123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324 |
- // MIT License
- // Copyright (c) 2023 Georgi Gerganov
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #include "common.h"
- #include "llama.h"
- #include "grammar-parser.h"
- #include "utils.hpp"
- #include "../llava/clip.h"
- #include "../llava/llava.h"
- #include "stb_image.h"
- #ifndef NDEBUG
- // crash the server in debug mode, otherwise send an http 500 error
- #define CPPHTTPLIB_NO_EXCEPTIONS 1
- #endif
- // increase max payload length to allow use of larger context size
- #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
- #include "httplib.h"
- #include "json.hpp"
- #if defined(_WIN32)
- #include <windows.h>
- #endif
- #include <cstddef>
- #include <thread>
- #include <chrono>
- #include <condition_variable>
- #include <atomic>
- #include <signal.h>
- using json = nlohmann::json;
- struct server_params {
- std::string hostname = "127.0.0.1";
- std::vector<std::string> api_keys;
- std::string public_path = "examples/server/public";
- std::string chat_template = "";
- int32_t port = 8080;
- int32_t read_timeout = 600;
- int32_t write_timeout = 600;
- bool slots_endpoint = true;
- bool metrics_endpoint = false;
- int n_threads_http = -1;
- };
- bool server_verbose = false;
- bool server_log_json = true;
- enum stop_type {
- STOP_FULL,
- STOP_PARTIAL,
- };
- // TODO: can become bool if we can't find use of more states
- enum slot_state {
- IDLE,
- PROCESSING,
- };
- enum slot_command {
- NONE,
- LOAD_PROMPT,
- RELEASE,
- };
- struct slot_params {
- bool stream = true;
- bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
- uint32_t seed = -1; // RNG seed
- int32_t n_keep = 0; // number of tokens to keep from initial prompt
- int32_t n_predict = -1; // new tokens to predict
- std::vector<std::string> antiprompt;
- json input_prefix;
- json input_suffix;
- };
- struct slot_image {
- int32_t id;
- bool request_encode_image = false;
- float * image_embedding = nullptr;
- int32_t image_tokens = 0;
- clip_image_u8 * img_data;
- std::string prefix_prompt; // before of this image
- };
- struct server_slot {
- int id;
- int task_id = -1;
- struct slot_params params;
- slot_state state = IDLE;
- slot_command command = NONE;
- // used to determine the slot that has been used the longest
- int64_t t_last_used = -1;
- // generation props
- int32_t n_ctx = 0; // context size per slot
- int32_t n_past = 0;
- int32_t n_decoded = 0;
- int32_t n_remaining = -1;
- int32_t i_batch = -1;
- int32_t n_predict = -1;
- int32_t n_prompt_tokens = 0;
- int32_t n_prompt_tokens_processed = 0;
- json prompt;
- std::string generated_text;
- llama_token sampled;
- std::vector<llama_token> cache_tokens;
- std::vector<completion_token_output> generated_token_probs;
- bool infill = false;
- bool embedding = false;
- bool has_next_token = true;
- bool truncated = false;
- bool stopped_eos = false;
- bool stopped_word = false;
- bool stopped_limit = false;
- std::string stopping_word;
- // sampling
- struct llama_sampling_params sparams;
- llama_sampling_context *ctx_sampling = nullptr;
- int32_t ga_i = 0; // group-attention state
- int32_t ga_n = 1; // group-attention factor
- int32_t ga_w = 512; // group-attention width
- int32_t n_past_se = 0; // self-extend
- // multimodal
- std::vector<slot_image> images;
- // stats
- size_t n_sent_text = 0; // number of sent text character
- size_t n_sent_token_probs = 0;
- int64_t t_start_process_prompt;
- int64_t t_start_genereration;
- double t_prompt_processing; // ms
- double t_token_generation; // ms
- // multitasks
- int multitask_id = -1;
- void reset() {
- n_prompt_tokens = 0;
- generated_text = "";
- truncated = false;
- stopped_eos = false;
- stopped_word = false;
- stopped_limit = false;
- stopping_word = "";
- n_past = 0;
- n_sent_text = 0;
- n_sent_token_probs = 0;
- infill = false;
- ga_i = 0;
- n_past_se = 0;
- generated_token_probs.clear();
- for (slot_image & img : images) {
- free(img.image_embedding);
- if (img.img_data) {
- clip_image_u8_free(img.img_data);
- }
- img.prefix_prompt = "";
- }
- images.clear();
- }
- bool has_budget(gpt_params &global_params) {
- if (params.n_predict == -1 && global_params.n_predict == -1) {
- return true; // limitless
- }
- n_remaining = -1;
- if (params.n_predict != -1) {
- n_remaining = params.n_predict - n_decoded;
- } else if (global_params.n_predict != -1) {
- n_remaining = global_params.n_predict - n_decoded;
- }
- return n_remaining > 0; // no budget
- }
- bool available() const {
- return state == IDLE && command == NONE;
- }
- bool is_processing() const {
- return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
- }
- void add_token_string(const completion_token_output &token) {
- if (command == RELEASE) {
- return;
- }
- cache_tokens.push_back(token.tok);
- generated_token_probs.push_back(token);
- }
- void release() {
- if (state == PROCESSING)
- {
- t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
- command = RELEASE;
- }
- }
- json get_formated_timings() {
- return json
- {
- {"prompt_n", n_prompt_tokens_processed},
- {"prompt_ms", t_prompt_processing},
- {"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
- {"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
- {"predicted_n", n_decoded},
- {"predicted_ms", t_token_generation},
- {"predicted_per_token_ms", t_token_generation / n_decoded},
- {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
- };
- }
- void print_timings() const {
- char buffer[512];
- double t_token = t_prompt_processing / n_prompt_tokens_processed;
- double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
- sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
- t_prompt_processing, n_prompt_tokens_processed,
