx, a, eps, false);
  4726. }
  4727. struct ggml_tensor * ggml_rms_norm_inplace(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a,
  4730. float eps) {
  4731. return ggml_rms_norm_impl(ctx, a, eps, true);
  4732. }
  4733. struct ggml_tensor * ggml_rms_norm_back(
  4734. struct ggml_context * ctx,
  4735. struct ggml_tensor * a,
  4736. struct ggml_tensor * b) {
  4737. bool is_node = false;
  4738. if (a->grad) {
  4739. // TODO: implement backward
  4740. is_node = true;
  4741. }
  4742. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4743. result->op = GGML_OP_RMS_NORM_BACK;
  4744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4745. result->src[0] = a;
  4746. result->src[1] = b;
  4747. return result;
  4748. }
  4749. // ggml_mul_mat
  4750. struct ggml_tensor * ggml_mul_mat(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. struct ggml_tensor * b) {
  4754. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4755. GGML_ASSERT(!ggml_is_transposed(a));
  4756. bool is_node = false;
  4757. if (a->grad || b->grad) {
  4758. is_node = true;
  4759. }
  4760. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4761. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4762. result->op = GGML_OP_MUL_MAT;
  4763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4764. result->src[0] = a;
  4765. result->src[1] = b;
  4766. return result;
  4767. }
  4768. // ggml_out_prod
  4769. struct ggml_tensor * ggml_out_prod(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a,
  4772. struct ggml_tensor * b) {
  4773. GGML_ASSERT(ggml_can_out_prod(a, b));
  4774. GGML_ASSERT(!ggml_is_transposed(a));
  4775. bool is_node = false;
  4776. if (a->grad || b->grad) {
  4777. is_node = true;
  4778. }
  4779. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4780. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4781. result->op = GGML_OP_OUT_PROD;
  4782. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4783. result->src[0] = a;
  4784. result->src[1] = b;
  4785. return result;
  4786. }
  4787. // ggml_scale
  4788. static struct ggml_tensor * ggml_scale_impl(
  4789. struct ggml_context * ctx,
  4790. struct ggml_tensor * a,
  4791. struct ggml_tensor * b,
  4792. bool inplace) {
  4793. GGML_ASSERT(ggml_is_scalar(b));
  4794. GGML_ASSERT(ggml_is_padded_1d(a));
  4795. bool is_node = false;
  4796. if (a->grad || b->grad) {
  4797. is_node = true;
  4798. }
  4799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4800. result->op = GGML_OP_SCALE;
  4801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4802. result->src[0] = a;
  4803. result->src[1] = b;
  4804. return result;
  4805. }
  4806. struct ggml_tensor * ggml_scale(
  4807. struct ggml_context * ctx,
  4808. struct ggml_tensor * a,
  4809. struct ggml_tensor * b) {
  4810. return ggml_scale_impl(ctx, a, b, false);
  4811. }
  4812. struct ggml_tensor * ggml_scale_inplace(
  4813. struct ggml_context * ctx,
  4814. struct ggml_tensor * a,
  4815. struct ggml_tensor * b) {
  4816. return ggml_scale_impl(ctx, a, b, true);
  4817. }
  4818. // ggml_set
  4819. static struct ggml_tensor * ggml_set_impl(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. struct ggml_tensor * b,
  4823. size_t nb1,
  4824. size_t nb2,
  4825. size_t nb3,
  4826. size_t offset,
  4827. bool inplace) {
  4828. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4829. bool is_node = false;
  4830. if (a->grad || b->grad) {
  4831. is_node = true;
  4832. }
  4833. // make a view of the destination
  4834. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4835. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4836. ggml_set_op_params(result, params, sizeof(params));
  4837. result->op = GGML_OP_SET;
  4838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4839. result->src[0] = a;
  4840. result->src[1] = b;
  4841. return result;
  4842. }
  4843. struct ggml_tensor * ggml_set(
  4844. struct ggml_context * ctx,
  4845. struct ggml_tensor * a,
  4846. struct ggml_tensor * b,
  4847. size_t nb1,
  4848. size_t nb2,
  4849. size_t nb3,
  4850. size_t offset) {
  4851. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4852. }
  4853. struct ggml_tensor * ggml_set_inplace(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. struct ggml_tensor * b,
  4857. size_t nb1,
  4858. size_t nb2,
  4859. size_t nb3,
  4860. size_t offset) {
  4861. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4862. }
  4863. struct ggml_tensor * ggml_set_1d(
  4864. struct ggml_context * ctx,
  4865. struct ggml_tensor * a,
  4866. struct ggml_tensor * b,
  4867. size_t offset) {
  4868. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4869. }
  4870. struct ggml_tensor * ggml_set_1d_inplace(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. struct ggml_tensor * b,
  4874. size_t offset) {
  4875. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4876. }
  4877. struct ggml_tensor * ggml_set_2d(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. struct ggml_tensor * b,
  4881. size_t nb1,
  4882. size_t offset) {
  4883. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4884. }
  4885. struct ggml_tensor * ggml_set_2d_inplace(
  4886. struct ggml_context * ctx,
  4887. struct ggml_tensor * a,
  4888. struct ggml_tensor * b,
  4889. size_t nb1,
  4890. size_t offset) {
  4891. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4892. }
  4893. // ggml_cpy
  4894. static struct ggml_tensor * ggml_cpy_impl(
  4895. struct ggml_context * ctx,
  4896. struct ggml_tensor * a,
  4897. struct ggml_tensor * b,
  4898. bool inplace) {
  4899. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4900. bool is_node = false;
  4901. if (!inplace && (a->grad || b->grad)) {
  4902. is_node = true;
  4903. }
  4904. // make a view of the destination
  4905. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4906. if (strlen(b->name) > 0) {
  4907. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4908. } else {
  4909. ggml_format_name(result, "%s (copy)", a->name);
  4910. }
  4911. result->op = GGML_OP_CPY;
  4912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4913. result->src[0] = a;
  4914. result->src[1] = b;
  4915. return result;
  4916. }
  4917. struct ggml_tensor * ggml_cpy(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. struct ggml_tensor * b) {
  4921. return ggml_cpy_impl(ctx, a, b, false);
  4922. }
  4923. struct ggml_tensor * ggml_cpy_inplace(
  4924. struct ggml_context * ctx,
  4925. struct ggml_tensor * a,
  4926. struct ggml_tensor * b) {
  4927. return ggml_cpy_impl(ctx, a, b, true);
  4928. }
  4929. // ggml_cont
  4930. static struct ggml_tensor * ggml_cont_impl(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. bool inplace) {
  4934. bool is_node = false;
  4935. if (!inplace && a->grad) {
  4936. is_node = true;
  4937. }
  4938. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4939. ggml_format_name(result, "%s (cont)", a->name);
  4940. result->op = GGML_OP_CONT;
  4941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4942. result->src[0] = a;
  4943. return result;
  4944. }
  4945. struct ggml_tensor * ggml_cont(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a) {
  4948. return ggml_cont_impl(ctx, a, false);
  4949. }
  4950. struct ggml_tensor * ggml_cont_inplace(
  4951. struct ggml_context * ctx,
  4952. struct ggml_tensor * a) {
  4953. return ggml_cont_impl(ctx, a, true);
  4954. }
  4955. // ggml_reshape
  4956. struct ggml_tensor * ggml_reshape(
  4957. struct ggml_context * ctx,
  4958. struct ggml_tensor * a,
  4959. struct ggml_tensor * b) {
  4960. GGML_ASSERT(ggml_is_contiguous(a));
  4961. GGML_ASSERT(ggml_is_contiguous(b));
  4962. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4963. bool is_node = false;
  4964. if (a->grad) {
  4965. is_node = true;
  4966. }
  4967. if (b->grad) {
  4968. // gradient propagation is not supported
  4969. //GGML_ASSERT(false);
  4970. }
  4971. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4972. ggml_format_name(result, "%s (reshaped)", a->name);
  4973. result->op = GGML_OP_RESHAPE;
  4974. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4975. result->src[0] = a;
  4976. return result;
  4977. }
  4978. struct ggml_tensor * ggml_reshape_1d(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. int64_t ne0) {
  4982. GGML_ASSERT(ggml_is_contiguous(a));
  4983. GGML_ASSERT(ggml_nelements(a) == ne0);
  4984. bool is_node = false;
  4985. if (a->grad) {
  4986. is_node = true;
  4987. }
  4988. const int64_t ne[1] = { ne0 };
  4989. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4990. ggml_format_name(result, "%s (reshaped)", a->name);
  4991. result->op = GGML_OP_RESHAPE;
  4992. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4993. result->src[0] = a;
  4994. return result;
  4995. }
  4996. struct ggml_tensor * ggml_reshape_2d(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * a,
  4999. int64_t ne0,
  5000. int64_t ne1) {
  5001. GGML_ASSERT(ggml_is_contiguous(a));
  5002. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5003. bool is_node = false;
  5004. if (a->grad) {
  5005. is_node = true;
  5006. }
  5007. const int64_t ne[2] = { ne0, ne1 };
  5008. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5009. ggml_format_name(result, "%s (reshaped)", a->name);
  5010. result->op = GGML_OP_RESHAPE;
  5011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5012. result->src[0] = a;
  5013. return result;
  5014. }
  5015. struct ggml_tensor * ggml_reshape_3d(
  5016. struct ggml_context * ctx,
  5017. struct ggml_tensor * a,
  5018. int64_t ne0,
  5019. int64_t ne1,
  5020. int64_t ne2) {
  5021. GGML_ASSERT(ggml_is_contiguous(a));
  5022. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5023. bool is_node = false;
  5024. if (a->grad) {
  5025. is_node = true;
  5026. }
  5027. const int64_t ne[3] = { ne0, ne1, ne2 };
  5028. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5029. ggml_format_name(result, "%s (reshaped)", a->name);
  5030. result->op = GGML_OP_RESHAPE;
  5031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5032. result->src[0] = a;
  5033. return result;
  5034. }
  5035. struct ggml_tensor * ggml_reshape_4d(
  5036. struct ggml_context * ctx,
  5037. struct ggml_tensor * a,
  5038. int64_t ne0,
  5039. int64_t ne1,
  5040. int64_t ne2,
  5041. int64_t ne3) {
  5042. GGML_ASSERT(ggml_is_contiguous(a));
  5043. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5044. bool is_node = false;
  5045. if (a->grad) {
  5046. is_node = true;
  5047. }
  5048. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5049. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5050. ggml_format_name(result, "%s (reshaped)", a->name);
  5051. result->op = GGML_OP_RESHAPE;
  5052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5053. result->src[0] = a;
  5054. return result;
  5055. }
  5056. // ggml_view_1d
  5057. struct ggml_tensor * ggml_view_1d(
  5058. struct ggml_context * ctx,
  5059. struct ggml_tensor * a,
  5060. int64_t ne0,
  5061. size_t offset) {
  5062. bool is_node = false;
  5063. if (a->grad) {
  5064. is_node = true;
  5065. }
  5066. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5067. ggml_format_name(result, "%s (view)", a->name);
  5068. ggml_set_op_params(result, &offset, sizeof(offset));
  5069. result->op = GGML_OP_VIEW;
  5070. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5071. result->src[0] = a;
  5072. return result;
  5073. }
  5074. // ggml_view_2d
  5075. struct ggml_tensor * ggml_view_2d(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. int64_t ne0,
  5079. int64_t ne1,
  5080. size_t nb1,
  5081. size_t offset) {
  5082. bool is_node = false;
  5083. if (a->grad) {
  5084. is_node = true;
  5085. }
  5086. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5087. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5088. ggml_format_name(result, "%s (view)", a->name);
  5089. ggml_set_op_params(result, &offset, sizeof(offset));
  5090. result->nb[1] = nb1;
  5091. result->nb[2] = result->nb[1]*ne1;
  5092. result->nb[3] = result->nb[2];
  5093. result->op = GGML_OP_VIEW;
  5094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5095. result->src[0] = a;
  5096. return result;
  5097. }
  5098. // ggml_view_3d
  5099. struct ggml_tensor * ggml_view_3d(
  5100. struct ggml_context * ctx,
  5101. struct ggml_tensor * a,
  5102. int64_t ne0,
  5103. int64_t ne1,
  5104. int64_t ne2,
  5105. size_t nb1,
  5106. size_t nb2,
  5107. size_t offset) {
  5108. bool is_node = false;
  5109. if (a->grad) {
  5110. is_node = true;
  5111. }
  5112. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5113. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5114. ggml_format_name(result, "%s (view)", a->name);
  5115. ggml_set_op_params(result, &offset, sizeof(offset));
  5116. result->nb[1] = nb1;
  5117. result->nb[2] = nb2;
  5118. result->nb[3] = result->nb[2]*ne2;
  5119. result->op = GGML_OP_VIEW;
  5120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5121. result->src[0] = a;
  5122. return result;
  5123. }
  5124. // ggml_view_4d
  5125. struct ggml_tensor * ggml_view_4d(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. int64_t ne0,
  5129. int64_t ne1,
  5130. int64_t ne2,
  5131. int64_t ne3,
  5132. size_t nb1,
  5133. size_t nb2,
  5134. size_t nb3,
  5135. size_t offset) {
  5136. bool is_node = false;
  5137. if (a->grad) {
  5138. is_node = true;
  5139. }
  5140. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5141. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5142. ggml_format_name(result, "%s (view)", a->name);
  5143. ggml_set_op_params(result, &offset, sizeof(offset));
  5144. result->nb[1] = nb1;
  5145. result->nb[2] = nb2;
  5146. result->nb[3] = nb3;
  5147. result->op = GGML_OP_VIEW;
  5148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5149. result->src[0] = a;
  5150. return result;
  5151. }
  5152. // ggml_permute
  5153. struct ggml_tensor * ggml_permute(
  5154. struct ggml_context * ctx,
  5155. struct ggml_tensor * a,
  5156. int axis0,
  5157. int axis1,
  5158. int axis2,
  5159. int axis3) {
  5160. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5161. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5162. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5163. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5164. GGML_ASSERT(axis0 != axis1);
  5165. GGML_ASSERT(axis0 != axis2);
  5166. GGML_ASSERT(axis0 != axis3);
  5167. GGML_ASSERT(axis1 != axis2);
  5168. GGML_ASSERT(axis1 != axis3);
  5169. GGML_ASSERT(axis2 != axis3);
  5170. bool is_node = false;
  5171. if (a->grad) {
  5172. is_node = true;
  5173. }
  5174. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5175. ggml_format_name(result, "%s (permuted)", a->name);
  5176. int ne[GGML_MAX_DIMS];
  5177. int nb[GGML_MAX_DIMS];
  5178. ne[axis0] = a->ne[0];
  5179. ne[axis1] = a->ne[1];
  5180. ne[axis2] = a->ne[2];
  5181. ne[axis3] = a->ne[3];
  5182. nb[axis0] = a->nb[0];
  5183. nb[axis1] = a->nb[1];
  5184. nb[axis2] = a->nb[2];
  5185. nb[axis3] = a->nb[3];
  5186. result->ne[0] = ne[0];
  5187. result->ne[1] = ne[1];
  5188. result->ne[2] = ne[2];
  5189. result->ne[3] = ne[3];
  5190. result->nb[0] = nb[0];
  5191. result->nb[1] = nb[1];
  5192. result->nb[2] = nb[2];
  5193. result->nb[3] = nb[3];
  5194. result->op = GGML_OP_PERMUTE;
  5195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5196. result->src[0] = a;
  5197. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5198. ggml_set_op_params(result, &params, sizeof(params));
  5199. return result;
  5200. }
  5201. // ggml_transpose
  5202. struct ggml_tensor * ggml_transpose(
  5203. struct ggml_context * ctx,
  5204. struct ggml_tensor * a) {
  5205. bool is_node = false;
  5206. if (a->grad) {
  5207. is_node = true;
  5208. }
  5209. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5210. ggml_format_name(result, "%s (transposed)", a->name);
  5211. result->ne[0] = a->ne[1];
  5212. result->ne[1] = a->ne[0];
  5213. result->nb[0] = a->nb[1];
  5214. result->nb[1] = a->nb[0];
  5215. result->op = GGML_OP_TRANSPOSE;
  5216. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5217. result->src[0] = a;
  5218. return result;
  5219. }
  5220. // ggml_get_rows
  5221. struct ggml_tensor * ggml_get_rows(
  5222. struct ggml_context * ctx,
  5223. struct ggml_tensor * a,
  5224. struct ggml_tensor * b) {
  5225. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5226. bool is_node = false;
  5227. if (a->grad || b->grad) {
  5228. is_node = true;
  5229. }
  5230. // TODO: implement non F32 return
  5231. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5232. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5233. result->op = GGML_OP_GET_ROWS;
  5234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5235. result->src[0] = a;
  5236. result->src[1] = b;
  5237. return result;
  5238. }
  5239. // ggml_get_rows_back
  5240. struct ggml_tensor * ggml_get_rows_back(
  5241. struct ggml_context * ctx,
  5242. struct ggml_tensor * a,
  5243. struct ggml_tensor * b,
  5244. struct ggml_tensor * c) {
  5245. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5246. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5247. bool is_node = false;
  5248. if (a->grad || b->grad) {
  5249. is_node = true;
  5250. }
  5251. // TODO: implement non F32 return
  5252. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5253. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5254. result->op = GGML_OP_GET_ROWS_BACK;
  5255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5256. result->src[0] = a;
  5257. result->src[1] = b;
  5258. result->src[2] = c;
  5259. return result;
  5260. }
  5261. // ggml_diag
  5262. struct ggml_tensor * ggml_diag(
  5263. struct ggml_context * ctx,
  5264. struct ggml_tensor * a) {
  5265. GGML_ASSERT(a->ne[1] == 1);
  5266. bool is_node = false;
  5267. if (a->grad) {
  5268. is_node = true;
  5269. }
  5270. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5271. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5272. result->op = GGML_OP_DIAG;
  5273. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5274. result->src[0] = a;
  5275. return result;
  5276. }
  5277. // ggml_diag_mask_inf
  5278. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5279. struct ggml_context * ctx,
  5280. struct ggml_tensor * a,
  5281. int n_past,
  5282. bool inplace) {
  5283. bool is_node = false;
  5284. if (a->grad) {
  5285. is_node = true;
  5286. }
  5287. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5288. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5289. ggml_set_op_params(result, &params, sizeof(params));
  5290. result->op = GGML_OP_DIAG_MASK_INF;
  5291. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5292. result->src[0] = a;
  5293. return result;
  5294. }
  5295. struct ggml_tensor * ggml_diag_mask_inf(
  5296. struct ggml_context * ctx,
  5297. struct ggml_tensor * a,
  5298. int n_past) {
  5299. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5300. }
  5301. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5302. struct ggml_context * ctx,
  5303. struct ggml_tensor * a,
  5304. int n_past) {
  5305. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5306. }
  5307. // ggml_diag_mask_zero
  5308. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5309. struct ggml_context * ctx,
  5310. struct ggml_tensor * a,
  5311. int n_past,
  5312. bool inplace) {
  5313. bool is_node = false;
  5314. if (a->grad) {
  5315. is_node = true;
  5316. }
  5317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5318. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5319. ggml_set_op_params(result, &params, sizeof(params));
  5320. result->op = GGML_OP_DIAG_MASK_ZERO;
  5321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5322. result->src[0] = a;
  5323. return result;
  5324. }
  5325. struct ggml_tensor * ggml_diag_mask_zero(
  5326. struct ggml_context * ctx,
  5327. struct ggml_tensor * a,
  5328. int n_past) {
  5329. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5330. }
  5331. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5332. struct ggml_context * ctx,
  5333. struct ggml_tensor * a,
  5334. int n_past) {
  5335. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5336. }
  5337. // ggml_soft_max
  5338. static struct ggml_tensor * ggml_soft_max_impl(
  5339. struct ggml_context * ctx,
  5340. struct ggml_tensor * a,
  5341. bool inplace) {
  5342. bool is_node = false;
  5343. if (a->grad) {
  5344. is_node = true;
  5345. }
  5346. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5347. result->op = GGML_OP_SOFT_MAX;
  5348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5349. result->src[0] = a;
  5350. return result;
  5351. }
  5352. struct ggml_tensor * ggml_soft_max(
  5353. struct ggml_context * ctx,
  5354. struct ggml_tensor * a) {
  5355. return ggml_soft_max_impl(ctx, a, false);
  5356. }
  5357. struct ggml_tensor * ggml_soft_max_inplace(
  5358. struct ggml_context * ctx,
  5359. struct ggml_tensor * a) {
  5360. return ggml_soft_max_impl(ctx, a, true);
  5361. }
  5362. // ggml_soft_max_back
  5363. static struct ggml_tensor * ggml_soft_max_back_impl(
  5364. struct ggml_context * ctx,
  5365. struct ggml_tensor * a,
  5366. struct ggml_tensor * b,
  5367. bool inplace) {
  5368. bool is_node = false;
  5369. if (a->grad || b->grad) {
  5370. is_node = true; // TODO : implement backward pass
  5371. }
  5372. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5373. result->op = GGML_OP_SOFT_MAX_BACK;
  5374. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5375. result->src[0] = a;
  5376. result->src[1] = b;
  5377. return result;
  5378. }
  5379. struct ggml_tensor * ggml_soft_max_back(
  5380. struct ggml_context * ctx,
  5381. struct ggml_tensor * a,
  5382. struct ggml_tensor * b) {
  5383. return ggml_soft_max_back_impl(ctx, a, b, false);
  5384. }
  5385. struct ggml_tensor * ggml_soft_max_back_inplace(
  5386. struct ggml_context * ctx,
  5387. struct ggml_tensor * a,
  5388. struct ggml_tensor * b) {
  5389. return ggml_soft_max_back_impl(ctx, a, b, true);
  5390. }
  5391. // ggml_rope
  5392. static struct ggml_tensor * ggml_rope_impl(
  5393. struct ggml_context * ctx,
  5394. struct ggml_tensor * a,
  5395. int n_past,
  5396. int n_dims,
  5397. int mode,
  5398. int n_ctx,
  5399. float freq_base,
  5400. float freq_scale,
  5401. bool inplace) {
  5402. GGML_ASSERT(n_past >= 0);
  5403. bool is_node = false;
  5404. if (a->grad) {
  5405. is_node = true;
  5406. }
  5407. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5408. int32_t params[6] = { n_past, n_dims, mode, n_ctx };
  5409. memcpy(params + 4, &freq_base, sizeof(float));
  5410. memcpy(params + 5, &freq_scale, sizeof(float));
  5411. ggml_set_op_params(result, &params, sizeof(params));
  5412. result->op = GGML_OP_ROPE;
  5413. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5414. result->src[0] = a;
  5415. return result;
  5416. }
  5417. struct ggml_tensor * ggml_rope(
  5418. struct ggml_context * ctx,
  5419. struct ggml_tensor * a,
  5420. int n_past,
  5421. int n_dims,
  5422. int mode,
  5423. int n_ctx) {
  5424. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, false);
  5425. }
  5426. struct ggml_tensor * ggml_rope_inplace(
  5427. struct ggml_context * ctx,
  5428. struct ggml_tensor * a,
  5429. int n_past,
  5430. int n_dims,
  5431. int mode,
  5432. int n_ctx) {
  5433. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
  5434. }
  5435. struct ggml_tensor * ggml_rope_custom_inplace(
  5436. struct ggml_context * ctx,
  5437. struct ggml_tensor * a,
  5438. int n_past,
  5439. int n_dims,
  5440. int mode,
  5441. int n_ctx,
  5442. float freq_base,
  5443. float freq_scale) {
  5444. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, true);
  5445. }
  5446. // ggml_rope_back
  5447. struct ggml_tensor * ggml_rope_back(
  5448. struct ggml_context * ctx,
  5449. struct ggml_tensor * a,
  5450. int n_past,
  5451. int n_dims,
  5452. int mode,
  5453. int n_ctx) {
  5454. GGML_ASSERT(n_past >= 0);
  5455. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5456. bool is_node = false;
  5457. if (a->grad) {
  5458. is_node = false; // TODO: implement backward
  5459. }
  5460. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5461. int32_t params[] = { n_past, n_dims, mode, n_ctx };
  5462. ggml_set_op_params(result, &params, sizeof(params));
  5463. result->op = GGML_OP_ROPE_BACK;
  5464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5465. result->src[0] = a;
  5466. return result;
  5467. }
  5468. // ggml_alibi
  5469. struct ggml_tensor * ggml_alibi(
  5470. struct ggml_context * ctx,
  5471. struct ggml_tensor * a,
  5472. int n_past,
  5473. int n_head,
  5474. float bias_max) {
  5475. GGML_ASSERT(n_past >= 0);
  5476. bool is_node = false;
  5477. if (a->grad) {
  5478. GGML_ASSERT(false); // TODO: implement backward
  5479. is_node = true;
  5480. }
  5481. // TODO: when implement backward, fix this:
  5482. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5483. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5484. int32_t op_params[3] = { n_past, n_head };
  5485. memcpy(op_params + 2, &bias_max, sizeof(float));
  5486. ggml_set_op_params(result, &op_params, sizeof(op_params));
  5487. result->op = GGML_OP_ALIBI;
  5488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5489. result->src[0] = a;
  5490. return result;
  5491. }
  5492. // ggml_clamp
  5493. struct ggml_tensor * ggml_clamp(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * a,
  5496. float min,
  5497. float max) {
  5498. bool is_node = false;
  5499. if (a->grad) {
  5500. GGML_ASSERT(false); // TODO: implement backward
  5501. is_node = true;
  5502. }
  5503. // TODO: when implement backward, fix this:
  5504. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5505. float params[] = { min, max };
  5506. ggml_set_op_params(result, &params, sizeof(params));
  5507. result->op = GGML_OP_CLAMP;
  5508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5509. result->src[0] = a;
  5510. return result;
  5511. }
  5512. // ggml_conv_1d
  5513. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5514. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5515. }
  5516. GGML_API struct ggml_tensor * ggml_conv_1d(
  5517. struct ggml_context * ctx,
  5518. struct ggml_tensor * a,
  5519. struct ggml_tensor * b,
  5520. int s0,
  5521. int p0,
  5522. int d0) {
  5523. GGML_ASSERT(ggml_is_matrix(b));
  5524. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5525. bool is_node = false;
  5526. if (a->grad || b->grad) {
  5527. GGML_ASSERT(false); // TODO: implement backward
  5528. is_node = true;
  5529. }
  5530. const int64_t ne[4] = {
  5531. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5532. a->ne[2], 1, 1,
  5533. };
  5534. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5535. int32_t params[] = { s0, p0, d0 };
  5536. ggml_set_op_params(result, &params, sizeof(params));
  5537. result->op = GGML_OP_CONV_1D;
  5538. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5539. result->src[0] = a;
  5540. result->src[1] = b;
  5541. return result;
  5542. }
  5543. // ggml_conv_2d
  5544. struct ggml_tensor* ggml_conv_2d(
  5545. struct ggml_context* ctx,
  5546. struct ggml_tensor * a,
  5547. struct ggml_tensor * b,
  5548. int s0,
  5549. int s1,
  5550. int p0,
  5551. int p1,
  5552. int d0,
  5553. int d1) {
  5554. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5555. bool is_node = false;
  5556. if (a->grad || b->grad) {
  5557. GGML_ASSERT(false); // TODO: implement backward
  5558. is_node = true;
  5559. }
  5560. const int64_t ne[4] = {
  5561. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5562. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5563. a->ne[3], b->ne[3],
  5564. };
  5565. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5566. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5567. ggml_set_op_params(result, &params, sizeof(params));
  5568. result->op = GGML_OP_CONV_2D;
  5569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5570. result->src[0] = a;
  5571. result->src[1] = b;
  5572. return result;
  5573. }
  5574. // ggml_conv_1d_ph
  5575. struct ggml_tensor* ggml_conv_1d_ph(
  5576. struct ggml_context * ctx,
  5577. struct ggml_tensor * a,
  5578. struct ggml_tensor * b,
  5579. int s,
  5580. int d) {
  5581. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5582. }
  5583. // ggml_pool_*
  5584. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5585. return (ins + 2 * p - ks) / s + 1;
  5586. }
  5587. // ggml_pool_1d
  5588. struct ggml_tensor* ggml_pool_1d(
  5589. struct ggml_context * ctx,
  5590. struct ggml_tensor * a,
  5591. enum ggml_op_pool op,
  5592. int k0,
  5593. int s0,
  5594. int p0) {
  5595. bool is_node = false;
  5596. if (a->grad) {
  5597. GGML_ASSERT(false); // TODO: implement backward
  5598. is_node = true;
  5599. }
  5600. const int64_t ne[3] = {
  5601. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5602. a->ne[1],
  5603. };
  5604. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5605. int32_t params[] = { op, k0, s0, p0 };
  5606. ggml_set_op_params(result, &params, sizeof(params));
  5607. result->op = GGML_OP_POOL_1D;
  5608. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5609. result->src[0] = a;
  5610. return result;
  5611. }
  5612. // ggml_pool_2d
  5613. struct ggml_tensor* ggml_pool_2d(
  5614. struct ggml_context * ctx,
  5615. struct ggml_tensor * a,
  5616. enum ggml_op_pool op,
  5617. int k0,
  5618. int k1,
  5619. int s0,
  5620. int s1,
  5621. int p0,
  5622. int p1) {
  5623. bool is_node = false;
  5624. if (a->grad) {
  5625. GGML_ASSERT(false); // TODO: implement backward
  5626. is_node = true;
  5627. }
  5628. const int64_t ne[3] = {
  5629. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5630. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5631. a->ne[2],
  5632. };
  5633. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5634. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5635. ggml_set_op_params(result, &params, sizeof(params));
  5636. result->op = GGML_OP_POOL_2D;
  5637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5638. result->src[0] = a;
  5639. return result;
  5640. }
  5641. // ggml_flash_attn
  5642. struct ggml_tensor * ggml_flash_attn(
  5643. struct ggml_context * ctx,
  5644. struct ggml_tensor * q,
  5645. struct ggml_tensor * k,
  5646. struct ggml_tensor * v,
  5647. bool masked) {
  5648. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5649. // TODO: check if vT can be multiplied by (k*qT)
  5650. bool is_node = false;
  5651. if (q->grad || k->grad || v->grad) {
  5652. is_node = true;
  5653. }
  5654. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5655. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5656. int32_t t = masked ? 1 : 0;
  5657. ggml_set_op_params(result, &t, sizeof(t));
  5658. result->op = GGML_OP_FLASH_ATTN;
  5659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5660. result->src[0] = q;
  5661. result->src[1] = k;
  5662. result->src[2] = v;
  5663. return result;
  5664. }
  5665. // ggml_flash_ff
  5666. struct ggml_tensor * ggml_flash_ff(
  5667. struct ggml_context * ctx,
  5668. struct ggml_tensor * a,
  5669. struct ggml_tensor * b0,
  5670. struct ggml_tensor * b1,
  5671. struct ggml_tensor * c0,
  5672. struct ggml_tensor * c1) {
  5673. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5674. // TODO: more checks
  5675. bool is_node = false;
  5676. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5677. is_node = true;
  5678. }
  5679. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5680. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5681. result->op = GGML_OP_FLASH_FF;
  5682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5683. result->src[0] = a;
  5684. result->src[1] = b0;
  5685. result->src[2] = b1;
  5686. result->src[3] = c0;
  5687. result->src[4] = c1;
  5688. return result;
  5689. }
  5690. // ggml_flash_attn_back
  5691. struct ggml_tensor * ggml_flash_attn_back(
  5692. struct ggml_context * ctx,
  5693. struct ggml_tensor * q,
  5694. struct ggml_tensor * k,
  5695. struct ggml_tensor * v,
  5696. struct ggml_tensor * d,
  5697. bool masked) {
  5698. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5699. // TODO: check if vT can be multiplied by (k*qT)
  5700. // d shape [D,N,ne2,ne3]
  5701. // q shape [D,N,ne2,ne3]
  5702. // k shape [D,M,ne2,ne3]
  5703. // v shape [M,D,ne2,ne3]
  5704. const int64_t D = q->ne[0];
  5705. const int64_t N = q->ne[1];
  5706. const int64_t M = k->ne[1];
  5707. const int64_t ne2 = q->ne[2];
  5708. const int64_t ne3 = q->ne[3];
  5709. GGML_ASSERT(k->ne[0] == D);
  5710. GGML_ASSERT(v->ne[0] == M);
  5711. GGML_ASSERT(v->ne[1] == D);
  5712. GGML_ASSERT(d->ne[0] == D);
  5713. GGML_ASSERT(d->ne[1] == N);
  5714. GGML_ASSERT(k->ne[2] == ne2);
  5715. GGML_ASSERT(k->ne[3] == ne3);
  5716. GGML_ASSERT(v->ne[2] == ne2);
  5717. GGML_ASSERT(v->ne[3] == ne3);
  5718. GGML_ASSERT(d->ne[2] == ne2);
  5719. GGML_ASSERT(d->ne[3] == ne3);
  5720. bool is_node = false;
  5721. if (q->grad || k->grad || v->grad) {
  5722. // when using this operation (in backwards pass) these grads are set.
  5723. // we don't want to create (big) grad of our result, so is_node is false.
  5724. is_node = false;
  5725. }
  5726. // store gradients of q, k and v as continuous tensors concatenated in result.