- t_token, n_tokens_second);
- LOG_INFO(buffer, {
- {"slot_id", id},
- {"task_id", task_id},
- {"t_prompt_processing", t_prompt_processing},
- {"n_prompt_tokens_processed", n_prompt_tokens_processed},
- {"t_token", t_token},
- {"n_tokens_second", n_tokens_second},
- });
- t_token = t_token_generation / n_decoded;
- n_tokens_second = 1e3 / t_token_generation * n_decoded;
- sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
- t_token_generation, n_decoded,
- t_token, n_tokens_second);
- LOG_INFO(buffer, {
- {"slot_id", id},
- {"task_id", task_id},
- {"t_token_generation", t_token_generation},
- {"n_decoded", n_decoded},
- {"t_token", t_token},
- {"n_tokens_second", n_tokens_second},
- });
- sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
- LOG_INFO(buffer, {
- {"slot_id", id},
- {"task_id", task_id},
- {"t_prompt_processing", t_prompt_processing},
- {"t_token_generation", t_token_generation},
- {"t_total", t_prompt_processing + t_token_generation},
- });
- }
- };
- struct server_metrics {
- uint64_t n_prompt_tokens_processed_total = 0;
- uint64_t n_tokens_predicted_total = 0;
- uint64_t n_prompt_tokens_processed = 0;
- uint64_t t_prompt_processing = 0;
- uint64_t n_tokens_predicted = 0;
- uint64_t t_tokens_generation = 0;
- void on_prompt_eval(const server_slot &slot) {
- n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
- n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
- t_prompt_processing += slot.t_prompt_processing;
- }
- void on_prediction(const server_slot &slot) {
- n_tokens_predicted_total += slot.n_decoded;
- n_tokens_predicted += slot.n_decoded;
- t_tokens_generation += slot.t_token_generation;
- }
- void reset_bucket() {
- n_prompt_tokens_processed = 0;
- t_prompt_processing = 0;
- n_tokens_predicted = 0;
- t_tokens_generation = 0;
- }
- };
- struct llama_server_context
- {
- llama_model *model = nullptr;
- llama_context *ctx = nullptr;
- clip_ctx *clp_ctx = nullptr;
- gpt_params params;
- llama_batch batch;
- bool multimodal = false;
- bool clean_kv_cache = true;
- bool all_slots_are_idle = false;
- bool add_bos_token = true;
- int32_t n_ctx; // total context for all clients / slots
- // system prompt
- bool system_need_update = false;
- std::string system_prompt;
- std::vector<llama_token> system_tokens;
- std::string name_user; // this should be the antiprompt
- std::string name_assistant;
- // slots / clients
- std::vector<server_slot> slots;
- json default_generation_settings_for_props;
- llama_server_queue queue_tasks;
- llama_server_response queue_results;
- server_metrics metrics;
- ~llama_server_context()
- {
- if (clp_ctx)
- {
- LOG_INFO("freeing clip model", {});
- clip_free(clp_ctx);
- clp_ctx = nullptr;
- }
- if (ctx)
- {
- llama_free(ctx);
- ctx = nullptr;
- }
- if (model)
- {
- llama_free_model(model);
- model = nullptr;
- }
- }
- bool load_model(const gpt_params ¶ms_)
- {
- params = params_;
- if (!params.mmproj.empty()) {
- multimodal = true;
- LOG_INFO("Multi Modal Mode Enabled", {});
- clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
- if(clp_ctx == nullptr) {
- LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
- return false;
- }
- if (params.n_ctx < 2048) { // request larger context for the image embedding
- params.n_ctx = 2048;
- }
- }
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- if (model == nullptr)
- {
- LOG_ERROR("unable to load model", {{"model", params.model}});
- return false;
- }
- if (multimodal) {
- const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
- const int n_embd_llm = llama_n_embd(model);
- if (n_embd_clip != n_embd_llm) {
- LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
- llama_free(ctx);
- llama_free_model(model);
- return false;
- }
- }
- n_ctx = llama_n_ctx(ctx);
- add_bos_token = llama_should_add_bos_token(model);
- return true;
- }
- void validate_model_chat_template(server_params & sparams) {
- llama_chat_message chat[] = {{"user", "test"}};
- std::vector<char> buf(1);
- int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
- if (res < 0) {
- LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
- sparams.chat_template = "chatml";
- }
- }
- void initialize() {
- // create slots
- all_slots_are_idle = true;
- const int32_t n_ctx_slot = n_ctx / params.n_parallel;
- LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
- for (int i = 0; i < params.n_parallel; i++)
- {
- server_slot slot;
- slot.id = i;
- slot.n_ctx = n_ctx_slot;
- slot.n_predict = params.n_predict;
- LOG_INFO("new slot", {
- {"slot_id", slot.id},
- {"n_ctx_slot", slot.n_ctx}
- });
- const int ga_n = params.grp_attn_n;
- const int ga_w = params.grp_attn_w;
- if (ga_n != 1) {
- GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
- GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
- //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
- //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
- LOG_INFO("slot self-extend", {
- {"slot_id", slot.id},
- {"ga_n", ga_n},
- {"ga_w", ga_w}
- });
- }
- slot.ga_i = 0;
- slot.ga_n = ga_n;
- slot.ga_w = ga_w;
- slot.reset();
- slots.push_back(slot);
- }
- default_generation_settings_for_props = get_formated_generation(slots.front());
- default_generation_settings_for_props["seed"] = -1;
- batch = llama_batch_init(n_ctx, 0, params.n_parallel);
- }
- std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
- {
- // TODO: currently, we tokenize using special tokens by default
- // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
- // but it's better compared to completely ignoring ChatML and other chat templates
- const bool TMP_FORCE_SPECIAL = true;
- // If `add_bos` is true, we only add BOS, when json_prompt is a string,
- // or the first element of the json_prompt array is a string.
- std::vector<llama_token> prompt_tokens;
- if (json_prompt.is_array())
- {
- bool first = true;
- for (const auto& p : json_prompt)
- {
- if (p.is_string())
- {
- auto s = p.template get<std::string>();
- std::vector<llama_token> p;
- if (first)
- {
- p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
- first = false;
- }
- else
- {
- p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
- }
- prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
- }
- else
- {
- if (first)
- {
- first = false;
- }
- prompt_tokens.push_back(p.template get<llama_token>());
- }
- }
- }
- else
- {
- auto s = json_prompt.template get<std::string>();
- prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
- }
- return prompt_tokens;
- }
- server_slot* get_slot(int id) {
- int64_t t_last = ggml_time_us();
- server_slot *last_used = nullptr;
- for (server_slot & slot : slots)
- {
- if (slot.id == id && slot.available())
- {
- return &slot;
- }
- if (slot.available() && slot.t_last_used < t_last)
- {
- last_used = &slot;
- t_last = slot.t_last_used;
- }
- }
- return last_used;
- }
- bool launch_slot_with_data(server_slot* &slot, json data) {
- slot_params default_params;
- llama_sampling_params default_sparams;
- slot->params.stream = json_value(data, "stream", false);
- slot->params.cache_prompt = json_value(data, "cache_prompt", false);
- slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
- slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
- slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
- slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
- slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
- slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
- slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
- slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
- slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
- slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
- slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
- slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
- slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
- slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
- slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
- slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
- slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
- slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
- slot->params.seed = json_value(data, "seed", default_params.seed);
- slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
- slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
- slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
- if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
- // Might be better to reject the request with a 400 ?
- LOG_WARNING("Max tokens to predict exceeds server configuration", {
- {"params.n_predict", slot->params.n_predict},
- {"slot.n_predict", slot->n_predict},
- });
- slot->params.n_predict = slot->n_predict;
- }
- // infill
- if (data.count("input_prefix") != 0)
- {
- slot->params.input_prefix = data["input_prefix"];
- }
- else
- {
- slot->params.input_prefix = "";
- }
- if (data.count("input_suffix") != 0)
- {
- slot->params.input_suffix = data["input_suffix"];
- }
- else
- {
- slot->params.input_suffix = "";
- }
- if (data.count("prompt") != 0)
- {
- slot->prompt = data["prompt"];
- }
- else
- {
- slot->prompt = "";
- }
- slot->sparams.penalty_prompt_tokens.clear();
- slot->sparams.use_penalty_prompt_tokens = false;
- const auto &penalty_prompt = data.find("penalty_prompt");
- if (penalty_prompt != data.end())
- {
- if (penalty_prompt->is_string())
- {
- const auto penalty_prompt_string = penalty_prompt->get<std::string>();
- auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
- slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
- if (slot->params.n_predict > 0)
- {
- slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
- }
- slot->sparams.use_penalty_prompt_tokens = true;
- }
- else if (penalty_prompt->is_array())
- {
- const auto n_tokens = penalty_prompt->size();
- slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
- const int n_vocab = llama_n_vocab(model);
- for (const auto &penalty_token : *penalty_prompt)
- {
- if (penalty_token.is_number_integer())
- {
- const auto tok = penalty_token.get<llama_token>();
- if (tok >= 0 && tok < n_vocab)
- {
- slot->sparams.penalty_prompt_tokens.push_back(tok);
- }
- }
- }
- slot->sparams.use_penalty_prompt_tokens = true;
- }
- }
- slot->sparams.logit_bias.clear();
- if (json_value(data, "ignore_eos", false))
- {
- slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
- }
- const auto &logit_bias = data.find("logit_bias");
- if (logit_bias != data.end() && logit_bias->is_array())
- {
- const int n_vocab = llama_n_vocab(model);
- for (const auto &el : *logit_bias)
- {
- if (el.is_array() && el.size() == 2)
- {
- float bias;
- if (el[1].is_number())
- {
- bias = el[1].get<float>();
- }
- else if (el[1].is_boolean() && !el[1].get<bool>())
- {
- bias = -INFINITY;
- }
- else
- {
- continue;
- }
- if (el[0].is_number_integer())
- {
- llama_token tok = el[0].get<llama_token>();
- if (tok >= 0 && tok < n_vocab)
- {
- slot->sparams.logit_bias[tok] = bias;
- }
- }
- else if (el[0].is_string())
- {
- auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
- for (auto tok : toks)
- {
- slot->sparams.logit_bias[tok] = bias;
- }
- }
- }
- }
- }
- slot->params.antiprompt.clear();
- const auto &stop = data.find("stop");
- if (stop != data.end() && stop->is_array())
- {
- for (const auto &word : *stop)
- {
- if (!word.empty())
- {
- slot->params.antiprompt.push_back(word);
- }
- }
- }
- const auto &samplers_sequence = data.find("samplers");
- if (samplers_sequence != data.end() && samplers_sequence->is_array())