  5727. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5728. // gradq->data = result->data
  5729. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5730. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5731. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5732. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5733. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5734. int32_t masked_i = masked ? 1 : 0;
  5735. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5736. result->op = GGML_OP_FLASH_ATTN_BACK;
  5737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5738. result->src[0] = q;
  5739. result->src[1] = k;
  5740. result->src[2] = v;
  5741. result->src[3] = d;
  5742. return result;
  5743. }
  5744. // ggml_win_part
  5745. struct ggml_tensor * ggml_win_part(
  5746. struct ggml_context * ctx,
  5747. struct ggml_tensor * a,
  5748. int w) {
  5749. GGML_ASSERT(a->ne[3] == 1);
  5750. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5751. bool is_node = false;
  5752. if (a->grad) {
  5753. GGML_ASSERT(false); // TODO: implement backward
  5754. is_node = true;
  5755. }
  5756. // padding
  5757. const int px = (w - a->ne[1]%w)%w;
  5758. const int py = (w - a->ne[2]%w)%w;
  5759. const int npx = (px + a->ne[1])/w;
  5760. const int npy = (py + a->ne[2])/w;
  5761. const int np = npx*npy;
  5762. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5763. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5764. int32_t params[] = { npx, npy, w };
  5765. ggml_set_op_params(result, &params, sizeof(params));
  5766. result->op = GGML_OP_WIN_PART;
  5767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5768. result->src[0] = a;
  5769. return result;
  5770. }
  5771. // ggml_win_unpart
  5772. struct ggml_tensor * ggml_win_unpart(
  5773. struct ggml_context * ctx,
  5774. struct ggml_tensor * a,
  5775. int w0,
  5776. int h0,
  5777. int w) {
  5778. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5779. bool is_node = false;
  5780. if (a->grad) {
  5781. GGML_ASSERT(false); // TODO: implement backward
  5782. is_node = true;
  5783. }
  5784. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5785. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5786. int32_t params[] = { w };
  5787. ggml_set_op_params(result, &params, sizeof(params));
  5788. result->op = GGML_OP_WIN_UNPART;
  5789. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5790. result->src[0] = a;
  5791. return result;
  5792. }
  5793. // gmml_unary
  5794. static struct ggml_tensor * ggml_unary_impl(
  5795. struct ggml_context * ctx,
  5796. struct ggml_tensor * a,
  5797. enum ggml_unary_op op,
  5798. bool inplace) {
  5799. bool is_node = false;
  5800. if (!inplace && (a->grad)) {
  5801. is_node = true;
  5802. }
  5803. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5804. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5805. result->op = GGML_OP_UNARY;
  5806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5807. result->src[0] = a;
  5808. return result;
  5809. }
  5810. struct ggml_tensor * ggml_unary(
  5811. struct ggml_context * ctx,
  5812. struct ggml_tensor * a,
  5813. enum ggml_unary_op op) {
  5814. return ggml_unary_impl(ctx, a, op, false);
  5815. }
  5816. struct ggml_tensor * ggml_unary_inplace(
  5817. struct ggml_context * ctx,
  5818. struct ggml_tensor * a,
  5819. enum ggml_unary_op op) {
  5820. return ggml_unary_impl(ctx, a, op, true);
  5821. }
  5822. // ggml_map_unary
  5823. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5824. struct ggml_context * ctx,
  5825. struct ggml_tensor * a,
  5826. const ggml_unary_op_f32_t fun,
  5827. bool inplace) {
  5828. bool is_node = false;
  5829. if (!inplace && a->grad) {
  5830. is_node = true;
  5831. }
  5832. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5833. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5834. result->op = GGML_OP_MAP_UNARY;
  5835. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5836. result->src[0] = a;
  5837. return result;
  5838. }
  5839. struct ggml_tensor * ggml_map_unary_f32(
  5840. struct ggml_context * ctx,
  5841. struct ggml_tensor * a,
  5842. const ggml_unary_op_f32_t fun) {
  5843. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5844. }
  5845. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5846. struct ggml_context * ctx,
  5847. struct ggml_tensor * a,
  5848. const ggml_unary_op_f32_t fun) {
  5849. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5850. }
  5851. // ggml_map_binary
  5852. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5853. struct ggml_context * ctx,
  5854. struct ggml_tensor * a,
  5855. struct ggml_tensor * b,
  5856. const ggml_binary_op_f32_t fun,
  5857. bool inplace) {
  5858. GGML_ASSERT(ggml_are_same_shape(a, b));
  5859. bool is_node = false;
  5860. if (!inplace && (a->grad || b->grad)) {
  5861. is_node = true;
  5862. }
  5863. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5864. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5865. result->op = GGML_OP_MAP_BINARY;
  5866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5867. result->src[0] = a;
  5868. result->src[1] = b;
  5869. return result;
  5870. }
  5871. struct ggml_tensor * ggml_map_binary_f32(
  5872. struct ggml_context * ctx,
  5873. struct ggml_tensor * a,
  5874. struct ggml_tensor * b,
  5875. const ggml_binary_op_f32_t fun) {
  5876. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5877. }
  5878. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5879. struct ggml_context * ctx,
  5880. struct ggml_tensor * a,
  5881. struct ggml_tensor * b,
  5882. const ggml_binary_op_f32_t fun) {
  5883. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5884. }
  5885. // ggml_map_custom1
  5886. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5887. struct ggml_context * ctx,
  5888. struct ggml_tensor * a,
  5889. const ggml_custom1_op_f32_t fun,
  5890. bool inplace) {
  5891. bool is_node = false;
  5892. if (!inplace && a->grad) {
  5893. is_node = true;
  5894. }
  5895. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5896. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5897. result->op = GGML_OP_MAP_CUSTOM1;
  5898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5899. result->src[0] = a;
  5900. return result;
  5901. }
  5902. struct ggml_tensor * ggml_map_custom1_f32(
  5903. struct ggml_context * ctx,
  5904. struct ggml_tensor * a,
  5905. const ggml_custom1_op_f32_t fun) {
  5906. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5907. }
  5908. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5909. struct ggml_context * ctx,
  5910. struct ggml_tensor * a,
  5911. const ggml_custom1_op_f32_t fun) {
  5912. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5913. }
  5914. // ggml_map_custom2
  5915. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5916. struct ggml_context * ctx,
  5917. struct ggml_tensor * a,
  5918. struct ggml_tensor * b,
  5919. const ggml_custom2_op_f32_t fun,
  5920. bool inplace) {
  5921. bool is_node = false;
  5922. if (!inplace && (a->grad || b->grad)) {
  5923. is_node = true;
  5924. }
  5925. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5926. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5927. result->op = GGML_OP_MAP_CUSTOM2;
  5928. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5929. result->src[0] = a;
  5930. result->src[1] = b;
  5931. return result;
  5932. }
  5933. struct ggml_tensor * ggml_map_custom2_f32(
  5934. struct ggml_context * ctx,
  5935. struct ggml_tensor * a,
  5936. struct ggml_tensor * b,
  5937. const ggml_custom2_op_f32_t fun) {
  5938. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5939. }
  5940. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5941. struct ggml_context * ctx,
  5942. struct ggml_tensor * a,
  5943. struct ggml_tensor * b,
  5944. const ggml_custom2_op_f32_t fun) {
  5945. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5946. }
  5947. // ggml_map_custom3
  5948. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5949. struct ggml_context * ctx,
  5950. struct ggml_tensor * a,
  5951. struct ggml_tensor * b,
  5952. struct ggml_tensor * c,
  5953. const ggml_custom3_op_f32_t fun,
  5954. bool inplace) {
  5955. bool is_node = false;
  5956. if (!inplace && (a->grad || b->grad || c->grad)) {
  5957. is_node = true;
  5958. }
  5959. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5960. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5961. result->op = GGML_OP_MAP_CUSTOM3;
  5962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5963. result->src[0] = a;
  5964. result->src[1] = b;
  5965. result->src[2] = c;
  5966. return result;
  5967. }
  5968. struct ggml_tensor * ggml_map_custom3_f32(
  5969. struct ggml_context * ctx,
  5970. struct ggml_tensor * a,
  5971. struct ggml_tensor * b,
  5972. struct ggml_tensor * c,
  5973. const ggml_custom3_op_f32_t fun) {
  5974. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5975. }
  5976. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5977. struct ggml_context * ctx,
  5978. struct ggml_tensor * a,
  5979. struct ggml_tensor * b,
  5980. struct ggml_tensor * c,
  5981. const ggml_custom3_op_f32_t fun) {
  5982. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5983. }
  5984. // ggml_cross_entropy_loss
  5985. struct ggml_tensor * ggml_cross_entropy_loss(
  5986. struct ggml_context * ctx,
  5987. struct ggml_tensor * a,
  5988. struct ggml_tensor * b) {
  5989. GGML_ASSERT(ggml_are_same_shape(a, b));
  5990. bool is_node = false;
  5991. if (a->grad || b->grad) {
  5992. is_node = true;
  5993. }
  5994. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5995. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5997. result->src[0] = a;
  5998. result->src[1] = b;
  5999. return result;
  6000. }
  6001. // ggml_cross_entropy_loss_back
  6002. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6003. struct ggml_context * ctx,
  6004. struct ggml_tensor * a,
  6005. struct ggml_tensor * b,
  6006. struct ggml_tensor * c) {
  6007. GGML_ASSERT(ggml_are_same_shape(a, b));
  6008. GGML_ASSERT(ggml_is_scalar(c));
  6009. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6010. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6011. result->grad = NULL;
  6012. result->src[0] = a;
  6013. result->src[1] = b;
  6014. result->src[2] = c;
  6015. return result;
  6016. }
  6017. ////////////////////////////////////////////////////////////////////////////////
  6018. void ggml_set_param(
  6019. struct ggml_context * ctx,
  6020. struct ggml_tensor * tensor) {
  6021. tensor->is_param = true;
  6022. GGML_ASSERT(tensor->grad == NULL);
  6023. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6024. }
  6025. // ggml_compute_forward_dup
  6026. static void ggml_compute_forward_dup_same_cont(
  6027. const struct ggml_compute_params * params,
  6028. const struct ggml_tensor * src0,
  6029. struct ggml_tensor * dst) {
  6030. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6031. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6032. GGML_ASSERT(src0->type == dst->type);
  6033. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6034. return;
  6035. }
  6036. const size_t nb00 = src0->nb[0];
  6037. const size_t nb0 = dst->nb[0];
  6038. const int ith = params->ith; // thread index
  6039. const int nth = params->nth; // number of threads
  6040. // parallelize by elements
  6041. const int ne = ggml_nelements(dst);
  6042. const int dr = (ne + nth - 1) / nth;
  6043. const int ie0 = dr * ith;
  6044. const int ie1 = MIN(ie0 + dr, ne);
  6045. if (ie0 < ie1) {
  6046. memcpy(
  6047. ((char *) dst->data + ie0*nb0),
  6048. ((char *) src0->data + ie0*nb00),
  6049. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6050. }
  6051. }
  6052. static void ggml_compute_forward_dup_f16(
  6053. const struct ggml_compute_params * params,
  6054. const struct ggml_tensor * src0,
  6055. struct ggml_tensor * dst) {
  6056. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6057. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6058. return;
  6059. }
  6060. GGML_TENSOR_UNARY_OP_LOCALS;
  6061. const int ith = params->ith; // thread index
  6062. const int nth = params->nth; // number of threads
  6063. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6064. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6065. return;
  6066. }
  6067. // parallelize by rows
  6068. const int nr = ne01;
  6069. // number of rows per thread
  6070. const int dr = (nr + nth - 1) / nth;
  6071. // row range for this thread
  6072. const int ir0 = dr * ith;
  6073. const int ir1 = MIN(ir0 + dr, nr);
  6074. if (src0->type == dst->type &&
  6075. ne00 == ne0 &&
  6076. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6077. // copy by rows
  6078. const size_t rs = ne00*nb00;
  6079. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6080. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6081. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6082. memcpy(
  6083. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6084. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6085. rs);
  6086. }
  6087. }
  6088. }
  6089. return;
  6090. }
  6091. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6092. if (ggml_is_contiguous(dst)) {
  6093. if (nb00 == sizeof(ggml_fp16_t)) {
  6094. if (dst->type == GGML_TYPE_F16) {
  6095. size_t id = 0;
  6096. const size_t rs = ne00 * nb00;
  6097. char * dst_ptr = (char *) dst->data;
  6098. for (int i03 = 0; i03 < ne03; i03++) {
  6099. for (int i02 = 0; i02 < ne02; i02++) {
  6100. id += rs * ir0;
  6101. for (int i01 = ir0; i01 < ir1; i01++) {
  6102. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6103. memcpy(dst_ptr + id, src0_ptr, rs);
  6104. id += rs;
  6105. }
  6106. id += rs * (ne01 - ir1);
  6107. }
  6108. }
  6109. } else if (dst->type == GGML_TYPE_F32) {
  6110. size_t id = 0;
  6111. float * dst_ptr = (float *) dst->data;
  6112. for (int i03 = 0; i03 < ne03; i03++) {
  6113. for (int i02 = 0; i02 < ne02; i02++) {
  6114. id += ne00 * ir0;
  6115. for (int i01 = ir0; i01 < ir1; i01++) {
  6116. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6117. for (int i00 = 0; i00 < ne00; i00++) {
  6118. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6119. id++;
  6120. }
  6121. }
  6122. id += ne00 * (ne01 - ir1);
  6123. }
  6124. }
  6125. } else if (type_traits[dst->type].from_float) {
  6126. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6127. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6128. size_t id = 0;
  6129. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6130. char * dst_ptr = (char *) dst->data;
  6131. for (int i03 = 0; i03 < ne03; i03++) {
  6132. for (int i02 = 0; i02 < ne02; i02++) {
  6133. id += rs * ir0;
  6134. for (int i01 = ir0; i01 < ir1; i01++) {
  6135. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6136. for (int i00 = 0; i00 < ne00; i00++) {
  6137. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6138. }
  6139. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6140. id += rs;
  6141. }
  6142. id += rs * (ne01 - ir1);
  6143. }
  6144. }
  6145. } else {
  6146. GGML_ASSERT(false); // TODO: implement
  6147. }
  6148. } else {
  6149. //printf("%s: this is not optimal - fix me\n", __func__);
  6150. if (dst->type == GGML_TYPE_F32) {
  6151. size_t id = 0;
  6152. float * dst_ptr = (float *) dst->data;
  6153. for (int i03 = 0; i03 < ne03; i03++) {
  6154. for (int i02 = 0; i02 < ne02; i02++) {
  6155. id += ne00 * ir0;
  6156. for (int i01 = ir0; i01 < ir1; i01++) {
  6157. for (int i00 = 0; i00 < ne00; i00++) {
  6158. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6159. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6160. id++;
  6161. }
  6162. }
  6163. id += ne00 * (ne01 - ir1);
  6164. }
  6165. }
  6166. } else if (dst->type == GGML_TYPE_F16) {
  6167. size_t id = 0;
  6168. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6169. for (int i03 = 0; i03 < ne03; i03++) {
  6170. for (int i02 = 0; i02 < ne02; i02++) {
  6171. id += ne00 * ir0;
  6172. for (int i01 = ir0; i01 < ir1; i01++) {
  6173. for (int i00 = 0; i00 < ne00; i00++) {
  6174. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6175. dst_ptr[id] = *src0_ptr;
  6176. id++;
  6177. }
  6178. }
  6179. id += ne00 * (ne01 - ir1);
  6180. }
  6181. }
  6182. } else {
  6183. GGML_ASSERT(false); // TODO: implement
  6184. }
  6185. }
  6186. return;
  6187. }
  6188. // dst counters
  6189. int64_t i10 = 0;
  6190. int64_t i11 = 0;
  6191. int64_t i12 = 0;
  6192. int64_t i13 = 0;
  6193. if (dst->type == GGML_TYPE_F16) {
  6194. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6195. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6196. i10 += ne00 * ir0;
  6197. while (i10 >= ne0) {
  6198. i10 -= ne0;
  6199. if (++i11 == ne1) {
  6200. i11 = 0;
  6201. if (++i12 == ne2) {
  6202. i12 = 0;
  6203. if (++i13 == ne3) {
  6204. i13 = 0;
  6205. }
  6206. }
  6207. }
  6208. }
  6209. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6210. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6211. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6212. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6213. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6214. if (++i10 == ne00) {
  6215. i10 = 0;
  6216. if (++i11 == ne01) {
  6217. i11 = 0;
  6218. if (++i12 == ne02) {
  6219. i12 = 0;
  6220. if (++i13 == ne03) {
  6221. i13 = 0;
  6222. }
  6223. }
  6224. }
  6225. }
  6226. }
  6227. }
  6228. i10 += ne00 * (ne01 - ir1);
  6229. while (i10 >= ne0) {
  6230. i10 -= ne0;
  6231. if (++i11 == ne1) {
  6232. i11 = 0;
  6233. if (++i12 == ne2) {
  6234. i12 = 0;
  6235. if (++i13 == ne3) {
  6236. i13 = 0;
  6237. }
  6238. }
  6239. }
  6240. }
  6241. }
  6242. }
  6243. } else if (dst->type == GGML_TYPE_F32) {
  6244. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6245. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6246. i10 += ne00 * ir0;
  6247. while (i10 >= ne0) {
  6248. i10 -= ne0;
  6249. if (++i11 == ne1) {
  6250. i11 = 0;
  6251. if (++i12 == ne2) {
  6252. i12 = 0;
  6253. if (++i13 == ne3) {
  6254. i13 = 0;
  6255. }
  6256. }
  6257. }
  6258. }
  6259. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6260. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6261. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6262. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6263. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6264. if (++i10 == ne0) {
  6265. i10 = 0;
  6266. if (++i11 == ne1) {
  6267. i11 = 0;
  6268. if (++i12 == ne2) {
  6269. i12 = 0;
  6270. if (++i13 == ne3) {
  6271. i13 = 0;
  6272. }
  6273. }
  6274. }
  6275. }
  6276. }
  6277. }
  6278. i10 += ne00 * (ne01 - ir1);
  6279. while (i10 >= ne0) {
  6280. i10 -= ne0;
  6281. if (++i11 == ne1) {
  6282. i11 = 0;
  6283. if (++i12 == ne2) {
  6284. i12 = 0;
  6285. if (++i13 == ne3) {
  6286. i13 = 0;
  6287. }
  6288. }
  6289. }
  6290. }
  6291. }
  6292. }
  6293. } else {
  6294. GGML_ASSERT(false); // TODO: implement
  6295. }
  6296. }
  6297. static void ggml_compute_forward_dup_f32(
  6298. const struct ggml_compute_params * params,
  6299. const struct ggml_tensor * src0,
  6300. struct ggml_tensor * dst) {
  6301. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6302. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6303. return;
  6304. }
  6305. GGML_TENSOR_UNARY_OP_LOCALS;
  6306. const int ith = params->ith; // thread index
  6307. const int nth = params->nth; // number of threads
  6308. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6309. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6310. return;
  6311. }
  6312. // parallelize by rows
  6313. const int nr = ne01;
  6314. // number of rows per thread
  6315. const int dr = (nr + nth - 1) / nth;
  6316. // row range for this thread
  6317. const int ir0 = dr * ith;
  6318. const int ir1 = MIN(ir0 + dr, nr);
  6319. if (src0->type == dst->type &&
  6320. ne00 == ne0 &&
  6321. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6322. // copy by rows
  6323. const size_t rs = ne00*nb00;
  6324. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6325. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6326. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6327. memcpy(
  6328. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6329. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6330. rs);
  6331. }
  6332. }
  6333. }
  6334. return;
  6335. }
  6336. if (ggml_is_contiguous(dst)) {
  6337. // TODO: simplify
  6338. if (nb00 == sizeof(float)) {
  6339. if (dst->type == GGML_TYPE_F32) {
  6340. size_t id = 0;
  6341. const size_t rs = ne00 * nb00;
  6342. char * dst_ptr = (char *) dst->data;
  6343. for (int i03 = 0; i03 < ne03; i03++) {
  6344. for (int i02 = 0; i02 < ne02; i02++) {
  6345. id += rs * ir0;
  6346. for (int i01 = ir0; i01 < ir1; i01++) {
  6347. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6348. memcpy(dst_ptr + id, src0_ptr, rs);
  6349. id += rs;
  6350. }
  6351. id += rs * (ne01 - ir1);
  6352. }
  6353. }
  6354. } else if (type_traits[dst->type].from_float) {
  6355. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6356. size_t id = 0;
  6357. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6358. char * dst_ptr = (char *) dst->data;
  6359. for (int i03 = 0; i03 < ne03; i03++) {
  6360. for (int i02 = 0; i02 < ne02; i02++) {
  6361. id += rs * ir0;
  6362. for (int i01 = ir0; i01 < ir1; i01++) {
  6363. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6364. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6365. id += rs;
  6366. }
  6367. id += rs * (ne01 - ir1);
  6368. }
  6369. }
  6370. } else {
  6371. GGML_ASSERT(false); // TODO: implement
  6372. }
  6373. } else {
  6374. //printf("%s: this is not optimal - fix me\n", __func__);
  6375. if (dst->type == GGML_TYPE_F32) {
  6376. size_t id = 0;
  6377. float * dst_ptr = (float *) dst->data;
  6378. for (int i03 = 0; i03 < ne03; i03++) {
  6379. for (int i02 = 0; i02 < ne02; i02++) {
  6380. id += ne00 * ir0;
  6381. for (int i01 = ir0; i01 < ir1; i01++) {
  6382. for (int i00 = 0; i00 < ne00; i00++) {
  6383. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6384. dst_ptr[id] = *src0_ptr;
  6385. id++;
  6386. }
  6387. }
  6388. id += ne00 * (ne01 - ir1);
  6389. }
  6390. }
  6391. } else if (dst->type == GGML_TYPE_F16) {
  6392. size_t id = 0;
  6393. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6394. for (int i03 = 0; i03 < ne03; i03++) {
  6395. for (int i02 = 0; i02 < ne02; i02++) {
  6396. id += ne00 * ir0;
  6397. for (int i01 = ir0; i01 < ir1; i01++) {
  6398. for (int i00 = 0; i00 < ne00; i00++) {
  6399. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6400. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6401. id++;
  6402. }
  6403. }
  6404. id += ne00 * (ne01 - ir1);
  6405. }
  6406. }
  6407. } else {
  6408. GGML_ASSERT(false); // TODO: implement
  6409. }
  6410. }
  6411. return;
  6412. }
  6413. // dst counters
  6414. int64_t i10 = 0;
  6415. int64_t i11 = 0;
  6416. int64_t i12 = 0;
  6417. int64_t i13 = 0;
  6418. if (dst->type == GGML_TYPE_F32) {
  6419. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6420. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6421. i10 += ne00 * ir0;
  6422. while (i10 >= ne0) {
  6423. i10 -= ne0;
  6424. if (++i11 == ne1) {
  6425. i11 = 0;
  6426. if (++i12 == ne2) {
  6427. i12 = 0;
  6428. if (++i13 == ne3) {
  6429. i13 = 0;
  6430. }
  6431. }
  6432. }
  6433. }
  6434. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6435. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6436. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6437. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6438. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6439. if (++i10 == ne0) {
  6440. i10 = 0;
  6441. if (++i11 == ne1) {
  6442. i11 = 0;
  6443. if (++i12 == ne2) {
  6444. i12 = 0;
  6445. if (++i13 == ne3) {
  6446. i13 = 0;
  6447. }
  6448. }
  6449. }
  6450. }
  6451. }
  6452. }
  6453. i10 += ne00 * (ne01 - ir1);
  6454. while (i10 >= ne0) {
  6455. i10 -= ne0;
  6456. if (++i11 == ne1) {
  6457. i11 = 0;
  6458. if (++i12 == ne2) {
  6459. i12 = 0;
  6460. if (++i13 == ne3) {
  6461. i13 = 0;
  6462. }
  6463. }
  6464. }
  6465. }
  6466. }
  6467. }
  6468. } else if (dst->type == GGML_TYPE_F16) {
  6469. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6470. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6471. i10 += ne00 * ir0;
  6472. while (i10 >= ne0) {
  6473. i10 -= ne0;
  6474. if (++i11 == ne1) {
  6475. i11 = 0;
  6476. if (++i12 == ne2) {
  6477. i12 = 0;
  6478. if (++i13 == ne3) {
  6479. i13 = 0;
  6480. }
  6481. }
  6482. }
  6483. }
  6484. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6485. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6486. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6487. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6488. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6489. if (++i10 == ne0) {
  6490. i10 = 0;
  6491. if (++i11 == ne1) {
  6492. i11 = 0;
  6493. if (++i12 == ne2) {
  6494. i12 = 0;
  6495. if (++i13 == ne3) {
  6496. i13 = 0;
  6497. }
  6498. }
  6499. }
  6500. }
  6501. }
  6502. }
  6503. i10 += ne00 * (ne01 - ir1);
  6504. while (i10 >= ne0) {
  6505. i10 -= ne0;
  6506. if (++i11 == ne1) {
  6507. i11 = 0;
  6508. if (++i12 == ne2) {
  6509. i12 = 0;
  6510. if (++i13 == ne3) {
  6511. i13 = 0;
  6512. }
  6513. }
  6514. }
  6515. }
  6516. }
  6517. }
  6518. } else {
  6519. GGML_ASSERT(false); // TODO: implement
  6520. }
  6521. }
  6522. static void ggml_compute_forward_dup(
  6523. const struct ggml_compute_params * params,
  6524. const struct ggml_tensor * src0,
  6525. struct ggml_tensor * dst) {
  6526. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6527. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6528. return;
  6529. }
  6530. switch (src0->type) {
  6531. case GGML_TYPE_F16:
  6532. {
  6533. ggml_compute_forward_dup_f16(params, src0, dst);
  6534. } break;
  6535. case GGML_TYPE_F32:
  6536. {
  6537. ggml_compute_forward_dup_f32(params, src0, dst);
  6538. } break;
  6539. default:
  6540. {
  6541. GGML_ASSERT(false);
  6542. } break;
  6543. }
  6544. }
  6545. // ggml_compute_forward_add
  6546. static void ggml_compute_forward_add_f32(
  6547. const struct ggml_compute_params * params,
  6548. const struct ggml_tensor * src0,
  6549. const struct ggml_tensor * src1,
  6550. struct ggml_tensor * dst) {
  6551. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6553. return;
  6554. }
  6555. const int ith = params->ith;
  6556. const int nth = params->nth;
  6557. const int nr = ggml_nrows(src0);
  6558. GGML_TENSOR_BINARY_OP_LOCALS;
  6559. GGML_ASSERT( nb0 == sizeof(float));
  6560. GGML_ASSERT(nb00 == sizeof(float));
  6561. // rows per thread
  6562. const int dr = (nr + nth - 1)/nth;
  6563. // row range for this thread
  6564. const int ir0 = dr*ith;
  6565. const int ir1 = MIN(ir0 + dr, nr);
  6566. if (nb10 == sizeof(float)) {
  6567. for (int ir = ir0; ir < ir1; ++ir) {
  6568. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6569. const int64_t i03 = ir/(ne02*ne01);
  6570. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6571. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6572. const int64_t i13 = i03 % ne13;
  6573. const int64_t i12 = i02 % ne12;
  6574. const int64_t i11 = i01 % ne11;
  6575. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6576. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6577. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6578. #ifdef GGML_USE_ACCELERATE
  6579. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6580. #else
  6581. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6582. #endif
  6583. // }
  6584. // }
  6585. }
  6586. } else {
  6587. // src1 is not contiguous
  6588. for (int ir = ir0; ir < ir1; ++ir) {
  6589. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6590. const int64_t i03 = ir/(ne02*ne01);
  6591. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6592. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6593. const int64_t i13 = i03 % ne13;
  6594. const int64_t i12 = i02 % ne12;
  6595. const int64_t i11 = i01 % ne11;
  6596. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6597. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6598. for (int i0 = 0; i0 < ne0; i0++) {
  6599. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6600. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6601. }
  6602. }
  6603. }
  6604. }
  6605. static void ggml_compute_forward_add_f16_f32(
  6606. const struct ggml_compute_params * params,
  6607. const struct ggml_tensor * src0,
  6608. const struct ggml_tensor * src1,
  6609. struct ggml_tensor * dst) {
  6610. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6611. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6612. return;
  6613. }
  6614. const int ith = params->ith;
  6615. const int nth = params->nth;
  6616. const int nr = ggml_nrows(src0);
  6617. GGML_TENSOR_BINARY_OP_LOCALS;
  6618. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6619. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6620. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6621. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6622. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6623. // rows per thread
  6624. const int dr = (nr + nth - 1)/nth;
  6625. // row range for this thread
  6626. const int ir0 = dr*ith;
  6627. const int ir1 = MIN(ir0 + dr, nr);
  6628. if (nb10 == sizeof(float)) {
  6629. for (int ir = ir0; ir < ir1; ++ir) {
  6630. // src0, src1 and dst are same shape => same indices
  6631. const int i3 = ir/(ne2*ne1);
  6632. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6633. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6634. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6635. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6636. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6637. for (int i = 0; i < ne0; i++) {
  6638. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6639. }
  6640. }
  6641. }
  6642. else {
  6643. // src1 is not contiguous
  6644. GGML_ASSERT(false);
  6645. }
  6646. }
  6647. static void ggml_compute_forward_add_f16_f16(
  6648. const struct ggml_compute_params * params,
  6649. const struct ggml_tensor * src0,
  6650. const struct ggml_tensor * src1,
  6651. struct ggml_tensor * dst) {
  6652. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6653. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6654. return;
  6655. }
  6656. const int ith = params->ith;
  6657. const int nth = params->nth;
  6658. const int nr = ggml_nrows(src0);
  6659. GGML_TENSOR_BINARY_OP_LOCALS;
  6660. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6661. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6662. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6663. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6664. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6665. // rows per thread
  6666. const int dr = (nr + nth - 1)/nth;
  6667. // row range for this thread
  6668. const int ir0 = dr*ith;
  6669. const int ir1 = MIN(ir0 + dr, nr);
  6670. if (nb10 == sizeof(ggml_fp16_t)) {
  6671. for (int ir = ir0; ir < ir1; ++ir) {
  6672. // src0, src1 and dst are same shape => same indices
  6673. const int i3 = ir/(ne2*ne1);
  6674. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6675. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6676. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6677. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6678. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6679. for (int i = 0; i < ne0; i++) {
  6680. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6681. }
  6682. }
  6683. }
  6684. else {
  6685. // src1 is not contiguous
  6686. GGML_ASSERT(false);
  6687. }
  6688. }
  6689. static void ggml_compute_forward_add_q_f32(
  6690. const struct ggml_compute_params * params,
  6691. const struct ggml_tensor * src0,
  6692. const struct ggml_tensor * src1,
  6693. struct ggml_tensor * dst) {
  6694. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6695. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6696. return;
  6697. }
  6698. const int nr = ggml_nrows(src0);
  6699. GGML_TENSOR_BINARY_OP_LOCALS;
  6700. const int ith = params->ith;
  6701. const int nth = params->nth;
  6702. const enum ggml_type type = src0->type;
  6703. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6704. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6705. // we don't support permuted src0 or src1
  6706. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6707. GGML_ASSERT(nb10 == sizeof(float));
  6708. // dst cannot be transposed or permuted
  6709. GGML_ASSERT(nb0 <= nb1);
  6710. GGML_ASSERT(nb1 <= nb2);
  6711. GGML_ASSERT(nb2 <= nb3);
  6712. GGML_ASSERT(ggml_is_quantized(src0->type));
  6713. GGML_ASSERT(dst->type == src0->type);
  6714. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6715. // rows per thread
  6716. const int dr = (nr + nth - 1)/nth;
  6717. // row range for this thread
  6718. const int ir0 = dr*ith;
  6719. const int ir1 = MIN(ir0 + dr, nr);
  6720. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6721. for (int ir = ir0; ir < ir1; ++ir) {
  6722. // src0 indices
  6723. const int i03 = ir/(ne02*ne01);
  6724. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6725. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6726. // src1 and dst are same shape as src0 => same indices
  6727. const int i13 = i03;
  6728. const int i12 = i02;
  6729. const int i11 = i01;
  6730. const int i3 = i03;
  6731. const int i2 = i02;
  6732. const int i1 = i01;
  6733. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6734. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6735. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6736. assert(ne00 % 32 == 0);
  6737. // unquantize row from src0 to temp buffer
  6738. dequantize_row_q(src0_row, wdata, ne00);
  6739. // add src1
  6740. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6741. // quantize row to dst
  6742. quantize_row_q(wdata, dst_row, ne00);
  6743. }
  6744. }
  6745. static void ggml_compute_forward_add(
  6746. const struct ggml_compute_params * params,
  6747. const struct ggml_tensor * src0,
  6748. const struct ggml_tensor * src1,
  6749. struct ggml_tensor * dst) {
  6750. switch (src0->type) {
  6751. case GGML_TYPE_F32:
  6752. {
  6753. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6754. } break;
  6755. case GGML_TYPE_F16:
  6756. {
  6757. if (src1->type == GGML_TYPE_F16) {
  6758. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6759. }
  6760. else if (src1->type == GGML_TYPE_F32) {
  6761. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6762. }
  6763. else {
  6764. GGML_ASSERT(false);
  6765. }
  6766. } break;
  6767. case GGML_TYPE_Q4_0:
  6768. case GGML_TYPE_Q4_1:
  6769. case GGML_TYPE_Q5_0:
  6770. case GGML_TYPE_Q5_1:
  6771. case GGML_TYPE_Q8_0:
  6772. case GGML_TYPE_Q2_K:
  6773. case GGML_TYPE_Q3_K:
  6774. case GGML_TYPE_Q4_K:
  6775. case GGML_TYPE_Q5_K:
  6776. case GGML_TYPE_Q6_K:
  6777. {
  6778. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6779. } break;
  6780. default:
  6781. {
  6782. GGML_ASSERT(false);
  6783. } break;
  6784. }
  6785. }
  6786. // ggml_compute_forward_add1
  6787. static void ggml_compute_forward_add1_f32(
  6788. const struct ggml_compute_params * params,
  6789. const struct ggml_tensor * src0,
  6790. const struct ggml_tensor * src1,
  6791. struct ggml_tensor * dst) {
  6792. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6793. GGML_ASSERT(ggml_is_scalar(src1));
  6794. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6795. return;
  6796. }
  6797. const int ith = params->ith;
  6798. const int nth = params->nth;
  6799. const int nr = ggml_nrows(src0);
  6800. GGML_TENSOR_UNARY_OP_LOCALS;
  6801. GGML_ASSERT( nb0 == sizeof(float));
  6802. GGML_ASSERT(nb00 == sizeof(float));
  6803. // rows per thread
  6804. const int dr = (nr + nth - 1)/nth;
  6805. // row range for this thread
  6806. const int ir0 = dr*ith;
  6807. const int ir1 = MIN(ir0 + dr, nr);
  6808. for (int ir = ir0; ir < ir1; ++ir) {
  6809. // src0 and dst are same shape => same indices
  6810. const int i3 = ir/(ne2*ne1);
  6811. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6812. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6813. #ifdef GGML_USE_ACCELERATE
  6814. UNUSED(ggml_vec_add1_f32);
  6815. vDSP_vadd(
  6816. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6817. (float *) ((char *) src1->data), 0,
  6818. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6819. ne0);
  6820. #else
  6821. ggml_vec_add1_f32(ne0,
  6822. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6823. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6824. *(float *) src1->data);
  6825. #endif
  6826. }
  6827. }
  6828. static void ggml_compute_forward_add1_f16_f32(
  6829. const struct ggml_compute_params * params,
  6830. const struct ggml_tensor * src0,
  6831. const struct ggml_tensor * src1,
  6832. struct ggml_tensor * dst) {
  6833. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6834. GGML_ASSERT(ggml_is_scalar(src1));
  6835. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6836. return;
  6837. }
  6838. // scalar to add
  6839. const float v = *(float *) src1->data;
  6840. const int ith = params->ith;
  6841. const int nth = params->nth;
  6842. const int nr = ggml_nrows(src0);
  6843. GGML_TENSOR_UNARY_OP_LOCALS;
  6844. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6845. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6846. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6847. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6848. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6849. // rows per thread
  6850. const int dr = (nr + nth - 1)/nth;
  6851. // row range for this thread
  6852. const int ir0 = dr*ith;
  6853. const int ir1 = MIN(ir0 + dr, nr);
  6854. for (int ir = ir0; ir < ir1; ++ir) {
  6855. // src0 and dst are same shape => same indices
  6856. const int i3 = ir/(ne2*ne1);
  6857. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6858. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6859. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6860. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6861. for (int i = 0; i < ne0; i++) {
  6862. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6863. }
  6864. }
  6865. }
  6866. static void ggml_compute_forward_add1_f16_f16(
  6867. const struct ggml_compute_params * params,
  6868. const struct ggml_tensor * src0,
  6869. const struct ggml_tensor * src1,
  6870. struct ggml_tensor * dst) {
  6871. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6872. GGML_ASSERT(ggml_is_scalar(src1));
  6873. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6874. return;
  6875. }
  6876. // scalar to add
  6877. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6878. const int ith = params->ith;
  6879. const int nth = params->nth;
  6880. const int nr = ggml_nrows(src0);
  6881. GGML_TENSOR_UNARY_OP_LOCALS;
  6882. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6883. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6884. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6885. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6886. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6887. // rows per thread
  6888. const int dr = (nr + nth - 1)/nth;
  6889. // row range for this thread
  6890. const int ir0 = dr*ith;
  6891. const int ir1 = MIN(ir0 + dr, nr);
  6892. for (int ir = ir0; ir < ir1; ++ir) {
  6893. // src0 and dst are same shape => same indices
  6894. const int i3 = ir/(ne2*ne1);
  6895. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6896. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6897. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6898. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6899. for (int i = 0; i < ne0; i++) {
  6900. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6901. }
  6902. }
  6903. }
  6904. static void ggml_compute_forward_add1_q_f32(
  6905. const struct ggml_compute_params * params,
  6906. const struct ggml_tensor * src0,
  6907. const struct ggml_tensor * src1,
  6908. struct ggml_tensor * dst) {
  6909. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6910. GGML_ASSERT(ggml_is_scalar(src1));
  6911. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6912. return;
  6913. }
  6914. // scalar to add
  6915. const float v = *(float *) src1->data;
  6916. const int ith = params->ith;
  6917. const int nth = params->nth;
  6918. const int nr = ggml_nrows(src0);
  6919. GGML_TENSOR_UNARY_OP_LOCALS;
  6920. const enum ggml_type type = src0->type;
  6921. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6922. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6923. // we don't support permuted src0
  6924. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6925. // dst cannot be transposed or permuted
  6926. GGML_ASSERT(nb0 <= nb1);
  6927. GGML_ASSERT(nb1 <= nb2);
  6928. GGML_ASSERT(nb2 <= nb3);
  6929. GGML_ASSERT(ggml_is_quantized(src0->type));
  6930. GGML_ASSERT(dst->type == src0->type);
  6931. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6932. // rows per thread
  6933. const int dr = (nr + nth - 1)/nth;
  6934. // row range for this thread
  6935. const int ir0 = dr*ith;
  6936. const int ir1 = MIN(ir0 + dr, nr);
  6937. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6938. for (int ir = ir0; ir < ir1; ++ir) {
  6939. // src0 and dst are same shape => same indices
  6940. const int i3 = ir/(ne2*ne1);
  6941. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6942. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6943. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6944. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6945. assert(ne0 % 32 == 0);
  6946. // unquantize row from src0 to temp buffer
  6947. dequantize_row_q(src0_row, wdata, ne0);
  6948. // add src1
  6949. ggml_vec_acc1_f32(ne0, wdata, v);
  6950. // quantize row to dst
  6951. quantize_row_q(wdata, dst_row, ne0);
  6952. }
  6953. }
  6954. static void ggml_compute_forward_add1(
  6955. const struct ggml_compute_params * params,
  6956. const struct ggml_tensor * src0,
  6957. const struct ggml_tensor * src1,
  6958. struct ggml_tensor * dst) {
  6959. switch (src0->type) {
  6960. case GGML_TYPE_F32:
  6961. {
  6962. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6963. } break;
  6964. case GGML_TYPE_F16:
  6965. {
  6966. if (src1->type == GGML_TYPE_F16) {
  6967. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6968. }
  6969. else if (src1->type == GGML_TYPE_F32) {
  6970. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6971. }
  6972. else {
  6973. GGML_ASSERT(false);
  6974. }
  6975. } break;
  6976. case GGML_TYPE_Q4_0:
  6977. case GGML_TYPE_Q4_1:
  6978. case GGML_TYPE_Q5_0:
  6979. case GGML_TYPE_Q5_1:
  6980. case GGML_TYPE_Q8_0:
  6981. case GGML_TYPE_Q8_1:
  6982. case GGML_TYPE_Q2_K:
  6983. case GGML_TYPE_Q3_K:
  6984. case GGML_TYPE_Q4_K:
  6985. case GGML_TYPE_Q5_K:
  6986. case GGML_TYPE_Q6_K:
  6987. {
  6988. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6989. } break;
  6990. default:
  6991. {
  6992. GGML_ASSERT(false);
  6993. } break;
  6994. }
  6995. }
  6996. // ggml_compute_forward_acc
  6997. static void ggml_compute_forward_acc_f32(
  6998. const struct ggml_compute_params * params,
  6999. const struct ggml_tensor * src0,
  7000. const struct ggml_tensor * src1,
  7001. struct ggml_tensor * dst) {
  7002. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7003. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7004. // view src0 and dst with these strides and data offset inbytes during acc
  7005. // nb0 is implicitely element_size because src0 and dst are contiguous
  7006. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7007. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7008. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7009. size_t offset = ((int32_t *) dst->op_params)[3];
  7010. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7011. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7012. // memcpy needs to be synchronized across threads to avoid race conditions.
  7013. // => do it in INIT phase
  7014. memcpy(
  7015. ((char *) dst->data),
  7016. ((char *) src0->data),
  7017. ggml_nbytes(dst));
  7018. }
  7019. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7020. return;
  7021. }
  7022. const int ith = params->ith;
  7023. const int nth = params->nth;
  7024. const int nr = ggml_nrows(src1);
  7025. const int nc = src1->ne[0];
  7026. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7027. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7028. // src0 and dst as viewed during acc
  7029. const size_t nb0 = ggml_element_size(src0);
  7030. const size_t nb00 = nb0;
  7031. const size_t nb01 = nb1;
  7032. const size_t nb02 = nb2;
  7033. const size_t nb03 = nb3;
  7034. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7035. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7036. GGML_ASSERT(nb10 == sizeof(float));
  7037. // rows per thread
  7038. const int dr = (nr + nth - 1)/nth;
  7039. // row range for this thread
  7040. const int ir0 = dr*ith;
  7041. const int ir1 = MIN(ir0 + dr, nr);
  7042. for (int ir = ir0; ir < ir1; ++ir) {
  7043. // src0 and dst are viewed with shape of src1 and offset
  7044. // => same indices
  7045. const int i3 = ir/(ne12*ne11);
  7046. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7047. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7048. #ifdef GGML_USE_ACCELERATE
  7049. vDSP_vadd(
  7050. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7051. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7052. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7053. #else
  7054. ggml_vec_add_f32(nc,
  7055. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7056. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7057. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7058. #endif
  7059. }
  7060. }
  7061. static void ggml_compute_forward_acc(
  7062. const struct ggml_compute_params * params,
  7063. const struct ggml_tensor * src0,
  7064. const struct ggml_tensor * src1,
  7065. struct ggml_tensor * dst) {
  7066. switch (src0->type) {
  7067. case GGML_TYPE_F32:
  7068. {
  7069. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7070. } break;
  7071. case GGML_TYPE_F16:
  7072. case GGML_TYPE_Q4_0:
  7073. case GGML_TYPE_Q4_1:
  7074. case GGML_TYPE_Q5_0:
  7075. case GGML_TYPE_Q5_1:
  7076. case GGML_TYPE_Q8_0:
  7077. case GGML_TYPE_Q8_1:
  7078. case GGML_TYPE_Q2_K:
  7079. case GGML_TYPE_Q3_K:
  7080. case GGML_TYPE_Q4_K:
  7081. case GGML_TYPE_Q5_K:
  7082. case GGML_TYPE_Q6_K:
  7083. default:
  7084. {
  7085. GGML_ASSERT(false);
  7086. } break;
  7087. }
  7088. }
  7089. // ggml_compute_forward_sub
  7090. static void ggml_compute_forward_sub_f32(
  7091. const struct ggml_compute_params * params,
  7092. const struct ggml_tensor * src0,
  7093. const struct ggml_tensor * src1,
  7094. struct ggml_tensor * dst) {
  7095. assert(params->ith == 0);
  7096. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7097. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7098. return;
  7099. }
  7100. const int nr = ggml_nrows(src0);
  7101. GGML_TENSOR_BINARY_OP_LOCALS;
  7102. GGML_ASSERT( nb0 == sizeof(float));
  7103. GGML_ASSERT(nb00 == sizeof(float));
  7104. if (nb10 == sizeof(float)) {
  7105. for (int ir = 0; ir < nr; ++ir) {
  7106. // src0, src1 and dst are same shape => same indices
  7107. const int i3 = ir/(ne2*ne1);
  7108. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7109. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7110. #ifdef GGML_USE_ACCELERATE
  7111. vDSP_vsub(
  7112. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7113. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7114. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7115. ne0);
  7116. #else
  7117. ggml_vec_sub_f32(ne0,
  7118. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7119. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7120. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7121. #endif
  7122. // }
  7123. // }
  7124. }
  7125. } else {
  7126. // src1 is not contiguous
  7127. for (int ir = 0; ir < nr; ++ir) {
  7128. // src0, src1 and dst are same shape => same indices
  7129. const int i3 = ir/(ne2*ne1);
  7130. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7131. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7132. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7133. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7134. for (int i0 = 0; i0 < ne0; i0++) {
  7135. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7136. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7137. }
  7138. }
  7139. }
  7140. }
  7141. static void ggml_compute_forward_sub(
  7142. const struct ggml_compute_params * params,
  7143. const struct ggml_tensor * src0,
  7144. const struct ggml_tensor * src1,
  7145. struct ggml_tensor * dst) {
  7146. switch (src0->type) {
  7147. case GGML_TYPE_F32:
  7148. {
  7149. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7150. } break;
  7151. default:
  7152. {
  7153. GGML_ASSERT(false);
  7154. } break;
  7155. }
  7156. }
  7157. // ggml_compute_forward_mul
  7158. static void ggml_compute_forward_mul_f32(
  7159. const struct ggml_compute_params * params,
  7160. const struct ggml_tensor * src0,
  7161. const struct ggml_tensor * src1,
  7162. struct ggml_tensor * dst) {
  7163. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7164. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7165. return;
  7166. }
  7167. const int ith = params->ith;
  7168. const int nth = params->nth;
  7169. #ifdef GGML_USE_CLBLAST
  7170. if (src1->backend == GGML_BACKEND_GPU) {
  7171. if (ith == 0) {
  7172. ggml_cl_mul(src0, src1, dst);
  7173. }
  7174. return;
  7175. }
  7176. #endif
  7177. const int64_t nr = ggml_nrows(src0);
  7178. GGML_TENSOR_BINARY_OP_LOCALS;
  7179. GGML_ASSERT( nb0 == sizeof(float));
  7180. GGML_ASSERT(nb00 == sizeof(float));
  7181. GGML_ASSERT(ne00 == ne10);
  7182. if (nb10 == sizeof(float)) {
  7183. for (int64_t ir = ith; ir < nr; ir += nth) {
  7184. // src0 and dst are same shape => same indices
  7185. const int64_t i03 = ir/(ne02*ne01);
  7186. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7187. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7188. const int64_t i13 = i03 % ne13;
  7189. const int64_t i12 = i02 % ne12;
  7190. const int64_t i11 = i01 % ne11;
  7191. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7192. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7193. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7194. #ifdef GGML_USE_ACCELERATE
  7195. UNUSED(ggml_vec_mul_f32);
  7196. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7197. #else
  7198. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7199. #endif
  7200. // }
  7201. // }
  7202. }
  7203. } else {
  7204. // src1 is not contiguous
  7205. for (int64_t ir = ith; ir < nr; ir += nth) {
  7206. // src0 and dst are same shape => same indices
  7207. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7208. const int64_t i03 = ir/(ne02*ne01);
  7209. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7210. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7211. const int64_t i13 = i03 % ne13;
  7212. const int64_t i12 = i02 % ne12;
  7213. const int64_t i11 = i01 % ne11;
  7214. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7215. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7216. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7217. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7218. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7219. }
  7220. }
  7221. }
  7222. }
  7223. static void ggml_compute_forward_mul(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. const struct ggml_tensor * src1,
  7227. struct ggml_tensor * dst) {
  7228. switch (src0->type) {
  7229. case GGML_TYPE_F32:
  7230. {
  7231. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7232. } break;
  7233. default:
  7234. {
  7235. GGML_ASSERT(false);
  7236. } break;
  7237. }
  7238. }
  7239. // ggml_compute_forward_div
  7240. static void ggml_compute_forward_div_f32(
  7241. const struct ggml_compute_params * params,
  7242. const struct ggml_tensor * src0,
  7243. const struct ggml_tensor * src1,
  7244. struct ggml_tensor * dst) {
  7245. assert(params->ith == 0);
  7246. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7247. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7248. return;
  7249. }
  7250. const int nr = ggml_nrows(src0);
  7251. GGML_TENSOR_BINARY_OP_LOCALS;
  7252. GGML_ASSERT( nb0 == sizeof(float));
  7253. GGML_ASSERT(nb00 == sizeof(float));
  7254. if (nb10 == sizeof(float)) {
  7255. for (int ir = 0; ir < nr; ++ir) {
  7256. // src0, src1 and dst are same shape => same indices
  7257. const int i3 = ir/(ne2*ne1);
  7258. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7259. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7260. #ifdef GGML_USE_ACCELERATE
  7261. vDSP_vdiv(
  7262. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7263. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7264. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7265. ne0);
  7266. #else
  7267. ggml_vec_div_f32(ne0,
  7268. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7269. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7270. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7271. #endif
  7272. // }
  7273. // }
  7274. }
  7275. } else {
  7276. // src1 is not contiguous
  7277. for (int ir = 0; ir < nr; ++ir) {
  7278. // src0, src1 and dst are same shape => same indices
  7279. const int i3 = ir/(ne2*ne1);
  7280. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7281. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7282. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7283. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7284. for (int i0 = 0; i0 < ne0; i0++) {
  7285. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7286. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7287. }
  7288. }
  7289. }
  7290. }
  7291. static void ggml_compute_forward_div(
  7292. const struct ggml_compute_params * params,
  7293. const struct ggml_tensor * src0,
  7294. const struct ggml_tensor * src1,
  7295. struct ggml_tensor * dst) {
  7296. switch (src0->type) {
  7297. case GGML_TYPE_F32:
  7298. {
  7299. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7300. } break;
  7301. default:
  7302. {
  7303. GGML_ASSERT(false);
  7304. } break;
  7305. }
  7306. }
  7307. // ggml_compute_forward_sqr
  7308. static void ggml_compute_forward_sqr_f32(
  7309. const struct ggml_compute_params * params,
  7310. const struct ggml_tensor * src0,
  7311. struct ggml_tensor * dst) {
  7312. assert(params->ith == 0);
  7313. assert(ggml_are_same_shape(src0, dst));
  7314. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7315. return;
  7316. }
  7317. const int n = ggml_nrows(src0);
  7318. const int nc = src0->ne[0];
  7319. assert( dst->nb[0] == sizeof(float));
  7320. assert(src0->nb[0] == sizeof(float));
  7321. for (int i = 0; i < n; i++) {
  7322. ggml_vec_sqr_f32(nc,
  7323. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7324. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7325. }
  7326. }
  7327. static void ggml_compute_forward_sqr(
  7328. const struct ggml_compute_params * params,
  7329. const struct ggml_tensor * src0,
  7330. struct ggml_tensor * dst) {
  7331. switch (src0->type) {
  7332. case GGML_TYPE_F32:
  7333. {
  7334. ggml_compute_forward_sqr_f32(params, src0, dst);
  7335. } break;
  7336. default:
  7337. {
  7338. GGML_ASSERT(false);
  7339. } break;
  7340. }
  7341. }
  7342. // ggml_compute_forward_sqrt
  7343. static void ggml_compute_forward_sqrt_f32(
  7344. const struct ggml_compute_params * params,
  7345. const struct ggml_tensor * src0,
  7346. struct ggml_tensor * dst) {
  7347. assert(params->ith == 0);
  7348. assert(ggml_are_same_shape(src0, dst));
  7349. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7350. return;
  7351. }
  7352. const int n = ggml_nrows(src0);
  7353. const int nc = src0->ne[0];
  7354. assert( dst->nb[0] == sizeof(float));
  7355. assert(src0->nb[0] == sizeof(float));
  7356. for (int i = 0; i < n; i++) {
  7357. ggml_vec_sqrt_f32(nc,
  7358. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7359. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7360. }
  7361. }
  7362. static void ggml_compute_forward_sqrt(
  7363. const struct ggml_compute_params * params,
  7364. const struct ggml_tensor * src0,
  7365. struct ggml_tensor * dst) {
  7366. switch (src0->type) {
  7367. case GGML_TYPE_F32:
  7368. {
  7369. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7370. } break;
  7371. default:
  7372. {
  7373. GGML_ASSERT(false);
  7374. } break;
  7375. }
  7376. }
  7377. // ggml_compute_forward_log
  7378. static void ggml_compute_forward_log_f32(
  7379. const struct ggml_compute_params * params,
  7380. const struct ggml_tensor * src0,
  7381. struct ggml_tensor * dst) {
  7382. GGML_ASSERT(params->ith == 0);
  7383. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7384. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7385. return;
  7386. }
  7387. const int n = ggml_nrows(src0);
  7388. const int nc = src0->ne[0];
  7389. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7390. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7391. for (int i = 0; i < n; i++) {
  7392. ggml_vec_log_f32(nc,
  7393. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7394. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7395. }
  7396. }
  7397. static void ggml_compute_forward_log(
  7398. const struct ggml_compute_params * params,
  7399. const struct ggml_tensor * src0,
  7400. struct ggml_tensor * dst) {
  7401. switch (src0->type) {
  7402. case GGML_TYPE_F32:
  7403. {
  7404. ggml_compute_forward_log_f32(params, src0, dst);
  7405. } break;
  7406. default:
  7407. {
  7408. GGML_ASSERT(false);
  7409. } break;
  7410. }
  7411. }
  7412. // ggml_compute_forward_sum
  7413. static void ggml_compute_forward_sum_f32(
  7414. const struct ggml_compute_params * params,
  7415. const struct ggml_tensor * src0,
  7416. struct ggml_tensor * dst) {
  7417. assert(params->ith == 0);
  7418. assert(ggml_is_scalar(dst));
  7419. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7420. return;
  7421. }
  7422. assert(ggml_is_scalar(dst));
  7423. assert(src0->nb[0] == sizeof(float));
  7424. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7425. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7426. ggml_float sum = 0;
  7427. ggml_float row_sum = 0;
  7428. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7429. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7430. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7431. ggml_vec_sum_f32_ggf(ne00,
  7432. &row_sum,
  7433. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7434. sum += row_sum;
  7435. }
  7436. }
  7437. }
  7438. ((float *) dst->data)[0] = sum;
  7439. }
  7440. static void ggml_compute_forward_sum_f16(
  7441. const struct ggml_compute_params * params,
  7442. const struct ggml_tensor * src0,
  7443. struct ggml_tensor * dst) {
  7444. assert(params->ith == 0);
  7445. assert(ggml_is_scalar(dst));
  7446. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7447. return;
  7448. }
  7449. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7450. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7451. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7452. float sum = 0;
  7453. float row_sum = 0;
  7454. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7455. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7456. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7457. ggml_vec_sum_f16_ggf(ne00,
  7458. &row_sum,
  7459. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7460. sum += row_sum;
  7461. }
  7462. }
  7463. }
  7464. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7465. }
  7466. static void ggml_compute_forward_sum(
  7467. const struct ggml_compute_params * params,
  7468. const struct ggml_tensor * src0,
  7469. struct ggml_tensor * dst) {
  7470. switch (src0->type) {
  7471. case GGML_TYPE_F32:
  7472. {
  7473. ggml_compute_forward_sum_f32(params, src0, dst);
  7474. } break;
  7475. case GGML_TYPE_F16:
  7476. {
  7477. ggml_compute_forward_sum_f16(params, src0, dst);
  7478. } break;
  7479. default:
  7480. {
  7481. GGML_ASSERT(false);
  7482. } break;
  7483. }
  7484. }
  7485. // ggml_compute_forward_sum_rows
  7486. static void ggml_compute_forward_sum_rows_f32(
  7487. const struct ggml_compute_params * params,
  7488. const struct ggml_tensor * src0,
  7489. struct ggml_tensor * dst) {
  7490. GGML_ASSERT(params->ith == 0);
  7491. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7492. return;
  7493. }
  7494. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7495. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7496. GGML_TENSOR_UNARY_OP_LOCALS;
  7497. GGML_ASSERT(ne0 == 1);
  7498. GGML_ASSERT(ne1 == ne01);
  7499. GGML_ASSERT(ne2 == ne02);
  7500. GGML_ASSERT(ne3 == ne03);
  7501. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7502. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7503. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7504. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7505. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7506. float row_sum = 0;
  7507. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7508. dst_row[0] = row_sum;
  7509. }
  7510. }
  7511. }
  7512. }
  7513. static void ggml_compute_forward_sum_rows(
  7514. const struct ggml_compute_params * params,
  7515. const struct ggml_tensor * src0,
  7516. struct ggml_tensor * dst) {
  7517. switch (src0->type) {
  7518. case GGML_TYPE_F32:
  7519. {
  7520. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7521. } break;
  7522. default:
  7523. {
  7524. GGML_ASSERT(false);
  7525. } break;
  7526. }
  7527. }
  7528. // ggml_compute_forward_mean
  7529. static void ggml_compute_forward_mean_f32(
  7530. const struct ggml_compute_params * params,
  7531. const struct ggml_tensor * src0,
  7532. struct ggml_tensor * dst) {
  7533. assert(params->ith == 0);
  7534. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7535. return;
  7536. }
  7537. assert(src0->nb[0] == sizeof(float));
  7538. GGML_TENSOR_UNARY_OP_LOCALS;
  7539. assert(ne0 == 1);
  7540. assert(ne1 == ne01);
  7541. assert(ne2 == ne02);
  7542. assert(ne3 == ne03);
  7543. UNUSED(ne0);
  7544. UNUSED(ne1);
  7545. UNUSED(ne2);
  7546. UNUSED(ne3);
  7547. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7548. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7549. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7550. ggml_vec_sum_f32(ne00,
  7551. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7552. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7553. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7554. }
  7555. }
  7556. }
  7557. }
  7558. static void ggml_compute_forward_mean(
  7559. const struct ggml_compute_params * params,
  7560. const struct ggml_tensor * src0,
  7561. struct ggml_tensor * dst) {
  7562. switch (src0->type) {
  7563. case GGML_TYPE_F32:
  7564. {
  7565. ggml_compute_forward_mean_f32(params, src0, dst);
  7566. } break;
  7567. default:
  7568. {
  7569. GGML_ASSERT(false);
  7570. } break;
  7571. }
  7572. }
  7573. // ggml_compute_forward_argmax
  7574. static void ggml_compute_forward_argmax_f32(
  7575. const struct ggml_compute_params * params,
  7576. const struct ggml_tensor * src0,
  7577. struct ggml_tensor * dst) {
  7578. assert(params->ith == 0);
  7579. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7580. return;
  7581. }
  7582. assert(src0->nb[0] == sizeof(float));
  7583. assert(dst->nb[0] == sizeof(float));
  7584. const int64_t ne00 = src0->ne[0];
  7585. const int64_t ne01 = src0->ne[1];
  7586. const size_t nb01 = src0->nb[1];
  7587. const size_t nb0 = dst->nb[0];
  7588. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7589. float * src = (float *) ((char *) src0->data + i1*nb01);
  7590. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7591. int v = 0;
  7592. ggml_vec_argmax_f32(ne00, &v, src);
  7593. dst_[0] = v;
  7594. }
  7595. }
  7596. static void ggml_compute_forward_argmax(
  7597. const struct ggml_compute_params * params,
  7598. const struct ggml_tensor * src0,
  7599. struct ggml_tensor * dst) {
  7600. switch (src0->type) {
  7601. case GGML_TYPE_F32:
  7602. {
  7603. ggml_compute_forward_argmax_f32(params, src0, dst);
  7604. } break;
  7605. default:
  7606. {
  7607. GGML_ASSERT(false);
  7608. } break;
  7609. }
  7610. }
  7611. // ggml_compute_forward_repeat
  7612. static void ggml_compute_forward_repeat_f32(
  7613. const struct ggml_compute_params * params,
  7614. const struct ggml_tensor * src0,
  7615. struct ggml_tensor * dst) {
  7616. GGML_ASSERT(params->ith == 0);
  7617. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7618. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7619. return;
  7620. }
  7621. GGML_TENSOR_UNARY_OP_LOCALS;
  7622. // guaranteed to be an integer due to the check in ggml_can_repeat
  7623. const int nr0 = (int)(ne0/ne00);
  7624. const int nr1 = (int)(ne1/ne01);
  7625. const int nr2 = (int)(ne2/ne02);
  7626. const int nr3 = (int)(ne3/ne03);
  7627. // TODO: support for transposed / permuted tensors
  7628. GGML_ASSERT(nb0 == sizeof(float));
  7629. GGML_ASSERT(nb00 == sizeof(float));
  7630. // TODO: maybe this is not optimal?