- {
- std::vector<std::string> sampler_names;
- for (const auto &sampler_name : *samplers_sequence)
- {
- if (sampler_name.is_string())
- {
- sampler_names.emplace_back(sampler_name);
- }
- }
- slot->sparams.samplers_sequence = sampler_types_from_names(sampler_names, false);
- }
- else
- {
- slot->sparams.samplers_sequence = default_sparams.samplers_sequence;
- }
- if (multimodal)
- {
- const auto &images_data = data.find("image_data");
- if (images_data != data.end() && images_data->is_array())
- {
- for (const auto &img : *images_data)
- {
- const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
- slot_image img_sl;
- img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
- img_sl.img_data = clip_image_u8_init();
- if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
- {
- LOG_ERROR("failed to load image", {
- {"slot_id", slot->id},
- {"img_sl_id", img_sl.id}
- });
- return false;
- }
- LOG_VERBOSE("image loaded", {
- {"slot_id", slot->id},
- {"img_sl_id", img_sl.id}
- });
- img_sl.request_encode_image = true;
- slot->images.push_back(img_sl);
- }
- // process prompt
- // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
- if (slot->images.size() > 0 && !slot->prompt.is_array())
- {
- std::string prompt = slot->prompt.get<std::string>();
- size_t pos = 0, begin_prefix = 0;
- std::string pattern = "[img-";
- while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
- size_t end_prefix = pos;
- pos += pattern.length();
- size_t end_pos = prompt.find(']', pos);
- if (end_pos != std::string::npos)
- {
- std::string image_id = prompt.substr(pos, end_pos - pos);
- try
- {
- int img_id = std::stoi(image_id);
- bool found = false;
- for (slot_image &img : slot->images)
- {
- if (img.id == img_id) {
- found = true;
- img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
- begin_prefix = end_pos + 1;
- break;
- }
- }
- if (!found) {
- LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
- slot->images.clear();
- return false;
- }
- } catch (const std::invalid_argument& e) {
- LOG_TEE("Invalid image number id in prompt\n");
- slot->images.clear();
- return false;
- }
- }
- }
- slot->prompt = "";
- slot->params.input_suffix = prompt.substr(begin_prefix);
- slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
- }
- }
- }
- if (slot->ctx_sampling != nullptr)
- {
- llama_sampling_free(slot->ctx_sampling);
- }
- slot->ctx_sampling = llama_sampling_init(slot->sparams);
- llama_set_rng_seed(ctx, slot->params.seed);
- slot->command = LOAD_PROMPT;
- all_slots_are_idle = false;
- LOG_INFO("slot is processing task", {
- {"slot_id", slot->id},
- {"task_id", slot->task_id},
- });
- return true;
- }
- void kv_cache_clear() {
- // clear the entire KV cache
- llama_kv_cache_clear(ctx);
- clean_kv_cache = false;
- }
- void system_prompt_update() {
- kv_cache_clear();
- system_tokens.clear();
- if (!system_prompt.empty()) {
- system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
- llama_batch_clear(batch);
- for (int i = 0; i < (int)system_tokens.size(); ++i)
- {
- llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
- }
- for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
- {
- const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i));
- llama_batch batch_view = {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- 0, 0, 0, // unused
- };
- if (llama_decode(ctx, batch_view) != 0)
- {
- LOG_TEE("%s: llama_decode() failed\n", __func__);
- return;
- }
- }
- // assign the system KV cache to all parallel sequences
- for (int32_t i = 1; i < params.n_parallel; ++i)
- {
- llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
- }
- }
- LOG_TEE("system prompt updated\n");
- system_need_update = false;
- }
- void system_prompt_notify() {
- // release all slots
- for (server_slot &slot : slots)
- {
- slot.release();
- }
- system_need_update = true;
- }
- void system_prompt_process(const json &sys_props) {
- system_prompt = sys_props.value("prompt", "");
- name_user = sys_props.value("anti_prompt", "");
- name_assistant = sys_props.value("assistant_name", "");
- system_prompt_notify();
- }
- static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
- const stop_type type, server_slot &slot)
- {
- size_t stop_pos = std::string::npos;
- for (const std::string &word : slot.params.antiprompt)
- {
- size_t pos;
- if (type == STOP_FULL)
- {
- const size_t tmp = word.size() + last_token_size;
- const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
- pos = text.find(word, from_pos);
- }
- else
- {
- pos = find_partial_stop_string(word, text);
- }
- if (pos != std::string::npos &&
- (stop_pos == std::string::npos || pos < stop_pos))
- {
- if (type == STOP_FULL)
- {
- slot.stopped_word = true;
- slot.stopping_word = word;
- slot.has_next_token = false;
- }
- stop_pos = pos;
- }
- }
- return stop_pos;
- }
- bool process_token(completion_token_output &result, server_slot &slot) {
- // remember which tokens were sampled - used for repetition penalties during sampling
- const std::string token_str = llama_token_to_piece(ctx, result.tok);
- slot.sampled = result.tok;
- // search stop word and delete it
- slot.generated_text += token_str;
- slot.has_next_token = true;
- if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
- {
- // we can change penalty_prompt_tokens because it is always created from scratch each request
- slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
- }
- // check if there is incomplete UTF-8 character at the end
- bool incomplete = false;
- for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
- {
- unsigned char c = slot.generated_text[slot.generated_text.size() - i];
- if ((c & 0xC0) == 0x80)
- {
- // continuation byte: 10xxxxxx
- continue;
- }
- if ((c & 0xE0) == 0xC0)
- {
- // 2-byte character: 110xxxxx ...