  7631. for (int i3 = 0; i3 < nr3; i3++) {
  7632. for (int k3 = 0; k3 < ne03; k3++) {
  7633. for (int i2 = 0; i2 < nr2; i2++) {
  7634. for (int k2 = 0; k2 < ne02; k2++) {
  7635. for (int i1 = 0; i1 < nr1; i1++) {
  7636. for (int k1 = 0; k1 < ne01; k1++) {
  7637. for (int i0 = 0; i0 < nr0; i0++) {
  7638. ggml_vec_cpy_f32(ne00,
  7639. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7640. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7641. }
  7642. }
  7643. }
  7644. }
  7645. }
  7646. }
  7647. }
  7648. }
  7649. static void ggml_compute_forward_repeat(
  7650. const struct ggml_compute_params * params,
  7651. const struct ggml_tensor * src0,
  7652. struct ggml_tensor * dst) {
  7653. switch (src0->type) {
  7654. case GGML_TYPE_F32:
  7655. {
  7656. ggml_compute_forward_repeat_f32(params, src0, dst);
  7657. } break;
  7658. default:
  7659. {
  7660. GGML_ASSERT(false);
  7661. } break;
  7662. }
  7663. }
  7664. // ggml_compute_forward_repeat_back
  7665. static void ggml_compute_forward_repeat_back_f32(
  7666. const struct ggml_compute_params * params,
  7667. const struct ggml_tensor * src0,
  7668. struct ggml_tensor * dst) {
  7669. GGML_ASSERT(params->ith == 0);
  7670. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7671. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7672. return;
  7673. }
  7674. GGML_TENSOR_UNARY_OP_LOCALS;
  7675. // guaranteed to be an integer due to the check in ggml_can_repeat
  7676. const int nr0 = (int)(ne00/ne0);
  7677. const int nr1 = (int)(ne01/ne1);
  7678. const int nr2 = (int)(ne02/ne2);
  7679. const int nr3 = (int)(ne03/ne3);
  7680. // TODO: support for transposed / permuted tensors
  7681. GGML_ASSERT(nb0 == sizeof(float));
  7682. GGML_ASSERT(nb00 == sizeof(float));
  7683. if (ggml_is_contiguous(dst)) {
  7684. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7685. } else {
  7686. for (int k3 = 0; k3 < ne3; k3++) {
  7687. for (int k2 = 0; k2 < ne2; k2++) {
  7688. for (int k1 = 0; k1 < ne1; k1++) {
  7689. ggml_vec_set_f32(ne0,
  7690. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7691. 0);
  7692. }
  7693. }
  7694. }
  7695. }
  7696. // TODO: maybe this is not optimal?
  7697. for (int i3 = 0; i3 < nr3; i3++) {
  7698. for (int k3 = 0; k3 < ne3; k3++) {
  7699. for (int i2 = 0; i2 < nr2; i2++) {
  7700. for (int k2 = 0; k2 < ne2; k2++) {
  7701. for (int i1 = 0; i1 < nr1; i1++) {
  7702. for (int k1 = 0; k1 < ne1; k1++) {
  7703. for (int i0 = 0; i0 < nr0; i0++) {
  7704. ggml_vec_acc_f32(ne0,
  7705. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7706. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7707. }
  7708. }
  7709. }
  7710. }
  7711. }
  7712. }
  7713. }
  7714. }
  7715. static void ggml_compute_forward_repeat_back(
  7716. const struct ggml_compute_params * params,
  7717. const struct ggml_tensor * src0,
  7718. struct ggml_tensor * dst) {
  7719. switch (src0->type) {
  7720. case GGML_TYPE_F32:
  7721. {
  7722. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7723. } break;
  7724. default:
  7725. {
  7726. GGML_ASSERT(false);
  7727. } break;
  7728. }
  7729. }
  7730. // ggml_compute_forward_abs
  7731. static void ggml_compute_forward_abs_f32(
  7732. const struct ggml_compute_params * params,
  7733. const struct ggml_tensor * src0,
  7734. struct ggml_tensor * dst) {
  7735. assert(params->ith == 0);
  7736. assert(ggml_are_same_shape(src0, dst));
  7737. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7738. return;
  7739. }
  7740. const int n = ggml_nrows(src0);
  7741. const int nc = src0->ne[0];
  7742. assert(dst->nb[0] == sizeof(float));
  7743. assert(src0->nb[0] == sizeof(float));
  7744. for (int i = 0; i < n; i++) {
  7745. ggml_vec_abs_f32(nc,
  7746. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7747. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7748. }
  7749. }
  7750. static void ggml_compute_forward_abs(
  7751. const struct ggml_compute_params * params,
  7752. const struct ggml_tensor * src0,
  7753. struct ggml_tensor * dst) {
  7754. switch (src0->type) {
  7755. case GGML_TYPE_F32:
  7756. {
  7757. ggml_compute_forward_abs_f32(params, src0, dst);
  7758. } break;
  7759. default:
  7760. {
  7761. GGML_ASSERT(false);
  7762. } break;
  7763. }
  7764. }
  7765. // ggml_compute_forward_sgn
  7766. static void ggml_compute_forward_sgn_f32(
  7767. const struct ggml_compute_params * params,
  7768. const struct ggml_tensor * src0,
  7769. struct ggml_tensor * dst) {
  7770. assert(params->ith == 0);
  7771. assert(ggml_are_same_shape(src0, dst));
  7772. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7773. return;
  7774. }
  7775. const int n = ggml_nrows(src0);
  7776. const int nc = src0->ne[0];
  7777. assert(dst->nb[0] == sizeof(float));
  7778. assert(src0->nb[0] == sizeof(float));
  7779. for (int i = 0; i < n; i++) {
  7780. ggml_vec_sgn_f32(nc,
  7781. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7782. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7783. }
  7784. }
  7785. static void ggml_compute_forward_sgn(
  7786. const struct ggml_compute_params * params,
  7787. const struct ggml_tensor * src0,
  7788. struct ggml_tensor * dst) {
  7789. switch (src0->type) {
  7790. case GGML_TYPE_F32:
  7791. {
  7792. ggml_compute_forward_sgn_f32(params, src0, dst);
  7793. } break;
  7794. default:
  7795. {
  7796. GGML_ASSERT(false);
  7797. } break;
  7798. }
  7799. }
  7800. // ggml_compute_forward_neg
  7801. static void ggml_compute_forward_neg_f32(
  7802. const struct ggml_compute_params * params,
  7803. const struct ggml_tensor * src0,
  7804. struct ggml_tensor * dst) {
  7805. assert(params->ith == 0);
  7806. assert(ggml_are_same_shape(src0, dst));
  7807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7808. return;
  7809. }
  7810. const int n = ggml_nrows(src0);
  7811. const int nc = src0->ne[0];
  7812. assert(dst->nb[0] == sizeof(float));
  7813. assert(src0->nb[0] == sizeof(float));
  7814. for (int i = 0; i < n; i++) {
  7815. ggml_vec_neg_f32(nc,
  7816. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7817. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7818. }
  7819. }
  7820. static void ggml_compute_forward_neg(
  7821. const struct ggml_compute_params * params,
  7822. const struct ggml_tensor * src0,
  7823. struct ggml_tensor * dst) {
  7824. switch (src0->type) {
  7825. case GGML_TYPE_F32:
  7826. {
  7827. ggml_compute_forward_neg_f32(params, src0, dst);
  7828. } break;
  7829. default:
  7830. {
  7831. GGML_ASSERT(false);
  7832. } break;
  7833. }
  7834. }
  7835. // ggml_compute_forward_step
  7836. static void ggml_compute_forward_step_f32(
  7837. const struct ggml_compute_params * params,
  7838. const struct ggml_tensor * src0,
  7839. struct ggml_tensor * dst) {
  7840. assert(params->ith == 0);
  7841. assert(ggml_are_same_shape(src0, dst));
  7842. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7843. return;
  7844. }
  7845. const int n = ggml_nrows(src0);
  7846. const int nc = src0->ne[0];
  7847. assert(dst->nb[0] == sizeof(float));
  7848. assert(src0->nb[0] == sizeof(float));
  7849. for (int i = 0; i < n; i++) {
  7850. ggml_vec_step_f32(nc,
  7851. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7852. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7853. }
  7854. }
  7855. static void ggml_compute_forward_step(
  7856. const struct ggml_compute_params * params,
  7857. const struct ggml_tensor * src0,
  7858. struct ggml_tensor * dst) {
  7859. switch (src0->type) {
  7860. case GGML_TYPE_F32:
  7861. {
  7862. ggml_compute_forward_step_f32(params, src0, dst);
  7863. } break;
  7864. default:
  7865. {
  7866. GGML_ASSERT(false);
  7867. } break;
  7868. }
  7869. }
  7870. // ggml_compute_forward_tanh
  7871. static void ggml_compute_forward_tanh_f32(
  7872. const struct ggml_compute_params * params,
  7873. const struct ggml_tensor * src0,
  7874. struct ggml_tensor * dst) {
  7875. assert(params->ith == 0);
  7876. assert(ggml_are_same_shape(src0, dst));
  7877. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7878. return;
  7879. }
  7880. const int n = ggml_nrows(src0);
  7881. const int nc = src0->ne[0];
  7882. assert(dst->nb[0] == sizeof(float));
  7883. assert(src0->nb[0] == sizeof(float));
  7884. for (int i = 0; i < n; i++) {
  7885. ggml_vec_tanh_f32(nc,
  7886. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7887. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7888. }
  7889. }
  7890. static void ggml_compute_forward_tanh(
  7891. const struct ggml_compute_params * params,
  7892. const struct ggml_tensor * src0,
  7893. struct ggml_tensor * dst) {
  7894. switch (src0->type) {
  7895. case GGML_TYPE_F32:
  7896. {
  7897. ggml_compute_forward_tanh_f32(params, src0, dst);
  7898. } break;
  7899. default:
  7900. {
  7901. GGML_ASSERT(false);
  7902. } break;
  7903. }
  7904. }
  7905. // ggml_compute_forward_elu
  7906. static void ggml_compute_forward_elu_f32(
  7907. const struct ggml_compute_params * params,
  7908. const struct ggml_tensor * src0,
  7909. struct ggml_tensor * dst) {
  7910. assert(params->ith == 0);
  7911. assert(ggml_are_same_shape(src0, dst));
  7912. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7913. return;
  7914. }
  7915. const int n = ggml_nrows(src0);
  7916. const int nc = src0->ne[0];
  7917. assert(dst->nb[0] == sizeof(float));
  7918. assert(src0->nb[0] == sizeof(float));
  7919. for (int i = 0; i < n; i++) {
  7920. ggml_vec_elu_f32(nc,
  7921. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7922. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7923. }
  7924. }
  7925. static void ggml_compute_forward_elu(
  7926. const struct ggml_compute_params * params,
  7927. const struct ggml_tensor * src0,
  7928. struct ggml_tensor * dst) {
  7929. switch (src0->type) {
  7930. case GGML_TYPE_F32:
  7931. {
  7932. ggml_compute_forward_elu_f32(params, src0, dst);
  7933. } break;
  7934. default:
  7935. {
  7936. GGML_ASSERT(false);
  7937. } break;
  7938. }
  7939. }
  7940. // ggml_compute_forward_relu
  7941. static void ggml_compute_forward_relu_f32(
  7942. const struct ggml_compute_params * params,
  7943. const struct ggml_tensor * src0,
  7944. struct ggml_tensor * dst) {
  7945. assert(params->ith == 0);
  7946. assert(ggml_are_same_shape(src0, dst));
  7947. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7948. return;
  7949. }
  7950. const int n = ggml_nrows(src0);
  7951. const int nc = src0->ne[0];
  7952. assert(dst->nb[0] == sizeof(float));
  7953. assert(src0->nb[0] == sizeof(float));
  7954. for (int i = 0; i < n; i++) {
  7955. ggml_vec_relu_f32(nc,
  7956. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7957. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7958. }
  7959. }
  7960. static void ggml_compute_forward_relu(
  7961. const struct ggml_compute_params * params,
  7962. const struct ggml_tensor * src0,
  7963. struct ggml_tensor * dst) {
  7964. switch (src0->type) {
  7965. case GGML_TYPE_F32:
  7966. {
  7967. ggml_compute_forward_relu_f32(params, src0, dst);
  7968. } break;
  7969. default:
  7970. {
  7971. GGML_ASSERT(false);
  7972. } break;
  7973. }
  7974. }
  7975. // ggml_compute_forward_gelu
  7976. static void ggml_compute_forward_gelu_f32(
  7977. const struct ggml_compute_params * params,
  7978. const struct ggml_tensor * src0,
  7979. struct ggml_tensor * dst) {
  7980. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7981. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7982. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7983. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7984. return;
  7985. }
  7986. const int ith = params->ith;
  7987. const int nth = params->nth;
  7988. const int nc = src0->ne[0];
  7989. const int nr = ggml_nrows(src0);
  7990. // rows per thread
  7991. const int dr = (nr + nth - 1)/nth;
  7992. // row range for this thread
  7993. const int ir0 = dr*ith;
  7994. const int ir1 = MIN(ir0 + dr, nr);
  7995. for (int i1 = ir0; i1 < ir1; i1++) {
  7996. ggml_vec_gelu_f32(nc,
  7997. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7998. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7999. #ifndef NDEBUG
  8000. for (int k = 0; k < nc; k++) {
  8001. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8002. UNUSED(x);
  8003. assert(!isnan(x));
  8004. assert(!isinf(x));
  8005. }
  8006. #endif
  8007. }
  8008. }
  8009. static void ggml_compute_forward_gelu(
  8010. const struct ggml_compute_params * params,
  8011. const struct ggml_tensor * src0,
  8012. struct ggml_tensor * dst) {
  8013. switch (src0->type) {
  8014. case GGML_TYPE_F32:
  8015. {
  8016. ggml_compute_forward_gelu_f32(params, src0, dst);
  8017. } break;
  8018. default:
  8019. {
  8020. GGML_ASSERT(false);
  8021. } break;
  8022. }
  8023. }
  8024. // ggml_compute_forward_gelu_quick
  8025. static void ggml_compute_forward_gelu_quick_f32(
  8026. const struct ggml_compute_params * params,
  8027. const struct ggml_tensor * src0,
  8028. struct ggml_tensor * dst) {
  8029. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8030. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8031. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8032. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8033. return;
  8034. }
  8035. const int ith = params->ith;
  8036. const int nth = params->nth;
  8037. const int nc = src0->ne[0];
  8038. const int nr = ggml_nrows(src0);
  8039. // rows per thread
  8040. const int dr = (nr + nth - 1)/nth;
  8041. // row range for this thread
  8042. const int ir0 = dr*ith;
  8043. const int ir1 = MIN(ir0 + dr, nr);
  8044. for (int i1 = ir0; i1 < ir1; i1++) {
  8045. ggml_vec_gelu_quick_f32(nc,
  8046. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8047. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8048. #ifndef NDEBUG
  8049. for (int k = 0; k < nc; k++) {
  8050. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8051. UNUSED(x);
  8052. assert(!isnan(x));
  8053. assert(!isinf(x));
  8054. }
  8055. #endif
  8056. }
  8057. }
  8058. static void ggml_compute_forward_gelu_quick(
  8059. const struct ggml_compute_params * params,
  8060. const struct ggml_tensor * src0,
  8061. struct ggml_tensor * dst) {
  8062. switch (src0->type) {
  8063. case GGML_TYPE_F32:
  8064. {
  8065. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8066. } break;
  8067. default:
  8068. {
  8069. GGML_ASSERT(false);
  8070. } break;
  8071. }
  8072. }
  8073. // ggml_compute_forward_silu
  8074. static void ggml_compute_forward_silu_f32(
  8075. const struct ggml_compute_params * params,
  8076. const struct ggml_tensor * src0,
  8077. struct ggml_tensor * dst) {
  8078. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8079. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8080. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8081. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8082. return;
  8083. }
  8084. const int ith = params->ith;
  8085. const int nth = params->nth;
  8086. const int nc = src0->ne[0];
  8087. const int nr = ggml_nrows(src0);
  8088. // rows per thread
  8089. const int dr = (nr + nth - 1)/nth;
  8090. // row range for this thread
  8091. const int ir0 = dr*ith;
  8092. const int ir1 = MIN(ir0 + dr, nr);
  8093. for (int i1 = ir0; i1 < ir1; i1++) {
  8094. ggml_vec_silu_f32(nc,
  8095. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8096. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8097. #ifndef NDEBUG
  8098. for (int k = 0; k < nc; k++) {
  8099. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8100. UNUSED(x);
  8101. assert(!isnan(x));
  8102. assert(!isinf(x));
  8103. }
  8104. #endif
  8105. }
  8106. }
  8107. static void ggml_compute_forward_silu(
  8108. const struct ggml_compute_params * params,
  8109. const struct ggml_tensor * src0,
  8110. struct ggml_tensor * dst) {
  8111. switch (src0->type) {
  8112. case GGML_TYPE_F32:
  8113. {
  8114. ggml_compute_forward_silu_f32(params, src0, dst);
  8115. } break;
  8116. default:
  8117. {
  8118. GGML_ASSERT(false);
  8119. } break;
  8120. }
  8121. }
  8122. // ggml_compute_forward_silu_back
  8123. static void ggml_compute_forward_silu_back_f32(
  8124. const struct ggml_compute_params * params,
  8125. const struct ggml_tensor * src0,
  8126. const struct ggml_tensor * grad,
  8127. struct ggml_tensor * dst) {
  8128. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8129. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8130. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8131. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8132. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8133. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8134. return;
  8135. }
  8136. const int ith = params->ith;
  8137. const int nth = params->nth;
  8138. const int nc = src0->ne[0];
  8139. const int nr = ggml_nrows(src0);
  8140. // rows per thread
  8141. const int dr = (nr + nth - 1)/nth;
  8142. // row range for this thread
  8143. const int ir0 = dr*ith;
  8144. const int ir1 = MIN(ir0 + dr, nr);
  8145. for (int i1 = ir0; i1 < ir1; i1++) {
  8146. ggml_vec_silu_backward_f32(nc,
  8147. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8148. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8149. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8150. #ifndef NDEBUG
  8151. for (int k = 0; k < nc; k++) {
  8152. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8153. UNUSED(x);
  8154. assert(!isnan(x));
  8155. assert(!isinf(x));
  8156. }
  8157. #endif
  8158. }
  8159. }
  8160. static void ggml_compute_forward_silu_back(
  8161. const struct ggml_compute_params * params,
  8162. const struct ggml_tensor * src0,
  8163. const struct ggml_tensor * grad,
  8164. struct ggml_tensor * dst) {
  8165. switch (src0->type) {
  8166. case GGML_TYPE_F32:
  8167. {
  8168. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8169. } break;
  8170. default:
  8171. {
  8172. GGML_ASSERT(false);
  8173. } break;
  8174. }
  8175. }
  8176. // ggml_compute_forward_norm
  8177. static void ggml_compute_forward_norm_f32(
  8178. const struct ggml_compute_params * params,
  8179. const struct ggml_tensor * src0,
  8180. struct ggml_tensor * dst) {
  8181. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8183. return;
  8184. }
  8185. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8186. const int ith = params->ith;
  8187. const int nth = params->nth;
  8188. GGML_TENSOR_UNARY_OP_LOCALS;
  8189. const float eps = 1e-5f; // TODO: make this a parameter
  8190. // TODO: optimize
  8191. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8192. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8193. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8194. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8195. ggml_float sum = 0.0;
  8196. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8197. sum += (ggml_float)x[i00];
  8198. }
  8199. float mean = sum/ne00;
  8200. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8201. ggml_float sum2 = 0.0;
  8202. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8203. float v = x[i00] - mean;
  8204. y[i00] = v;
  8205. sum2 += (ggml_float)(v*v);
  8206. }
  8207. float variance = sum2/ne00;
  8208. const float scale = 1.0f/sqrtf(variance + eps);
  8209. ggml_vec_scale_f32(ne00, y, scale);
  8210. }
  8211. }
  8212. }
  8213. }
  8214. static void ggml_compute_forward_norm(
  8215. const struct ggml_compute_params * params,
  8216. const struct ggml_tensor * src0,
  8217. struct ggml_tensor * dst) {
  8218. switch (src0->type) {
  8219. case GGML_TYPE_F32:
  8220. {
  8221. ggml_compute_forward_norm_f32(params, src0, dst);
  8222. } break;
  8223. default:
  8224. {
  8225. GGML_ASSERT(false);
  8226. } break;
  8227. }
  8228. }
  8229. static void ggml_compute_forward_rms_norm_f32(
  8230. const struct ggml_compute_params * params,
  8231. const struct ggml_tensor * src0,
  8232. struct ggml_tensor * dst) {
  8233. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8234. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8235. return;
  8236. }
  8237. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8238. const int ith = params->ith;
  8239. const int nth = params->nth;
  8240. GGML_TENSOR_UNARY_OP_LOCALS;
  8241. float eps;
  8242. memcpy(&eps, dst->op_params, sizeof(float));
  8243. // TODO: optimize
  8244. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8245. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8246. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8247. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8248. ggml_float sum = 0.0;
  8249. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8250. sum += (ggml_float)(x[i00] * x[i00]);
  8251. }
  8252. const float mean = sum/ne00;
  8253. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8254. memcpy(y, x, ne00 * sizeof(float));
  8255. // for (int i00 = 0; i00 < ne00; i00++) {
  8256. // y[i00] = x[i00];
  8257. // }
  8258. const float scale = 1.0f/sqrtf(mean + eps);
  8259. ggml_vec_scale_f32(ne00, y, scale);
  8260. }
  8261. }
  8262. }
  8263. }
  8264. static void ggml_compute_forward_rms_norm(
  8265. const struct ggml_compute_params * params,
  8266. const struct ggml_tensor * src0,
  8267. struct ggml_tensor * dst) {
  8268. switch (src0->type) {
  8269. case GGML_TYPE_F32:
  8270. {
  8271. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8272. } break;
  8273. default:
  8274. {
  8275. GGML_ASSERT(false);
  8276. } break;
  8277. }
  8278. }
  8279. static void ggml_compute_forward_rms_norm_back_f32(
  8280. const struct ggml_compute_params * params,
  8281. const struct ggml_tensor * src0,
  8282. const struct ggml_tensor * src1,
  8283. struct ggml_tensor * dst) {
  8284. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8285. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8286. return;
  8287. }
  8288. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8289. const int ith = params->ith;
  8290. const int nth = params->nth;
  8291. GGML_TENSOR_BINARY_OP_LOCALS;
  8292. const float eps = 1e-6f; // TODO: make this a parameter
  8293. // TODO: optimize
  8294. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8295. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8296. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8297. // src1 is same shape as src0 => same indices
  8298. const int64_t i11 = i01;
  8299. const int64_t i12 = i02;
  8300. const int64_t i13 = i03;
  8301. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8302. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8303. ggml_float sum_xx = 0.0;
  8304. ggml_float sum_xdz = 0.0;
  8305. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8306. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8307. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8308. }
  8309. //const float mean = (float)(sum_xx)/ne00;
  8310. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8311. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8312. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8313. // we could cache rms from forward pass to improve performance.
  8314. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8315. //const float rms = sqrtf(mean_eps);
  8316. const float rrms = 1.0f / sqrtf(mean_eps);
  8317. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8318. {
  8319. // z = rms_norm(x)
  8320. //
  8321. // rms_norm(src0) =
  8322. // scale(
  8323. // src0,
  8324. // div(
  8325. // 1,
  8326. // sqrt(
  8327. // add(
  8328. // scale(
  8329. // sum(
  8330. // sqr(
  8331. // src0)),
  8332. // (1.0/N)),
  8333. // eps))));
  8334. // postorder:
  8335. // ## op args grad
  8336. // 00 param src0 grad[#00]
  8337. // 01 const 1
  8338. // 02 sqr (#00) grad[#02]
  8339. // 03 sum (#02) grad[#03]
  8340. // 04 const 1/N
  8341. // 05 scale (#03, #04) grad[#05]
  8342. // 06 const eps
  8343. // 07 add (#05, #06) grad[#07]
  8344. // 08 sqrt (#07) grad[#08]
  8345. // 09 div (#01,#08) grad[#09]
  8346. // 10 scale (#00,#09) grad[#10]
  8347. //
  8348. // backward pass, given grad[#10]
  8349. // #10: scale
  8350. // grad[#00] += scale(grad[#10],#09)
  8351. // grad[#09] += sum(mul(grad[#10],#00))
  8352. // #09: div
  8353. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8354. // #08: sqrt
  8355. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8356. // #07: add
  8357. // grad[#05] += grad[#07]
  8358. // #05: scale
  8359. // grad[#03] += scale(grad[#05],#04)
  8360. // #03: sum
  8361. // grad[#02] += repeat(grad[#03], #02)
  8362. // #02:
  8363. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8364. //
  8365. // substitute and simplify:
  8366. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8367. // grad[#02] = repeat(grad[#03], #02)
  8368. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8369. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8370. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8371. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8372. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8373. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8374. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8375. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8376. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8377. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8378. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8379. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8380. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8381. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8382. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8383. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8384. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8385. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8386. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8387. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8388. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8389. // a = b*c + d*e
  8390. // a = b*c*f/f + d*e*f/f
  8391. // a = (b*c*f + d*e*f)*(1/f)
  8392. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8393. // a = (b + d*e/c)*c
  8394. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8395. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8396. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8397. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8398. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8399. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8400. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8401. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8402. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8403. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8404. }
  8405. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8406. // post-order:
  8407. // dx := x
  8408. // dx := scale(dx,-mean_xdz/mean_eps)
  8409. // dx := add(dx, dz)
  8410. // dx := scale(dx, rrms)
  8411. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8412. ggml_vec_cpy_f32 (ne00, dx, x);
  8413. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8414. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8415. ggml_vec_acc_f32 (ne00, dx, dz);
  8416. ggml_vec_scale_f32(ne00, dx, rrms);
  8417. }
  8418. }
  8419. }
  8420. }
  8421. static void ggml_compute_forward_rms_norm_back(
  8422. const struct ggml_compute_params * params,
  8423. const struct ggml_tensor * src0,
  8424. const struct ggml_tensor * src1,
  8425. struct ggml_tensor * dst) {
  8426. switch (src0->type) {
  8427. case GGML_TYPE_F32:
  8428. {
  8429. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8430. } break;
  8431. default:
  8432. {
  8433. GGML_ASSERT(false);
  8434. } break;
  8435. }
  8436. }
  8437. // ggml_compute_forward_mul_mat
  8438. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8439. // helper function to determine if it is better to use BLAS or not
  8440. // for large matrices, BLAS is faster
  8441. static bool ggml_compute_forward_mul_mat_use_blas(
  8442. const struct ggml_tensor * src0,
  8443. const struct ggml_tensor * src1,
  8444. struct ggml_tensor * dst) {
  8445. //const int64_t ne00 = src0->ne[0];
  8446. //const int64_t ne01 = src0->ne[1];
  8447. const int64_t ne10 = src1->ne[0];
  8448. const int64_t ne0 = dst->ne[0];
  8449. const int64_t ne1 = dst->ne[1];
  8450. // TODO: find the optimal values for these
  8451. if (ggml_is_contiguous(src0) &&
  8452. ggml_is_contiguous(src1) &&
  8453. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8454. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8455. return true;
  8456. }
  8457. return false;
  8458. }
  8459. #endif
  8460. static void ggml_compute_forward_mul_mat(
  8461. const struct ggml_compute_params * params,
  8462. const struct ggml_tensor * src0,
  8463. const struct ggml_tensor * src1,
  8464. struct ggml_tensor * dst) {
  8465. int64_t t0 = ggml_perf_time_us();
  8466. UNUSED(t0);
  8467. GGML_TENSOR_BINARY_OP_LOCALS;
  8468. const int ith = params->ith;
  8469. const int nth = params->nth;
  8470. const enum ggml_type type = src0->type;
  8471. const bool src1_cont = ggml_is_contiguous(src1);
  8472. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8473. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8474. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8475. GGML_ASSERT(ne0 == ne01);
  8476. GGML_ASSERT(ne1 == ne11);
  8477. GGML_ASSERT(ne2 == ne12);
  8478. GGML_ASSERT(ne3 == ne13);
  8479. // we don't support permuted src0 or src1
  8480. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8481. GGML_ASSERT(nb10 == sizeof(float));
  8482. // dst cannot be transposed or permuted
  8483. GGML_ASSERT(nb0 == sizeof(float));
  8484. GGML_ASSERT(nb0 <= nb1);
  8485. GGML_ASSERT(nb1 <= nb2);
  8486. GGML_ASSERT(nb2 <= nb3);
  8487. // nb01 >= nb00 - src0 is not transposed
  8488. // compute by src0 rows
  8489. #if defined(GGML_USE_CLBLAST)
  8490. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8491. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8492. // ref: https://github.com/ggerganov/ggml/pull/224
  8493. GGML_ASSERT(ne02 == ne12);
  8494. GGML_ASSERT(ne03 == ne13);
  8495. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8496. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8497. }
  8498. return;
  8499. }
  8500. #endif
  8501. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8502. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8503. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8504. // ref: https://github.com/ggerganov/ggml/pull/224
  8505. GGML_ASSERT(ne02 == ne12);
  8506. GGML_ASSERT(ne03 == ne13);
  8507. if (params->ith != 0) {
  8508. return;
  8509. }
  8510. if (params->type == GGML_TASK_INIT) {
  8511. return;
  8512. }
  8513. if (params->type == GGML_TASK_FINALIZE) {
  8514. return;
  8515. }
  8516. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8517. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8518. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8519. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8520. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8521. if (type != GGML_TYPE_F32) {
  8522. float * const wdata = params->wdata;
  8523. ggml_to_float_t const to_float = type_traits[type].to_float;
  8524. size_t id = 0;
  8525. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8526. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8527. id += ne00;
  8528. }
  8529. assert(id*sizeof(float) <= params->wsize);
  8530. x = wdata;
  8531. }
  8532. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8533. ne11, ne01, ne10,
  8534. 1.0f, y, ne10,
  8535. x, ne00,
  8536. 0.0f, d, ne01);
  8537. }
  8538. }
  8539. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8540. return;
  8541. }
  8542. #endif
  8543. if (params->type == GGML_TASK_INIT) {
  8544. if (src1->type != vec_dot_type) {
  8545. char * wdata = params->wdata;
  8546. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8547. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8548. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8549. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8550. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8551. wdata += row_size;
  8552. }
  8553. }
  8554. }
  8555. }
  8556. return;
  8557. }
  8558. if (params->type == GGML_TASK_FINALIZE) {
  8559. return;
  8560. }
  8561. // parallelize by src0 rows
  8562. const int64_t dr = (ne01 + nth - 1)/nth;
  8563. const int64_t ir10 = dr*ith;
  8564. const int64_t ir11 = MIN(ir10 + dr, ne01);
  8565. // src1 rows
  8566. const int64_t nr1 = ne11*ne12*ne13;
  8567. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8568. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8569. for (int64_t ir1 = 0; ir1 < nr1; ++ir1) {
  8570. const int64_t i13 = (ir1/(ne12*ne11));
  8571. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  8572. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  8573. const int64_t ir0 = (ir1/ne11)%(ne02*ne03);
  8574. const int64_t i03 = (ir0/(ne02));
  8575. // Hack for "Falcon multi-query-attention key stutter" / alternative to ggml_repeat2.
  8576. // See https://github.com/ggerganov/llama.cpp/issues/1602#issuecomment-1606087470:
  8577. // GG: this is likely the correct way to broadcast, though need some more thought
  8578. // therefore leaving the comments to remind us for now
  8579. const int64_t i02 = (i12 / (ne12 / ne02));
  8580. // Original from PR/224 (and also essential/correct for non-broadcast matmuls in Falcon)
  8581. // const int64_t i02 = (ir0 - i03*ne02);
  8582. const int64_t i1 = i11;
  8583. const int64_t i2 = i12;
  8584. const int64_t i3 = i13;
  8585. const char * src0_row = (const char *) src0->data + ( 0 + i02*nb02 + i03*nb03 );
  8586. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8587. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8588. // the original src1 data pointer, so we should index using the indices directly
  8589. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8590. const char * src1_col = (const char *) wdata +
  8591. (src1_cont || src1->type != vec_dot_type
  8592. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8593. : (i11*nb11 + i12*nb12 + i13*nb13));
  8594. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8595. for (int64_t ir = ir10; ir < ir11; ++ir) {
  8596. vec_dot(ne00, &dst_col[ir], src0_row + ir*nb01, src1_col);
  8597. }
  8598. }
  8599. //int64_t t1 = ggml_time_us();
  8600. //static int64_t acc = 0;
  8601. //acc += t1 - t0;
  8602. //if (t1 - t0 > 10) {
  8603. // printf("\n");
  8604. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8605. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8606. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8607. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8608. //}
  8609. }
  8610. // ggml_compute_forward_out_prod
  8611. static void ggml_compute_forward_out_prod_f32(
  8612. const struct ggml_compute_params * params,
  8613. const struct ggml_tensor * src0,
  8614. const struct ggml_tensor * src1,
  8615. struct ggml_tensor * dst) {
  8616. int64_t t0 = ggml_perf_time_us();
  8617. UNUSED(t0);
  8618. GGML_TENSOR_BINARY_OP_LOCALS;
  8619. const int ith = params->ith;
  8620. const int nth = params->nth;
  8621. GGML_ASSERT(ne02 == ne12);
  8622. GGML_ASSERT(ne03 == ne13);
  8623. GGML_ASSERT(ne2 == ne12);
  8624. GGML_ASSERT(ne3 == ne13);
  8625. // we don't support permuted src0 or src1
  8626. GGML_ASSERT(nb00 == sizeof(float));
  8627. // dst cannot be transposed or permuted
  8628. GGML_ASSERT(nb0 == sizeof(float));
  8629. // GGML_ASSERT(nb0 <= nb1);
  8630. // GGML_ASSERT(nb1 <= nb2);
  8631. // GGML_ASSERT(nb2 <= nb3);
  8632. GGML_ASSERT(ne0 == ne00);
  8633. GGML_ASSERT(ne1 == ne10);
  8634. GGML_ASSERT(ne2 == ne02);
  8635. GGML_ASSERT(ne3 == ne03);
  8636. // nb01 >= nb00 - src0 is not transposed
  8637. // compute by src0 rows
  8638. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8639. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8640. if (params->type == GGML_TASK_INIT) {
  8641. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8642. return;
  8643. }
  8644. if (params->type == GGML_TASK_FINALIZE) {
  8645. return;
  8646. }
  8647. // parallelize by last three dimensions
  8648. // total rows in dst
  8649. const int64_t nr = ne1*ne2*ne3;
  8650. // rows per thread
  8651. const int64_t dr = (nr + nth - 1)/nth;
  8652. // row range for this thread
  8653. const int64_t ir0 = dr*ith;
  8654. const int64_t ir1 = MIN(ir0 + dr, nr);
  8655. // dst[:,:,:,:] = 0
  8656. // for i2,i3:
  8657. // for i1:
  8658. // for i01:
  8659. // for i0:
  8660. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8661. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8662. // dst indices
  8663. const int64_t i3 = ir/(ne2*ne1);
  8664. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8665. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8666. const int64_t i02 = i2;
  8667. const int64_t i03 = i3;
  8668. //const int64_t i10 = i1;
  8669. const int64_t i12 = i2;
  8670. const int64_t i13 = i3;
  8671. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8672. const int64_t i11 = i01;
  8673. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8674. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8675. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8676. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8677. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8678. // d[i0] += s0[i0] * s1[i1];
  8679. // }
  8680. }
  8681. }
  8682. //int64_t t1 = ggml_perf_time_us();
  8683. //static int64_t acc = 0;
  8684. //acc += t1 - t0;
  8685. //if (t1 - t0 > 10) {
  8686. // printf("\n");
  8687. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8688. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8689. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8690. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8691. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8692. //}
  8693. }
  8694. static void ggml_compute_forward_out_prod(
  8695. const struct ggml_compute_params * params,
  8696. const struct ggml_tensor * src0,
  8697. const struct ggml_tensor * src1,
  8698. struct ggml_tensor * dst) {
  8699. switch (src0->type) {
  8700. case GGML_TYPE_Q4_0:
  8701. case GGML_TYPE_Q4_1:
  8702. case GGML_TYPE_Q5_0:
  8703. case GGML_TYPE_Q5_1:
  8704. case GGML_TYPE_Q8_0:
  8705. case GGML_TYPE_Q8_1:
  8706. {
  8707. GGML_ASSERT(false); // todo
  8708. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8709. } break;
  8710. case GGML_TYPE_F16:
  8711. {
  8712. GGML_ASSERT(false); // todo
  8713. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8714. } break;
  8715. case GGML_TYPE_F32:
  8716. {
  8717. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8718. } break;
  8719. default:
  8720. {
  8721. GGML_ASSERT(false);
  8722. } break;
  8723. }
  8724. }
  8725. // ggml_compute_forward_scale
  8726. static void ggml_compute_forward_scale_f32(
  8727. const struct ggml_compute_params * params,
  8728. const struct ggml_tensor * src0,
  8729. const struct ggml_tensor * src1,
  8730. struct ggml_tensor * dst) {
  8731. GGML_ASSERT(ggml_is_contiguous(src0));
  8732. GGML_ASSERT(ggml_is_contiguous(dst));
  8733. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8734. GGML_ASSERT(ggml_is_scalar(src1));
  8735. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8736. return;
  8737. }
  8738. // scale factor
  8739. const float v = *(float *) src1->data;
  8740. const int ith = params->ith;
  8741. const int nth = params->nth;
  8742. const int nc = src0->ne[0];
  8743. const int nr = ggml_nrows(src0);
  8744. // rows per thread
  8745. const int dr = (nr + nth - 1)/nth;
  8746. // row range for this thread
  8747. const int ir0 = dr*ith;
  8748. const int ir1 = MIN(ir0 + dr, nr);
  8749. const size_t nb01 = src0->nb[1];
  8750. const size_t nb1 = dst->nb[1];
  8751. for (int i1 = ir0; i1 < ir1; i1++) {
  8752. if (dst->data != src0->data) {
  8753. // src0 is same shape as dst => same indices
  8754. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8755. }
  8756. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8757. }
  8758. }
  8759. static void ggml_compute_forward_scale(
  8760. const struct ggml_compute_params * params,
  8761. const struct ggml_tensor * src0,
  8762. const struct ggml_tensor * src1,
  8763. struct ggml_tensor * dst) {
  8764. switch (src0->type) {
  8765. case GGML_TYPE_F32:
  8766. {
  8767. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8768. } break;
  8769. default:
  8770. {
  8771. GGML_ASSERT(false);
  8772. } break;
  8773. }
  8774. }
  8775. // ggml_compute_forward_set
  8776. static void ggml_compute_forward_set_f32(
  8777. const struct ggml_compute_params * params,
  8778. const struct ggml_tensor * src0,
  8779. const struct ggml_tensor * src1,
  8780. struct ggml_tensor * dst) {
  8781. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8782. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8783. // view src0 and dst with these strides and data offset inbytes during set
  8784. // nb0 is implicitely element_size because src0 and dst are contiguous
  8785. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8786. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8787. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8788. size_t offset = ((int32_t *) dst->op_params)[3];
  8789. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8790. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8791. // memcpy needs to be synchronized across threads to avoid race conditions.
  8792. // => do it in INIT phase
  8793. memcpy(
  8794. ((char *) dst->data),
  8795. ((char *) src0->data),
  8796. ggml_nbytes(dst));
  8797. }
  8798. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8799. return;
  8800. }
  8801. const int ith = params->ith;
  8802. const int nth = params->nth;
  8803. const int nr = ggml_nrows(src1);
  8804. const int nc = src1->ne[0];
  8805. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8806. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8807. // src0 and dst as viewed during set
  8808. const size_t nb0 = ggml_element_size(src0);
  8809. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8810. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8811. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8812. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8813. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8814. GGML_ASSERT(nb10 == sizeof(float));
  8815. // rows per thread
  8816. const int dr = (nr + nth - 1)/nth;
  8817. // row range for this thread
  8818. const int ir0 = dr*ith;
  8819. const int ir1 = MIN(ir0 + dr, nr);
  8820. for (int ir = ir0; ir < ir1; ++ir) {
  8821. // src0 and dst are viewed with shape of src1 and offset
  8822. // => same indices
  8823. const int i3 = ir/(ne12*ne11);
  8824. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8825. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8826. ggml_vec_cpy_f32(nc,
  8827. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8828. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8829. }
  8830. }
  8831. static void ggml_compute_forward_set(
  8832. const struct ggml_compute_params * params,
  8833. const struct ggml_tensor * src0,
  8834. const struct ggml_tensor * src1,
  8835. struct ggml_tensor * dst) {
  8836. switch (src0->type) {
  8837. case GGML_TYPE_F32:
  8838. {
  8839. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8840. } break;
  8841. case GGML_TYPE_F16:
  8842. case GGML_TYPE_Q4_0:
  8843. case GGML_TYPE_Q4_1:
  8844. case GGML_TYPE_Q5_0:
  8845. case GGML_TYPE_Q5_1:
  8846. case GGML_TYPE_Q8_0:
  8847. case GGML_TYPE_Q8_1:
  8848. case GGML_TYPE_Q2_K:
  8849. case GGML_TYPE_Q3_K:
  8850. case GGML_TYPE_Q4_K:
  8851. case GGML_TYPE_Q5_K:
  8852. case GGML_TYPE_Q6_K:
  8853. default:
  8854. {
  8855. GGML_ASSERT(false);
  8856. } break;
  8857. }
  8858. }
  8859. // ggml_compute_forward_cpy
  8860. static void ggml_compute_forward_cpy(
  8861. const struct ggml_compute_params * params,
  8862. const struct ggml_tensor * src0,
  8863. struct ggml_tensor * dst) {
  8864. ggml_compute_forward_dup(params, src0, dst);
  8865. }
  8866. // ggml_compute_forward_cont
  8867. static void ggml_compute_forward_cont(
  8868. const struct ggml_compute_params * params,
  8869. const struct ggml_tensor * src0,
  8870. struct ggml_tensor * dst) {
  8871. ggml_compute_forward_dup(params, src0, dst);
  8872. }
  8873. // ggml_compute_forward_reshape
  8874. static void ggml_compute_forward_reshape(
  8875. const struct ggml_compute_params * params,
  8876. const struct ggml_tensor * src0,
  8877. struct ggml_tensor * dst) {
  8878. // NOP
  8879. UNUSED(params);
  8880. UNUSED(src0);
  8881. UNUSED(dst);
  8882. }
  8883. // ggml_compute_forward_view
  8884. static void ggml_compute_forward_view(
  8885. const struct ggml_compute_params * params,
  8886. const struct ggml_tensor * src0) {
  8887. // NOP
  8888. UNUSED(params);
  8889. UNUSED(src0);
  8890. }
  8891. // ggml_compute_forward_permute
  8892. static void ggml_compute_forward_permute(
  8893. const struct ggml_compute_params * params,
  8894. const struct ggml_tensor * src0) {
  8895. // NOP
  8896. UNUSED(params);
  8897. UNUSED(src0);
  8898. }
  8899. // ggml_compute_forward_transpose
  8900. static void ggml_compute_forward_transpose(
  8901. const struct ggml_compute_params * params,
  8902. const struct ggml_tensor * src0) {
  8903. // NOP
  8904. UNUSED(params);
  8905. UNUSED(src0);
  8906. }
  8907. // ggml_compute_forward_get_rows
  8908. static void ggml_compute_forward_get_rows_q(
  8909. const struct ggml_compute_params * params,
  8910. const struct ggml_tensor * src0,
  8911. const struct ggml_tensor * src1,
  8912. struct ggml_tensor * dst) {
  8913. assert(params->ith == 0);
  8914. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8915. return;
  8916. }
  8917. const int nc = src0->ne[0];
  8918. const int nr = ggml_nelements(src1);
  8919. const enum ggml_type type = src0->type;
  8920. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8921. assert( dst->ne[0] == nc);
  8922. assert( dst->ne[1] == nr);
  8923. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8924. for (int i = 0; i < nr; ++i) {
  8925. const int r = ((int32_t *) src1->data)[i];
  8926. dequantize_row_q(
  8927. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8928. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8929. }
  8930. }
  8931. static void ggml_compute_forward_get_rows_f16(
  8932. const struct ggml_compute_params * params,
  8933. const struct ggml_tensor * src0,
  8934. const struct ggml_tensor * src1,
  8935. struct ggml_tensor * dst) {
  8936. assert(params->ith == 0);
  8937. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8938. return;
  8939. }
  8940. const int nc = src0->ne[0];
  8941. const int nr = ggml_nelements(src1);
  8942. assert( dst->ne[0] == nc);
  8943. assert( dst->ne[1] == nr);
  8944. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8945. for (int i = 0; i < nr; ++i) {
  8946. const int r = ((int32_t *) src1->data)[i];
  8947. for (int j = 0; j < nc; ++j) {
  8948. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8949. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8950. }
  8951. }
  8952. }
  8953. static void ggml_compute_forward_get_rows_f32(
  8954. const struct ggml_compute_params * params,
  8955. const struct ggml_tensor * src0,
  8956. const struct ggml_tensor * src1,
  8957. struct ggml_tensor * dst) {
  8958. assert(params->ith == 0);
  8959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8960. return;
  8961. }
  8962. const int nc = src0->ne[0];
  8963. const int nr = ggml_nelements(src1);
  8964. assert( dst->ne[0] == nc);
  8965. assert( dst->ne[1] == nr);
  8966. assert(src0->nb[0] == sizeof(float));
  8967. for (int i = 0; i < nr; ++i) {
  8968. const int r = ((int32_t *) src1->data)[i];
  8969. ggml_vec_cpy_f32(nc,
  8970. (float *) ((char *) dst->data + i*dst->nb[1]),
  8971. (float *) ((char *) src0->data + r*src0->nb[1]));
  8972. }
  8973. }
  8974. static void ggml_compute_forward_get_rows(
  8975. const struct ggml_compute_params * params,
  8976. const struct ggml_tensor * src0,
  8977. const struct ggml_tensor * src1,
  8978. struct ggml_tensor * dst) {
  8979. switch (src0->type) {
  8980. case GGML_TYPE_Q4_0:
  8981. case GGML_TYPE_Q4_1:
  8982. case GGML_TYPE_Q5_0:
  8983. case GGML_TYPE_Q5_1:
  8984. case GGML_TYPE_Q8_0:
  8985. case GGML_TYPE_Q8_1:
  8986. case GGML_TYPE_Q2_K:
  8987. case GGML_TYPE_Q3_K:
  8988. case GGML_TYPE_Q4_K:
  8989. case GGML_TYPE_Q5_K:
  8990. case GGML_TYPE_Q6_K:
  8991. {
  8992. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8993. } break;
  8994. case GGML_TYPE_F16:
  8995. {
  8996. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8997. } break;
  8998. case GGML_TYPE_F32:
  8999. {
  9000. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9001. } break;
  9002. default:
  9003. {
  9004. GGML_ASSERT(false);
  9005. } break;
  9006. }
  9007. //static bool first = true;
  9008. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9009. //if (first) {
  9010. // first = false;
  9011. //} else {
  9012. // for (int k = 0; k < dst->ne[1]; ++k) {
  9013. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9014. // for (int i = 0; i < 16; ++i) {
  9015. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9016. // }
  9017. // printf("\n");
  9018. // }
  9019. // printf("\n");
  9020. // }
  9021. // printf("\n");
  9022. // exit(0);
  9023. //}
  9024. }
  9025. // ggml_compute_forward_get_rows_back
  9026. static void ggml_compute_forward_get_rows_back_f32_f16(
  9027. const struct ggml_compute_params * params,
  9028. const struct ggml_tensor * src0,
  9029. const struct ggml_tensor * src1,
  9030. const struct ggml_tensor * opt0,
  9031. struct ggml_tensor * dst) {
  9032. GGML_ASSERT(params->ith == 0);
  9033. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9034. GGML_ASSERT(ggml_is_contiguous(opt0));
  9035. GGML_ASSERT(ggml_is_contiguous(dst));
  9036. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9037. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9038. return;
  9039. }
  9040. const int nc = src0->ne[0];
  9041. const int nr = ggml_nelements(src1);
  9042. GGML_ASSERT( dst->ne[0] == nc);
  9043. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9044. for (int i = 0; i < nr; ++i) {
  9045. const int r = ((int32_t *) src1->data)[i];
  9046. for (int j = 0; j < nc; ++j) {
  9047. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9048. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9049. }
  9050. }
  9051. }
  9052. static void ggml_compute_forward_get_rows_back_f32(
  9053. const struct ggml_compute_params * params,
  9054. const struct ggml_tensor * src0,
  9055. const struct ggml_tensor * src1,
  9056. const struct ggml_tensor * opt0,
  9057. struct ggml_tensor * dst) {
  9058. GGML_ASSERT(params->ith == 0);
  9059. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9060. GGML_ASSERT(ggml_is_contiguous(opt0));
  9061. GGML_ASSERT(ggml_is_contiguous(dst));
  9062. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9063. if (params->type == GGML_TASK_INIT) {
  9064. memset(dst->data, 0, ggml_nbytes(dst));
  9065. }
  9066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9067. return;
  9068. }
  9069. const int nc = src0->ne[0];
  9070. const int nr = ggml_nelements(src1);
  9071. GGML_ASSERT( dst->ne[0] == nc);
  9072. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9073. for (int i = 0; i < nr; ++i) {
  9074. const int r = ((int32_t *) src1->data)[i];
  9075. ggml_vec_add_f32(nc,
  9076. (float *) ((char *) dst->data + r*dst->nb[1]),
  9077. (float *) ((char *) dst->data + r*dst->nb[1]),
  9078. (float *) ((char *) src0->data + i*src0->nb[1]));
  9079. }
  9080. }
  9081. static void ggml_compute_forward_get_rows_back(
  9082. const struct ggml_compute_params * params,
  9083. const struct ggml_tensor * src0,
  9084. const struct ggml_tensor * src1,
  9085. const struct ggml_tensor * opt0,
  9086. struct ggml_tensor * dst) {
  9087. switch (src0->type) {
  9088. case GGML_TYPE_F16:
  9089. {
  9090. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9091. } break;
  9092. case GGML_TYPE_F32:
  9093. {
  9094. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9095. } break;
  9096. default:
  9097. {
  9098. GGML_ASSERT(false);
  9099. } break;
  9100. }
  9101. //static bool first = true;
  9102. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9103. //if (first) {
  9104. // first = false;
  9105. //} else {
  9106. // for (int k = 0; k < dst->ne[1]; ++k) {
  9107. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9108. // for (int i = 0; i < 16; ++i) {
  9109. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9110. // }
  9111. // printf("\n");
  9112. // }
  9113. // printf("\n");
  9114. // }
  9115. // printf("\n");
  9116. // exit(0);
  9117. //}
  9118. }
  9119. // ggml_compute_forward_diag
  9120. static void ggml_compute_forward_diag_f32(
  9121. const struct ggml_compute_params * params,
  9122. const struct ggml_tensor * src0,
  9123. struct ggml_tensor * dst) {
  9124. GGML_ASSERT(params->ith == 0);
  9125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9126. return;
  9127. }
  9128. // TODO: handle transposed/permuted matrices
  9129. GGML_TENSOR_UNARY_OP_LOCALS;
  9130. GGML_ASSERT(ne00 == ne0);
  9131. GGML_ASSERT(ne00 == ne1);
  9132. GGML_ASSERT(ne01 == 1);
  9133. GGML_ASSERT(ne02 == ne2);
  9134. GGML_ASSERT(ne03 == ne3);
  9135. GGML_ASSERT(nb00 == sizeof(float));
  9136. GGML_ASSERT(nb0 == sizeof(float));
  9137. for (int i3 = 0; i3 < ne3; i3++) {
  9138. for (int i2 = 0; i2 < ne2; i2++) {
  9139. for (int i1 = 0; i1 < ne1; i1++) {
  9140. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9141. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9142. for (int i0 = 0; i0 < i1; i0++) {
  9143. d[i0] = 0;
  9144. }
  9145. d[i1] = s[i1];
  9146. for (int i0 = i1+1; i0 < ne0; i0++) {
  9147. d[i0] = 0;
  9148. }
  9149. }
  9150. }
  9151. }
  9152. }
  9153. static void ggml_compute_forward_diag(
  9154. const struct ggml_compute_params * params,
  9155. const struct ggml_tensor * src0,
  9156. struct ggml_tensor * dst) {
  9157. switch (src0->type) {
  9158. case GGML_TYPE_F32:
  9159. {
  9160. ggml_compute_forward_diag_f32(params, src0, dst);
  9161. } break;
  9162. default:
  9163. {
  9164. GGML_ASSERT(false);
  9165. } break;
  9166. }
  9167. }
  9168. // ggml_compute_forward_diag_mask_inf
  9169. static void ggml_compute_forward_diag_mask_f32(
  9170. const struct ggml_compute_params * params,
  9171. const struct ggml_tensor * src0,
  9172. struct ggml_tensor * dst,
  9173. const float value) {
  9174. const int ith = params->ith;
  9175. const int nth = params->nth;
  9176. const int n_past = ((int32_t *) dst->op_params)[0];
  9177. const bool inplace = (bool)((int32_t *) dst->op_params)[1];
  9178. GGML_ASSERT(n_past >= 0);
  9179. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9180. // memcpy needs to be synchronized across threads to avoid race conditions.
  9181. // => do it in INIT phase
  9182. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9183. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9184. memcpy(
  9185. ((char *) dst->data),
  9186. ((char *) src0->data),
  9187. ggml_nbytes(dst));
  9188. }
  9189. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9190. return;
  9191. }
  9192. // TODO: handle transposed/permuted matrices
  9193. const int n = ggml_nrows(src0);
  9194. const int nc = src0->ne[0];
  9195. const int nr = src0->ne[1];
  9196. const int nz = n/nr;
  9197. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9198. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9199. for (int k = 0; k < nz; k++) {
  9200. for (int j = ith; j < nr; j += nth) {
  9201. for (int i = n_past; i < nc; i++) {
  9202. if (i > n_past + j) {
  9203. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9204. }
  9205. }
  9206. }
  9207. }
  9208. }
  9209. static void ggml_compute_forward_diag_mask_inf(
  9210. const struct ggml_compute_params * params,
  9211. const struct ggml_tensor * src0,
  9212. struct ggml_tensor * dst) {
  9213. switch (src0->type) {
  9214. case GGML_TYPE_F32:
  9215. {
  9216. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9217. } break;
  9218. default:
  9219. {
  9220. GGML_ASSERT(false);
  9221. } break;
  9222. }
  9223. }
  9224. static void ggml_compute_forward_diag_mask_zero(
  9225. const struct ggml_compute_params * params,
  9226. const struct ggml_tensor * src0,
  9227. struct ggml_tensor * dst) {
  9228. switch (src0->type) {
  9229. case GGML_TYPE_F32:
  9230. {
  9231. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9232. } break;
  9233. default:
  9234. {
  9235. GGML_ASSERT(false);
  9236. } break;
  9237. }
  9238. }
  9239. // ggml_compute_forward_soft_max
  9240. static void ggml_compute_forward_soft_max_f32(
  9241. const struct ggml_compute_params * params,
  9242. const struct ggml_tensor * src0,
  9243. struct ggml_tensor * dst) {
  9244. GGML_ASSERT(ggml_is_contiguous(src0));
  9245. GGML_ASSERT(ggml_is_contiguous(dst));
  9246. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9247. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9248. return;
  9249. }
  9250. // TODO: handle transposed/permuted matrices
  9251. const int ith = params->ith;
  9252. const int nth = params->nth;
  9253. const int nc = src0->ne[0];
  9254. const int nr = ggml_nrows(src0);
  9255. // rows per thread
  9256. const int dr = (nr + nth - 1)/nth;
  9257. // row range for this thread
  9258. const int ir0 = dr*ith;
  9259. const int ir1 = MIN(ir0 + dr, nr);
  9260. for (int i1 = ir0; i1 < ir1; i1++) {
  9261. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9262. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9263. #ifndef NDEBUG
  9264. for (int i = 0; i < nc; ++i) {
  9265. //printf("p[%d] = %f\n", i, p[i]);
  9266. assert(!isnan(sp[i]));
  9267. }
  9268. #endif
  9269. float max = -INFINITY;
  9270. ggml_vec_max_f32(nc, &max, sp);
  9271. ggml_float sum = 0.0;
  9272. uint16_t scvt;
  9273. for (int i = 0; i < nc; i++) {
  9274. if (sp[i] == -INFINITY) {
  9275. dp[i] = 0.0f;
  9276. } else {
  9277. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9278. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9279. memcpy(&scvt, &s, sizeof(scvt));
  9280. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9281. sum += (ggml_float)val;
  9282. dp[i] = val;
  9283. }
  9284. }
  9285. assert(sum > 0.0);
  9286. sum = 1.0/sum;
  9287. ggml_vec_scale_f32(nc, dp, sum);
  9288. #ifndef NDEBUG
  9289. for (int i = 0; i < nc; ++i) {
  9290. assert(!isnan(dp[i]));
  9291. assert(!isinf(dp[i]));
  9292. }
  9293. #endif
  9294. }
  9295. }
  9296. static void ggml_compute_forward_soft_max(
  9297. const struct ggml_compute_params * params,
  9298. const struct ggml_tensor * src0,
  9299. struct ggml_tensor * dst) {
  9300. switch (src0->type) {
  9301. case GGML_TYPE_F32:
  9302. {
  9303. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9304. } break;
  9305. default:
  9306. {
  9307. GGML_ASSERT(false);
  9308. } break;
  9309. }
  9310. }
  9311. // ggml_compute_forward_soft_max_back
  9312. static void ggml_compute_forward_soft_max_back_f32(
  9313. const struct ggml_compute_params * params,
  9314. const struct ggml_tensor * src0,
  9315. const struct ggml_tensor * src1,
  9316. struct ggml_tensor * dst) {
  9317. GGML_ASSERT(ggml_is_contiguous(src0));
  9318. GGML_ASSERT(ggml_is_contiguous(src1));
  9319. GGML_ASSERT(ggml_is_contiguous(dst));
  9320. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9321. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9323. return;
  9324. }
  9325. // TODO: handle transposed/permuted matrices
  9326. const int ith = params->ith;
  9327. const int nth = params->nth;
  9328. const int nc = src0->ne[0];
  9329. const int nr = ggml_nrows(src0);
  9330. // rows per thread
  9331. const int dr = (nr + nth - 1)/nth;
  9332. // row range for this thread
  9333. const int ir0 = dr*ith;
  9334. const int ir1 = MIN(ir0 + dr, nr);
  9335. for (int i1 = ir0; i1 < ir1; i1++) {
  9336. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9337. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9338. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9339. #ifndef NDEBUG
  9340. for (int i = 0; i < nc; ++i) {
  9341. //printf("p[%d] = %f\n", i, p[i]);
  9342. assert(!isnan(dy[i]));
  9343. assert(!isnan(y[i]));
  9344. }
  9345. #endif
  9346. // Jii = yi - yi*yi
  9347. // Jij = -yi*yj
  9348. // J = diag(y)-y.T*y
  9349. // dx = J * dy
  9350. // dxk = sum_i(Jki * dyi)
  9351. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9352. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9353. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9354. // dxk = -yk * dot(y, dy) + yk*dyk
  9355. // dxk = yk * (- dot(y, dy) + dyk)
  9356. // dxk = yk * (dyk - dot(y, dy))
  9357. //
  9358. // post-order:
  9359. // dot_y_dy := dot(y, dy)
  9360. // dx := dy
  9361. // dx := dx - dot_y_dy
  9362. // dx := dx * y
  9363. // linear runtime, no additional memory
  9364. float dot_y_dy = 0;
  9365. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9366. ggml_vec_cpy_f32 (nc, dx, dy);
  9367. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9368. ggml_vec_mul_f32 (nc, dx, dx, y);
  9369. #ifndef NDEBUG
  9370. for (int i = 0; i < nc; ++i) {
  9371. assert(!isnan(dx[i]));
  9372. assert(!isinf(dx[i]));
  9373. }
  9374. #endif
  9375. }
  9376. }
  9377. static void ggml_compute_forward_soft_max_back(
  9378. const struct ggml_compute_params * params,
  9379. const struct ggml_tensor * src0,
  9380. const struct ggml_tensor * src1,
  9381. struct ggml_tensor * dst) {
  9382. switch (src0->type) {
  9383. case GGML_TYPE_F32:
  9384. {
  9385. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9386. } break;
  9387. default:
  9388. {
  9389. GGML_ASSERT(false);
  9390. } break;
  9391. }
  9392. }
  9393. // ggml_compute_forward_alibi
  9394. static void ggml_compute_forward_alibi_f32(
  9395. const struct ggml_compute_params * params,
  9396. const struct ggml_tensor * src0,
  9397. struct ggml_tensor * dst) {
  9398. assert(params->ith == 0);
  9399. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9400. return;
  9401. }
  9402. const int n_past = ((int32_t *) dst->op_params)[0];
  9403. const int n_head = ((int32_t *) dst->op_params)[1];
  9404. float max_bias;
  9405. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9406. assert(n_past >= 0);
  9407. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9408. const int ne1 = src0->ne[1]; // seq_len_without_past
  9409. const int ne2 = src0->ne[2]; // n_head -> this is k
  9410. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9411. const int n = ggml_nrows(src0);
  9412. const int ne2_ne3 = n/ne1; // ne2*ne3
  9413. const int nb0 = src0->nb[0];
  9414. const int nb1 = src0->nb[1];
  9415. const int nb2 = src0->nb[2];
  9416. //const int nb3 = src0->nb[3];
  9417. GGML_ASSERT(nb0 == sizeof(float));
  9418. GGML_ASSERT(ne1 + n_past == ne0);
  9419. GGML_ASSERT(n_head == ne2);
  9420. // add alibi to src0 (KQ_scaled)
  9421. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9422. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9423. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9424. for (int i = 0; i < ne0; i++) {
  9425. for (int j = 0; j < ne1; j++) {
  9426. for (int k = 0; k < ne2_ne3; k++) {
  9427. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9428. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9429. // TODO: k*nb2 or k*nb3
  9430. float m_k;
  9431. if (k < n_heads_log2_floor) {
  9432. m_k = powf(m0, k + 1);
  9433. } else {
  9434. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9435. }
  9436. pdst[0] = i * m_k + src[0];
  9437. }
  9438. }
  9439. }
  9440. }
  9441. static void ggml_compute_forward_alibi_f16(
  9442. const struct ggml_compute_params * params,
  9443. const struct ggml_tensor * src0,
  9444. struct ggml_tensor * dst) {
  9445. assert(params->ith == 0);
  9446. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9447. return;
  9448. }
  9449. const int n_past = ((int32_t *) dst->op_params)[0];
  9450. const int n_head = ((int32_t *) dst->op_params)[1];
  9451. float max_bias;
  9452. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9453. assert(n_past >= 0);
  9454. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9455. const int ne1 = src0->ne[1]; // seq_len_without_past
  9456. const int ne2 = src0->ne[2]; // n_head -> this is k
  9457. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9458. const int n = ggml_nrows(src0);
  9459. const int ne2_ne3 = n/ne1; // ne2*ne3
  9460. const int nb0 = src0->nb[0];
  9461. const int nb1 = src0->nb[1];
  9462. const int nb2 = src0->nb[2];
  9463. //const int nb3 = src0->nb[3];
  9464. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9465. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9466. GGML_ASSERT(n_head == ne2);
  9467. // add alibi to src0 (KQ_scaled)
  9468. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9469. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9470. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9471. for (int i = 0; i < ne0; i++) {
  9472. for (int j = 0; j < ne1; j++) {
  9473. for (int k = 0; k < ne2_ne3; k++) {
  9474. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9475. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9476. // TODO: k*nb2 or k*nb3
  9477. float m_k;
  9478. if (k < n_heads_log2_floor) {
  9479. m_k = powf(m0, k + 1);
  9480. } else {
  9481. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9482. }
  9483. // we return F32
  9484. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9485. }
  9486. }
  9487. }
  9488. }
  9489. static void ggml_compute_forward_alibi(
  9490. const struct ggml_compute_params * params,
  9491. const struct ggml_tensor * src0,
  9492. struct ggml_tensor * dst) {
  9493. switch (src0->type) {
  9494. case GGML_TYPE_F16:
  9495. {
  9496. ggml_compute_forward_alibi_f16(params, src0, dst);
  9497. } break;
  9498. case GGML_TYPE_F32:
  9499. {
  9500. ggml_compute_forward_alibi_f32(params, src0, dst);
  9501. } break;
  9502. case GGML_TYPE_Q4_0:
  9503. case GGML_TYPE_Q4_1:
  9504. case GGML_TYPE_Q5_0:
  9505. case GGML_TYPE_Q5_1:
  9506. case GGML_TYPE_Q8_0:
  9507. case GGML_TYPE_Q8_1:
  9508. case GGML_TYPE_Q2_K:
  9509. case GGML_TYPE_Q3_K:
  9510. case GGML_TYPE_Q4_K:
  9511. case GGML_TYPE_Q5_K:
  9512. case GGML_TYPE_Q6_K:
  9513. case GGML_TYPE_Q8_K:
  9514. case GGML_TYPE_I8:
  9515. case GGML_TYPE_I16:
  9516. case GGML_TYPE_I32:
  9517. case GGML_TYPE_COUNT:
  9518. {
  9519. GGML_ASSERT(false);
  9520. } break;
  9521. }
  9522. }
  9523. // ggml_compute_forward_clamp
  9524. static void ggml_compute_forward_clamp_f32(
  9525. const struct ggml_compute_params * params,
  9526. const struct ggml_tensor * src0,
  9527. struct ggml_tensor * dst) {
  9528. assert(params->ith == 0);
  9529. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9530. return;
  9531. }
  9532. float min;
  9533. float max;
  9534. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9535. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9536. const int ith = params->ith;
  9537. const int nth = params->nth;
  9538. const int n = ggml_nrows(src0);
  9539. const int nc = src0->ne[0];
  9540. const size_t nb00 = src0->nb[0];
  9541. const size_t nb01 = src0->nb[1];
  9542. const size_t nb0 = dst->nb[0];
  9543. const size_t nb1 = dst->nb[1];
  9544. GGML_ASSERT( nb0 == sizeof(float));
  9545. GGML_ASSERT(nb00 == sizeof(float));
  9546. for (int j = ith; j < n; j += nth) {
  9547. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9548. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9549. for (int i = 0; i < nc; i++) {
  9550. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9551. }
  9552. }
  9553. }
  9554. static void ggml_compute_forward_clamp(
  9555. const struct ggml_compute_params * params,
  9556. const struct ggml_tensor * src0,
  9557. struct ggml_tensor * dst) {
  9558. switch (src0->type) {
  9559. case GGML_TYPE_F32:
  9560. {
  9561. ggml_compute_forward_clamp_f32(params, src0, dst);
  9562. } break;
  9563. case GGML_TYPE_F16:
  9564. case GGML_TYPE_Q4_0:
  9565. case GGML_TYPE_Q4_1:
  9566. case GGML_TYPE_Q5_0:
  9567. case GGML_TYPE_Q5_1:
  9568. case GGML_TYPE_Q8_0:
  9569. case GGML_TYPE_Q8_1:
  9570. case GGML_TYPE_Q2_K:
  9571. case GGML_TYPE_Q3_K:
  9572. case GGML_TYPE_Q4_K:
  9573. case GGML_TYPE_Q5_K:
  9574. case GGML_TYPE_Q6_K:
  9575. case GGML_TYPE_Q8_K:
  9576. case GGML_TYPE_I8:
  9577. case GGML_TYPE_I16:
  9578. case GGML_TYPE_I32:
  9579. case GGML_TYPE_COUNT:
  9580. {
  9581. GGML_ASSERT(false);
  9582. } break;
  9583. }
  9584. }
  9585. // ggml_compute_forward_rope
  9586. static void ggml_compute_forward_rope_f32(
  9587. const struct ggml_compute_params * params,
  9588. const struct ggml_tensor * src0,
  9589. struct ggml_tensor * dst) {
  9590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9591. return;
  9592. }
  9593. float freq_base;
  9594. float freq_scale;
  9595. const int n_past = ((int32_t *) dst->op_params)[0];
  9596. const int n_dims = ((int32_t *) dst->op_params)[1];
  9597. const int mode = ((int32_t *) dst->op_params)[2];
  9598. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9599. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9600. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9601. assert(n_past >= 0);
  9602. GGML_TENSOR_UNARY_OP_LOCALS;
  9603. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9604. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9605. GGML_ASSERT(nb00 == sizeof(float));
  9606. const int ith = params->ith;
  9607. const int nth = params->nth;
  9608. const int nr = ggml_nrows(dst);
  9609. GGML_ASSERT(n_dims <= ne0);
  9610. GGML_ASSERT(n_dims % 2 == 0);
  9611. // rows per thread
  9612. const int dr = (nr + nth - 1)/nth;
  9613. // row range for this thread
  9614. const int ir0 = dr*ith;
  9615. const int ir1 = MIN(ir0 + dr, nr);
  9616. // row index used to determine which thread to use
  9617. int ir = 0;
  9618. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9619. const bool is_neox = mode & 2;
  9620. const bool is_glm = mode & 4;
  9621. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9622. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9623. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9624. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9625. if (ir++ < ir0) continue;
  9626. if (ir > ir1) break;
  9627. float theta = freq_scale * (float)p;
  9628. if (is_glm) {
  9629. theta = MIN(p, n_ctx - 2);
  9630. float block_theta = MAX(p - (n_ctx - 2), 0);
  9631. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9632. const float cos_theta = cosf(theta);
  9633. const float sin_theta = sinf(theta);
  9634. const float cos_block_theta = cosf(block_theta);
  9635. const float sin_block_theta = sinf(block_theta);
  9636. theta *= theta_scale;
  9637. block_theta *= theta_scale;
  9638. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9639. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9640. const float x0 = src[0];
  9641. const float x1 = src[n_dims/2];
  9642. const float x2 = src[n_dims];
  9643. const float x3 = src[n_dims/2*3];
  9644. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9645. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9646. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9647. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9648. }
  9649. } else if (!is_neox) {
  9650. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9651. const float cos_theta = cosf(theta);
  9652. const float sin_theta = sinf(theta);
  9653. theta *= theta_scale;
  9654. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9655. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9656. const float x0 = src[0];
  9657. const float x1 = src[1];
  9658. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9659. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9660. }
  9661. } else {
  9662. // TODO: this is probably wrong, but I can't figure it out ..
  9663. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9664. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9665. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9666. const float cos_theta = cosf(theta);
  9667. const float sin_theta = sinf(theta);
  9668. theta *= theta_scale;
  9669. const int64_t i0 = ib*n_dims + ic/2;
  9670. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9671. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9672. const float x0 = src[0];
  9673. const float x1 = src[n_dims/2];
  9674. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9675. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9676. }
  9677. }
  9678. }
  9679. }
  9680. }
  9681. }
  9682. }
  9683. static void ggml_compute_forward_rope_f16(
  9684. const struct ggml_compute_params * params,
  9685. const struct ggml_tensor * src0,
  9686. struct ggml_tensor * dst) {
  9687. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9688. return;
  9689. }
  9690. float freq_base;
  9691. float freq_scale;
  9692. const int n_past = ((int32_t *) dst->op_params)[0];
  9693. const int n_dims = ((int32_t *) dst->op_params)[1];
  9694. const int mode = ((int32_t *) dst->op_params)[2];
  9695. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9696. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9697. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9698. assert(n_past >= 0);
  9699. GGML_TENSOR_UNARY_OP_LOCALS;
  9700. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9701. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9702. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9703. const int ith = params->ith;
  9704. const int nth = params->nth;
  9705. const int nr = ggml_nrows(dst);
  9706. GGML_ASSERT(n_dims <= ne0);
  9707. GGML_ASSERT(n_dims % 2 == 0);
  9708. // rows per thread
  9709. const int dr = (nr + nth - 1)/nth;
  9710. // row range for this thread
  9711. const int ir0 = dr*ith;
  9712. const int ir1 = MIN(ir0 + dr, nr);
  9713. // row index used to determine which thread to use
  9714. int ir = 0;
  9715. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9716. const bool is_neox = mode & 2;
  9717. const bool is_glm = mode & 4;
  9718. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9719. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9720. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9721. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9722. if (ir++ < ir0) continue;
  9723. if (ir > ir1) break;
  9724. float theta = freq_scale * (float)p;
  9725. if (is_glm) {
  9726. theta = MIN(p, n_ctx - 2);
  9727. float block_theta = MAX(p - (n_ctx - 2), 0);
  9728. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9729. const float cos_theta = cosf(theta);
  9730. const float sin_theta = sinf(theta);
  9731. const float cos_block_theta = cosf(block_theta);
  9732. const float sin_block_theta = sinf(block_theta);
  9733. theta *= theta_scale;
  9734. block_theta *= theta_scale;
  9735. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9736. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9737. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9738. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9739. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9740. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9741. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9742. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9743. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9744. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9745. }
  9746. } if (!is_neox) {
  9747. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9748. const float cos_theta = cosf(theta);
  9749. const float sin_theta = sinf(theta);
  9750. theta *= theta_scale;
  9751. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9752. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9753. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9754. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9755. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9756. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9757. }
  9758. } else {
  9759. // TODO: this is probably wrong, but I can't figure it out ..