- incomplete = i < 2;
- }
- else if ((c & 0xF0) == 0xE0)
- {
- // 3-byte character: 1110xxxx ...
- incomplete = i < 3;
- }
- else if ((c & 0xF8) == 0xF0)
- {
- // 4-byte character: 11110xxx ...
- incomplete = i < 4;
- }
- // else 1-byte character or invalid byte
- break;
- }
- if (!incomplete)
- {
- size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
- const std::string str_test = slot.generated_text.substr(pos);
- bool is_stop_full = false;
- size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
- if (stop_pos != std::string::npos)
- {
- is_stop_full = true;
- slot.generated_text.erase(
- slot.generated_text.begin() + pos + stop_pos,
- slot.generated_text.end());
- pos = std::min(slot.n_sent_text, slot.generated_text.size());
- }
- else
- {
- is_stop_full = false;
- stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
- }
- // check if there is any token to predict
- if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
- {
- // no send the stop word in the response
- result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
- slot.n_sent_text += result.text_to_send.size();
- // add the token to slot queue and cache
- }
- if (slot.params.stream)
- {
- send_partial_response(slot, result);
- }
- }
- slot.add_token_string(result);
- if (incomplete)
- {
- slot.has_next_token = true;
- }
- // check the limits
- if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params))
- {
- slot.stopped_limit = true;
- slot.has_next_token = false;
- }
- if (!slot.cache_tokens.empty() && llama_token_is_eog(model, result.tok))
- {
- slot.stopped_eos = true;
- slot.has_next_token = false;
- LOG_VERBOSE("eos token found", {});
- }
- LOG_VERBOSE("next token", {
- {"token", result.tok},
- {"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
- {"has_next_token", slot.has_next_token},
- {"n_remain", slot.n_remaining},
- {"num_tokens_predicted", slot.n_decoded},
- {"stopped_eos", slot.stopped_eos},
- {"stopped_word", slot.stopped_word},
- {"stopped_limit", slot.stopped_limit},
- {"stopping_word", slot.stopping_word},
- });
- return slot.has_next_token; // continue
- }
- bool process_images(server_slot &slot) const
- {
- for (slot_image &img : slot.images)
- {
- if (!img.request_encode_image)
- {
- continue;
- }
- if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
- LOG_TEE("Error processing the given image");
- return false;
- }
- img.request_encode_image = false;
- }
- return slot.images.size() > 0;
- }
- void send_error(task_server& task, const std::string &error)
- {
- LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
- task_result res;
- res.id = task.id;
- res.multitask_id = task.multitask_id;
- res.stop = false;
- res.error = true;
- res.result_json = { { "content", error } };
- queue_results.send(res);
- }
- json get_formated_generation(server_slot &slot)
- {
- const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
- const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
- eos_bias->second < 0.0f && std::isinf(eos_bias->second);
- std::vector<std::string> samplers_sequence;
- for (const auto &sampler_type : slot.sparams.samplers_sequence)
- {
- samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type));
- }
- return json {
- {"n_ctx", slot.n_ctx},
- {"n_predict", slot.n_predict},
- {"model", params.model_alias},
- {"seed", slot.params.seed},
- {"temperature", slot.sparams.temp},
- {"dynatemp_range", slot.sparams.dynatemp_range},
- {"dynatemp_exponent", slot.sparams.dynatemp_exponent},
- {"top_k", slot.sparams.top_k},
- {"top_p", slot.sparams.top_p},
- {"min_p", slot.sparams.min_p},
- {"tfs_z", slot.sparams.tfs_z},
- {"typical_p", slot.sparams.typical_p},
- {"repeat_last_n", slot.sparams.penalty_last_n},
- {"repeat_penalty", slot.sparams.penalty_repeat},
- {"presence_penalty", slot.sparams.penalty_present},
- {"frequency_penalty", slot.sparams.penalty_freq},
- {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
- {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
- {"mirostat", slot.sparams.mirostat},
- {"mirostat_tau", slot.sparams.mirostat_tau},
- {"mirostat_eta", slot.sparams.mirostat_eta},
- {"penalize_nl", slot.sparams.penalize_nl},
- {"stop", slot.params.antiprompt},
- {"n_predict", slot.params.n_predict},
- {"n_keep", params.n_keep},
- {"ignore_eos", ignore_eos},
- {"stream", slot.params.stream},
- {"logit_bias", slot.sparams.logit_bias},
- {"n_probs", slot.sparams.n_probs},
- {"min_keep", slot.sparams.min_keep},
- {"grammar", slot.sparams.grammar},
- {"samplers", samplers_sequence}
- };
- }
- void send_partial_response(server_slot &slot, completion_token_output tkn)
- {
- task_result res;
- res.id = slot.task_id;
- res.multitask_id = slot.multitask_id;
- res.error = false;
- res.stop = false;
- res.result_json = json
- {
- {"stop", false},
- {"slot_id", slot.id},
- {"multimodal", multimodal}
- };
- if (!llama_token_is_eog(model, tkn.tok)) {
- res.result_json["content"] = tkn.text_to_send;
- }
- if (slot.sparams.n_probs > 0)
- {
- std::vector<completion_token_output> probs_output = {};
- const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
- size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
- size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
- if (probs_pos < probs_stop_pos)
- {
- probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
- }
- slot.n_sent_token_probs = probs_stop_pos;
- res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
- }
- queue_results.send(res);
- }
- void send_final_response(server_slot &slot)
- {
- task_result res;
- res.id = slot.task_id;
- res.multitask_id = slot.multitask_id;
- res.error = false;
- res.stop = true;
- res.result_json = json
- {
- {"content", !slot.params.stream ? slot.generated_text : ""},
- {"slot_id", slot.id},
- {"stop", true},
- {"model", params.model_alias},
- {"tokens_predicted", slot.n_decoded},
- {"tokens_evaluated", slot.n_prompt_tokens},