  9760. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9761. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9762. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9763. const float cos_theta = cosf(theta);
  9764. const float sin_theta = sinf(theta);
  9765. theta *= theta_scale;
  9766. const int64_t i0 = ib*n_dims + ic/2;
  9767. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9768. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9769. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9770. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9771. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9772. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9773. }
  9774. }
  9775. }
  9776. }
  9777. }
  9778. }
  9779. }
  9780. static void ggml_compute_forward_rope(
  9781. const struct ggml_compute_params * params,
  9782. const struct ggml_tensor * src0,
  9783. struct ggml_tensor * dst) {
  9784. switch (src0->type) {
  9785. case GGML_TYPE_F16:
  9786. {
  9787. ggml_compute_forward_rope_f16(params, src0, dst);
  9788. } break;
  9789. case GGML_TYPE_F32:
  9790. {
  9791. ggml_compute_forward_rope_f32(params, src0, dst);
  9792. } break;
  9793. default:
  9794. {
  9795. GGML_ASSERT(false);
  9796. } break;
  9797. }
  9798. }
  9799. // ggml_compute_forward_rope_back
  9800. static void ggml_compute_forward_rope_back_f32(
  9801. const struct ggml_compute_params * params,
  9802. const struct ggml_tensor * src0,
  9803. struct ggml_tensor * dst) {
  9804. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9805. return;
  9806. }
  9807. // y = rope(x, src1)
  9808. // dx = rope_back(dy, src1)
  9809. // src0 is dy, src1 contains options
  9810. const int n_past = ((int32_t *) dst->op_params)[0];
  9811. const int n_dims = ((int32_t *) dst->op_params)[1];
  9812. const int mode = ((int32_t *) dst->op_params)[2];
  9813. assert(n_past >= 0);
  9814. GGML_TENSOR_UNARY_OP_LOCALS;
  9815. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9816. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9817. assert(nb0 == sizeof(float));
  9818. const int ith = params->ith;
  9819. const int nth = params->nth;
  9820. const int nr = ggml_nrows(dst);
  9821. // rows per thread
  9822. const int dr = (nr + nth - 1)/nth;
  9823. // row range for this thread
  9824. const int ir0 = dr*ith;
  9825. const int ir1 = MIN(ir0 + dr, nr);
  9826. // row index used to determine which thread to use
  9827. int ir = 0;
  9828. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9829. const bool is_neox = mode & 2;
  9830. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9831. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9832. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9833. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9834. if (ir++ < ir0) continue;
  9835. if (ir > ir1) break;
  9836. float theta = (float)p;
  9837. if (!is_neox) {
  9838. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9839. const float cos_theta = cosf(theta);
  9840. const float sin_theta = sinf(theta);
  9841. theta *= theta_scale;
  9842. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9843. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9844. const float dy0 = dy[0];
  9845. const float dy1 = dy[1];
  9846. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9847. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9848. }
  9849. } else {
  9850. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9851. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9852. const float cos_theta = cosf(theta);
  9853. const float sin_theta = sinf(theta);
  9854. theta *= theta_scale;
  9855. const int64_t i0 = ib*n_dims + ic/2;
  9856. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9857. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9858. const float dy0 = dy[0];
  9859. const float dy1 = dy[n_dims/2];
  9860. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9861. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9862. }
  9863. }
  9864. }
  9865. }
  9866. }
  9867. }
  9868. }
  9869. static void ggml_compute_forward_rope_back_f16(
  9870. const struct ggml_compute_params * params,
  9871. const struct ggml_tensor * src0,
  9872. struct ggml_tensor * dst) {
  9873. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9874. return;
  9875. }
  9876. // y = rope(x, src1)
  9877. // dx = rope_back(dy, src1)
  9878. // src0 is dy, src1 contains options
  9879. const int n_past = ((int32_t *) dst->op_params)[0];
  9880. const int n_dims = ((int32_t *) dst->op_params)[1];
  9881. const int mode = ((int32_t *) dst->op_params)[2];
  9882. assert(n_past >= 0);
  9883. GGML_TENSOR_UNARY_OP_LOCALS;
  9884. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9885. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9886. assert(nb0 == sizeof(ggml_fp16_t));
  9887. const int ith = params->ith;
  9888. const int nth = params->nth;
  9889. const int nr = ggml_nrows(dst);
  9890. // rows per thread
  9891. const int dr = (nr + nth - 1)/nth;
  9892. // row range for this thread
  9893. const int ir0 = dr*ith;
  9894. const int ir1 = MIN(ir0 + dr, nr);
  9895. // row index used to determine which thread to use
  9896. int ir = 0;
  9897. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9898. const bool is_neox = mode & 2;
  9899. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9900. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9901. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9902. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9903. if (ir++ < ir0) continue;
  9904. if (ir > ir1) break;
  9905. float theta = (float)p;
  9906. if (!is_neox) {
  9907. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9908. const float cos_theta = cosf(theta);
  9909. const float sin_theta = sinf(theta);
  9910. theta *= theta_scale;
  9911. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9912. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9913. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9914. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9915. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9916. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9917. }
  9918. } else {
  9919. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9920. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9921. const float cos_theta = cosf(theta);
  9922. const float sin_theta = sinf(theta);
  9923. theta *= theta_scale;
  9924. const int64_t i0 = ib*n_dims + ic/2;
  9925. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9926. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9927. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9928. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9929. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9930. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9931. }
  9932. }
  9933. }
  9934. }
  9935. }
  9936. }
  9937. }
  9938. static void ggml_compute_forward_rope_back(
  9939. const struct ggml_compute_params * params,
  9940. const struct ggml_tensor * src0,
  9941. struct ggml_tensor * dst) {
  9942. switch (src0->type) {
  9943. case GGML_TYPE_F16:
  9944. {
  9945. ggml_compute_forward_rope_back_f16(params, src0, dst);
  9946. } break;
  9947. case GGML_TYPE_F32:
  9948. {
  9949. ggml_compute_forward_rope_back_f32(params, src0, dst);
  9950. } break;
  9951. default:
  9952. {
  9953. GGML_ASSERT(false);
  9954. } break;
  9955. }
  9956. }
  9957. // ggml_compute_forward_conv_1d
  9958. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  9959. const struct ggml_compute_params * params,
  9960. const struct ggml_tensor * src0,
  9961. const struct ggml_tensor * src1,
  9962. struct ggml_tensor * dst) {
  9963. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9964. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9965. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9966. int64_t t0 = ggml_perf_time_us();
  9967. UNUSED(t0);
  9968. GGML_TENSOR_BINARY_OP_LOCALS;
  9969. const int ith = params->ith;
  9970. const int nth = params->nth;
  9971. const int nk = ne00;
  9972. const int nh = nk/2;
  9973. const int ew0 = ggml_up32(ne01);
  9974. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9975. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9976. GGML_ASSERT(nb10 == sizeof(float));
  9977. if (params->type == GGML_TASK_INIT) {
  9978. // TODO: fix this memset (wsize is overestimated)
  9979. memset(params->wdata, 0, params->wsize);
  9980. // prepare kernel data (src0)
  9981. {
  9982. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9983. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9984. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9985. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9986. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9987. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9988. dst_data[i00*ew0 + i01] = src[i00];
  9989. }
  9990. }
  9991. }
  9992. }
  9993. // prepare source data (src1)
  9994. {
  9995. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9996. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9997. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9998. ggml_fp16_t * dst_data = wdata;
  9999. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10000. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10001. }
  10002. }
  10003. }
  10004. return;
  10005. }
  10006. if (params->type == GGML_TASK_FINALIZE) {
  10007. return;
  10008. }
  10009. // total rows in dst
  10010. const int nr = ne02;
  10011. // rows per thread
  10012. const int dr = (nr + nth - 1)/nth;
  10013. // row range for this thread
  10014. const int ir0 = dr*ith;
  10015. const int ir1 = MIN(ir0 + dr, nr);
  10016. for (int i1 = ir0; i1 < ir1; i1++) {
  10017. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10018. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10019. dst_data[i0] = 0;
  10020. for (int k = -nh; k <= nh; k++) {
  10021. float v = 0.0f;
  10022. ggml_vec_dot_f16(ew0, &v,
  10023. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10024. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10025. dst_data[i0] += v;
  10026. }
  10027. }
  10028. }
  10029. }
  10030. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10031. const struct ggml_compute_params * params,
  10032. const struct ggml_tensor * src0,
  10033. const struct ggml_tensor * src1,
  10034. struct ggml_tensor * dst) {
  10035. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10036. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10037. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10038. int64_t t0 = ggml_perf_time_us();
  10039. UNUSED(t0);
  10040. GGML_TENSOR_BINARY_OP_LOCALS;
  10041. const int ith = params->ith;
  10042. const int nth = params->nth;
  10043. const int nk = ne00;
  10044. const int nh = nk/2;
  10045. const int ew0 = ggml_up32(ne01);
  10046. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10047. GGML_ASSERT(nb00 == sizeof(float));
  10048. GGML_ASSERT(nb10 == sizeof(float));
  10049. if (params->type == GGML_TASK_INIT) {
  10050. // TODO: fix this memset (wsize is overestimated)
  10051. memset(params->wdata, 0, params->wsize);
  10052. // prepare kernel data (src0)
  10053. {
  10054. float * const wdata = (float *) params->wdata + 0;
  10055. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10056. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10057. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10058. float * dst_data = wdata + i02*ew0*ne00;
  10059. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10060. dst_data[i00*ew0 + i01] = src[i00];
  10061. }
  10062. }
  10063. }
  10064. }
  10065. // prepare source data (src1)
  10066. {
  10067. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10068. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10069. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10070. float * dst_data = wdata;
  10071. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10072. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10073. }
  10074. }
  10075. }
  10076. return;
  10077. }
  10078. if (params->type == GGML_TASK_FINALIZE) {
  10079. return;
  10080. }
  10081. // total rows in dst
  10082. const int nr = ne02;
  10083. // rows per thread
  10084. const int dr = (nr + nth - 1)/nth;
  10085. // row range for this thread
  10086. const int ir0 = dr*ith;
  10087. const int ir1 = MIN(ir0 + dr, nr);
  10088. for (int i1 = ir0; i1 < ir1; i1++) {
  10089. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10090. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10091. dst_data[i0] = 0;
  10092. for (int k = -nh; k <= nh; k++) {
  10093. float v = 0.0f;
  10094. ggml_vec_dot_f32(ew0, &v,
  10095. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10096. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10097. dst_data[i0] += v;
  10098. }
  10099. }
  10100. }
  10101. }
  10102. static void ggml_compute_forward_conv_1d_s1_ph(
  10103. const struct ggml_compute_params * params,
  10104. const struct ggml_tensor * src0,
  10105. const struct ggml_tensor * src1,
  10106. struct ggml_tensor * dst) {
  10107. switch (src0->type) {
  10108. case GGML_TYPE_F16:
  10109. {
  10110. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10111. } break;
  10112. case GGML_TYPE_F32:
  10113. {
  10114. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10115. } break;
  10116. default:
  10117. {
  10118. GGML_ASSERT(false);
  10119. } break;
  10120. }
  10121. }
  10122. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10123. const struct ggml_compute_params * params,
  10124. const struct ggml_tensor * src0,
  10125. const struct ggml_tensor * src1,
  10126. struct ggml_tensor * dst) {
  10127. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10128. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10129. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10130. int64_t t0 = ggml_perf_time_us();
  10131. UNUSED(t0);
  10132. GGML_TENSOR_BINARY_OP_LOCALS;
  10133. const int ith = params->ith;
  10134. const int nth = params->nth;
  10135. const int nk = ne00;
  10136. const int nh = nk/2;
  10137. const int ew0 = ggml_up32(ne01);
  10138. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10139. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10140. GGML_ASSERT(nb10 == sizeof(float));
  10141. if (params->type == GGML_TASK_INIT) {
  10142. // TODO: fix this memset (wsize is overestimated)
  10143. memset(params->wdata, 0, params->wsize);
  10144. // prepare kernel data (src0)
  10145. {
  10146. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10147. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10148. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10149. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10150. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10151. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10152. dst_data[i00*ew0 + i01] = src[i00];
  10153. }
  10154. }
  10155. }
  10156. }
  10157. // prepare source data (src1)
  10158. {
  10159. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10160. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10161. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10162. ggml_fp16_t * dst_data = wdata;
  10163. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10164. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10165. }
  10166. }
  10167. }
  10168. return;
  10169. }
  10170. if (params->type == GGML_TASK_FINALIZE) {
  10171. return;
  10172. }
  10173. // total rows in dst
  10174. const int nr = ne02;
  10175. // rows per thread
  10176. const int dr = (nr + nth - 1)/nth;
  10177. // row range for this thread
  10178. const int ir0 = dr*ith;
  10179. const int ir1 = MIN(ir0 + dr, nr);
  10180. for (int i1 = ir0; i1 < ir1; i1++) {
  10181. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10182. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10183. dst_data[i0/2] = 0;
  10184. for (int k = -nh; k <= nh; k++) {
  10185. float v = 0.0f;
  10186. ggml_vec_dot_f16(ew0, &v,
  10187. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10188. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10189. dst_data[i0/2] += v;
  10190. }
  10191. }
  10192. }
  10193. }
  10194. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10195. const struct ggml_compute_params * params,
  10196. const struct ggml_tensor * src0,
  10197. const struct ggml_tensor * src1,
  10198. struct ggml_tensor * dst) {
  10199. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10200. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10201. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10202. int64_t t0 = ggml_perf_time_us();
  10203. UNUSED(t0);
  10204. GGML_TENSOR_BINARY_OP_LOCALS;
  10205. const int ith = params->ith;
  10206. const int nth = params->nth;
  10207. const int nk = ne00;
  10208. const int nh = nk/2;
  10209. const int ew0 = ggml_up32(ne01);
  10210. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10211. GGML_ASSERT(nb00 == sizeof(float));
  10212. GGML_ASSERT(nb10 == sizeof(float));
  10213. if (params->type == GGML_TASK_INIT) {
  10214. // TODO: fix this memset (wsize is overestimated)
  10215. memset(params->wdata, 0, params->wsize);
  10216. // prepare kernel data (src0)
  10217. {
  10218. float * const wdata = (float *) params->wdata + 0;
  10219. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10220. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10221. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10222. float * dst_data = wdata + i02*ew0*ne00;
  10223. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10224. dst_data[i00*ew0 + i01] = src[i00];
  10225. }
  10226. }
  10227. }
  10228. }
  10229. // prepare source data (src1)
  10230. {
  10231. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10232. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10233. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10234. float * dst_data = wdata;
  10235. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10236. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10237. }
  10238. }
  10239. }
  10240. return;
  10241. }
  10242. if (params->type == GGML_TASK_FINALIZE) {
  10243. return;
  10244. }
  10245. // total rows in dst
  10246. const int nr = ne02;
  10247. // rows per thread
  10248. const int dr = (nr + nth - 1)/nth;
  10249. // row range for this thread
  10250. const int ir0 = dr*ith;
  10251. const int ir1 = MIN(ir0 + dr, nr);
  10252. for (int i1 = ir0; i1 < ir1; i1++) {
  10253. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10254. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10255. dst_data[i0/2] = 0;
  10256. for (int k = -nh; k <= nh; k++) {
  10257. float v = 0.0f;
  10258. ggml_vec_dot_f32(ew0, &v,
  10259. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10260. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10261. dst_data[i0/2] += v;
  10262. }
  10263. }
  10264. }
  10265. }
  10266. static void ggml_compute_forward_conv_1d_s2_ph(
  10267. const struct ggml_compute_params * params,
  10268. const struct ggml_tensor * src0,
  10269. const struct ggml_tensor * src1,
  10270. struct ggml_tensor * dst) {
  10271. switch (src0->type) {
  10272. case GGML_TYPE_F16:
  10273. {
  10274. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10275. } break;
  10276. case GGML_TYPE_F32:
  10277. {
  10278. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10279. } break;
  10280. default:
  10281. {
  10282. GGML_ASSERT(false);
  10283. } break;
  10284. }
  10285. }
  10286. // ggml_compute_forward_conv_1d
  10287. static void ggml_compute_forward_conv_1d(
  10288. const struct ggml_compute_params * params,
  10289. const struct ggml_tensor * src0,
  10290. const struct ggml_tensor * src1,
  10291. struct ggml_tensor * dst) {
  10292. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10293. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10294. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10295. GGML_ASSERT(d0 == 1); // dilation not supported
  10296. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10297. if (s0 == 1) {
  10298. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10299. } else if (s0 == 2) {
  10300. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10301. } else {
  10302. GGML_ASSERT(false); // only stride 1 and 2 supported
  10303. };
  10304. }
  10305. // ggml_compute_forward_conv_2d
  10306. static void ggml_compute_forward_conv_2d_f16_f32(
  10307. const struct ggml_compute_params * params,
  10308. const struct ggml_tensor * src0,
  10309. const struct ggml_tensor * src1,
  10310. struct ggml_tensor * dst) {
  10311. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10312. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10313. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10314. int64_t t0 = ggml_perf_time_us();
  10315. UNUSED(t0);
  10316. GGML_TENSOR_BINARY_OP_LOCALS;
  10317. const int ith = params->ith;
  10318. const int nth = params->nth;
  10319. const int nk0 = ne00;
  10320. const int nk1 = ne01;
  10321. // size of the convolution row - the kernel size unrolled across all channels
  10322. const int ew0 = nk0*nk1*ne02;
  10323. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10324. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10325. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10326. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10327. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10328. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10329. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10330. GGML_ASSERT(nb10 == sizeof(float));
  10331. if (params->type == GGML_TASK_INIT) {
  10332. memset(params->wdata, 0, params->wsize);
  10333. // prepare source data (src1)
  10334. {
  10335. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10336. for (int i12 = 0; i12 < ne12; i12++) {
  10337. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10338. ggml_fp16_t * dst_data = wdata;
  10339. for (int i1 = 0; i1 < ne1; i1++) {
  10340. for (int i0 = 0; i0 < ne0; i0++) {
  10341. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10342. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10343. const int idx0 = i0*s0 + ik0*d0 - p0;
  10344. const int idx1 = i1*s1 + ik1*d1 - p1;
  10345. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10346. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10347. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10348. }
  10349. }
  10350. }
  10351. }
  10352. }
  10353. }
  10354. }
  10355. return;
  10356. }
  10357. if (params->type == GGML_TASK_FINALIZE) {
  10358. return;
  10359. }
  10360. // total patches in dst
  10361. const int np = ne2;
  10362. // patches per thread
  10363. const int dp = (np + nth - 1)/nth;
  10364. // patch range for this thread
  10365. const int ip0 = dp*ith;
  10366. const int ip1 = MIN(ip0 + dp, np);
  10367. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10368. for (int i3 = 0; i3 < ne3; i3++) {
  10369. for (int i2 = ip0; i2 < ip1; i2++) {
  10370. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10371. for (int i1 = 0; i1 < ne1; ++i1) {
  10372. for (int i0 = 0; i0 < ne0; ++i0) {
  10373. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10374. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10375. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10376. }
  10377. }
  10378. }
  10379. }
  10380. }
  10381. static void ggml_compute_forward_conv_2d(
  10382. const struct ggml_compute_params * params,
  10383. const struct ggml_tensor * src0,
  10384. const struct ggml_tensor * src1,
  10385. struct ggml_tensor * dst) {
  10386. switch (src0->type) {
  10387. case GGML_TYPE_F16:
  10388. {
  10389. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10390. } break;
  10391. case GGML_TYPE_F32:
  10392. {
  10393. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10394. GGML_ASSERT(false);
  10395. } break;
  10396. default:
  10397. {
  10398. GGML_ASSERT(false);
  10399. } break;
  10400. }
  10401. }
  10402. // ggml_compute_forward_pool_1d_sk_p0
  10403. static void ggml_compute_forward_pool_1d_sk_p0(
  10404. const struct ggml_compute_params * params,
  10405. const enum ggml_op_pool op,
  10406. const struct ggml_tensor * src,
  10407. const int k,
  10408. struct ggml_tensor * dst) {
  10409. assert(src->type == GGML_TYPE_F32);
  10410. assert(params->ith == 0);
  10411. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10412. return;
  10413. }
  10414. const char * cdata = (const char *)src->data;
  10415. const char * const data_end = cdata + ggml_nbytes(src);
  10416. float * drow = (float *)dst->data;
  10417. const int64_t rs = dst->ne[0];
  10418. while (cdata < data_end) {
  10419. const float * const srow = (const float *)cdata;
  10420. int j = 0;
  10421. for (int64_t i = 0; i < rs; ++i) {
  10422. switch (op) {
  10423. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10424. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10425. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10426. }
  10427. for (int ki = 0; ki < k; ++ki) {
  10428. switch (op) {
  10429. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10430. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10431. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10432. }
  10433. ++j;
  10434. }
  10435. switch (op) {
  10436. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10437. case GGML_OP_POOL_MAX: break;
  10438. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10439. }
  10440. }
  10441. cdata += src->nb[1];
  10442. drow += rs;
  10443. }
  10444. }
  10445. // ggml_compute_forward_pool_1d
  10446. static void ggml_compute_forward_pool_1d(
  10447. const struct ggml_compute_params * params,
  10448. const struct ggml_tensor * src0,
  10449. struct ggml_tensor * dst) {
  10450. const int32_t* opts = (const int32_t*)dst->op_params;
  10451. enum ggml_op_pool op = opts[0];
  10452. const int k0 = opts[1];
  10453. const int s0 = opts[2];
  10454. const int p0 = opts[3];
  10455. GGML_ASSERT(p0 == 0); // padding not supported
  10456. GGML_ASSERT(k0 == s0); // only s = k supported
  10457. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10458. }
  10459. // ggml_compute_forward_pool_2d_sk_p0
  10460. static void ggml_compute_forward_pool_2d_sk_p0(
  10461. const struct ggml_compute_params * params,
  10462. const enum ggml_op_pool op,
  10463. const struct ggml_tensor * src,
  10464. const int k0,
  10465. const int k1,
  10466. struct ggml_tensor * dst) {
  10467. assert(src->type == GGML_TYPE_F32);
  10468. assert(params->ith == 0);
  10469. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10470. return;
  10471. }
  10472. const char * cdata = (const char*)src->data;
  10473. const char * const data_end = cdata + ggml_nbytes(src);
  10474. const int64_t px = dst->ne[0];
  10475. const int64_t py = dst->ne[1];
  10476. const int64_t pa = px * py;
  10477. float * dplane = (float *)dst->data;
  10478. const int ka = k0 * k1;
  10479. while (cdata < data_end) {
  10480. for (int oy = 0; oy < py; ++oy) {
  10481. float * const drow = dplane + oy * px;
  10482. for (int ox = 0; ox < px; ++ox) {
  10483. float * const out = drow + ox;
  10484. switch (op) {
  10485. case GGML_OP_POOL_AVG: *out = 0; break;
  10486. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10487. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10488. }
  10489. const int ix = ox * k0;
  10490. const int iy = oy * k1;
  10491. for (int ky = 0; ky < k1; ++ky) {
  10492. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10493. for (int kx = 0; kx < k0; ++kx) {
  10494. int j = ix + kx;
  10495. switch (op) {
  10496. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10497. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10498. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10499. }
  10500. }
  10501. }
  10502. switch (op) {
  10503. case GGML_OP_POOL_AVG: *out /= ka; break;
  10504. case GGML_OP_POOL_MAX: break;
  10505. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10506. }
  10507. }
  10508. }
  10509. cdata += src->nb[2];
  10510. dplane += pa;
  10511. }
  10512. }
  10513. // ggml_compute_forward_pool_2d
  10514. static void ggml_compute_forward_pool_2d(
  10515. const struct ggml_compute_params * params,
  10516. const struct ggml_tensor * src0,
  10517. struct ggml_tensor * dst) {
  10518. const int32_t * opts = (const int32_t *)dst->op_params;
  10519. enum ggml_op_pool op = opts[0];
  10520. const int k0 = opts[1];
  10521. const int k1 = opts[2];
  10522. const int s0 = opts[3];
  10523. const int s1 = opts[4];
  10524. const int p0 = opts[5];
  10525. const int p1 = opts[6];
  10526. GGML_ASSERT(p0 == 0);
  10527. GGML_ASSERT(p1 == 0); // padding not supported
  10528. GGML_ASSERT(k0 == s0);
  10529. GGML_ASSERT(k1 == s1); // only s = k supported
  10530. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10531. }
  10532. // ggml_compute_forward_flash_attn
  10533. static void ggml_compute_forward_flash_attn_f32(
  10534. const struct ggml_compute_params * params,
  10535. const struct ggml_tensor * q,
  10536. const struct ggml_tensor * k,
  10537. const struct ggml_tensor * v,
  10538. const bool masked,
  10539. struct ggml_tensor * dst) {
  10540. int64_t t0 = ggml_perf_time_us();
  10541. UNUSED(t0);
  10542. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10543. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10544. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10545. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10546. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10547. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10548. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10549. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10550. const int ith = params->ith;
  10551. const int nth = params->nth;
  10552. const int64_t D = neq0;
  10553. const int64_t N = neq1;
  10554. const int64_t P = nek1 - N;
  10555. const int64_t M = P + N;
  10556. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10557. GGML_ASSERT(ne0 == D);
  10558. GGML_ASSERT(ne1 == N);
  10559. GGML_ASSERT(P >= 0);
  10560. GGML_ASSERT(nbq0 == sizeof(float));
  10561. GGML_ASSERT(nbk0 == sizeof(float));
  10562. GGML_ASSERT(nbv0 == sizeof(float));
  10563. GGML_ASSERT(neq0 == D);
  10564. GGML_ASSERT(nek0 == D);
  10565. GGML_ASSERT(nev1 == D);
  10566. GGML_ASSERT(neq1 == N);
  10567. GGML_ASSERT(nek1 == N + P);
  10568. GGML_ASSERT(nev1 == D);
  10569. // dst cannot be transposed or permuted
  10570. GGML_ASSERT(nb0 == sizeof(float));
  10571. GGML_ASSERT(nb0 <= nb1);
  10572. GGML_ASSERT(nb1 <= nb2);
  10573. GGML_ASSERT(nb2 <= nb3);
  10574. if (params->type == GGML_TASK_INIT) {
  10575. return;
  10576. }
  10577. if (params->type == GGML_TASK_FINALIZE) {
  10578. return;
  10579. }
  10580. // parallelize by q rows using ggml_vec_dot_f32
  10581. // total rows in q
  10582. const int nr = neq1*neq2*neq3;
  10583. // rows per thread
  10584. const int dr = (nr + nth - 1)/nth;
  10585. // row range for this thread
  10586. const int ir0 = dr*ith;
  10587. const int ir1 = MIN(ir0 + dr, nr);
  10588. const float scale = 1.0f/sqrtf(D);
  10589. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10590. for (int ir = ir0; ir < ir1; ++ir) {
  10591. // q indices
  10592. const int iq3 = ir/(neq2*neq1);
  10593. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10594. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10595. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10596. for (int i = M; i < Mup; ++i) {
  10597. S[i] = -INFINITY;
  10598. }
  10599. for (int64_t ic = 0; ic < nek1; ++ic) {
  10600. // k indices
  10601. const int ik3 = iq3;
  10602. const int ik2 = iq2;
  10603. const int ik1 = ic;
  10604. // S indices
  10605. const int i1 = ik1;
  10606. ggml_vec_dot_f32(neq0,
  10607. S + i1,
  10608. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10609. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10610. }
  10611. // scale
  10612. ggml_vec_scale_f32(nek1, S, scale);
  10613. if (masked) {
  10614. for (int64_t i = P; i < M; i++) {
  10615. if (i > P + iq1) {
  10616. S[i] = -INFINITY;
  10617. }
  10618. }
  10619. }
  10620. // softmax
  10621. {
  10622. float max = -INFINITY;
  10623. ggml_vec_max_f32(M, &max, S);
  10624. ggml_float sum = 0.0;
  10625. {
  10626. #ifdef GGML_SOFT_MAX_ACCELERATE
  10627. max = -max;
  10628. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10629. vvexpf(S, S, &Mup);
  10630. ggml_vec_sum_f32(Mup, &sum, S);
  10631. #else
  10632. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10633. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10634. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10635. float * SS = S + i;
  10636. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10637. if (SS[j] == -INFINITY) {
  10638. SS[j] = 0.0f;
  10639. } else {
  10640. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10641. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10642. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10643. sump[j] += (ggml_float)val;
  10644. SS[j] = val;
  10645. }
  10646. }
  10647. }
  10648. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10649. sum += sump[i];
  10650. }
  10651. #endif
  10652. }
  10653. assert(sum > 0.0);
  10654. sum = 1.0/sum;
  10655. ggml_vec_scale_f32(M, S, sum);
  10656. #ifndef NDEBUG
  10657. for (int i = 0; i < M; ++i) {
  10658. assert(!isnan(S[i]));
  10659. assert(!isinf(S[i]));
  10660. }
  10661. #endif
  10662. }
  10663. for (int64_t ic = 0; ic < nev1; ++ic) {
  10664. // dst indices
  10665. const int i1 = iq1;
  10666. const int i2 = iq2;
  10667. const int i3 = iq3;
  10668. ggml_vec_dot_f32(nek1,
  10669. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10670. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10671. S);
  10672. }
  10673. }
  10674. }
  10675. static void ggml_compute_forward_flash_attn_f16(
  10676. const struct ggml_compute_params * params,
  10677. const struct ggml_tensor * q,
  10678. const struct ggml_tensor * k,
  10679. const struct ggml_tensor * v,
  10680. const bool masked,
  10681. struct ggml_tensor * dst) {
  10682. int64_t t0 = ggml_perf_time_us();
  10683. UNUSED(t0);
  10684. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10685. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10686. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10687. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10688. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10689. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10690. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10691. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10692. const int ith = params->ith;
  10693. const int nth = params->nth;
  10694. const int64_t D = neq0;
  10695. const int64_t N = neq1;
  10696. const int64_t P = nek1 - N;
  10697. const int64_t M = P + N;
  10698. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10699. GGML_ASSERT(ne0 == D);
  10700. GGML_ASSERT(ne1 == N);
  10701. GGML_ASSERT(P >= 0);
  10702. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10703. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10704. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10705. GGML_ASSERT(neq0 == D);
  10706. GGML_ASSERT(nek0 == D);
  10707. GGML_ASSERT(nev1 == D);
  10708. GGML_ASSERT(neq1 == N);
  10709. GGML_ASSERT(nek1 == N + P);
  10710. GGML_ASSERT(nev1 == D);
  10711. // dst cannot be transposed or permuted
  10712. GGML_ASSERT(nb0 == sizeof(float));
  10713. GGML_ASSERT(nb0 <= nb1);
  10714. GGML_ASSERT(nb1 <= nb2);
  10715. GGML_ASSERT(nb2 <= nb3);
  10716. if (params->type == GGML_TASK_INIT) {
  10717. return;
  10718. }
  10719. if (params->type == GGML_TASK_FINALIZE) {
  10720. return;
  10721. }
  10722. // parallelize by q rows using ggml_vec_dot_f32
  10723. // total rows in q
  10724. const int nr = neq1*neq2*neq3;
  10725. // rows per thread
  10726. const int dr = (nr + nth - 1)/nth;
  10727. // row range for this thread
  10728. const int ir0 = dr*ith;
  10729. const int ir1 = MIN(ir0 + dr, nr);
  10730. const float scale = 1.0f/sqrtf(D);
  10731. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10732. for (int ir = ir0; ir < ir1; ++ir) {
  10733. // q indices
  10734. const int iq3 = ir/(neq2*neq1);
  10735. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10736. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10737. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10738. for (int i = M; i < Mup; ++i) {
  10739. S[i] = -INFINITY;
  10740. }
  10741. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10742. for (int64_t ic = 0; ic < nek1; ++ic) {
  10743. // k indices
  10744. const int ik3 = iq3;
  10745. const int ik2 = iq2;
  10746. const int ik1 = ic;
  10747. // S indices
  10748. const int i1 = ik1;
  10749. ggml_vec_dot_f16(neq0,
  10750. S + i1,
  10751. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10752. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10753. }
  10754. } else {
  10755. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10756. // k indices
  10757. const int ik3 = iq3;
  10758. const int ik2 = iq2;
  10759. const int ik1 = ic;
  10760. // S indices
  10761. const int i1 = ik1;
  10762. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10763. S + i1,
  10764. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10765. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10766. }
  10767. }
  10768. // scale
  10769. ggml_vec_scale_f32(nek1, S, scale);
  10770. if (masked) {
  10771. for (int64_t i = P; i < M; i++) {
  10772. if (i > P + iq1) {
  10773. S[i] = -INFINITY;
  10774. }
  10775. }
  10776. }
  10777. // softmax
  10778. {
  10779. float max = -INFINITY;
  10780. ggml_vec_max_f32(M, &max, S);
  10781. ggml_float sum = 0.0;
  10782. {
  10783. #ifdef GGML_SOFT_MAX_ACCELERATE
  10784. max = -max;
  10785. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10786. vvexpf(S, S, &Mup);
  10787. ggml_vec_sum_f32(Mup, &sum, S);
  10788. #else
  10789. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10790. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10791. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10792. float * SS = S + i;
  10793. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10794. if (SS[j] == -INFINITY) {
  10795. SS[j] = 0.0f;
  10796. } else {
  10797. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10798. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10799. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10800. sump[j] += (ggml_float)val;
  10801. SS[j] = val;
  10802. }
  10803. }
  10804. }
  10805. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10806. sum += sump[i];
  10807. }
  10808. #endif
  10809. }
  10810. assert(sum > 0.0);
  10811. sum = 1.0/sum;
  10812. ggml_vec_scale_f32(M, S, sum);
  10813. #ifndef NDEBUG
  10814. for (int i = 0; i < M; ++i) {
  10815. assert(!isnan(S[i]));
  10816. assert(!isinf(S[i]));
  10817. }
  10818. #endif
  10819. }
  10820. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10821. for (int64_t i = 0; i < M; i++) {
  10822. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10823. }
  10824. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10825. for (int64_t ic = 0; ic < nev1; ++ic) {
  10826. // dst indices
  10827. const int i1 = iq1;
  10828. const int i2 = iq2;
  10829. const int i3 = iq3;
  10830. ggml_vec_dot_f16(nek1,
  10831. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10832. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10833. S16);
  10834. }
  10835. } else {
  10836. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10837. // dst indices
  10838. const int i1 = iq1;
  10839. const int i2 = iq2;
  10840. const int i3 = iq3;
  10841. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10842. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10843. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10844. S16);
  10845. }
  10846. }
  10847. }
  10848. }
  10849. static void ggml_compute_forward_flash_attn(
  10850. const struct ggml_compute_params * params,
  10851. const struct ggml_tensor * q,
  10852. const struct ggml_tensor * k,
  10853. const struct ggml_tensor * v,
  10854. const bool masked,
  10855. struct ggml_tensor * dst) {
  10856. switch (q->type) {
  10857. case GGML_TYPE_F16:
  10858. {
  10859. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10860. } break;
  10861. case GGML_TYPE_F32:
  10862. {
  10863. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10864. } break;
  10865. default:
  10866. {
  10867. GGML_ASSERT(false);
  10868. } break;
  10869. }
  10870. }
  10871. // ggml_compute_forward_flash_ff
  10872. static void ggml_compute_forward_flash_ff_f16(
  10873. const struct ggml_compute_params * params,
  10874. const struct ggml_tensor * a, // F16
  10875. const struct ggml_tensor * b0, // F16 fc_w
  10876. const struct ggml_tensor * b1, // F32 fc_b
  10877. const struct ggml_tensor * c0, // F16 proj_w
  10878. const struct ggml_tensor * c1, // F32 proj_b
  10879. struct ggml_tensor * dst) {
  10880. int64_t t0 = ggml_perf_time_us();
  10881. UNUSED(t0);
  10882. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  10883. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  10884. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  10885. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  10886. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  10887. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  10888. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  10889. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  10890. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  10891. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  10892. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10893. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10894. const int ith = params->ith;
  10895. const int nth = params->nth;
  10896. const int64_t D = nea0;
  10897. //const int64_t N = nea1;
  10898. const int64_t M = neb01;
  10899. GGML_ASSERT(ne0 == nea0);
  10900. GGML_ASSERT(ne1 == nea1);
  10901. GGML_ASSERT(ne2 == nea2);
  10902. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10903. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10904. GGML_ASSERT(nbb10 == sizeof(float));
  10905. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10906. GGML_ASSERT(nbc10 == sizeof(float));
  10907. GGML_ASSERT(neb00 == D);
  10908. GGML_ASSERT(neb01 == M);
  10909. GGML_ASSERT(neb10 == M);
  10910. GGML_ASSERT(neb11 == 1);
  10911. GGML_ASSERT(nec00 == M);
  10912. GGML_ASSERT(nec01 == D);
  10913. GGML_ASSERT(nec10 == D);
  10914. GGML_ASSERT(nec11 == 1);
  10915. // dst cannot be transposed or permuted
  10916. GGML_ASSERT(nb0 == sizeof(float));
  10917. GGML_ASSERT(nb0 <= nb1);
  10918. GGML_ASSERT(nb1 <= nb2);
  10919. GGML_ASSERT(nb2 <= nb3);
  10920. if (params->type == GGML_TASK_INIT) {
  10921. return;
  10922. }
  10923. if (params->type == GGML_TASK_FINALIZE) {
  10924. return;
  10925. }
  10926. // parallelize by a rows using ggml_vec_dot_f32
  10927. // total rows in a
  10928. const int nr = nea1*nea2*nea3;
  10929. // rows per thread
  10930. const int dr = (nr + nth - 1)/nth;
  10931. // row range for this thread
  10932. const int ir0 = dr*ith;
  10933. const int ir1 = MIN(ir0 + dr, nr);
  10934. for (int ir = ir0; ir < ir1; ++ir) {
  10935. // a indices
  10936. const int ia3 = ir/(nea2*nea1);
  10937. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10938. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10939. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10940. for (int64_t ic = 0; ic < neb01; ++ic) {
  10941. // b0 indices
  10942. const int ib03 = ia3;
  10943. const int ib02 = ia2;
  10944. const int ib01 = ic;
  10945. // S indices
  10946. const int i1 = ib01;
  10947. ggml_vec_dot_f16(nea0,
  10948. S + i1,
  10949. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10950. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10951. }
  10952. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10953. //ggml_vec_gelu_f32(neb01, S, S);
  10954. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10955. for (int64_t i = 0; i < M; i++) {
  10956. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10957. }
  10958. ggml_vec_gelu_f16(neb01, S16, S16);
  10959. {
  10960. // dst indices
  10961. const int i1 = ia1;
  10962. const int i2 = ia2;
  10963. const int i3 = ia3;
  10964. for (int64_t ic = 0; ic < nec01; ++ic) {
  10965. ggml_vec_dot_f16(neb01,
  10966. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10967. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10968. S16);
  10969. }
  10970. ggml_vec_add_f32(nec01,
  10971. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10972. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10973. (float *) c1->data);
  10974. }
  10975. }
  10976. }
  10977. static void ggml_compute_forward_flash_ff(
  10978. const struct ggml_compute_params * params,
  10979. const struct ggml_tensor * a,
  10980. const struct ggml_tensor * b0,
  10981. const struct ggml_tensor * b1,
  10982. const struct ggml_tensor * c0,
  10983. const struct ggml_tensor * c1,
  10984. struct ggml_tensor * dst) {
  10985. switch (b0->type) {
  10986. case GGML_TYPE_F16:
  10987. {
  10988. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10989. } break;
  10990. case GGML_TYPE_F32:
  10991. {
  10992. GGML_ASSERT(false); // TODO
  10993. } break;
  10994. default:
  10995. {
  10996. GGML_ASSERT(false);
  10997. } break;
  10998. }
  10999. }
  11000. // ggml_compute_forward_flash_attn_back
  11001. static void ggml_compute_forward_flash_attn_back_f32(
  11002. const struct ggml_compute_params * params,
  11003. const struct ggml_tensor * q,
  11004. const struct ggml_tensor * k,
  11005. const struct ggml_tensor * v,
  11006. const struct ggml_tensor * d,
  11007. const bool masked,
  11008. struct ggml_tensor * dst) {
  11009. int64_t t0 = ggml_perf_time_us();
  11010. UNUSED(t0);
  11011. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11012. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11013. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11014. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11015. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11016. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11017. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11018. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11019. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11020. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11021. const int ith = params->ith;
  11022. const int nth = params->nth;
  11023. const int64_t D = neq0;
  11024. const int64_t N = neq1;
  11025. const int64_t P = nek1 - N;
  11026. const int64_t M = P + N;
  11027. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11028. const int mxDM = MAX(D, Mup);
  11029. // GGML_ASSERT(ne0 == D);
  11030. // GGML_ASSERT(ne1 == N);
  11031. GGML_ASSERT(P >= 0);
  11032. GGML_ASSERT(nbq0 == sizeof(float));
  11033. GGML_ASSERT(nbk0 == sizeof(float));
  11034. GGML_ASSERT(nbv0 == sizeof(float));
  11035. GGML_ASSERT(neq0 == D);
  11036. GGML_ASSERT(nek0 == D);
  11037. GGML_ASSERT(nev1 == D);
  11038. GGML_ASSERT(ned0 == D);
  11039. GGML_ASSERT(neq1 == N);
  11040. GGML_ASSERT(nek1 == N + P);
  11041. GGML_ASSERT(nev1 == D);
  11042. GGML_ASSERT(ned1 == N);
  11043. // dst cannot be transposed or permuted
  11044. GGML_ASSERT(nb0 == sizeof(float));
  11045. GGML_ASSERT(nb0 <= nb1);
  11046. GGML_ASSERT(nb1 <= nb2);
  11047. GGML_ASSERT(nb2 <= nb3);
  11048. if (params->type == GGML_TASK_INIT) {
  11049. if (ith == 0) {
  11050. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11051. }
  11052. return;
  11053. }
  11054. if (params->type == GGML_TASK_FINALIZE) {
  11055. return;
  11056. }
  11057. // parallelize by q rows using ggml_vec_dot_f32
  11058. // total rows in q
  11059. const int nr = neq2*neq3;
  11060. // rows per thread
  11061. const int dr = (nr + nth - 1)/nth;
  11062. // row range for this thread
  11063. const int ir0 = dr*ith;
  11064. const int ir1 = MIN(ir0 + dr, nr);
  11065. const float scale = 1.0f/sqrtf(D);
  11066. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11067. for (int ir = ir0; ir < ir1; ++ir) {
  11068. // q indices
  11069. const int iq3 = ir/(neq2);
  11070. const int iq2 = ir - iq3*neq2;
  11071. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11072. // not sure about CACHE_LINE_SIZE_F32..
  11073. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11074. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11075. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11076. for (int i = M; i < Mup; ++i) {
  11077. S[i] = -INFINITY;
  11078. }
  11079. for (int64_t ic = 0; ic < nek1; ++ic) {
  11080. // k indices
  11081. const int ik3 = iq3;
  11082. const int ik2 = iq2;
  11083. const int ik1 = ic;
  11084. // S indices
  11085. const int i1 = ik1;
  11086. ggml_vec_dot_f32(neq0,
  11087. S + i1,
  11088. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11089. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11090. }
  11091. // scale
  11092. ggml_vec_scale_f32(nek1, S, scale);
  11093. if (masked) {
  11094. for (int64_t i = P; i < M; i++) {
  11095. if (i > P + iq1) {
  11096. S[i] = -INFINITY;
  11097. }
  11098. }
  11099. }
  11100. // softmax
  11101. {
  11102. float max = -INFINITY;
  11103. ggml_vec_max_f32(M, &max, S);
  11104. ggml_float sum = 0.0;
  11105. {
  11106. #ifdef GGML_SOFT_MAX_ACCELERATE
  11107. max = -max;
  11108. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11109. vvexpf(SM, SM, &Mup);
  11110. ggml_vec_sum_f32(Mup, &sum, SM);
  11111. #else
  11112. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11113. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11114. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11115. float * SR = S + i;
  11116. float * SW = SM + i;
  11117. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11118. if (SR[j] == -INFINITY) {
  11119. SW[j] = 0.0f;
  11120. } else {
  11121. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11122. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11123. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11124. sump[j] += (ggml_float)val;
  11125. SW[j] = val;
  11126. }
  11127. }
  11128. }
  11129. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11130. sum += sump[i];
  11131. }
  11132. #endif
  11133. }
  11134. assert(sum > 0.0);
  11135. sum = 1.0/sum;
  11136. ggml_vec_scale_f32(M, SM, sum);
  11137. }
  11138. // step-by-step explanation
  11139. {
  11140. // forward-process shape grads from backward process
  11141. // parallel_for iq2,iq3:
  11142. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11143. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11144. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11145. // for iq1:
  11146. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11147. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11148. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11149. // S0 = -Inf [D,1,1,1]
  11150. // ~S1[i] = dot(kcur[:D,i], qcur)
  11151. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11152. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11153. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11154. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11155. // ~S5[i] = dot(vcur[:,i], S4)
  11156. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11157. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11158. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11159. // dst backward-/ grad[dst] = d
  11160. //
  11161. // output gradients with their dependencies:
  11162. //
  11163. // grad[kcur] = grad[S1].T @ qcur
  11164. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11165. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11166. // grad[S4] = grad[S5] @ vcur
  11167. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11168. // grad[qcur] = grad[S1] @ kcur
  11169. // grad[vcur] = grad[S5].T @ S4
  11170. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11171. //
  11172. // in post-order:
  11173. //
  11174. // S1 = qcur @ kcur.T
  11175. // S2 = S1 * scale
  11176. // S3 = diag_mask_inf(S2, P)
  11177. // S4 = softmax(S3)
  11178. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11179. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11180. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11181. // grad[qcur] = grad[S1] @ kcur
  11182. // grad[kcur] = grad[S1].T @ qcur
  11183. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11184. //
  11185. // using less variables (SM=S4):
  11186. //
  11187. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11188. // SM = softmax(S)
  11189. // S = d[:D,iq1,iq2,iq3] @ vcur
  11190. // dot_SM_gradSM = dot(SM, S)
  11191. // S = SM * (S - dot(SM, S))
  11192. // S = diag_mask_zero(S, P) * scale
  11193. //
  11194. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11195. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11196. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11197. }
  11198. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11199. // S = d[:D,iq1,iq2,iq3] @ vcur
  11200. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11201. ggml_vec_set_f32(M, S, 0);
  11202. for (int64_t ic = 0; ic < D; ++ic) {
  11203. // dst indices
  11204. const int i1 = iq1;
  11205. const int i2 = iq2;
  11206. const int i3 = iq3;
  11207. ggml_vec_mad_f32(M,
  11208. S,
  11209. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11210. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11211. }
  11212. // S = SM * (S - dot(SM, S))
  11213. float dot_SM_gradSM = 0;
  11214. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11215. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11216. ggml_vec_mul_f32 (M, S, S, SM);
  11217. // S = diag_mask_zero(S, P) * scale
  11218. if (masked) {
  11219. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11220. // S[i] = 0;
  11221. // }
  11222. for (int64_t i = P; i < M; i++) {
  11223. if (i > P + iq1) {
  11224. S[i] = 0;
  11225. }
  11226. }
  11227. }
  11228. ggml_vec_scale_f32(M, S, scale);
  11229. void * grad_q = (char *) dst->data;
  11230. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11231. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11232. const size_t nbgq1 = nb0*neq0;
  11233. const size_t nbgq2 = nb0*neq0*neq1;
  11234. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11235. const size_t nbgk1 = nb0*nek0;
  11236. const size_t nbgk2 = nb0*nek0*nek1;
  11237. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11238. const size_t nbgv1 = nb0*nev0;
  11239. const size_t nbgv2 = nb0*nev0*nev1;
  11240. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11241. // S shape [M,1]
  11242. // SM shape [M,1]
  11243. // kcur shape [D,M]
  11244. // qcur shape [D,1]
  11245. // vcur shape [M,D]
  11246. //
  11247. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11248. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11249. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11250. //
  11251. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11252. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11253. for (int64_t ic = 0; ic < M; ++ic) {
  11254. // dst indices
  11255. const int i1 = iq1;
  11256. const int i2 = iq2;
  11257. const int i3 = iq3;
  11258. ggml_vec_mad_f32(D,
  11259. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11260. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11261. S[ic]);
  11262. }
  11263. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11264. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11265. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11266. for (int64_t ic = 0; ic < M; ++ic) {
  11267. // dst indices
  11268. const int i1 = iq1;
  11269. const int i2 = iq2;
  11270. const int i3 = iq3;
  11271. // ggml_vec_set_f32(D,
  11272. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11273. // 0);
  11274. ggml_vec_mad_f32(D,
  11275. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11276. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11277. S[ic]);
  11278. }
  11279. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11280. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11281. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11282. for (int64_t ic = 0; ic < D; ++ic) {
  11283. // dst indices
  11284. const int i1 = iq1;
  11285. const int i2 = iq2;
  11286. const int i3 = iq3;
  11287. // ggml_vec_set_f32(M,
  11288. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11289. // 0);
  11290. ggml_vec_mad_f32(M,
  11291. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11292. SM,
  11293. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11294. }
  11295. }
  11296. }
  11297. }
  11298. static void ggml_compute_forward_flash_attn_back(
  11299. const struct ggml_compute_params * params,
  11300. const struct ggml_tensor * q,
  11301. const struct ggml_tensor * k,
  11302. const struct ggml_tensor * v,
  11303. const struct ggml_tensor * d,
  11304. const bool masked,
  11305. struct ggml_tensor * dst) {
  11306. switch (q->type) {
  11307. case GGML_TYPE_F32:
  11308. {
  11309. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11310. } break;
  11311. default:
  11312. {
  11313. GGML_ASSERT(false);
  11314. } break;
  11315. }
  11316. }
  11317. // ggml_compute_forward_win_part
  11318. static void ggml_compute_forward_win_part_f32(
  11319. const struct ggml_compute_params * params,
  11320. const struct ggml_tensor * src0,
  11321. struct ggml_tensor * dst) {
  11322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11323. return;
  11324. }
  11325. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11326. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11327. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11328. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11329. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11330. assert(ne00 == ne0);
  11331. assert(ne3 == nep0*nep1);
  11332. // TODO: optimize / multi-thread
  11333. for (int py = 0; py < nep1; ++py) {
  11334. for (int px = 0; px < nep0; ++px) {
  11335. const int64_t i3 = py*nep0 + px;
  11336. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11337. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11338. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11339. const int64_t i02 = py*w + i2;
  11340. const int64_t i01 = px*w + i1;
  11341. const int64_t i00 = i0;
  11342. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11343. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11344. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11345. ((float *) dst->data)[i] = 0.0f;
  11346. } else {
  11347. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11348. }
  11349. }
  11350. }
  11351. }
  11352. }
  11353. }
  11354. }
  11355. static void ggml_compute_forward_win_part(
  11356. const struct ggml_compute_params * params,
  11357. const struct ggml_tensor * src0,
  11358. struct ggml_tensor * dst) {
  11359. switch (src0->type) {
  11360. case GGML_TYPE_F32:
  11361. {
  11362. ggml_compute_forward_win_part_f32(params, src0, dst);
  11363. } break;
  11364. default:
  11365. {
  11366. GGML_ASSERT(false);
  11367. } break;
  11368. }
  11369. }
  11370. // ggml_compute_forward_win_unpart
  11371. static void ggml_compute_forward_win_unpart_f32(
  11372. const struct ggml_compute_params * params,
  11373. const struct ggml_tensor * src0,
  11374. struct ggml_tensor * dst) {
  11375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11376. return;
  11377. }
  11378. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11379. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11380. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11381. // padding
  11382. const int px = (w - ne1%w)%w;
  11383. //const int py = (w - ne2%w)%w;
  11384. const int npx = (px + ne1)/w;
  11385. //const int npy = (py + ne2)/w;
  11386. assert(ne0 == ne00);
  11387. // TODO: optimize / multi-thread
  11388. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11389. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11390. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11391. const int ip2 = i2/w;
  11392. const int ip1 = i1/w;
  11393. const int64_t i02 = i2%w;
  11394. const int64_t i01 = i1%w;
  11395. const int64_t i00 = i0;
  11396. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11397. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11398. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11399. }
  11400. }
  11401. }
  11402. }
  11403. static void ggml_compute_forward_win_unpart(
  11404. const struct ggml_compute_params * params,
  11405. const struct ggml_tensor * src0,
  11406. struct ggml_tensor * dst) {
  11407. switch (src0->type) {
  11408. case GGML_TYPE_F32:
  11409. {
  11410. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11411. } break;
  11412. default:
  11413. {
  11414. GGML_ASSERT(false);
  11415. } break;
  11416. }
  11417. }
  11418. //gmml_compute_forward_unary
  11419. static void ggml_compute_forward_unary(
  11420. const struct ggml_compute_params * params,
  11421. const struct ggml_tensor * src0,
  11422. struct ggml_tensor * dst) {
  11423. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11424. switch (op) {
  11425. case GGML_UNARY_OP_ABS:
  11426. {
  11427. ggml_compute_forward_abs(params, src0, dst);
  11428. } break;
  11429. case GGML_UNARY_OP_SGN:
  11430. {
  11431. ggml_compute_forward_sgn(params, src0, dst);
  11432. } break;
  11433. case GGML_UNARY_OP_NEG:
  11434. {
  11435. ggml_compute_forward_neg(params, src0, dst);
  11436. } break;
  11437. case GGML_UNARY_OP_STEP:
  11438. {
  11439. ggml_compute_forward_step(params, src0, dst);
  11440. } break;
  11441. case GGML_UNARY_OP_TANH:
  11442. {
  11443. ggml_compute_forward_tanh(params, src0, dst);
  11444. } break;
  11445. case GGML_UNARY_OP_ELU:
  11446. {
  11447. ggml_compute_forward_elu(params, src0, dst);
  11448. } break;
  11449. case GGML_UNARY_OP_RELU:
  11450. {
  11451. ggml_compute_forward_relu(params, src0, dst);
  11452. } break;
  11453. case GGML_UNARY_OP_GELU:
  11454. {
  11455. ggml_compute_forward_gelu(params, src0, dst);
  11456. } break;
  11457. case GGML_UNARY_OP_GELU_QUICK:
  11458. {
  11459. ggml_compute_forward_gelu_quick(params, src0, dst);
  11460. } break;
  11461. case GGML_UNARY_OP_SILU:
  11462. {
  11463. ggml_compute_forward_silu(params, src0, dst);
  11464. } break;
  11465. default:
  11466. {
  11467. GGML_ASSERT(false);
  11468. } break;
  11469. }
  11470. }
  11471. // ggml_compute_forward_map_unary
  11472. static void ggml_compute_forward_map_unary_f32(
  11473. const struct ggml_compute_params * params,
  11474. const struct ggml_tensor * src0,
  11475. struct ggml_tensor * dst,
  11476. const ggml_unary_op_f32_t fun) {
  11477. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11478. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11479. return;
  11480. }
  11481. const int n = ggml_nrows(src0);
  11482. const int nc = src0->ne[0];
  11483. assert( dst->nb[0] == sizeof(float));
  11484. assert(src0->nb[0] == sizeof(float));
  11485. for (int i = 0; i < n; i++) {
  11486. fun(nc,
  11487. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11488. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11489. }
  11490. }
  11491. static void ggml_compute_forward_map_unary(
  11492. const struct ggml_compute_params * params,
  11493. const struct ggml_tensor * src0,
  11494. struct ggml_tensor * dst,
  11495. const ggml_unary_op_f32_t fun) {
  11496. switch (src0->type) {
  11497. case GGML_TYPE_F32:
  11498. {
  11499. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11500. } break;
  11501. default:
  11502. {
  11503. GGML_ASSERT(false);
  11504. } break;
  11505. }
  11506. }
  11507. // ggml_compute_forward_map_binary
  11508. static void ggml_compute_forward_map_binary_f32(
  11509. const struct ggml_compute_params * params,
  11510. const struct ggml_tensor * src0,
  11511. const struct ggml_tensor * src1,
  11512. struct ggml_tensor * dst,
  11513. const ggml_binary_op_f32_t fun) {
  11514. assert(params->ith == 0);
  11515. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11516. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11517. return;
  11518. }
  11519. const int n = ggml_nrows(src0);
  11520. const int nc = src0->ne[0];
  11521. assert( dst->nb[0] == sizeof(float));
  11522. assert(src0->nb[0] == sizeof(float));
  11523. assert(src1->nb[0] == sizeof(float));
  11524. for (int i = 0; i < n; i++) {
  11525. fun(nc,
  11526. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11527. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11528. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11529. }
  11530. }
  11531. static void ggml_compute_forward_map_binary(
  11532. const struct ggml_compute_params * params,
  11533. const struct ggml_tensor * src0,
  11534. const struct ggml_tensor * src1,
  11535. struct ggml_tensor * dst,
  11536. const ggml_binary_op_f32_t fun) {
  11537. switch (src0->type) {
  11538. case GGML_TYPE_F32:
  11539. {
  11540. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11541. } break;
  11542. default:
  11543. {
  11544. GGML_ASSERT(false);
  11545. } break;
  11546. }
  11547. }
  11548. // ggml_compute_forward_map_custom1
  11549. static void ggml_compute_forward_map_custom1_f32(
  11550. const struct ggml_compute_params * params,
  11551. const struct ggml_tensor * a,
  11552. struct ggml_tensor * dst,
  11553. const ggml_custom1_op_f32_t fun) {
  11554. assert(params->ith == 0);
  11555. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11556. return;
  11557. }
  11558. fun(dst, a);
  11559. }
  11560. static void ggml_compute_forward_map_custom1(
  11561. const struct ggml_compute_params * params,
  11562. const struct ggml_tensor * a,
  11563. struct ggml_tensor * dst,
  11564. const ggml_custom1_op_f32_t fun) {
  11565. switch (a->type) {
  11566. case GGML_TYPE_F32:
  11567. {
  11568. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11569. } break;
  11570. default:
  11571. {
  11572. GGML_ASSERT(false);
  11573. } break;
  11574. }
  11575. }
  11576. // ggml_compute_forward_map_custom2
  11577. static void ggml_compute_forward_map_custom2_f32(
  11578. const struct ggml_compute_params * params,
  11579. const struct ggml_tensor * a,
  11580. const struct ggml_tensor * b,
  11581. struct ggml_tensor * dst,
  11582. const ggml_custom2_op_f32_t fun) {
  11583. assert(params->ith == 0);
  11584. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11585. return;
  11586. }
  11587. fun(dst, a, b);
  11588. }
  11589. static void ggml_compute_forward_map_custom2(
  11590. const struct ggml_compute_params * params,
  11591. const struct ggml_tensor * a,
  11592. const struct ggml_tensor * b,
  11593. struct ggml_tensor * dst,
  11594. const ggml_custom2_op_f32_t fun) {
  11595. switch (a->type) {
  11596. case GGML_TYPE_F32:
  11597. {
  11598. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11599. } break;
  11600. default:
  11601. {
  11602. GGML_ASSERT(false);
  11603. } break;
  11604. }
  11605. }
  11606. // ggml_compute_forward_map_custom3
  11607. static void ggml_compute_forward_map_custom3_f32(
  11608. const struct ggml_compute_params * params,
  11609. const struct ggml_tensor * a,
  11610. const struct ggml_tensor * b,
  11611. const struct ggml_tensor * c,
  11612. struct ggml_tensor * dst,
  11613. const ggml_custom3_op_f32_t fun) {
  11614. assert(params->ith == 0);
  11615. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11616. return;
  11617. }
  11618. fun(dst, a, b, c);
  11619. }
  11620. static void ggml_compute_forward_map_custom3(
  11621. const struct ggml_compute_params * params,
  11622. const struct ggml_tensor * a,
  11623. const struct ggml_tensor * b,
  11624. const struct ggml_tensor * c,
  11625. struct ggml_tensor * dst,
  11626. const ggml_custom3_op_f32_t fun) {
  11627. switch (a->type) {
  11628. case GGML_TYPE_F32:
  11629. {
  11630. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11631. } break;
  11632. default:
  11633. {
  11634. GGML_ASSERT(false);
  11635. } break;
  11636. }
  11637. }
  11638. // ggml_compute_forward_cross_entropy_loss
  11639. static void ggml_compute_forward_cross_entropy_loss_f32(
  11640. const struct ggml_compute_params * params,
  11641. const struct ggml_tensor * src0,
  11642. const struct ggml_tensor * src1,
  11643. struct ggml_tensor * dst) {
  11644. GGML_ASSERT(ggml_is_contiguous(src0));
  11645. GGML_ASSERT(ggml_is_contiguous(src1));
  11646. GGML_ASSERT(ggml_is_scalar(dst));
  11647. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11648. const int ith = params->ith;
  11649. const int nth = params->nth;
  11650. float * sums = (float *) params->wdata;
  11651. // TODO: handle transposed/permuted matrices
  11652. const int nc = src0->ne[0];
  11653. const int nr = ggml_nrows(src0);
  11654. if (params->type == GGML_TASK_INIT) {
  11655. if (ith == 0) {
  11656. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11657. }
  11658. return;
  11659. }
  11660. if (params->type == GGML_TASK_FINALIZE) {
  11661. if (ith == 0) {
  11662. float * dp = (float *) dst->data;
  11663. ggml_vec_sum_f32(nth, dp, sums);
  11664. dp[0] *= -1.0f;
  11665. }
  11666. return;
  11667. }
  11668. const double eps = 1e-9;
  11669. // rows per thread
  11670. const int dr = (nr + nth - 1)/nth;
  11671. // row range for this thread
  11672. const int ir0 = dr*ith;
  11673. const int ir1 = MIN(ir0 + dr, nr);
  11674. for (int i1 = ir0; i1 < ir1; i1++) {
  11675. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11676. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11677. float * st = (float *) params->wdata + nth + ith*nc;
  11678. #ifndef NDEBUG
  11679. for (int i = 0; i < nc; ++i) {
  11680. //printf("p[%d] = %f\n", i, p[i]);
  11681. assert(!isnan(s0[i]));
  11682. assert(!isnan(s1[i]));
  11683. }
  11684. #endif
  11685. // soft_max
  11686. ggml_float sum = 0.0;
  11687. {
  11688. float max = -INFINITY;
  11689. ggml_vec_max_f32(nc, &max, s0);
  11690. uint16_t scvt;
  11691. for (int i = 0; i < nc; i++) {
  11692. if (s0[i] == -INFINITY) {
  11693. st[i] = 0.0f;
  11694. } else {
  11695. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11696. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11697. memcpy(&scvt, &s, sizeof(scvt));
  11698. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11699. sum += (ggml_float)val;
  11700. st[i] = val;
  11701. }
  11702. }
  11703. assert(sum > 0.0);
  11704. // sum = 1.0/sum;
  11705. }
  11706. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11707. sum = (1.0 - eps) / sum;
  11708. ggml_vec_scale_f32(nc, st, sum);
  11709. ggml_vec_add1_f32(nc, st, st, eps);
  11710. ggml_vec_log_f32(nc, st, st);
  11711. ggml_vec_mul_f32(nc, st, st, s1);
  11712. ggml_vec_sum_f32(nc, sums + ith, st);
  11713. #ifndef NDEBUG
  11714. for (int i = 0; i < nc; ++i) {
  11715. assert(!isnan(st[i]));
  11716. assert(!isinf(st[i]));
  11717. }
  11718. #endif
  11719. }
  11720. }
  11721. static void ggml_compute_forward_cross_entropy_loss(
  11722. const struct ggml_compute_params * params,
  11723. const struct ggml_tensor * src0,
  11724. const struct ggml_tensor * src1,
  11725. struct ggml_tensor * dst) {
  11726. switch (src0->type) {
  11727. case GGML_TYPE_F32:
  11728. {
  11729. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11730. } break;
  11731. default:
  11732. {
  11733. GGML_ASSERT(false);
  11734. } break;
  11735. }
  11736. }
  11737. // ggml_compute_forward_cross_entropy_loss_back
  11738. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11739. const struct ggml_compute_params * params,
  11740. const struct ggml_tensor * src0,
  11741. const struct ggml_tensor * src1,
  11742. const struct ggml_tensor * opt0,
  11743. struct ggml_tensor * dst) {
  11744. GGML_ASSERT(ggml_is_contiguous(dst));
  11745. GGML_ASSERT(ggml_is_contiguous(src0));
  11746. GGML_ASSERT(ggml_is_contiguous(src1));
  11747. GGML_ASSERT(ggml_is_contiguous(opt0));
  11748. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11749. const int64_t ith = params->ith;
  11750. const int64_t nth = params->nth;
  11751. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11752. return;
  11753. }
  11754. const float eps = 1e-9f;
  11755. // TODO: handle transposed/permuted matrices
  11756. const int64_t nc = src0->ne[0];
  11757. const int64_t nr = ggml_nrows(src0);
  11758. // rows per thread
  11759. const int64_t dr = (nr + nth - 1)/nth;
  11760. // row range for this thread
  11761. const int64_t ir0 = dr*ith;
  11762. const int64_t ir1 = MIN(ir0 + dr, nr);
  11763. float * d = (float *) opt0->data;
  11764. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11765. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11766. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11767. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11768. float * sm = (float *) params->wdata + ith*nc;
  11769. #ifndef NDEBUG
  11770. for (int i = 0; i < nc; ++i) {
  11771. //printf("p[%d] = %f\n", i, p[i]);
  11772. assert(!isnan(s0[i]));
  11773. assert(!isnan(s1[i]));
  11774. }
  11775. #endif
  11776. // step by step explanation:
  11777. {
  11778. //float * sums = (float *) params->wdata;
  11779. // forward pass with annotated gradients from backward pass
  11780. // (built by going in reverse operation order, adding to gradients of current operation args)
  11781. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11782. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11783. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11784. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11785. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11786. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11787. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11788. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11789. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11790. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11791. // postorder:
  11792. // grad[st1] := softmax(s0)
  11793. // grad[st1] := grad[st1]*(1.0 - eps)
  11794. // grad[st1] := grad[st1] + eps
  11795. // grad[st1] := s1 / grad[st1]
  11796. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11797. // src0 gradients by going through softmax_back
  11798. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11799. // from softmax_back:
  11800. // dxk = yk * (dyk - dot(y, dy))
  11801. // dot_y_dy := dot(y, dy)
  11802. // dx := dy
  11803. // dx := dx - dot_y_dy
  11804. // dx := dx * y
  11805. // postorder:
  11806. // dot_st1_dst1 := dot(st1, grad[st1])
  11807. // grad[s0] := grad[st1]
  11808. // grad[s0] := grad[s0] - dot_st1_dst1
  11809. // grad[s0] := grad[s0] * st1
  11810. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11811. // sm := softmax(s0)
  11812. // grad[s0] := sm*(1.0 - eps)
  11813. // grad[s0] := grad[s0] + eps
  11814. // grad[s0] := s1 / grad[s0]
  11815. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11816. // dot_st1_dst1 := dot(sm, grad[s0])
  11817. // grad[s0] := grad[s0] - dot_st1_dst1
  11818. // grad[s0] := grad[s0] * sm
  11819. }
  11820. // soft_max
  11821. ggml_float sum = 0.0;
  11822. {
  11823. float max = -INFINITY;
  11824. ggml_vec_max_f32(nc, &max, s0);
  11825. uint16_t scvt;
  11826. for (int i = 0; i < nc; i++) {
  11827. if (s0[i] == -INFINITY) {
  11828. sm[i] = 0.0f;
  11829. } else {
  11830. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11831. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11832. memcpy(&scvt, &s, sizeof(scvt));
  11833. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11834. sum += (ggml_float)val;
  11835. sm[i] = val;
  11836. }
  11837. }
  11838. assert(sum > 0.0);
  11839. sum = 1.0/sum;
  11840. }
  11841. float dot_st1_dst1 = 0;
  11842. ggml_vec_scale_f32(nc, sm, sum);
  11843. ggml_vec_cpy_f32 (nc, ds0, sm);
  11844. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11845. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11846. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11847. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11848. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11849. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11850. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11851. #ifndef NDEBUG
  11852. for (int i = 0; i < nc; ++i) {
  11853. assert(!isnan(sm[i]));
  11854. assert(!isinf(sm[i]));
  11855. assert(!isnan(ds0[i]));
  11856. assert(!isinf(ds0[i]));
  11857. }
  11858. #endif
  11859. }
  11860. }
  11861. static void ggml_compute_forward_cross_entropy_loss_back(
  11862. const struct ggml_compute_params * params,
  11863. const struct ggml_tensor * src0,
  11864. const struct ggml_tensor * src1,
  11865. const struct ggml_tensor * opt0,
  11866. struct ggml_tensor * dst) {
  11867. switch (src0->type) {
  11868. case GGML_TYPE_F32:
  11869. {
  11870. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11871. } break;
  11872. default:
  11873. {
  11874. GGML_ASSERT(false);
  11875. } break;
  11876. }
  11877. }
  11878. /////////////////////////////////
  11879. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11880. GGML_ASSERT(params);
  11881. #ifdef GGML_USE_CUBLAS
  11882. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11883. if (skip_cpu) {
  11884. return;
  11885. }
  11886. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11887. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11888. #endif // GGML_USE_CUBLAS
  11889. switch (tensor->op) {
  11890. case GGML_OP_DUP:
  11891. {
  11892. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11893. } break;
  11894. case GGML_OP_ADD:
  11895. {
  11896. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11897. } break;
  11898. case GGML_OP_ADD1:
  11899. {
  11900. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11901. } break;
  11902. case GGML_OP_ACC:
  11903. {
  11904. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11905. } break;
  11906. case GGML_OP_SUB:
  11907. {
  11908. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11909. } break;
  11910. case GGML_OP_MUL:
  11911. {
  11912. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11913. } break;
  11914. case GGML_OP_DIV:
  11915. {
  11916. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11917. } break;
  11918. case GGML_OP_SQR:
  11919. {
  11920. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11921. } break;
  11922. case GGML_OP_SQRT:
  11923. {
  11924. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11925. } break;
  11926. case GGML_OP_LOG:
  11927. {
  11928. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11929. } break;
  11930. case GGML_OP_SUM:
  11931. {
  11932. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11933. } break;
  11934. case GGML_OP_SUM_ROWS:
  11935. {
  11936. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11937. } break;
  11938. case GGML_OP_MEAN:
  11939. {
  11940. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11941. } break;
  11942. case GGML_OP_ARGMAX:
  11943. {
  11944. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11945. } break;
  11946. case GGML_OP_REPEAT:
  11947. {
  11948. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11949. } break;
  11950. case GGML_OP_REPEAT_BACK:
  11951. {
  11952. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11953. } break;
  11954. case GGML_OP_SILU_BACK:
  11955. {
  11956. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11957. } break;
  11958. case GGML_OP_NORM:
  11959. {
  11960. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11961. } break;
  11962. case GGML_OP_RMS_NORM:
  11963. {
  11964. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11965. } break;
  11966. case GGML_OP_RMS_NORM_BACK:
  11967. {
  11968. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11969. } break;
  11970. case GGML_OP_MUL_MAT:
  11971. {
  11972. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11973. } break;
  11974. case GGML_OP_OUT_PROD:
  11975. {
  11976. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11977. } break;
  11978. case GGML_OP_SCALE:
  11979. {
  11980. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11981. } break;
  11982. case GGML_OP_SET:
  11983. {
  11984. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11985. } break;
  11986. case GGML_OP_CPY:
  11987. {
  11988. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11989. } break;
  11990. case GGML_OP_CONT:
  11991. {
  11992. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11993. } break;
  11994. case GGML_OP_RESHAPE:
  11995. {
  11996. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11997. } break;
  11998. case GGML_OP_VIEW:
  11999. {
  12000. ggml_compute_forward_view(params, tensor->src[0]);
  12001. } break;
  12002. case GGML_OP_PERMUTE:
  12003. {
  12004. ggml_compute_forward_permute(params, tensor->src[0]);
  12005. } break;
  12006. case GGML_OP_TRANSPOSE:
  12007. {
  12008. ggml_compute_forward_transpose(params, tensor->src[0]);
  12009. } break;
  12010. case GGML_OP_GET_ROWS:
  12011. {
  12012. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12013. } break;
  12014. case GGML_OP_GET_ROWS_BACK:
  12015. {
  12016. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12017. } break;
  12018. case GGML_OP_DIAG:
  12019. {
  12020. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12021. } break;
  12022. case GGML_OP_DIAG_MASK_INF:
  12023. {
  12024. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12025. } break;
  12026. case GGML_OP_DIAG_MASK_ZERO:
  12027. {
  12028. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12029. } break;
  12030. case GGML_OP_SOFT_MAX:
  12031. {
  12032. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12033. } break;
  12034. case GGML_OP_SOFT_MAX_BACK:
  12035. {
  12036. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12037. } break;
  12038. case GGML_OP_ROPE:
  12039. {
  12040. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12041. } break;
  12042. case GGML_OP_ROPE_BACK:
  12043. {
  12044. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12045. } break;
  12046. case GGML_OP_ALIBI:
  12047. {
  12048. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12049. } break;
  12050. case GGML_OP_CLAMP:
  12051. {
  12052. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12053. } break;
  12054. case GGML_OP_CONV_1D:
  12055. {
  12056. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12057. } break;
  12058. case GGML_OP_CONV_2D:
  12059. {
  12060. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12061. } break;
  12062. case GGML_OP_POOL_1D:
  12063. {
  12064. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12065. } break;
  12066. case GGML_OP_POOL_2D:
  12067. {
  12068. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12069. } break;
  12070. case GGML_OP_FLASH_ATTN:
  12071. {
  12072. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12073. GGML_ASSERT(t == 0 || t == 1);
  12074. const bool masked = t != 0;
  12075. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12076. } break;
  12077. case GGML_OP_FLASH_FF:
  12078. {
  12079. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12080. } break;
  12081. case GGML_OP_FLASH_ATTN_BACK:
  12082. {
  12083. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12084. GGML_ASSERT(t == 0 || t == 1);
  12085. bool masked = t != 0;
  12086. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12087. } break;
  12088. case GGML_OP_WIN_PART:
  12089. {
  12090. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12091. } break;
  12092. case GGML_OP_WIN_UNPART:
  12093. {
  12094. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12095. } break;
  12096. case GGML_OP_UNARY:
  12097. {
  12098. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12099. } break;
  12100. case GGML_OP_MAP_UNARY:
  12101. {
  12102. ggml_unary_op_f32_t fun;
  12103. memcpy(&fun, tensor->op_params, sizeof(fun));
  12104. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12105. }
  12106. break;
  12107. case GGML_OP_MAP_BINARY:
  12108. {
  12109. ggml_binary_op_f32_t fun;
  12110. memcpy(&fun, tensor->op_params, sizeof(fun));
  12111. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12112. }
  12113. break;
  12114. case GGML_OP_MAP_CUSTOM1:
  12115. {
  12116. ggml_custom1_op_f32_t fun;
  12117. memcpy(&fun, tensor->op_params, sizeof(fun));
  12118. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
  12119. }
  12120. break;
  12121. case GGML_OP_MAP_CUSTOM2:
  12122. {
  12123. ggml_custom2_op_f32_t fun;
  12124. memcpy(&fun, tensor->op_params, sizeof(fun));
  12125. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
  12126. }
  12127. break;
  12128. case GGML_OP_MAP_CUSTOM3:
  12129. {
  12130. ggml_custom3_op_f32_t fun;
  12131. memcpy(&fun, tensor->op_params, sizeof(fun));
  12132. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12133. }
  12134. break;
  12135. case GGML_OP_CROSS_ENTROPY_LOSS:
  12136. {
  12137. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12138. }
  12139. break;
  12140. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12141. {
  12142. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12143. }
  12144. break;
  12145. case GGML_OP_NONE:
  12146. {
  12147. // nop
  12148. } break;
  12149. case GGML_OP_COUNT:
  12150. {
  12151. GGML_ASSERT(false);
  12152. } break;
  12153. }
  12154. }
  12155. ////////////////////////////////////////////////////////////////////////////////
  12156. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12157. struct ggml_tensor * src0 = tensor->src[0];
  12158. struct ggml_tensor * src1 = tensor->src[1];
  12159. switch (tensor->op) {
  12160. case GGML_OP_DUP:
  12161. {
  12162. if (src0->grad) {
  12163. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12164. }
  12165. } break;
  12166. case GGML_OP_ADD:
  12167. {
  12168. if (src0->grad) {
  12169. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12170. }
  12171. if (src1->grad) {
  12172. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12173. }
  12174. } break;
  12175. case GGML_OP_ADD1:
  12176. {
  12177. if (src0->grad) {
  12178. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12179. }
  12180. if (src1->grad) {
  12181. src1->grad = ggml_add_impl(ctx,
  12182. src1->grad,
  12183. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12184. inplace);
  12185. }
  12186. } break;
  12187. case GGML_OP_ACC:
  12188. {
  12189. if (src0->grad) {
  12190. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12191. }
  12192. if (src1->grad) {
  12193. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12194. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12195. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12196. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12197. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12198. tensor->grad,
  12199. src1->grad->ne[0],
  12200. src1->grad->ne[1],
  12201. src1->grad->ne[2],
  12202. src1->grad->ne[3],
  12203. nb1, nb2, nb3, offset);
  12204. src1->grad =
  12205. ggml_add_impl(ctx,
  12206. src1->grad,
  12207. ggml_reshape(ctx,
  12208. ggml_cont(ctx, tensor_grad_view),
  12209. src1->grad),
  12210. inplace);
  12211. }
  12212. } break;
  12213. case GGML_OP_SUB:
  12214. {
  12215. if (src0->grad) {
  12216. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12217. }
  12218. if (src1->grad) {
  12219. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12220. }
  12221. } break;
  12222. case GGML_OP_MUL:
  12223. {
  12224. if (src0->grad) {
  12225. src0->grad =
  12226. ggml_add_impl(ctx,
  12227. src0->grad,
  12228. ggml_mul(ctx, src1, tensor->grad),
  12229. inplace);
  12230. }
  12231. if (src1->grad) {
  12232. src1->grad =
  12233. ggml_add_impl(ctx,
  12234. src1->grad,
  12235. ggml_mul(ctx, src0, tensor->grad),
  12236. inplace);
  12237. }
  12238. } break;
  12239. case GGML_OP_DIV:
  12240. {
  12241. if (src0->grad) {
  12242. src0->grad =
  12243. ggml_add_impl(ctx,
  12244. src0->grad,
  12245. ggml_div(ctx, tensor->grad, src1),
  12246. inplace);
  12247. }
  12248. if (src1->grad) {
  12249. src1->grad =
  12250. ggml_sub_impl(ctx,
  12251. src1->grad,
  12252. ggml_mul(ctx,
  12253. tensor->grad,
  12254. ggml_div(ctx, tensor, src1)),
  12255. inplace);
  12256. }
  12257. } break;
  12258. case GGML_OP_SQR:
  12259. {
  12260. if (src0->grad) {
  12261. src0->grad =
  12262. ggml_add_impl(ctx,
  12263. src0->grad,
  12264. ggml_scale(ctx,
  12265. ggml_mul(ctx, src0, tensor->grad),
  12266. ggml_new_f32(ctx, 2.0f)),
  12267. inplace);
  12268. }
  12269. } break;
  12270. case GGML_OP_SQRT:
  12271. {
  12272. if (src0->grad) {
  12273. src0->grad =
  12274. ggml_add_impl(ctx,
  12275. src0->grad,
  12276. ggml_scale(ctx,
  12277. ggml_div(ctx,
  12278. tensor->grad,
  12279. tensor),
  12280. ggml_new_f32(ctx, 0.5f)),
  12281. inplace);
  12282. }
  12283. } break;
  12284. case GGML_OP_LOG:
  12285. {
  12286. if (src0->grad) {
  12287. src0->grad =
  12288. ggml_add_impl(ctx,
  12289. src0->grad,
  12290. ggml_div(ctx,
  12291. tensor->grad,
  12292. src0),
  12293. inplace);
  12294. }
  12295. } break;
  12296. case GGML_OP_SUM:
  12297. {
  12298. if (src0->grad) {
  12299. src0->grad =
  12300. ggml_add1_impl(ctx,
  12301. src0->grad,
  12302. tensor->grad,
  12303. inplace);
  12304. }
  12305. } break;
  12306. case GGML_OP_SUM_ROWS:
  12307. {
  12308. if (src0->grad) {
  12309. src0->grad =
  12310. ggml_add_impl(ctx,
  12311. src0->grad,
  12312. ggml_repeat(ctx,
  12313. tensor->grad,
  12314. src0->grad),
  12315. inplace);
  12316. }
  12317. } break;
  12318. case GGML_OP_MEAN:
  12319. case GGML_OP_ARGMAX:
  12320. {
  12321. GGML_ASSERT(false); // TODO: implement
  12322. } break;
  12323. case GGML_OP_REPEAT:
  12324. {
  12325. // necessary for llama
  12326. if (src0->grad) {
  12327. src0->grad = ggml_add_impl(ctx,
  12328. src0->grad,
  12329. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12330. inplace);
  12331. }
  12332. } break;
  12333. case GGML_OP_REPEAT_BACK:
  12334. {
  12335. if (src0->grad) {
  12336. // TODO: test this
  12337. src0->grad = ggml_add_impl(ctx,
  12338. src0->grad,
  12339. ggml_repeat(ctx, tensor->grad, src0->grad),
  12340. inplace);
  12341. }
  12342. } break;
  12343. case GGML_OP_SILU_BACK:
  12344. {
  12345. GGML_ASSERT(false); // TODO: not implemented
  12346. } break;
  12347. case GGML_OP_NORM:
  12348. {
  12349. GGML_ASSERT(false); // TODO: not implemented
  12350. } break;
  12351. case GGML_OP_RMS_NORM:
  12352. {
  12353. // necessary for llama
  12354. if (src0->grad) {
  12355. src0->grad = ggml_add_impl(ctx,
  12356. src0->grad,
  12357. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12358. inplace);
  12359. }
  12360. } break;
  12361. case GGML_OP_RMS_NORM_BACK:
  12362. {
  12363. GGML_ASSERT(false); // TODO: not implemented
  12364. } break;
  12365. case GGML_OP_MUL_MAT:
  12366. {
  12367. // https://cs231n.github.io/optimization-2/#staged
  12368. // # forward pass
  12369. // s0 = np.random.randn(5, 10)
  12370. // s1 = np.random.randn(10, 3)
  12371. // t = s0.dot(s1)
  12372. // # now suppose we had the gradient on t from above in the circuit
  12373. // dt = np.random.randn(*t.shape) # same shape as t
  12374. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12375. // ds1 = t.T.dot(dt)
  12376. // tensor.shape [m,p]
  12377. // src0.shape [n,m]
  12378. // src1.shape [n,p]
  12379. // necessary for llama
  12380. if (src0->grad) {
  12381. src0->grad =
  12382. ggml_add_impl(ctx,
  12383. src0->grad,
  12384. ggml_out_prod(ctx, // [n,m]
  12385. src1, // [n,p]
  12386. tensor->grad), // [m,p]
  12387. inplace);
  12388. }
  12389. if (src1->grad) {
  12390. src1->grad =
  12391. ggml_add_impl(ctx,