- {"generation_settings", get_formated_generation(slot)},
- {"prompt", slot.prompt},
- {"truncated", slot.truncated},
- {"stopped_eos", slot.stopped_eos},
- {"stopped_word", slot.stopped_word},
- {"stopped_limit", slot.stopped_limit},
- {"stopping_word", slot.stopping_word},
- {"tokens_cached", slot.n_past},
- {"timings", slot.get_formated_timings()}
- };
- if (slot.sparams.n_probs > 0)
- {
- std::vector<completion_token_output> probs = {};
- if (!slot.params.stream && slot.stopped_word)
- {
- const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
- probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
- }
- else
- {
- probs = std::vector<completion_token_output>(
- slot.generated_token_probs.begin(),
- slot.generated_token_probs.end());
- }
- res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
- }
- queue_results.send(res);
- }
- void send_embedding(server_slot & slot, const llama_batch & batch)
- {
- task_result res;
- res.id = slot.task_id;
- res.multitask_id = slot.multitask_id;
- res.error = false;
- res.stop = true;
- const int n_embd = llama_n_embd(model);
- if (!params.embedding)
- {
- LOG_WARNING("embedding disabled", {{"params.embedding", params.embedding}});
- res.result_json = json
- {
- {"embedding", std::vector<float>(n_embd, 0.0f)},
- };
- }
- else
- {
- for (int i = 0; i < batch.n_tokens; ++i) {
- if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
- continue;
- }
- const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
- if (embd == NULL) {
- embd = llama_get_embeddings_ith(ctx, i);
- if (embd == NULL) {
- LOG_ERROR("failed to get embeddings for token", {{"token", batch.token[i]}, {"seq_id", batch.seq_id[i][0]}});
- res.result_json = json
- {
- {"embedding", std::vector<float>(n_embd, 0.0f)},
- };
- continue;
- }
- }
- res.result_json = json
- {
- {"embedding", std::vector<float>(embd, embd + n_embd)},
- };
- }
- }
- queue_results.send(res);
- }
- void request_completion(int task_id, json data, bool infill, bool embedding, int multitask_id)
- {
- task_server task;
- task.id = task_id;
- task.target_id = 0;
- task.data = std::move(data);
- task.infill_mode = infill;
- task.embedding_mode = embedding;
- task.type = TASK_TYPE_COMPLETION;
- task.multitask_id = multitask_id;
- // when a completion task's prompt array is not a singleton, we split it into multiple requests
- // otherwise, it's a single-prompt task, we actually queue it
- // if there's numbers in the prompt array it will be treated as an array of tokens
- if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
- bool numbers = false;
- for (const auto& e : task.data.at("prompt")) {
- if (e.is_number()) {
- numbers = true;
- break;
- }
- }
- // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
- // it will completely stall the server. I don't know where the bug for this is.
- //
- // if there are numbers, it needs to be treated like a single prompt,
- // queue_tasks handles a mix of strings and numbers just fine.
- if (numbers) {
- queue_tasks.post(task);
- } else {
- split_multiprompt_task(task_id, task);
- }
- } else {
- // an empty prompt can make slot become buggy
- if (task.data.contains("prompt") && task.data["prompt"].is_string() && task.data["prompt"].get<std::string>().empty()) {
- task.data["prompt"] = " "; // add a space so that we have one token
- }
- queue_tasks.post(task);
- }
- }
- // for multiple images processing
- bool ingest_images(server_slot &slot, int n_batch)
- {
- int image_idx = 0;
- while (image_idx < (int) slot.images.size())
- {
- slot_image &img = slot.images[image_idx];
- // process prefix prompt
- for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
- {
- const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
- llama_batch batch_view = {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- 0, 0, 0, // unused
- };
- if (llama_decode(ctx, batch_view))
- {
- LOG_TEE("%s : failed to eval\n", __func__);
- return false;
- }
- }
- // process image with llm
- for (int i = 0; i < img.image_tokens; i += n_batch)
- {
- int n_eval = img.image_tokens - i;
- if (n_eval > n_batch)
- {
- n_eval = n_batch;
- }
- const int n_embd = llama_n_embd(model);
- llama_batch batch_img = {
- n_eval,
- nullptr,
- (img.image_embedding + i * n_embd),
- nullptr,
- nullptr,
- nullptr,
- nullptr,
- slot.n_past,
- 1, 0
- };
- if (llama_decode(ctx, batch_img))
- {
- LOG_TEE("%s : failed to eval image\n", __func__);
- return false;
- }
- slot.n_past += n_eval;
- }
- image_idx++;
- llama_batch_clear(batch);
- // append prefix of next image
- const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
- slot.params.input_suffix : // no more images, then process suffix prompt
- (json)(slot.images[image_idx].prefix_prompt);
- std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
- for (int i = 0; i < (int) append_tokens.size(); ++i)
- {
- llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
- slot.n_past += 1;
- }
- }
- return true;
- }
- void request_cancel(int task_id)
- {
- task_server task;
- task.type = TASK_TYPE_CANCEL;
- task.target_id = task_id;
- queue_tasks.post(task);
- }
- void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
- {
- int prompt_count = multiprompt_task.data.at("prompt").size();
- if (prompt_count <= 1) {
- send_error(multiprompt_task, "error while handling multiple prompts");
- return;
- }
- // generate all the ID for subtask
- std::vector<int> subtask_ids(prompt_count);
- for (int i = 0; i < prompt_count; i++)
- {
- subtask_ids[i] = queue_tasks.get_new_id();
- }
- // queue up the multitask so we can track its subtask progression
- queue_tasks.add_multitask(multitask_id, subtask_ids);
- // add subtasks
- for (int i = 0; i < prompt_count; i++)
- {
- json subtask_data = multiprompt_task.data;
- subtask_data["prompt"] = subtask_data["prompt"][i];
- // subtasks inherit everything else (infill mode, embedding mode, etc.)