  12392. src1->grad,
  12393. // ggml_mul_mat(ctx, // [n,p]
  12394. // ggml_cont(ctx, // [m,n]
  12395. // ggml_transpose(ctx, src0)), // [m,n]
  12396. // tensor->grad), // [m,p]
  12397. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12398. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12399. // // and then use ggml_out_prod
  12400. ggml_out_prod(ctx, // [n,p]
  12401. src0, // [n,m]
  12402. ggml_transpose(ctx, // [p,m]
  12403. tensor->grad)), // [m,p]
  12404. inplace);
  12405. }
  12406. } break;
  12407. case GGML_OP_OUT_PROD:
  12408. {
  12409. GGML_ASSERT(false); // TODO: not implemented
  12410. } break;
  12411. case GGML_OP_SCALE:
  12412. {
  12413. // necessary for llama
  12414. if (src0->grad) {
  12415. src0->grad =
  12416. ggml_add_impl(ctx,
  12417. src0->grad,
  12418. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12419. inplace);
  12420. }
  12421. if (src1->grad) {
  12422. src1->grad =
  12423. ggml_add_impl(ctx,
  12424. src1->grad,
  12425. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12426. inplace);
  12427. }
  12428. } break;
  12429. case GGML_OP_SET:
  12430. {
  12431. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12432. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12433. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12434. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12435. struct ggml_tensor * tensor_grad_view = NULL;
  12436. if (src0->grad || src1->grad) {
  12437. GGML_ASSERT(src0->type == tensor->type);
  12438. GGML_ASSERT(tensor->grad->type == tensor->type);
  12439. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12440. tensor_grad_view = ggml_view_4d(ctx,
  12441. tensor->grad,
  12442. src1->grad->ne[0],
  12443. src1->grad->ne[1],
  12444. src1->grad->ne[2],
  12445. src1->grad->ne[3],
  12446. nb1, nb2, nb3, offset);
  12447. }
  12448. if (src0->grad) {
  12449. src0->grad = ggml_add_impl(ctx,
  12450. src0->grad,
  12451. ggml_acc_impl(ctx,
  12452. tensor->grad,
  12453. ggml_neg(ctx, tensor_grad_view),
  12454. nb1, nb2, nb3, offset, false),
  12455. inplace);
  12456. }
  12457. if (src1->grad) {
  12458. src1->grad =
  12459. ggml_add_impl(ctx,
  12460. src1->grad,
  12461. ggml_reshape(ctx,
  12462. ggml_cont(ctx, tensor_grad_view),
  12463. src1->grad),
  12464. inplace);
  12465. }
  12466. } break;
  12467. case GGML_OP_CPY:
  12468. {
  12469. // necessary for llama
  12470. // cpy overwrites value of src1 by src0 and returns view(src1)
  12471. // the overwriting is mathematically equivalent to:
  12472. // tensor = src0 * 1 + src1 * 0
  12473. if (src0->grad) {
  12474. // dsrc0 = dtensor * 1
  12475. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12476. }
  12477. if (src1->grad) {
  12478. // dsrc1 = dtensor * 0 -> noop
  12479. }
  12480. } break;
  12481. case GGML_OP_CONT:
  12482. {
  12483. // same as cpy
  12484. if (src0->grad) {
  12485. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12486. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12487. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12488. }
  12489. } break;
  12490. case GGML_OP_RESHAPE:
  12491. {
  12492. // necessary for llama
  12493. if (src0->grad) {
  12494. src0->grad =
  12495. ggml_add_impl(ctx, src0->grad,
  12496. ggml_reshape(ctx, tensor->grad, src0->grad),
  12497. inplace);
  12498. }
  12499. } break;
  12500. case GGML_OP_VIEW:
  12501. {
  12502. // necessary for llama
  12503. if (src0->grad) {
  12504. size_t offset;
  12505. memcpy(&offset, tensor->op_params, sizeof(offset));
  12506. size_t nb1 = tensor->nb[1];
  12507. size_t nb2 = tensor->nb[2];
  12508. size_t nb3 = tensor->nb[3];
  12509. if (src0->type != src0->grad->type) {
  12510. // gradient is typically F32, but src0 could be other type
  12511. size_t ng = ggml_element_size(src0->grad);
  12512. size_t n0 = ggml_element_size(src0);
  12513. GGML_ASSERT(offset % n0 == 0);
  12514. GGML_ASSERT(nb1 % n0 == 0);
  12515. GGML_ASSERT(nb2 % n0 == 0);
  12516. GGML_ASSERT(nb3 % n0 == 0);
  12517. offset = (offset / n0) * ng;
  12518. nb1 = (nb1 / n0) * ng;
  12519. nb2 = (nb2 / n0) * ng;
  12520. nb3 = (nb3 / n0) * ng;
  12521. }
  12522. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12523. }
  12524. } break;
  12525. case GGML_OP_PERMUTE:
  12526. {
  12527. // necessary for llama
  12528. if (src0->grad) {
  12529. int32_t * axes = (int32_t *) tensor->op_params;
  12530. int axis0 = axes[0] & 0x3;
  12531. int axis1 = axes[1] & 0x3;
  12532. int axis2 = axes[2] & 0x3;
  12533. int axis3 = axes[3] & 0x3;
  12534. int axes_backward[4] = {0,0,0,0};
  12535. axes_backward[axis0] = 0;
  12536. axes_backward[axis1] = 1;
  12537. axes_backward[axis2] = 2;
  12538. axes_backward[axis3] = 3;
  12539. src0->grad =
  12540. ggml_add_impl(ctx, src0->grad,
  12541. ggml_permute(ctx,
  12542. tensor->grad,
  12543. axes_backward[0],
  12544. axes_backward[1],
  12545. axes_backward[2],
  12546. axes_backward[3]),
  12547. inplace);
  12548. }
  12549. } break;
  12550. case GGML_OP_TRANSPOSE:
  12551. {
  12552. // necessary for llama
  12553. if (src0->grad) {
  12554. src0->grad =
  12555. ggml_add_impl(ctx, src0->grad,
  12556. ggml_transpose(ctx, tensor->grad),
  12557. inplace);
  12558. }
  12559. } break;
  12560. case GGML_OP_GET_ROWS:
  12561. {
  12562. // necessary for llama (only for tokenizer)
  12563. if (src0->grad) {
  12564. src0->grad =
  12565. ggml_add_impl(ctx, src0->grad,
  12566. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12567. inplace);
  12568. }
  12569. if (src1->grad) {
  12570. // noop
  12571. }
  12572. } break;
  12573. case GGML_OP_GET_ROWS_BACK:
  12574. {
  12575. GGML_ASSERT(false); // TODO: not implemented
  12576. } break;
  12577. case GGML_OP_DIAG:
  12578. {
  12579. GGML_ASSERT(false); // TODO: not implemented
  12580. } break;
  12581. case GGML_OP_DIAG_MASK_INF:
  12582. {
  12583. // necessary for llama
  12584. if (src0->grad) {
  12585. const int n_past = ((int32_t *) tensor->op_params)[0];
  12586. src0->grad =
  12587. ggml_add_impl(ctx, src0->grad,
  12588. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12589. inplace);
  12590. }
  12591. } break;
  12592. case GGML_OP_DIAG_MASK_ZERO:
  12593. {
  12594. // necessary for llama
  12595. if (src0->grad) {
  12596. const int n_past = ((int32_t *) tensor->op_params)[0];
  12597. src0->grad =
  12598. ggml_add_impl(ctx, src0->grad,
  12599. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12600. inplace);
  12601. }
  12602. } break;
  12603. case GGML_OP_SOFT_MAX:
  12604. {
  12605. // necessary for llama
  12606. if (src0->grad) {
  12607. src0->grad =
  12608. ggml_add_impl(ctx, src0->grad,
  12609. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12610. inplace);
  12611. }
  12612. } break;
  12613. case GGML_OP_SOFT_MAX_BACK:
  12614. {
  12615. GGML_ASSERT(false); // TODO: not implemented
  12616. } break;
  12617. case GGML_OP_ROPE:
  12618. {
  12619. // necessary for llama
  12620. if (src0->grad) {
  12621. const int n_past = ((int32_t *) tensor->op_params)[0];
  12622. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12623. const int mode = ((int32_t *) tensor->op_params)[2];
  12624. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12625. src0->grad = ggml_add_impl(ctx,
  12626. src0->grad,
  12627. ggml_rope_back(ctx,
  12628. tensor->grad,
  12629. n_past,
  12630. n_dims,
  12631. mode,
  12632. n_ctx),
  12633. inplace);
  12634. }
  12635. } break;
  12636. case GGML_OP_ROPE_BACK:
  12637. {
  12638. if (src0->grad) {
  12639. const int n_past = ((int32_t *) tensor->op_params)[0];
  12640. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12641. const int mode = ((int32_t *) tensor->op_params)[2];
  12642. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12643. src0->grad = ggml_add_impl(ctx,
  12644. src0->grad,
  12645. ggml_rope(ctx,
  12646. tensor->grad,
  12647. n_past,
  12648. n_dims,
  12649. mode,
  12650. n_ctx),
  12651. inplace);
  12652. }
  12653. } break;
  12654. case GGML_OP_ALIBI:
  12655. {
  12656. GGML_ASSERT(false); // TODO: not implemented
  12657. } break;
  12658. case GGML_OP_CLAMP:
  12659. {
  12660. GGML_ASSERT(false); // TODO: not implemented
  12661. } break;
  12662. case GGML_OP_CONV_1D:
  12663. {
  12664. GGML_ASSERT(false); // TODO: not implemented
  12665. } break;
  12666. case GGML_OP_CONV_2D:
  12667. {
  12668. GGML_ASSERT(false); // TODO: not implemented
  12669. } break;
  12670. case GGML_OP_POOL_1D:
  12671. {
  12672. GGML_ASSERT(false); // TODO: not implemented
  12673. } break;
  12674. case GGML_OP_POOL_2D:
  12675. {
  12676. GGML_ASSERT(false); // TODO: not implemented
  12677. } break;
  12678. case GGML_OP_FLASH_ATTN:
  12679. {
  12680. struct ggml_tensor * flash_grad = NULL;
  12681. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12682. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12683. GGML_ASSERT(t == 0 || t == 1);
  12684. bool masked = t != 0;
  12685. flash_grad =
  12686. ggml_flash_attn_back(ctx,
  12687. src0,
  12688. src1,
  12689. tensor->src[2],
  12690. tensor->grad,
  12691. masked);
  12692. }
  12693. if (src0->grad) {
  12694. struct ggml_tensor * grad_q = NULL;
  12695. const size_t nb0 = flash_grad->nb[0];
  12696. const size_t offset = 0;
  12697. switch(src0->n_dims) {
  12698. case 2:
  12699. {
  12700. grad_q = ggml_view_2d(ctx,
  12701. flash_grad,
  12702. src0->ne[0],
  12703. src0->ne[1],
  12704. nb0*src0->ne[0],
  12705. offset);
  12706. } break;
  12707. case 3:
  12708. {
  12709. grad_q = ggml_view_3d(ctx,
  12710. flash_grad,
  12711. src0->ne[0],
  12712. src0->ne[1],
  12713. src0->ne[2],
  12714. nb0*src0->ne[0],
  12715. nb0*src0->ne[0]*src0->ne[1],
  12716. offset);
  12717. } break;
  12718. case 4:
  12719. {
  12720. grad_q = ggml_view_4d(ctx,
  12721. flash_grad,
  12722. src0->ne[0],
  12723. src0->ne[1],
  12724. src0->ne[2],
  12725. src0->ne[3],
  12726. nb0*src0->ne[0],
  12727. nb0*src0->ne[0]*src0->ne[1],
  12728. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12729. offset);
  12730. } break;
  12731. }
  12732. src0->grad = ggml_add_impl(ctx,
  12733. src0->grad,
  12734. grad_q,
  12735. inplace);
  12736. }
  12737. if (src1->grad) {
  12738. struct ggml_tensor * grad_k = NULL;
  12739. const size_t nb0 = flash_grad->nb[0];
  12740. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12741. switch(src1->n_dims) {
  12742. case 2:
  12743. {
  12744. grad_k = ggml_view_2d(ctx,
  12745. flash_grad,
  12746. src1->ne[0],
  12747. src1->ne[1],
  12748. nb0*src1->ne[0],
  12749. offset);
  12750. } break;
  12751. case 3:
  12752. {
  12753. grad_k = ggml_view_3d(ctx,
  12754. flash_grad,
  12755. src1->ne[0],
  12756. src1->ne[1],
  12757. src1->ne[2],
  12758. nb0*src1->ne[0],
  12759. nb0*src1->ne[0]*src1->ne[1],
  12760. offset);
  12761. } break;
  12762. case 4:
  12763. {
  12764. grad_k = ggml_view_4d(ctx,
  12765. flash_grad,
  12766. src1->ne[0],
  12767. src1->ne[1],
  12768. src1->ne[2],
  12769. src1->ne[3],
  12770. nb0*src1->ne[0],
  12771. nb0*src1->ne[0]*src1->ne[1],
  12772. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12773. offset);
  12774. } break;
  12775. }
  12776. src1->grad = ggml_add_impl(ctx,
  12777. src1->grad,
  12778. grad_k,
  12779. inplace);
  12780. }
  12781. struct ggml_tensor * opt0 = tensor->src[2];
  12782. if (opt0->grad) {
  12783. struct ggml_tensor * grad_v = NULL;
  12784. const size_t nb0 = flash_grad->nb[0];
  12785. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12786. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12787. switch(opt0->n_dims) {
  12788. case 2:
  12789. {
  12790. grad_v = ggml_view_2d(ctx,
  12791. flash_grad,
  12792. opt0->ne[0],
  12793. opt0->ne[1],
  12794. nb0*opt0->ne[0],
  12795. offset);
  12796. } break;
  12797. case 3:
  12798. {
  12799. grad_v = ggml_view_3d(ctx,
  12800. flash_grad,
  12801. opt0->ne[0],
  12802. opt0->ne[1],
  12803. opt0->ne[2],
  12804. nb0*opt0->ne[0],
  12805. nb0*opt0->ne[0]*opt0->ne[1],
  12806. offset);
  12807. } break;
  12808. case 4:
  12809. {
  12810. grad_v = ggml_view_4d(ctx,
  12811. flash_grad,
  12812. opt0->ne[0],
  12813. opt0->ne[1],
  12814. opt0->ne[2],
  12815. opt0->ne[3],
  12816. nb0*opt0->ne[0],
  12817. nb0*opt0->ne[0]*opt0->ne[1],
  12818. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12819. offset);
  12820. } break;
  12821. }
  12822. opt0->grad = ggml_add_impl(ctx,
  12823. opt0->grad,
  12824. grad_v,
  12825. inplace);
  12826. }
  12827. } break;
  12828. case GGML_OP_FLASH_FF:
  12829. {
  12830. GGML_ASSERT(false); // not supported
  12831. } break;
  12832. case GGML_OP_FLASH_ATTN_BACK:
  12833. {
  12834. GGML_ASSERT(false); // not supported
  12835. } break;
  12836. case GGML_OP_WIN_PART:
  12837. case GGML_OP_WIN_UNPART:
  12838. case GGML_OP_UNARY:
  12839. {
  12840. switch (ggml_get_unary_op(tensor)) {
  12841. case GGML_UNARY_OP_ABS:
  12842. {
  12843. if (src0->grad) {
  12844. src0->grad =
  12845. ggml_add_impl(ctx,
  12846. src0->grad,
  12847. ggml_mul(ctx,
  12848. ggml_sgn(ctx, src0),
  12849. tensor->grad),
  12850. inplace);
  12851. }
  12852. } break;
  12853. case GGML_UNARY_OP_SGN:
  12854. {
  12855. if (src0->grad) {
  12856. // noop
  12857. }
  12858. } break;
  12859. case GGML_UNARY_OP_NEG:
  12860. {
  12861. if (src0->grad) {
  12862. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12863. }
  12864. } break;
  12865. case GGML_UNARY_OP_STEP:
  12866. {
  12867. if (src0->grad) {
  12868. // noop
  12869. }
  12870. } break;
  12871. case GGML_UNARY_OP_TANH:
  12872. {
  12873. GGML_ASSERT(false); // TODO: not implemented
  12874. } break;
  12875. case GGML_UNARY_OP_ELU:
  12876. {
  12877. GGML_ASSERT(false); // TODO: not implemented
  12878. } break;
  12879. case GGML_UNARY_OP_RELU:
  12880. {
  12881. if (src0->grad) {
  12882. src0->grad = ggml_add_impl(ctx,
  12883. src0->grad,
  12884. ggml_mul(ctx,
  12885. ggml_step(ctx, src0),
  12886. tensor->grad),
  12887. inplace);
  12888. }
  12889. } break;
  12890. case GGML_UNARY_OP_GELU:
  12891. {
  12892. GGML_ASSERT(false); // TODO: not implemented
  12893. } break;
  12894. case GGML_UNARY_OP_GELU_QUICK:
  12895. {
  12896. GGML_ASSERT(false); // TODO: not implemented
  12897. } break;
  12898. case GGML_UNARY_OP_SILU:
  12899. {
  12900. // necessary for llama
  12901. if (src0->grad) {
  12902. src0->grad = ggml_add_impl(ctx,
  12903. src0->grad,
  12904. ggml_silu_back(ctx, src0, tensor->grad),
  12905. inplace);
  12906. }
  12907. } break;
  12908. default:
  12909. GGML_ASSERT(false);
  12910. }
  12911. } break;
  12912. case GGML_OP_MAP_UNARY:
  12913. case GGML_OP_MAP_BINARY:
  12914. case GGML_OP_MAP_CUSTOM1:
  12915. case GGML_OP_MAP_CUSTOM2:
  12916. case GGML_OP_MAP_CUSTOM3:
  12917. {
  12918. GGML_ASSERT(false); // not supported
  12919. } break;
  12920. case GGML_OP_CROSS_ENTROPY_LOSS:
  12921. {
  12922. if (src0->grad) {
  12923. src0->grad = ggml_add_impl(ctx,
  12924. src0->grad,
  12925. ggml_cross_entropy_loss_back(ctx,
  12926. src0,
  12927. src1,
  12928. tensor->grad),
  12929. inplace);
  12930. }
  12931. } break;
  12932. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12933. {
  12934. GGML_ASSERT(false); // not supported
  12935. } break;
  12936. case GGML_OP_NONE:
  12937. {
  12938. // nop
  12939. } break;
  12940. case GGML_OP_COUNT:
  12941. {
  12942. GGML_ASSERT(false);
  12943. } break;
  12944. }
  12945. }
  12946. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  12947. static size_t hash(void * p) {
  12948. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  12949. }
  12950. static bool hash_insert(void * hash_table[], void * p) {
  12951. size_t h = hash(p);
  12952. // linear probing
  12953. size_t i = h;
  12954. while (hash_table[i] != NULL && hash_table[i] != p) {
  12955. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  12956. if (i == h) {
  12957. // hash table is full
  12958. GGML_ASSERT(false);
  12959. }
  12960. }
  12961. if (hash_table[i] == p) {
  12962. return true;
  12963. }
  12964. // insert
  12965. hash_table[i] = p;
  12966. return false;
  12967. }
  12968. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12969. if (node->grad == NULL) {
  12970. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12971. // it can also happen during forward pass, if the user performs computations with constants
  12972. if (node->op != GGML_OP_NONE) {
  12973. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12974. }
  12975. }
  12976. // check if already visited
  12977. if (hash_insert(cgraph->visited_hash_table, node)) {
  12978. return;
  12979. }
  12980. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12981. if (node->src[i]) {
  12982. ggml_visit_parents(cgraph, node->src[i]);
  12983. }
  12984. }
  12985. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12986. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12987. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  12988. if (strlen(node->name) == 0) {
  12989. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12990. }
  12991. cgraph->leafs[cgraph->n_leafs] = node;
  12992. cgraph->n_leafs++;
  12993. } else {
  12994. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  12995. if (strlen(node->name) == 0) {
  12996. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12997. }
  12998. cgraph->nodes[cgraph->n_nodes] = node;
  12999. cgraph->grads[cgraph->n_nodes] = node->grad;
  13000. cgraph->n_nodes++;
  13001. }
  13002. }
  13003. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13004. if (!expand) {
  13005. cgraph->n_nodes = 0;
  13006. cgraph->n_leafs = 0;
  13007. }
  13008. const int n0 = cgraph->n_nodes;
  13009. UNUSED(n0);
  13010. ggml_visit_parents(cgraph, tensor);
  13011. const int n_new = cgraph->n_nodes - n0;
  13012. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13013. if (n_new > 0) {
  13014. // the last added node should always be starting point
  13015. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13016. }
  13017. }
  13018. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13019. ggml_build_forward_impl(cgraph, tensor, true);
  13020. }
  13021. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13022. struct ggml_cgraph result = {
  13023. /*.n_nodes =*/ 0,
  13024. /*.n_leafs =*/ 0,
  13025. /*.nodes =*/ { NULL },
  13026. /*.grads =*/ { NULL },
  13027. /*.leafs =*/ { NULL },
  13028. /*.hash_table =*/ { NULL },
  13029. /*.perf_runs =*/ 0,
  13030. /*.perf_cycles =*/ 0,
  13031. /*.perf_time_us =*/ 0,
  13032. };
  13033. ggml_build_forward_impl(&result, tensor, false);
  13034. return result;
  13035. }
  13036. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13037. struct ggml_cgraph result = *gf;
  13038. GGML_ASSERT(gf->n_nodes > 0);
  13039. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13040. if (keep) {
  13041. for (int i = 0; i < gf->n_nodes; i++) {
  13042. struct ggml_tensor * node = gf->nodes[i];
  13043. if (node->grad) {
  13044. node->grad = ggml_dup_tensor(ctx, node);
  13045. gf->grads[i] = node->grad;
  13046. }
  13047. }
  13048. }
  13049. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13050. struct ggml_tensor * node = gf->nodes[i];
  13051. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13052. if (node->grad) {
  13053. ggml_compute_backward(ctx, node, keep);
  13054. }
  13055. }
  13056. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13057. struct ggml_tensor * node = gf->nodes[i];
  13058. if (node->is_param) {
  13059. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13060. ggml_build_forward_expand(&result, node->grad);
  13061. }
  13062. }
  13063. return result;
  13064. }
  13065. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13066. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13067. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13068. *cgraph = (struct ggml_cgraph) {
  13069. /*.n_nodes =*/ 0,
  13070. /*.n_leafs =*/ 0,
  13071. /*.nodes =*/ { NULL },
  13072. /*.grads =*/ { NULL },
  13073. /*.leafs =*/ { NULL },
  13074. /*.hash_table =*/ { NULL },
  13075. /*.perf_runs =*/ 0,
  13076. /*.perf_cycles =*/ 0,
  13077. /*.perf_time_us =*/ 0,
  13078. };
  13079. return cgraph;
  13080. }
  13081. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13082. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13083. ggml_build_forward_impl(cgraph, tensor, false);
  13084. return cgraph;
  13085. }
  13086. size_t ggml_graph_overhead(void) {
  13087. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13088. }
  13089. //
  13090. // thread data
  13091. //
  13092. // synchronization is done via busy loops
  13093. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13094. //
  13095. #ifdef __APPLE__
  13096. //#include <os/lock.h>
  13097. //
  13098. //typedef os_unfair_lock ggml_lock_t;
  13099. //
  13100. //#define ggml_lock_init(x) UNUSED(x)
  13101. //#define ggml_lock_destroy(x) UNUSED(x)
  13102. //#define ggml_lock_lock os_unfair_lock_lock
  13103. //#define ggml_lock_unlock os_unfair_lock_unlock
  13104. //
  13105. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13106. typedef int ggml_lock_t;
  13107. #define ggml_lock_init(x) UNUSED(x)
  13108. #define ggml_lock_destroy(x) UNUSED(x)
  13109. #define ggml_lock_lock(x) UNUSED(x)
  13110. #define ggml_lock_unlock(x) UNUSED(x)
  13111. #define GGML_LOCK_INITIALIZER 0
  13112. typedef pthread_t ggml_thread_t;
  13113. #define ggml_thread_create pthread_create
  13114. #define ggml_thread_join pthread_join
  13115. #else
  13116. //typedef pthread_spinlock_t ggml_lock_t;
  13117. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13118. //#define ggml_lock_destroy pthread_spin_destroy
  13119. //#define ggml_lock_lock pthread_spin_lock
  13120. //#define ggml_lock_unlock pthread_spin_unlock
  13121. typedef int ggml_lock_t;
  13122. #define ggml_lock_init(x) UNUSED(x)
  13123. #define ggml_lock_destroy(x) UNUSED(x)
  13124. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13125. #define ggml_lock_lock(x) _mm_pause()
  13126. #else
  13127. #define ggml_lock_lock(x) UNUSED(x)
  13128. #endif
  13129. #define ggml_lock_unlock(x) UNUSED(x)
  13130. #define GGML_LOCK_INITIALIZER 0
  13131. typedef pthread_t ggml_thread_t;
  13132. #define ggml_thread_create pthread_create
  13133. #define ggml_thread_join pthread_join
  13134. #endif
  13135. // Android's libc implementation "bionic" does not support setting affinity
  13136. #if defined(__linux__) && !defined(__BIONIC__)
  13137. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13138. if (!ggml_is_numa()) {
  13139. return;
  13140. }
  13141. // run thread on node_num thread_n / (threads per node)
  13142. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13143. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13144. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13145. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13146. CPU_ZERO_S(setsize, cpus);
  13147. for (size_t i = 0; i < node->n_cpus; ++i) {
  13148. CPU_SET_S(node->cpus[i], setsize, cpus);
  13149. }
  13150. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13151. if (rv) {
  13152. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13153. strerror(rv));
  13154. }
  13155. CPU_FREE(cpus);
  13156. }
  13157. static void clear_numa_thread_affinity(void) {
  13158. if (!ggml_is_numa()) {
  13159. return;
  13160. }
  13161. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13162. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13163. CPU_ZERO_S(setsize, cpus);
  13164. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13165. CPU_SET_S(i, setsize, cpus);
  13166. }
  13167. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13168. if (rv) {
  13169. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13170. strerror(rv));
  13171. }
  13172. CPU_FREE(cpus);
  13173. }
  13174. #else
  13175. // TODO: Windows etc.
  13176. // (the linux implementation may also work on BSD, someone should test)
  13177. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13178. static void clear_numa_thread_affinity(void) {}
  13179. #endif
  13180. struct ggml_compute_state_shared {
  13181. const struct ggml_cgraph * cgraph;
  13182. const struct ggml_cplan * cplan;
  13183. int64_t perf_node_start_cycles;
  13184. int64_t perf_node_start_time_us;
  13185. const int n_threads;
  13186. // synchronization primitives
  13187. atomic_int n_active; // num active threads
  13188. atomic_int node_n; // active graph node
  13189. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13190. void * abort_callback_data;
  13191. };
  13192. struct ggml_compute_state {
  13193. ggml_thread_t thrd;
  13194. int ith;
  13195. struct ggml_compute_state_shared * shared;
  13196. };
  13197. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13198. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13199. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13200. node->perf_runs++;
  13201. node->perf_cycles += cycles_cur;
  13202. node->perf_time_us += time_us_cur;
  13203. }
  13204. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13205. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13206. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13207. const struct ggml_cplan * cplan = state->shared->cplan;
  13208. const int * n_tasks_arr = cplan->n_tasks;
  13209. const int n_threads = state->shared->n_threads;
  13210. set_numa_thread_affinity(state->ith, n_threads);
  13211. int node_n = -1;
  13212. while (true) {
  13213. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13214. state->shared->node_n += 1;
  13215. return (thread_ret_t) GGML_EXIT_ABORTED;
  13216. }
  13217. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13218. // all other threads are finished and spinning
  13219. // do finalize and init here so we don't have synchronize again
  13220. struct ggml_compute_params params = {
  13221. /*.type =*/ GGML_TASK_FINALIZE,
  13222. /*.ith =*/ 0,
  13223. /*.nth =*/ 0,
  13224. /*.wsize =*/ cplan->work_size,
  13225. /*.wdata =*/ cplan->work_data,
  13226. };
  13227. if (node_n != -1) {
  13228. /* FINALIZE */
  13229. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13230. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13231. params.nth = n_tasks_arr[node_n];
  13232. ggml_compute_forward(&params, node);
  13233. }
  13234. ggml_graph_compute_perf_stats_node(node, state->shared);
  13235. }
  13236. // distribute new work or execute it direct if 1T
  13237. while (++node_n < cgraph->n_nodes) {
  13238. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13239. struct ggml_tensor * node = cgraph->nodes[node_n];
  13240. const int n_tasks = n_tasks_arr[node_n];
  13241. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13242. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13243. params.nth = n_tasks;
  13244. /* INIT */
  13245. if (GGML_OP_HAS_INIT[node->op]) {
  13246. params.type = GGML_TASK_INIT;
  13247. ggml_compute_forward(&params, node);
  13248. }
  13249. if (n_tasks == 1) {
  13250. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13251. // they do something more efficient than spinning (?)
  13252. params.type = GGML_TASK_COMPUTE;
  13253. ggml_compute_forward(&params, node);
  13254. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13255. params.type = GGML_TASK_FINALIZE;
  13256. ggml_compute_forward(&params, node);
  13257. }
  13258. ggml_graph_compute_perf_stats_node(node, state->shared);
  13259. } else {
  13260. break;
  13261. }
  13262. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13263. break;
  13264. }
  13265. }
  13266. atomic_store(&state->shared->n_active, n_threads);
  13267. atomic_store(&state->shared->node_n, node_n);
  13268. } else {
  13269. // wait for other threads to finish
  13270. const int last = node_n;
  13271. do {
  13272. //sched_yield();
  13273. node_n = atomic_load(&state->shared->node_n);
  13274. } while (node_n == last);
  13275. }
  13276. // check if we should stop
  13277. if (node_n >= cgraph->n_nodes) break;
  13278. /* COMPUTE */
  13279. struct ggml_tensor * node = cgraph->nodes[node_n];
  13280. const int n_tasks = n_tasks_arr[node_n];
  13281. struct ggml_compute_params params = {
  13282. /*.type =*/ GGML_TASK_COMPUTE,
  13283. /*.ith =*/ state->ith,
  13284. /*.nth =*/ n_tasks,
  13285. /*.wsize =*/ cplan->work_size,
  13286. /*.wdata =*/ cplan->work_data,
  13287. };
  13288. if (state->ith < n_tasks) {
  13289. ggml_compute_forward(&params, node);
  13290. }
  13291. }
  13292. return GGML_EXIT_SUCCESS;
  13293. }
  13294. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13295. if (n_threads <= 0) {
  13296. n_threads = GGML_DEFAULT_N_THREADS;
  13297. }
  13298. size_t work_size = 0;
  13299. struct ggml_cplan cplan;
  13300. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13301. // thread scheduling for the different operations + work buffer size estimation
  13302. for (int i = 0; i < cgraph->n_nodes; i++) {
  13303. int n_tasks = 1;
  13304. struct ggml_tensor * node = cgraph->nodes[i];
  13305. switch (node->op) {
  13306. case GGML_OP_CPY:
  13307. case GGML_OP_DUP:
  13308. {
  13309. n_tasks = n_threads;
  13310. size_t cur = 0;
  13311. if (ggml_is_quantized(node->type)) {
  13312. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13313. }
  13314. work_size = MAX(work_size, cur);
  13315. } break;
  13316. case GGML_OP_ADD:
  13317. case GGML_OP_ADD1:
  13318. {
  13319. n_tasks = n_threads;
  13320. size_t cur = 0;
  13321. if (ggml_is_quantized(node->src[0]->type)) {
  13322. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
  13323. }
  13324. work_size = MAX(work_size, cur);
  13325. } break;
  13326. case GGML_OP_ACC:
  13327. {
  13328. n_tasks = n_threads;
  13329. size_t cur = 0;
  13330. if (ggml_is_quantized(node->src[0]->type)) {
  13331. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
  13332. }
  13333. work_size = MAX(work_size, cur);
  13334. } break;
  13335. case GGML_OP_SUB:
  13336. case GGML_OP_DIV:
  13337. case GGML_OP_SQR:
  13338. case GGML_OP_SQRT:
  13339. case GGML_OP_LOG:
  13340. case GGML_OP_SUM:
  13341. case GGML_OP_SUM_ROWS:
  13342. case GGML_OP_MEAN:
  13343. case GGML_OP_ARGMAX:
  13344. case GGML_OP_REPEAT:
  13345. case GGML_OP_REPEAT_BACK:
  13346. {
  13347. n_tasks = 1;
  13348. } break;
  13349. case GGML_OP_UNARY:
  13350. {
  13351. switch (ggml_get_unary_op(node)) {
  13352. case GGML_UNARY_OP_ABS:
  13353. case GGML_UNARY_OP_SGN:
  13354. case GGML_UNARY_OP_NEG:
  13355. case GGML_UNARY_OP_STEP:
  13356. case GGML_UNARY_OP_TANH:
  13357. case GGML_UNARY_OP_ELU:
  13358. case GGML_UNARY_OP_RELU:
  13359. {
  13360. n_tasks = 1;
  13361. } break;
  13362. case GGML_UNARY_OP_GELU:
  13363. case GGML_UNARY_OP_GELU_QUICK:
  13364. case GGML_UNARY_OP_SILU:
  13365. {
  13366. n_tasks = n_threads;
  13367. } break;
  13368. }
  13369. } break;
  13370. case GGML_OP_SILU_BACK:
  13371. case GGML_OP_MUL:
  13372. case GGML_OP_NORM:
  13373. case GGML_OP_RMS_NORM:
  13374. case GGML_OP_RMS_NORM_BACK:
  13375. {
  13376. n_tasks = n_threads;
  13377. } break;
  13378. case GGML_OP_MUL_MAT:
  13379. case GGML_OP_OUT_PROD:
  13380. {
  13381. n_tasks = n_threads;
  13382. // TODO: use different scheduling for different matrix sizes
  13383. //const int nr0 = ggml_nrows(node->src[0]);
  13384. //const int nr1 = ggml_nrows(node->src[1]);
  13385. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13386. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13387. size_t cur = 0;
  13388. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13389. #if defined(GGML_USE_CUBLAS)
  13390. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13391. n_tasks = 1; // TODO: this actually is doing nothing
  13392. // the threads are still spinning
  13393. } else
  13394. #elif defined(GGML_USE_CLBLAST)
  13395. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13396. n_tasks = 1; // TODO: this actually is doing nothing
  13397. // the threads are still spinning
  13398. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13399. } else
  13400. #endif
  13401. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13402. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13403. n_tasks = 1; // TODO: this actually is doing nothing
  13404. // the threads are still spinning
  13405. if (node->src[0]->type != GGML_TYPE_F32) {
  13406. // here we need memory just for single 2D matrix from src0
  13407. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13408. }
  13409. } else
  13410. #endif
  13411. if (node->src[1]->type != vec_dot_type) {
  13412. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
  13413. } else {
  13414. cur = 0;
  13415. }
  13416. work_size = MAX(work_size, cur);
  13417. } break;
  13418. case GGML_OP_SCALE:
  13419. {
  13420. n_tasks = 1;
  13421. } break;
  13422. case GGML_OP_SET:
  13423. case GGML_OP_CONT:
  13424. case GGML_OP_RESHAPE:
  13425. case GGML_OP_VIEW:
  13426. case GGML_OP_PERMUTE:
  13427. case GGML_OP_TRANSPOSE:
  13428. case GGML_OP_GET_ROWS:
  13429. case GGML_OP_GET_ROWS_BACK:
  13430. case GGML_OP_DIAG:
  13431. {
  13432. n_tasks = 1;
  13433. } break;
  13434. case GGML_OP_DIAG_MASK_ZERO:
  13435. case GGML_OP_DIAG_MASK_INF:
  13436. case GGML_OP_SOFT_MAX:
  13437. case GGML_OP_SOFT_MAX_BACK:
  13438. case GGML_OP_ROPE:
  13439. case GGML_OP_ROPE_BACK:
  13440. {
  13441. n_tasks = n_threads;
  13442. } break;
  13443. case GGML_OP_ALIBI:
  13444. {
  13445. n_tasks = 1; //TODO
  13446. } break;
  13447. case GGML_OP_CLAMP:
  13448. {
  13449. n_tasks = 1; //TODO
  13450. } break;
  13451. case GGML_OP_CONV_1D:
  13452. {
  13453. n_tasks = n_threads;
  13454. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13455. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13456. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13457. size_t cur = 0;
  13458. const int nk = node->src[0]->ne[0];
  13459. if (node->src[0]->type == GGML_TYPE_F16 &&
  13460. node->src[1]->type == GGML_TYPE_F32) {
  13461. cur = sizeof(ggml_fp16_t)*(
  13462. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13463. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13464. );
  13465. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13466. node->src[1]->type == GGML_TYPE_F32) {
  13467. cur = sizeof(float)*(
  13468. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13469. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13470. );
  13471. } else {
  13472. GGML_ASSERT(false);
  13473. }
  13474. work_size = MAX(work_size, cur);
  13475. } break;
  13476. case GGML_OP_CONV_2D:
  13477. {
  13478. n_tasks = n_threads;
  13479. const int64_t ne00 = node->src[0]->ne[0]; // W
  13480. const int64_t ne01 = node->src[0]->ne[1]; // H
  13481. const int64_t ne02 = node->src[0]->ne[2]; // C
  13482. const int64_t ne03 = node->src[0]->ne[3]; // N
  13483. const int64_t ne10 = node->src[1]->ne[0]; // W
  13484. const int64_t ne11 = node->src[1]->ne[1]; // H
  13485. const int64_t ne12 = node->src[1]->ne[2]; // C
  13486. const int64_t ne0 = node->ne[0];
  13487. const int64_t ne1 = node->ne[1];
  13488. const int64_t ne2 = node->ne[2];
  13489. const int64_t nk = ne00*ne01;
  13490. const int64_t ew0 = nk * ne02;
  13491. UNUSED(ne03);
  13492. UNUSED(ne2);
  13493. size_t cur = 0;
  13494. if (node->src[0]->type == GGML_TYPE_F16 &&
  13495. node->src[1]->type == GGML_TYPE_F32) {
  13496. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13497. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13498. node->src[1]->type == GGML_TYPE_F32) {
  13499. cur = sizeof(float)* (ne10*ne11*ne12);
  13500. } else {
  13501. GGML_ASSERT(false);
  13502. }
  13503. work_size = MAX(work_size, cur);
  13504. } break;
  13505. case GGML_OP_POOL_1D:
  13506. case GGML_OP_POOL_2D:
  13507. {
  13508. n_tasks = 1;
  13509. } break;
  13510. case GGML_OP_FLASH_ATTN:
  13511. {
  13512. n_tasks = n_threads;
  13513. size_t cur = 0;
  13514. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13515. if (node->src[1]->type == GGML_TYPE_F32) {
  13516. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13517. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13518. }
  13519. if (node->src[1]->type == GGML_TYPE_F16) {
  13520. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13521. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13522. }
  13523. work_size = MAX(work_size, cur);
  13524. } break;
  13525. case GGML_OP_FLASH_FF:
  13526. {
  13527. n_tasks = n_threads;
  13528. size_t cur = 0;
  13529. if (node->src[1]->type == GGML_TYPE_F32) {
  13530. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13531. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13532. }
  13533. if (node->src[1]->type == GGML_TYPE_F16) {
  13534. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13535. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13536. }
  13537. work_size = MAX(work_size, cur);
  13538. } break;
  13539. case GGML_OP_FLASH_ATTN_BACK:
  13540. {
  13541. n_tasks = n_threads;
  13542. size_t cur = 0;
  13543. const int64_t D = node->src[0]->ne[0];
  13544. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13545. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13546. if (node->src[1]->type == GGML_TYPE_F32) {
  13547. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13548. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13549. }
  13550. if (node->src[1]->type == GGML_TYPE_F16) {
  13551. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13552. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13553. }
  13554. work_size = MAX(work_size, cur);
  13555. } break;
  13556. case GGML_OP_WIN_PART:
  13557. case GGML_OP_WIN_UNPART:
  13558. case GGML_OP_MAP_UNARY:
  13559. case GGML_OP_MAP_BINARY:
  13560. case GGML_OP_MAP_CUSTOM1:
  13561. case GGML_OP_MAP_CUSTOM2:
  13562. case GGML_OP_MAP_CUSTOM3:
  13563. {
  13564. n_tasks = 1;
  13565. } break;
  13566. case GGML_OP_CROSS_ENTROPY_LOSS:
  13567. {
  13568. n_tasks = n_threads;
  13569. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13570. work_size = MAX(work_size, cur);
  13571. } break;
  13572. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13573. {
  13574. n_tasks = n_threads;
  13575. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13576. work_size = MAX(work_size, cur);
  13577. } break;
  13578. case GGML_OP_NONE:
  13579. {
  13580. n_tasks = 1;
  13581. } break;
  13582. case GGML_OP_COUNT:
  13583. {
  13584. GGML_ASSERT(false);
  13585. } break;
  13586. }
  13587. cplan.n_tasks[i] = n_tasks;
  13588. }
  13589. if (work_size > 0) {
  13590. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13591. }
  13592. cplan.n_threads = n_threads;
  13593. cplan.work_size = work_size;
  13594. cplan.work_data = NULL;
  13595. return cplan;
  13596. }
  13597. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13598. {
  13599. GGML_ASSERT(cplan);
  13600. GGML_ASSERT(cplan->n_threads > 0);
  13601. if (cplan->work_size > 0) {
  13602. GGML_ASSERT(cplan->work_data);
  13603. }
  13604. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13605. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13606. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13607. }
  13608. }
  13609. }
  13610. const int n_threads = cplan->n_threads;
  13611. struct ggml_compute_state_shared state_shared = {
  13612. /*.cgraph =*/ cgraph,
  13613. /*.cgraph_plan =*/ cplan,
  13614. /*.perf_node_start_cycles =*/ 0,
  13615. /*.perf_node_start_time_us =*/ 0,
  13616. /*.n_threads =*/ n_threads,
  13617. /*.n_active =*/ n_threads,
  13618. /*.node_n =*/ -1,
  13619. /*.abort_callback =*/ NULL,
  13620. /*.abort_callback_data =*/ NULL,
  13621. };
  13622. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13623. // create thread pool
  13624. if (n_threads > 1) {
  13625. for (int j = 1; j < n_threads; ++j) {
  13626. workers[j] = (struct ggml_compute_state) {
  13627. .thrd = 0,
  13628. .ith = j,
  13629. .shared = &state_shared,
  13630. };
  13631. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13632. GGML_ASSERT(rc == 0);
  13633. }
  13634. }
  13635. workers[0].ith = 0;
  13636. workers[0].shared = &state_shared;
  13637. const int64_t perf_start_cycles = ggml_perf_cycles();
  13638. const int64_t perf_start_time_us = ggml_perf_time_us();
  13639. // this is a work thread too
  13640. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13641. // don't leave affinity set on the main thread
  13642. clear_numa_thread_affinity();
  13643. // join or kill thread pool
  13644. if (n_threads > 1) {
  13645. for (int j = 1; j < n_threads; j++) {
  13646. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13647. GGML_ASSERT(rc == 0);
  13648. }
  13649. }
  13650. // performance stats (graph)
  13651. {
  13652. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13653. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13654. cgraph->perf_runs++;
  13655. cgraph->perf_cycles += perf_cycles_cur;
  13656. cgraph->perf_time_us += perf_time_us_cur;
  13657. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13658. __func__, cgraph->perf_runs,
  13659. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13660. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13661. (double) perf_time_us_cur / 1000.0,
  13662. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13663. }
  13664. return compute_status;
  13665. }
  13666. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13667. for (int i = 0; i < cgraph->n_nodes; i++) {
  13668. struct ggml_tensor * grad = cgraph->grads[i];
  13669. if (grad) {
  13670. ggml_set_zero(grad);
  13671. }
  13672. }
  13673. }
  13674. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13675. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13676. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13677. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13678. ggml_graph_compute(cgraph, &cplan);
  13679. }
  13680. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13681. for (int i = 0; i < cgraph->n_leafs; i++) {
  13682. struct ggml_tensor * leaf = cgraph->leafs[i];
  13683. if (strcmp(leaf->name, name) == 0) {
  13684. return leaf;
  13685. }
  13686. }
  13687. for (int i = 0; i < cgraph->n_nodes; i++) {
  13688. struct ggml_tensor * node = cgraph->nodes[i];
  13689. if (strcmp(node->name, name) == 0) {
  13690. return node;
  13691. }
  13692. }
  13693. return NULL;
  13694. }
  13695. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13696. const int64_t * ne = tensor->ne;
  13697. const size_t * nb = tensor->nb;
  13698. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13699. ggml_type_name(tensor->type),
  13700. ggml_op_name (tensor->op),
  13701. tensor->n_dims,
  13702. ne[0], ne[1], ne[2], ne[3],
  13703. nb[0], nb[1], nb[2], nb[3],
  13704. tensor->data,
  13705. tensor->name);
  13706. }
  13707. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13708. const int64_t * ne = tensor->ne;
  13709. const size_t * nb = tensor->nb;
  13710. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13711. arg,
  13712. ggml_type_name(tensor->type),
  13713. ggml_op_name (tensor->op),
  13714. tensor->n_dims,
  13715. ne[0], ne[1], ne[2], ne[3],
  13716. nb[0], nb[1], nb[2], nb[3],
  13717. tensor->data,
  13718. tensor->name);
  13719. }
  13720. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13721. uint64_t size_eval = 0;
  13722. // compute size of intermediate results
  13723. // TODO: does not take into account scratch buffers !!!!
  13724. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13725. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13726. }
  13727. // print
  13728. {
  13729. FILE * fout = stdout;
  13730. fprintf(fout, "\n");
  13731. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13732. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13733. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13734. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13735. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13736. // header
  13737. fprintf(fout, "\n");
  13738. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13739. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13740. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13741. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13742. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13743. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13744. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13745. }
  13746. // header
  13747. fprintf(fout, "\n");
  13748. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13749. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13750. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13751. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13752. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13753. if (cgraph->nodes[i]->src[j]) {
  13754. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13755. }
  13756. }
  13757. fprintf(fout, "\n");
  13758. }
  13759. fprintf(fout, "\n");
  13760. }
  13761. // write binary data
  13762. {
  13763. FILE * fout = fopen(fname, "wb");
  13764. if (!fout) {
  13765. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13766. return;
  13767. }
  13768. // header
  13769. {
  13770. const uint32_t magic = GGML_FILE_MAGIC;
  13771. const uint32_t version = GGML_FILE_VERSION;
  13772. const uint32_t n_leafs = cgraph->n_leafs;
  13773. const uint32_t nodes = cgraph->n_nodes;
  13774. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13775. fwrite(&version, sizeof(uint32_t), 1, fout);
  13776. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13777. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13778. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13779. }
  13780. // leafs
  13781. {
  13782. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13783. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13784. const uint32_t type = tensor->type;
  13785. const uint32_t op = tensor->op;
  13786. const uint32_t n_dims = tensor->n_dims;
  13787. fwrite(&type, sizeof(uint32_t), 1, fout);
  13788. fwrite(&op, sizeof(uint32_t), 1, fout);
  13789. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13790. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13791. const uint64_t ne = tensor->ne[j];
  13792. const uint64_t nb = tensor->nb[j];
  13793. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13794. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13795. }
  13796. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13797. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13798. // dump the data
  13799. // TODO: pad this to 32 byte boundary
  13800. {
  13801. const size_t size = ggml_nbytes(tensor);
  13802. fwrite(tensor->data, sizeof(char), size, fout);
  13803. }
  13804. }
  13805. }
  13806. // nodes
  13807. {
  13808. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13809. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13810. const uint32_t type = tensor->type;
  13811. const uint32_t op = tensor->op;
  13812. const uint32_t n_dims = tensor->n_dims;
  13813. fwrite(&type, sizeof(uint32_t), 1, fout);
  13814. fwrite(&op, sizeof(uint32_t), 1, fout);
  13815. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13816. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13817. const uint64_t ne = tensor->ne[j];
  13818. const uint64_t nb = tensor->nb[j];
  13819. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13820. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13821. }
  13822. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13823. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13824. // output the op arguments
  13825. {
  13826. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13827. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13828. args[j] = tensor->src[j];
  13829. }
  13830. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13831. if (args[j]) {
  13832. int32_t idx = -1;
  13833. // check if leaf
  13834. {
  13835. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13836. if (args[j] == cgraph->leafs[k]) {
  13837. idx = k;
  13838. break;
  13839. }
  13840. }
  13841. }
  13842. // check if node
  13843. if (idx == -1) {
  13844. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13845. if (args[j] == cgraph->nodes[k]) {
  13846. idx = GGML_MAX_NODES + k;
  13847. break;
  13848. }
  13849. }
  13850. }
  13851. if (idx == -1) {
  13852. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13853. return;
  13854. }
  13855. fwrite(&idx, sizeof(int32_t), 1, fout);
  13856. } else {
  13857. const int32_t nul = -1;
  13858. fwrite(&nul, sizeof(int32_t), 1, fout);
  13859. }
  13860. }
  13861. }
  13862. }
  13863. }
  13864. fclose(fout);
  13865. }
  13866. }
  13867. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13868. assert(*ctx_data == NULL);
  13869. assert(*ctx_eval == NULL);
  13870. struct ggml_cgraph result = { 0 };
  13871. struct ggml_tensor * data = NULL;
  13872. // read file into data
  13873. {
  13874. FILE * fin = fopen(fname, "rb");
  13875. if (!fin) {
  13876. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13877. return result;
  13878. }
  13879. size_t fsize = 0;
  13880. fseek(fin, 0, SEEK_END);
  13881. fsize = ftell(fin);
  13882. fseek(fin, 0, SEEK_SET);
  13883. // create the data context
  13884. {
  13885. const size_t overhead = 1*ggml_tensor_overhead();
  13886. struct ggml_init_params params = {
  13887. .mem_size = fsize + overhead,
  13888. .mem_buffer = NULL,
  13889. .no_alloc = false,
  13890. };
  13891. *ctx_data = ggml_init(params);
  13892. if (!*ctx_data) {
  13893. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13894. fclose(fin);
  13895. return result;
  13896. }
  13897. }
  13898. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13899. {
  13900. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13901. if (ret != fsize) {
  13902. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13903. fclose(fin);
  13904. return result;
  13905. }
  13906. }
  13907. fclose(fin);
  13908. }
  13909. // populate result
  13910. {
  13911. char * ptr = (char *) data->data;
  13912. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13913. if (magic != GGML_FILE_MAGIC) {
  13914. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13915. return result;
  13916. }
  13917. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13918. if (version != GGML_FILE_VERSION) {
  13919. fprintf(stderr, "%s: invalid version number\n", __func__);
  13920. return result;
  13921. }
  13922. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13923. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13924. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13925. result.n_leafs = n_leafs;
  13926. result.n_nodes = n_nodes;
  13927. // create the data context
  13928. {
  13929. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13930. struct ggml_init_params params = {
  13931. .mem_size = size_eval + overhead,
  13932. .mem_buffer = NULL,
  13933. .no_alloc = true,
  13934. };
  13935. *ctx_eval = ggml_init(params);
  13936. if (!*ctx_eval) {
  13937. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13938. return result;
  13939. }
  13940. }
  13941. // leafs
  13942. {
  13943. uint32_t type;
  13944. uint32_t op;
  13945. uint32_t n_dims;
  13946. for (uint32_t i = 0; i < n_leafs; ++i) {
  13947. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13948. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13949. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13950. int64_t ne[GGML_MAX_DIMS];
  13951. size_t nb[GGML_MAX_DIMS];
  13952. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13953. uint64_t ne_cur;
  13954. uint64_t nb_cur;
  13955. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13956. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13957. ne[j] = ne_cur;
  13958. nb[j] = nb_cur;
  13959. }
  13960. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13961. tensor->op = (enum ggml_op) op;
  13962. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13963. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  13964. tensor->data = (void *) ptr;
  13965. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13966. tensor->nb[j] = nb[j];
  13967. }
  13968. result.leafs[i] = tensor;
  13969. ptr += ggml_nbytes(tensor);
  13970. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13971. }
  13972. }
  13973. ggml_set_no_alloc(*ctx_eval, false);
  13974. // nodes
  13975. {
  13976. uint32_t type;
  13977. uint32_t op;
  13978. uint32_t n_dims;
  13979. for (uint32_t i = 0; i < n_nodes; ++i) {
  13980. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13981. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13982. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13983. enum ggml_op eop = (enum ggml_op) op;
  13984. int64_t ne[GGML_MAX_DIMS];
  13985. size_t nb[GGML_MAX_DIMS];
  13986. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13987. uint64_t ne_cur;
  13988. uint64_t nb_cur;
  13989. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13990. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13991. ne[j] = ne_cur;
  13992. nb[j] = nb_cur;
  13993. }
  13994. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13995. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  13996. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  13997. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13998. // parse args
  13999. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14000. const int32_t arg_idx = ptr_arg_idx[j];
  14001. if (arg_idx == -1) {
  14002. continue;
  14003. }
  14004. if (arg_idx < GGML_MAX_NODES) {
  14005. args[j] = result.leafs[arg_idx];
  14006. } else {
  14007. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14008. }
  14009. }
  14010. // create the tensor
  14011. // "view" operations are handled differently
  14012. // TODO: handle inplace ops - currently a copy is always made
  14013. struct ggml_tensor * tensor = NULL;
  14014. switch (eop) {
  14015. // TODO: implement other view ops
  14016. case GGML_OP_RESHAPE:
  14017. {
  14018. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14019. } break;
  14020. case GGML_OP_VIEW:
  14021. {
  14022. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14023. size_t offs;
  14024. memcpy(&offs, ptr_op_params, sizeof(offs));
  14025. tensor->data = ((char *) tensor->data) + offs;
  14026. } break;
  14027. case GGML_OP_TRANSPOSE:
  14028. {
  14029. tensor = ggml_transpose(*ctx_eval, args[0]);
  14030. } break;
  14031. case GGML_OP_PERMUTE:
  14032. {
  14033. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14034. } break;
  14035. default:
  14036. {
  14037. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14038. tensor->op = eop;
  14039. } break;
  14040. }
  14041. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14042. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14043. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14044. tensor->nb[j] = nb[j];
  14045. }
  14046. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14047. tensor->src[j] = args[j];
  14048. }
  14049. result.nodes[i] = tensor;
  14050. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14051. }
  14052. }
  14053. }
  14054. return result;
  14055. }
  14056. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14057. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14058. GGML_PRINT("=== GRAPH ===\n");
  14059. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14060. for (int i = 0; i < cgraph->n_nodes; i++) {
  14061. struct ggml_tensor * node = cgraph->nodes[i];
  14062. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14063. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14064. i,
  14065. node->ne[0], node->ne[1], node->ne[2],
  14066. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14067. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14068. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14069. (double) node->perf_time_us / 1000.0,
  14070. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14071. }
  14072. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14073. for (int i = 0; i < cgraph->n_leafs; i++) {
  14074. struct ggml_tensor * node = cgraph->leafs[i];
  14075. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14076. i,
  14077. node->ne[0], node->ne[1],
  14078. ggml_op_name(node->op));
  14079. }
  14080. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14081. if (perf_total_per_op_us[i] == 0) {
  14082. continue;
  14083. }
  14084. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14085. }
  14086. GGML_PRINT("========================================\n");
  14087. }
  14088. // check if node is part of the graph
  14089. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14090. if (cgraph == NULL) {
  14091. return true;
  14092. }
  14093. for (int i = 0; i < cgraph->n_nodes; i++) {
  14094. if (cgraph->nodes[i] == node) {
  14095. return true;
  14096. }
  14097. }
  14098. return false;
  14099. }
  14100. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14101. for (int i = 0; i < cgraph->n_nodes; i++) {
  14102. struct ggml_tensor * parent = cgraph->nodes[i];
  14103. if (parent->grad == node) {
  14104. return parent;
  14105. }
  14106. }
  14107. return NULL;
  14108. }
  14109. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14110. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14111. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14112. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14113. gparent0 ? (void *) gparent0 : (void *) parent,
  14114. gparent0 ? "g" : "x",
  14115. gparent ? (void *) gparent : (void *) node,
  14116. gparent ? "g" : "x",
  14117. gparent ? "empty" : "vee",
  14118. gparent ? "dashed" : "solid",
  14119. label);
  14120. }
  14121. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14122. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14123. (void *) parent, "x",
  14124. (void *) node, "x",
  14125. label);
  14126. }
  14127. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14128. char color[16];
  14129. FILE * fp = fopen(filename, "w");
  14130. GGML_ASSERT(fp);
  14131. fprintf(fp, "digraph G {\n");
  14132. fprintf(fp, " newrank = true;\n");
  14133. fprintf(fp, " rankdir = LR;\n");
  14134. for (int i = 0; i < gb->n_nodes; i++) {
  14135. struct ggml_tensor * node = gb->nodes[i];
  14136. if (ggml_graph_get_parent(gb, node) != NULL) {
  14137. continue;
  14138. }
  14139. if (node->is_param) {
  14140. snprintf(color, sizeof(color), "yellow");
  14141. } else if (node->grad) {
  14142. if (ggml_graph_find(gf, node)) {
  14143. snprintf(color, sizeof(color), "green");
  14144. } else {
  14145. snprintf(color, sizeof(color), "lightblue");
  14146. }
  14147. } else {
  14148. snprintf(color, sizeof(color), "white");
  14149. }
  14150. fprintf(fp, " \"%p\" [ "
  14151. "style = filled; fillcolor = %s; shape = record; "
  14152. "label=\"",
  14153. (void *) node, color);
  14154. if (strlen(node->name) > 0) {
  14155. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14156. } else {
  14157. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14158. }
  14159. if (node->n_dims == 2) {
  14160. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14161. } else {
  14162. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14163. }
  14164. if (node->grad) {
  14165. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14166. } else {
  14167. fprintf(fp, "\"; ]\n");
  14168. }
  14169. }
  14170. for (int i = 0; i < gb->n_leafs; i++) {
  14171. struct ggml_tensor * node = gb->leafs[i];
  14172. snprintf(color, sizeof(color), "pink");
  14173. fprintf(fp, " \"%p\" [ "
  14174. "style = filled; fillcolor = %s; shape = record; "
  14175. "label=\"<x>",
  14176. (void *) node, color);
  14177. if (strlen(node->name) > 0) {
  14178. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14179. } else {
  14180. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14181. }
  14182. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14183. if (ggml_nelements(node) < 5) {
  14184. fprintf(fp, " | (");
  14185. for (int j = 0; j < ggml_nelements(node); j++) {
  14186. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14187. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14188. }
  14189. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14190. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14191. }
  14192. else {
  14193. fprintf(fp, "#");
  14194. }
  14195. if (j < ggml_nelements(node) - 1) {
  14196. fprintf(fp, ", ");
  14197. }
  14198. }
  14199. fprintf(fp, ")");
  14200. }
  14201. fprintf(fp, "\"; ]\n");
  14202. }
  14203. for (int i = 0; i < gb->n_nodes; i++) {
  14204. struct ggml_tensor * node = gb->nodes[i];
  14205. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14206. if (node->src[j]) {
  14207. char label[16];
  14208. snprintf(label, sizeof(label), "src %d", j);
  14209. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14210. }
  14211. }
  14212. }
  14213. for (int i = 0; i < gb->n_leafs; i++) {
  14214. struct ggml_tensor * node = gb->leafs[i];
  14215. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14216. if (node->src[j]) {
  14217. char label[16];
  14218. snprintf(label, sizeof(label), "src %d", j);
  14219. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14220. }
  14221. }
  14222. }
  14223. fprintf(fp, "}\n");
  14224. fclose(fp);
  14225. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14226. }
  14227. ////////////////////////////////////////////////////////////////////////////////
  14228. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14229. int i = 0;
  14230. for (int p = 0; p < np; ++p) {
  14231. const int64_t ne = ggml_nelements(ps[p]) ;
  14232. // TODO: add function to set tensor from array
  14233. for (int64_t j = 0; j < ne; ++j) {
  14234. ggml_set_f32_1d(ps[p], j, x[i++]);
  14235. }
  14236. }
  14237. }
  14238. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14239. int i = 0;
  14240. for (int p = 0; p < np; ++p) {
  14241. const int64_t ne = ggml_nelements(ps[p]) ;
  14242. // TODO: add function to get all elements at once
  14243. for (int64_t j = 0; j < ne; ++j) {
  14244. x[i++] = ggml_get_f32_1d(ps[p], j);
  14245. }
  14246. }
  14247. }
  14248. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14249. int i = 0;
  14250. for (int p = 0; p < np; ++p) {
  14251. const int64_t ne = ggml_nelements(ps[p]) ;
  14252. // TODO: add function to get all elements at once
  14253. for (int64_t j = 0; j < ne; ++j) {
  14254. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14255. }
  14256. }
  14257. }
  14258. //
  14259. // ADAM
  14260. //
  14261. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14262. //
  14263. static enum ggml_opt_result ggml_opt_adam(
  14264. struct ggml_context * ctx,
  14265. struct ggml_opt_context * opt,
  14266. struct ggml_opt_params params,
  14267. struct ggml_tensor * f,
  14268. struct ggml_cgraph * gf,
  14269. struct ggml_cgraph * gb) {
  14270. GGML_ASSERT(ggml_is_scalar(f));
  14271. // these will store the parameters we want to optimize
  14272. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14273. int np = 0;
  14274. int nx = 0;
  14275. for (int i = 0; i < gf->n_nodes; ++i) {
  14276. if (gf->nodes[i]->is_param) {
  14277. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14278. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14279. ps[np++] = gf->nodes[i];
  14280. nx += ggml_nelements(gf->nodes[i]);
  14281. }
  14282. }
  14283. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14284. int iter = opt->iter;
  14285. ggml_opt_init(opt->ctx, opt, params, nx);
  14286. opt->iter = iter;
  14287. }
  14288. // constants
  14289. const float sched = params.adam.sched;
  14290. const float decay = params.adam.decay * sched;
  14291. const float alpha = params.adam.alpha * sched;
  14292. const float beta1 = params.adam.beta1;
  14293. const float beta2 = params.adam.beta2;
  14294. const float eps = params.adam.eps;
  14295. float * x = opt->adam.x->data; // view of the parameters
  14296. float * g1 = opt->adam.g1->data; // gradient
  14297. float * g2 = opt->adam.g2->data; // gradient squared
  14298. float * m = opt->adam.m->data; // first moment
  14299. float * v = opt->adam.v->data; // second moment
  14300. float * mh = opt->adam.mh->data; // first moment hat
  14301. float * vh = opt->adam.vh->data; // second moment hat
  14302. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14303. // update view
  14304. ggml_opt_get_params(np, ps, x);
  14305. // compute the function value
  14306. ggml_graph_reset (gf);
  14307. ggml_set_f32 (f->grad, 1.0f);
  14308. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14309. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14310. opt->adam.fx_best = opt->adam.fx_prev;
  14311. if (pf) {
  14312. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14313. }
  14314. // initialize
  14315. if (opt->just_initialized) {
  14316. opt->adam.n_no_improvement = 0;
  14317. opt->just_initialized = false;
  14318. }
  14319. float * fx_best = &opt->adam.fx_best;
  14320. float * fx_prev = &opt->adam.fx_prev;
  14321. int * n_no_improvement = &opt->adam.n_no_improvement;
  14322. int iter0 = opt->iter;
  14323. // run the optimizer
  14324. for (int t = 0; t < params.adam.n_iter; ++t) {
  14325. opt->iter = iter0 + t + 1;
  14326. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14327. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14328. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14329. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14330. for (int i = 0; i < np; ++i) {
  14331. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14332. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14333. }
  14334. const int64_t t_start_wall = ggml_time_us();
  14335. const int64_t t_start_cpu = ggml_cycles();
  14336. UNUSED(t_start_wall);
  14337. UNUSED(t_start_cpu);
  14338. {
  14339. // update the gradient
  14340. ggml_opt_get_grad(np, ps, g1);
  14341. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14342. ggml_vec_scale_f32(nx, m, beta1);
  14343. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14344. // g2 = g1^2
  14345. ggml_vec_sqr_f32 (nx, g2, g1);
  14346. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14347. ggml_vec_scale_f32(nx, v, beta2);
  14348. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14349. // m^hat = m_t / (1 - beta1^t)
  14350. // v^hat = v_t / (1 - beta2^t)
  14351. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14352. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14353. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14354. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14355. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14356. ggml_vec_cpy_f32 (nx, mh, m);
  14357. ggml_vec_cpy_f32 (nx, vh, v);
  14358. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14359. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14360. ggml_vec_sqrt_f32 (nx, vh, vh);
  14361. ggml_vec_acc1_f32 (nx, vh, eps);
  14362. ggml_vec_div_f32 (nx, mh, mh, vh);
  14363. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14364. ggml_vec_sub_f32 (nx, x, x, mh);
  14365. // update the parameters
  14366. ggml_opt_set_params(np, ps, x);
  14367. }
  14368. ggml_graph_reset (gf);
  14369. ggml_set_f32 (f->grad, 1.0f);
  14370. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14371. const float fx = ggml_get_f32_1d(f, 0);
  14372. // check convergence
  14373. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14374. GGML_PRINT_DEBUG("converged\n");
  14375. return GGML_OPT_OK;
  14376. }
  14377. // delta-based convergence test
  14378. if (pf != NULL) {
  14379. // need at least params.past iterations to start checking for convergence
  14380. if (params.past <= iter0 + t) {
  14381. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14382. if (fabsf(rate) < params.delta) {
  14383. return GGML_OPT_OK;
  14384. }
  14385. }
  14386. pf[(iter0 + t)%params.past] = fx;
  14387. }
  14388. // check for improvement
  14389. if (params.max_no_improvement > 0) {
  14390. if (fx_best[0] > fx) {
  14391. fx_best[0] = fx;
  14392. n_no_improvement[0] = 0;
  14393. } else {
  14394. ++n_no_improvement[0];
  14395. if (n_no_improvement[0] >= params.max_no_improvement) {
  14396. return GGML_OPT_OK;
  14397. }
  14398. }
  14399. }
  14400. fx_prev[0] = fx;
  14401. {
  14402. const int64_t t_end_cpu = ggml_cycles();
  14403. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14404. UNUSED(t_end_cpu);
  14405. const int64_t t_end_wall = ggml_time_us();
  14406. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14407. UNUSED(t_end_wall);
  14408. }
  14409. }
  14410. return GGML_OPT_DID_NOT_CONVERGE;
  14411. }
  14412. //
  14413. // L-BFGS
  14414. //
  14415. // the L-BFGS implementation below is based on the following implementation:
  14416. //
  14417. // https://github.com/chokkan/liblbfgs
  14418. //
  14419. struct ggml_lbfgs_iteration_data {
  14420. float alpha;
  14421. float ys;
  14422. float * s;
  14423. float * y;
  14424. };
  14425. static enum ggml_opt_result linesearch_backtracking(
  14426. struct ggml_context * ctx,
  14427. const struct ggml_opt_params * params,
  14428. int nx,
  14429. float * x,
  14430. float * fx,
  14431. float * g,
  14432. float * d,
  14433. float * step,
  14434. const float * xp,
  14435. struct ggml_tensor * f,
  14436. struct ggml_cgraph * gf,
  14437. struct ggml_cgraph * gb,
  14438. const int np,
  14439. struct ggml_tensor * ps[]) {
  14440. int count = 0;
  14441. float width = 0.0f;
  14442. float dg = 0.0f;
  14443. float finit = 0.0f;
  14444. float dginit = 0.0f;
  14445. float dgtest = 0.0f;
  14446. const float dec = 0.5f;
  14447. const float inc = 2.1f;
  14448. if (*step <= 0.f) {
  14449. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14450. }
  14451. // compute the initial gradient in the search direction
  14452. ggml_vec_dot_f32(nx, &dginit, g, d);
  14453. // make sure that d points to a descent direction
  14454. if (0 < dginit) {
  14455. return GGML_LINESEARCH_FAIL;
  14456. }
  14457. // initialize local variables
  14458. finit = *fx;
  14459. dgtest = params->lbfgs.ftol*dginit;
  14460. while (true) {
  14461. ggml_vec_cpy_f32(nx, x, xp);
  14462. ggml_vec_mad_f32(nx, x, d, *step);
  14463. // evaluate the function and gradient values
  14464. {
  14465. ggml_opt_set_params(np, ps, x);
  14466. ggml_graph_reset (gf);
  14467. ggml_set_f32 (f->grad, 1.0f);
  14468. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14469. ggml_opt_get_grad(np, ps, g);
  14470. *fx = ggml_get_f32_1d(f, 0);
  14471. }
  14472. ++count;
  14473. if (*fx > finit + (*step)*dgtest) {
  14474. width = dec;
  14475. } else {
  14476. // Armijo condition is satisfied
  14477. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14478. return count;
  14479. }
  14480. ggml_vec_dot_f32(nx, &dg, g, d);
  14481. // check the Wolfe condition
  14482. if (dg < params->lbfgs.wolfe * dginit) {
  14483. width = inc;
  14484. } else {
  14485. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14486. // regular Wolfe conditions
  14487. return count;
  14488. }
  14489. if(dg > -params->lbfgs.wolfe*dginit) {
  14490. width = dec;
  14491. } else {
  14492. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14493. return count;
  14494. }
  14495. return count;
  14496. }
  14497. }
  14498. if (*step < params->lbfgs.min_step) {
  14499. return GGML_LINESEARCH_MINIMUM_STEP;
  14500. }
  14501. if (*step > params->lbfgs.max_step) {
  14502. return GGML_LINESEARCH_MAXIMUM_STEP;
  14503. }
  14504. if (params->lbfgs.max_linesearch <= count) {
  14505. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14506. }
  14507. (*step) *= width;
  14508. }
  14509. return GGML_LINESEARCH_FAIL;
  14510. }
  14511. static enum ggml_opt_result ggml_opt_lbfgs(
  14512. struct ggml_context * ctx,
  14513. struct ggml_opt_context * opt,
  14514. struct ggml_opt_params params,
  14515. struct ggml_tensor * f,
  14516. struct ggml_cgraph * gf,
  14517. struct ggml_cgraph * gb) {
  14518. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14519. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14520. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14521. return GGML_OPT_INVALID_WOLFE;
  14522. }
  14523. }
  14524. const int m = params.lbfgs.m;
  14525. // these will store the parameters we want to optimize
  14526. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14527. int np = 0;
  14528. int nx = 0;
  14529. for (int i = 0; i < gf->n_nodes; ++i) {
  14530. if (gf->nodes[i]->is_param) {
  14531. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14532. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14533. ps[np++] = gf->nodes[i];
  14534. nx += ggml_nelements(gf->nodes[i]);
  14535. }
  14536. }
  14537. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14538. int iter = opt->iter;
  14539. ggml_opt_init(ctx, opt, params, nx);
  14540. opt->iter = iter;
  14541. }
  14542. float * x = opt->lbfgs.x->data; // current parameters
  14543. float * xp = opt->lbfgs.xp->data; // previous parameters
  14544. float * g = opt->lbfgs.g->data; // current gradient
  14545. float * gp = opt->lbfgs.gp->data; // previous gradient
  14546. float * d = opt->lbfgs.d->data; // search direction
  14547. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14548. float fx = 0.0f; // cost function value
  14549. float xnorm = 0.0f; // ||x||
  14550. float gnorm = 0.0f; // ||g||
  14551. // initialize x from the graph nodes
  14552. ggml_opt_get_params(np, ps, x);
  14553. // the L-BFGS memory
  14554. float * lm_alpha = opt->lbfgs.lmal->data;
  14555. float * lm_ys = opt->lbfgs.lmys->data;
  14556. float * lm_s = opt->lbfgs.lms->data;
  14557. float * lm_y = opt->lbfgs.lmy->data;
  14558. // evaluate the function value and its gradient
  14559. {
  14560. ggml_opt_set_params(np, ps, x);
  14561. ggml_graph_reset (gf);
  14562. ggml_set_f32 (f->grad, 1.0f);
  14563. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14564. ggml_opt_get_grad(np, ps, g);
  14565. fx = ggml_get_f32_1d(f, 0);
  14566. }
  14567. // search direction = -gradient
  14568. ggml_vec_neg_f32(nx, d, g);
  14569. // ||x||, ||g||
  14570. ggml_vec_norm_f32(nx, &xnorm, x);
  14571. ggml_vec_norm_f32(nx, &gnorm, g);
  14572. if (xnorm < 1.0f) {
  14573. xnorm = 1.0f;
  14574. }
  14575. // already optimized
  14576. if (gnorm/xnorm <= params.lbfgs.eps) {
  14577. return GGML_OPT_OK;
  14578. }
  14579. if (opt->just_initialized) {
  14580. if (pf) {
  14581. pf[0] = fx;
  14582. }
  14583. opt->lbfgs.fx_best = fx;
  14584. // initial step
  14585. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14586. opt->lbfgs.j = 0;
  14587. opt->lbfgs.k = 1;
  14588. opt->lbfgs.end = 0;
  14589. opt->lbfgs.n_no_improvement = 0;
  14590. opt->just_initialized = false;
  14591. }
  14592. float * fx_best = &opt->lbfgs.fx_best;
  14593. float * step = &opt->lbfgs.step;
  14594. int * j = &opt->lbfgs.j;
  14595. int * k = &opt->lbfgs.k;
  14596. int * end = &opt->lbfgs.end;
  14597. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14598. int ls = 0;
  14599. int bound = 0;
  14600. float ys = 0.0f;
  14601. float yy = 0.0f;
  14602. float beta = 0.0f;
  14603. int it = 0;
  14604. while (true) {
  14605. // store the current position and gradient vectors
  14606. ggml_vec_cpy_f32(nx, xp, x);
  14607. ggml_vec_cpy_f32(nx, gp, g);
  14608. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14609. if (ls < 0) {
  14610. // linesearch failed - go back to the previous point and return
  14611. ggml_vec_cpy_f32(nx, x, xp);
  14612. ggml_vec_cpy_f32(nx, g, gp);
  14613. return ls;
  14614. }
  14615. ggml_vec_norm_f32(nx, &xnorm, x);
  14616. ggml_vec_norm_f32(nx, &gnorm, g);
  14617. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14618. if (xnorm < 1.0f) {
  14619. xnorm = 1.0f;
  14620. }
  14621. if (gnorm/xnorm <= params.lbfgs.eps) {
  14622. // converged
  14623. return GGML_OPT_OK;
  14624. }
  14625. // delta-based convergence test
  14626. if (pf != NULL) {
  14627. // need at least params.past iterations to start checking for convergence
  14628. if (params.past <= k[0]) {
  14629. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14630. if (fabsf(rate) < params.delta) {
  14631. return GGML_OPT_OK;
  14632. }
  14633. }
  14634. pf[k[0]%params.past] = fx;
  14635. }
  14636. // check for improvement
  14637. if (params.max_no_improvement > 0) {
  14638. if (fx < fx_best[0]) {
  14639. fx_best[0] = fx;
  14640. n_no_improvement[0] = 0;
  14641. } else {
  14642. n_no_improvement[0]++;
  14643. if (n_no_improvement[0] >= params.max_no_improvement) {
  14644. return GGML_OPT_OK;
  14645. }
  14646. }
  14647. }
  14648. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14649. // reached the maximum number of iterations
  14650. return GGML_OPT_DID_NOT_CONVERGE;
  14651. }
  14652. // update vectors s and y:
  14653. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14654. // y_{k+1} = g_{k+1} - g_{k}.
  14655. //
  14656. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14657. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14658. // compute scalars ys and yy:
  14659. // ys = y^t \cdot s -> 1 / \rho.
  14660. // yy = y^t \cdot y.
  14661. //
  14662. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14663. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14664. lm_ys[end[0]] = ys;
  14665. // find new search direction
  14666. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14667. bound = (m <= k[0]) ? m : k[0];
  14668. k[0]++;
  14669. it++;
  14670. end[0] = (end[0] + 1)%m;
  14671. // initialize search direction with -g
  14672. ggml_vec_neg_f32(nx, d, g);
  14673. j[0] = end[0];
  14674. for (int i = 0; i < bound; ++i) {
  14675. j[0] = (j[0] + m - 1) % m;
  14676. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14677. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14678. lm_alpha[j[0]] /= lm_ys[j[0]];
  14679. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14680. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14681. }
  14682. ggml_vec_scale_f32(nx, d, ys/yy);
  14683. for (int i = 0; i < bound; ++i) {
  14684. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14685. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14686. beta /= lm_ys[j[0]];
  14687. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14688. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14689. j[0] = (j[0] + 1)%m;
  14690. }
  14691. step[0] = 1.0;
  14692. }
  14693. return GGML_OPT_DID_NOT_CONVERGE;
  14694. }
  14695. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14696. struct ggml_opt_params result;
  14697. switch (type) {
  14698. case GGML_OPT_ADAM:
  14699. {
  14700. result = (struct ggml_opt_params) {
  14701. .type = GGML_OPT_ADAM,
  14702. .n_threads = 1,
  14703. .past = 0,
  14704. .delta = 1e-5f,
  14705. .max_no_improvement = 100,
  14706. .print_forward_graph = true,
  14707. .print_backward_graph = true,
  14708. .adam = {
  14709. .n_iter = 10000,
  14710. .sched = 1.000f,
  14711. .decay = 0.001f,
  14712. .alpha = 0.001f,
  14713. .beta1 = 0.9f,
  14714. .beta2 = 0.999f,
  14715. .eps = 1e-8f,
  14716. .eps_f = 1e-5f,
  14717. .eps_g = 1e-3f,
  14718. },
  14719. };
  14720. } break;
  14721. case GGML_OPT_LBFGS:
  14722. {
  14723. result = (struct ggml_opt_params) {
  14724. .type = GGML_OPT_LBFGS,
  14725. .n_threads = 1,
  14726. .past = 0,
  14727. .delta = 1e-5f,
  14728. .max_no_improvement = 0,
  14729. .print_forward_graph = true,
  14730. .print_backward_graph = true,
  14731. .lbfgs = {
  14732. .m = 6,
  14733. .n_iter = 100,
  14734. .max_linesearch = 20,
  14735. .eps = 1e-5f,
  14736. .ftol = 1e-4f,
  14737. .wolfe = 0.9f,
  14738. .min_step = 1e-20f,
  14739. .max_step = 1e+20f,
  14740. .linesearch = GGML_LINESEARCH_DEFAULT,
  14741. },
  14742. };
  14743. } break;
  14744. }
  14745. return result;
  14746. }
  14747. GGML_API void ggml_opt_init(
  14748. struct ggml_context * ctx,
  14749. struct ggml_opt_context * opt,
  14750. struct ggml_opt_params params,
  14751. int64_t nx) {
  14752. opt->ctx = ctx;
  14753. opt->params = params;
  14754. opt->iter = 0;
  14755. opt->nx = nx;
  14756. opt->just_initialized = true;
  14757. switch (opt->params.type) {
  14758. case GGML_OPT_ADAM:
  14759. {
  14760. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14761. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14762. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14763. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14764. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14765. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14766. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14767. opt->adam.pf = params.past > 0
  14768. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14769. : NULL;
  14770. ggml_set_zero(opt->adam.x);
  14771. ggml_set_zero(opt->adam.g1);
  14772. ggml_set_zero(opt->adam.g2);
  14773. ggml_set_zero(opt->adam.m);
  14774. ggml_set_zero(opt->adam.v);
  14775. ggml_set_zero(opt->adam.mh);
  14776. ggml_set_zero(opt->adam.vh);
  14777. if (opt->adam.pf) {
  14778. ggml_set_zero(opt->adam.pf);
  14779. }
  14780. } break;
  14781. case GGML_OPT_LBFGS:
  14782. {
  14783. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14784. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14785. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14786. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14787. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14788. opt->lbfgs.pf = params.past > 0
  14789. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14790. : NULL;
  14791. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14792. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14793. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14794. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14795. ggml_set_zero(opt->lbfgs.x);
  14796. ggml_set_zero(opt->lbfgs.xp);
  14797. ggml_set_zero(opt->lbfgs.g);
  14798. ggml_set_zero(opt->lbfgs.gp);
  14799. ggml_set_zero(opt->lbfgs.d);
  14800. if (opt->lbfgs.pf) {
  14801. ggml_set_zero(opt->lbfgs.pf);
  14802. }
  14803. ggml_set_zero(opt->lbfgs.lmal);
  14804. ggml_set_zero(opt->lbfgs.lmys);
  14805. ggml_set_zero(opt->lbfgs.lms);
  14806. ggml_set_zero(opt->lbfgs.lmy);
  14807. } break;
  14808. }
  14809. }
  14810. enum ggml_opt_result ggml_opt(
  14811. struct ggml_context * ctx,
  14812. struct ggml_opt_params params,
  14813. struct ggml_tensor * f) {
  14814. bool free_ctx = false;
  14815. if (ctx == NULL) {
  14816. struct ggml_init_params params_ctx = {
  14817. .mem_size = 16*1024*1024,
  14818. .mem_buffer = NULL,
  14819. .no_alloc = false,
  14820. };
  14821. ctx = ggml_init(params_ctx);
  14822. if (ctx == NULL) {
  14823. return GGML_OPT_NO_CONTEXT;
  14824. }
  14825. free_ctx = true;
  14826. }
  14827. enum ggml_opt_result result = GGML_OPT_OK;
  14828. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14829. ggml_opt_init(ctx, opt, params, 0);
  14830. result = ggml_opt_resume(ctx, opt, f);
  14831. if (free_ctx) {
  14832. ggml_free(ctx);
  14833. }
  14834. return result;
  14835. }
  14836. enum ggml_opt_result ggml_opt_resume(
  14837. struct ggml_context * ctx,
  14838. struct ggml_opt_context * opt,
  14839. struct ggml_tensor * f) {
  14840. // build forward + backward compute graphs
  14841. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14842. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14843. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14844. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14845. *gf = ggml_build_forward (f);
  14846. *gb = ggml_build_backward(ctx, gf, true);
  14847. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14848. }
  14849. enum ggml_opt_result ggml_opt_resume_g(
  14850. struct ggml_context * ctx,
  14851. struct ggml_opt_context * opt,
  14852. struct ggml_tensor * f,
  14853. struct ggml_cgraph * gf,
  14854. struct ggml_cgraph * gb) {
  14855. // build forward + backward compute graphs
  14856. enum ggml_opt_result result = GGML_OPT_OK;
  14857. switch (opt->params.type) {
  14858. case GGML_OPT_ADAM:
  14859. {
  14860. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14861. } break;
  14862. case GGML_OPT_LBFGS:
  14863. {
  14864. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14865. } break;
  14866. }
  14867. if (opt->params.print_forward_graph) {
  14868. ggml_graph_print (gf);
  14869. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14870. }
  14871. if (opt->params.print_backward_graph) {
  14872. ggml_graph_print (gb);
  14873. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14874. }
  14875. return result;
  14876. }
  14877. ////////////////////////////////////////////////////////////////////////////////
  14878. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14879. assert(k % QK4_0 == 0);
  14880. const int nb = k / QK4_0;
  14881. for (int b = 0; b < n; b += k) {
  14882. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14883. quantize_row_q4_0_reference(src + b, y, k);
  14884. for (int i = 0; i < nb; i++) {
  14885. for (int j = 0; j < QK4_0; j += 2) {
  14886. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14887. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14888. hist[vi0]++;
  14889. hist[vi1]++;
  14890. }
  14891. }
  14892. }
  14893. return (n/QK4_0*sizeof(block_q4_0));
  14894. }
  14895. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14896. assert(k % QK4_1 == 0);
  14897. const int nb = k / QK4_1;
  14898. for (int b = 0; b < n; b += k) {
  14899. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14900. quantize_row_q4_1_reference(src + b, y, k);
  14901. for (int i = 0; i < nb; i++) {
  14902. for (int j = 0; j < QK4_1; j += 2) {
  14903. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14904. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14905. hist[vi0]++;
  14906. hist[vi1]++;
  14907. }
  14908. }
  14909. }
  14910. return (n/QK4_1*sizeof(block_q4_1));
  14911. }
  14912. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14913. assert(k % QK5_0 == 0);
  14914. const int nb = k / QK5_0;
  14915. for (int b = 0; b < n; b += k) {
  14916. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14917. quantize_row_q5_0_reference(src + b, y, k);
  14918. for (int i = 0; i < nb; i++) {
  14919. uint32_t qh;
  14920. memcpy(&qh, &y[i].qh, sizeof(qh));
  14921. for (int j = 0; j < QK5_0; j += 2) {
  14922. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14923. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14924. // cast to 16 bins
  14925. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14926. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14927. hist[vi0]++;
  14928. hist[vi1]++;
  14929. }
  14930. }
  14931. }
  14932. return (n/QK5_0*sizeof(block_q5_0));
  14933. }
  14934. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14935. assert(k % QK5_1 == 0);
  14936. const int nb = k / QK5_1;
  14937. for (int b = 0; b < n; b += k) {
  14938. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14939. quantize_row_q5_1_reference(src + b, y, k);
  14940. for (int i = 0; i < nb; i++) {
  14941. uint32_t qh;
  14942. memcpy(&qh, &y[i].qh, sizeof(qh));
  14943. for (int j = 0; j < QK5_1; j += 2) {
  14944. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14945. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14946. // cast to 16 bins
  14947. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14948. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14949. hist[vi0]++;
  14950. hist[vi1]++;
  14951. }
  14952. }
  14953. }
  14954. return (n/QK5_1*sizeof(block_q5_1));
  14955. }
  14956. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14957. assert(k % QK8_0 == 0);
  14958. const int nb = k / QK8_0;
  14959. for (int b = 0; b < n; b += k) {
  14960. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14961. quantize_row_q8_0_reference(src + b, y, k);
  14962. for (int i = 0; i < nb; i++) {
  14963. for (int j = 0; j < QK8_0; ++j) {
  14964. const int8_t vi = y[i].qs[j];
  14965. hist[vi/16 + 8]++;
  14966. }
  14967. }
  14968. }
  14969. return (n/QK8_0*sizeof(block_q8_0));
  14970. }
  14971. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14972. size_t result = 0;
  14973. switch (type) {
  14974. case GGML_TYPE_Q4_0:
  14975. {
  14976. GGML_ASSERT(start % QK4_0 == 0);
  14977. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14978. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14979. } break;
  14980. case GGML_TYPE_Q4_1:
  14981. {
  14982. GGML_ASSERT(start % QK4_1 == 0);
  14983. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14984. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14985. } break;
  14986. case GGML_TYPE_Q5_0:
  14987. {
  14988. GGML_ASSERT(start % QK5_0 == 0);
  14989. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14990. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14991. } break;
  14992. case GGML_TYPE_Q5_1:
  14993. {
  14994. GGML_ASSERT(start % QK5_1 == 0);
  14995. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14996. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14997. } break;
  14998. case GGML_TYPE_Q8_0:
  14999. {
  15000. GGML_ASSERT(start % QK8_0 == 0);
  15001. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15002. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15003. } break;
  15004. #ifdef GGML_USE_K_QUANTS
  15005. case GGML_TYPE_Q2_K:
  15006. {
  15007. GGML_ASSERT(start % QK_K == 0);
  15008. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15009. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15010. } break;
  15011. case GGML_TYPE_Q3_K:
  15012. {
  15013. GGML_ASSERT(start % QK_K == 0);
  15014. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15015. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15016. } break;
  15017. case GGML_TYPE_Q4_K:
  15018. {
  15019. GGML_ASSERT(start % QK_K == 0);
  15020. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15021. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15022. } break;
  15023. case GGML_TYPE_Q5_K:
  15024. {
  15025. GGML_ASSERT(start % QK_K == 0);
  15026. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15027. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15028. } break;
  15029. case GGML_TYPE_Q6_K:
  15030. {
  15031. GGML_ASSERT(start % QK_K == 0);
  15032. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15033. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15034. } break;
  15035. #endif
  15036. case GGML_TYPE_F16:
  15037. {
  15038. int elemsize = sizeof(ggml_fp16_t);
  15039. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15040. result = n * elemsize;
  15041. } break;
  15042. case GGML_TYPE_F32:
  15043. {
  15044. int elemsize = sizeof(float);
  15045. result = n * elemsize;
  15046. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15047. } break;
  15048. default:
  15049. assert(false);
  15050. }
  15051. return result;
  15052. }
  15053. ////////////////////////////////////////////////////////////////////////////////
  15054. int ggml_cpu_has_avx(void) {
  15055. #if defined(__AVX__)
  15056. return 1;
  15057. #else
  15058. return 0;
  15059. #endif
  15060. }
  15061. int ggml_cpu_has_avx2(void) {
  15062. #if defined(__AVX2__)
  15063. return 1;
  15064. #else
  15065. return 0;
  15066. #endif
  15067. }
  15068. int ggml_cpu_has_avx512(void) {
  15069. #if defined(__AVX512F__)
  15070. return 1;
  15071. #else
  15072. return 0;
  15073. #endif
  15074. }
  15075. int ggml_cpu_has_avx512_vbmi(void) {
  15076. #if defined(__AVX512VBMI__)
  15077. return 1;
  15078. #else
  15079. return 0;
  15080. #endif
  15081. }
  15082. int ggml_cpu_has_avx512_vnni(void) {
  15083. #if defined(__AVX512VNNI__)
  15084. return 1;
  15085. #else
  15086. return 0;
  15087. #endif
  15088. }
  15089. int ggml_cpu_has_fma(void) {
  15090. #if defined(__FMA__)
  15091. return 1;
  15092. #else
  15093. return 0;
  15094. #endif
  15095. }
  15096. int ggml_cpu_has_neon(void) {
  15097. #if defined(__ARM_NEON)
  15098. return 1;
  15099. #else
  15100. return 0;
  15101. #endif
  15102. }
  15103. int ggml_cpu_has_arm_fma(void) {
  15104. #if defined(__ARM_FEATURE_FMA)
  15105. return 1;
  15106. #else
  15107. return 0;
  15108. #endif
  15109. }
  15110. int ggml_cpu_has_f16c(void) {
  15111. #if defined(__F16C__)
  15112. return 1;
  15113. #else
  15114. return 0;
  15115. #endif
  15116. }
  15117. int ggml_cpu_has_fp16_va(void) {
  15118. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15119. return 1;
  15120. #else
  15121. return 0;
  15122. #endif
  15123. }
  15124. int ggml_cpu_has_wasm_simd(void) {
  15125. #if defined(__wasm_simd128__)
  15126. return 1;
  15127. #else
  15128. return 0;
  15129. #endif
  15130. }
  15131. int ggml_cpu_has_blas(void) {
  15132. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15133. return 1;
  15134. #else
  15135. return 0;
  15136. #endif
  15137. }
  15138. int ggml_cpu_has_cublas(void) {
  15139. #if defined(GGML_USE_CUBLAS)
  15140. return 1;
  15141. #else
  15142. return 0;
  15143. #endif
  15144. }
  15145. int ggml_cpu_has_clblast(void) {
  15146. #if defined(GGML_USE_CLBLAST)
  15147. return 1;
  15148. #else
  15149. return 0;
  15150. #endif
  15151. }
  15152. int ggml_cpu_has_gpublas(void) {
  15153. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15154. }
  15155. int ggml_cpu_has_sse3(void) {
  15156. #if defined(__SSE3__)
  15157. return 1;
  15158. #else
  15159. return 0;
  15160. #endif
  15161. }
  15162. int ggml_cpu_has_vsx(void) {
  15163. #if defined(__POWER9_VECTOR__)
  15164. return 1;
  15165. #else
  15166. return 0;
  15167. #endif
  15168. }
  15169. ////////////////////////////////////////////////////////////////////////////////