- request_completion(subtask_ids[i], subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
- }
- }
- void process_single_task(task_server& task)
- {
- switch (task.type)
- {
- case TASK_TYPE_COMPLETION: {
- server_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
- if (slot == nullptr)
- {
- // if no slot is available, we defer this task for processing later
- LOG_VERBOSE("no slot is available", {{"task_id", task.id}});
- queue_tasks.defer(task);
- break;
- }
- if (task.data.contains("system_prompt"))
- {
- if (!all_slots_are_idle) {
- send_error(task, "system prompt can only be updated when all slots are idle");
- break;
- }
- system_prompt_process(task.data["system_prompt"]);
- // reset cache_tokens for all slots
- for (server_slot &slot : slots)
- {
- slot.cache_tokens.clear();
- slot.n_past = 0;
- slot.n_past_se = 0;
- }
- }
- slot->reset();
- slot->infill = task.infill_mode;
- slot->embedding = task.embedding_mode;
- slot->task_id = task.id;
- slot->multitask_id = task.multitask_id;
- if (!launch_slot_with_data(slot, task.data))
- {
- // send error result
- send_error(task, "internal_error");
- break;
- }
- } break;
- case TASK_TYPE_CANCEL: { // release slot linked with the task id
- for (auto & slot : slots)
- {
- if (slot.task_id == task.target_id)
- {
- slot.release();
- break;
- }
- }
- } break;
- case TASK_TYPE_NEXT_RESPONSE: {
- // do nothing
- } break;
- case TASK_TYPE_METRICS: {
- json slots_data = json::array();
- int n_idle_slots = 0;
- int n_processing_slots = 0;
- for (server_slot &slot: slots) {
- json slot_data = get_formated_generation(slot);
- slot_data["id"] = slot.id;
- slot_data["task_id"] = slot.task_id;
- slot_data["state"] = slot.state;
- slot_data["prompt"] = slot.prompt;
- slot_data["next_token"] = {
- {"has_next_token", slot.has_next_token},
- {"n_remain", slot.n_remaining},
- {"num_tokens_predicted", slot.n_decoded},
- {"stopped_eos", slot.stopped_eos},
- {"stopped_word", slot.stopped_word},
- {"stopped_limit", slot.stopped_limit},
- {"stopping_word", slot.stopping_word},
- };
- if (slot_data["state"] == IDLE) {
- n_idle_slots++;
- } else {
- n_processing_slots++;
- }
- slots_data.push_back(slot_data);
- }
- LOG_INFO("slot data", {
- {"task_id", task.id},
- {"n_idle_slots", n_idle_slots},
- {"n_processing_slots", n_processing_slots}
- });
- LOG_VERBOSE("slot data", {
- {"task_id", task.id},
- {"n_idle_slots", n_idle_slots},
- {"n_processing_slots", n_processing_slots},
- {"slots", slots_data}
- });
- task_result res;
- res.id = task.id;
- res.multitask_id = task.multitask_id;
- res.stop = true;
- res.error = false;
- res.result_json = {
- { "idle", n_idle_slots },
- { "processing", n_processing_slots },
- { "deferred", queue_tasks.queue_tasks_deferred.size() },
- { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
- { "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
- { "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
- { "t_prompt_processing", metrics.t_prompt_processing},
- { "n_tokens_predicted", metrics.n_tokens_predicted},
- { "t_tokens_generation", metrics.t_tokens_generation},
- { "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
- { "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
- { "slots", slots_data },
- };
- metrics.reset_bucket();
- queue_results.send(res);
- } break;
- }
- }
- void on_finish_multitask(task_multi& multitask)
- {
- // all subtasks done == multitask is done
- task_result result;
- result.id = multitask.id;
- result.stop = true;
- result.error = false;
- // collect json results into one json result
- std::vector<json> result_jsons;
- for (auto& subres : multitask.results)
- {
- result_jsons.push_back(subres.result_json);
- result.error = result.error && subres.error;
- }
- result.result_json = json{ { "results", result_jsons } };
- queue_results.send(result);
- }
- bool update_slots() {
- if (system_need_update)
- {
- LOG_INFO("updating system prompt", {});
- system_prompt_update();
- }
- llama_batch_clear(batch);
- if (all_slots_are_idle)
- {
- if (system_prompt.empty() && clean_kv_cache)
- {
- LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {});
- kv_cache_clear();
- }
- return true;
- }
- LOG_VERBOSE("posting NEXT_RESPONSE", {});
- task_server task;
- task.type = TASK_TYPE_NEXT_RESPONSE;
- task.target_id = -1;
- queue_tasks.post(task);
- for (server_slot &slot : slots)
- {
- if (slot.ga_n == 1)
- {
- if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
- {
- // Shift context
- const int n_keep = slot.params.n_keep + add_bos_token;
- const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
- const int n_discard = n_left / 2;
- LOG_INFO("slot context shift", {
- {"slot_id", slot.id},
- {"task_id", slot.task_id},
- {"n_keep", n_keep},
- {"n_left", n_left},
- {"n_discard", n_discard},
- {"n_ctx", n_ctx},
- {"n_past", slot.n_past},
- {"n_system_tokens", system_tokens.size()},
- {"n_cache_tokens", slot.cache_tokens.size()}
- });
- llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
- llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
- for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++)
- {
- slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
- }
- slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
- slot.n_past -= n_discard;
- slot.truncated = true;
- }
- }
- }
- // decode any currently ongoing sequences
- LOG_VERBOSE("decoding ongoing sequences", {});
- for (auto & slot : slots)
- {
- // release the slot
- if (slot.command == RELEASE)
- {
- slot.state = IDLE;
- slot.command = NONE;
- slot.t_last_used = ggml_time_us();
- LOG_INFO("slot released", {
- {"slot_id", slot.id},
- {"task_id", slot.task_id},
- {"n_ctx", n_ctx},
- {"n_past", slot.n_past},
- {"n_system_tokens", system_tokens.size()},
- {"n_cache_tokens", slot.cache_tokens.size()},
- {"truncated", slot.truncated}
- });
- queue_tasks.notify_slot_changed();
- continue;
- }
- if (slot.state == IDLE)
- {
- continue;
- }
- slot.i_batch = batch.n_tokens;
- const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
- // TODO: we always have to take into account the "system_tokens"
- // this is not great and needs to be improved somehow
- llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
- slot.n_past += 1;
- }
- // process in chunks of params.n_batch
- int32_t n_batch = params.n_batch;
- // assign workload to the slots
- if (params.cont_batching || batch.n_tokens == 0)
- {
- for (auto & slot : slots)
- {
- const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
- // empty prompt passed -> release the slot and send empty response
- // note: infill mode allows empty prompt
- if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt && !slot.infill)
- {
- slot.release();
- slot.print_timings();
- send_final_response(slot);
- continue;
- }
- // need process the prompt
- if (slot.state == IDLE && slot.command == LOAD_PROMPT)
- {
- slot.state = PROCESSING;
- slot.command = NONE;
- std::vector<llama_token> prompt_tokens;
- slot.t_start_process_prompt = ggml_time_us();
- slot.t_start_genereration = 0;
- if (slot.infill)
- {
- bool suff_rm_leading_spc = true;
- if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1)
- {
- params.input_suffix.erase(0, 1);
- suff_rm_leading_spc = false;
- }
- auto prefix_tokens = tokenize(slot.params.input_prefix, false);
- auto suffix_tokens = tokenize(slot.params.input_suffix, false);
- const int space_token = 29871; // TODO: this should not be hardcoded
- if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
- suffix_tokens.erase(suffix_tokens.begin());
- }
- prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
- prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
- prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
- prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
- prefix_tokens.push_back(llama_token_middle(model));
- prompt_tokens = prefix_tokens;
- }
- else
- {
- prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
- }
- slot.n_prompt_tokens = prompt_tokens.size();
- if (slot.params.n_keep < 0)
- {
- slot.params.n_keep = slot.n_prompt_tokens;
- }
- slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
- // if input prompt is too big, truncate it, if group attention self-extend is disabled
- if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx)
- {
- const int n_left = slot.n_ctx - slot.params.n_keep;
- const int n_block_size = n_left / 2;
- const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
- std::vector<llama_token> new_tokens(
- prompt_tokens.begin(),
- prompt_tokens.begin() + slot.params.n_keep);
- new_tokens.insert(
- new_tokens.end(),
- prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
- prompt_tokens.end());
- LOG_VERBOSE("input truncated", {
- {"n_ctx", slot.n_ctx},
- {"n_keep", slot.params.n_keep},
- {"n_left", n_left},
- {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
- });
- slot.truncated = true;
- prompt_tokens = new_tokens;
- slot.n_prompt_tokens = prompt_tokens.size();
- GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
- }
- if (!slot.params.cache_prompt)
- {
- llama_sampling_reset(slot.ctx_sampling);
- slot.n_past = 0;
- slot.n_past_se = 0;
- slot.ga_i = 0;
- slot.n_prompt_tokens_processed = slot.n_prompt_tokens;
- }
- else
- {
- // push the prompt into the sampling context (do not apply grammar)
- for (auto &token : prompt_tokens)
- {
- llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
- }
- slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
- // the last token of the cache is not in the KV cache until the next call to llama_decode
- // (it was sampled, pushed into the "cache_tokens", but not yet put in the context)
- if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size())
- {
- slot.n_past -= 1;
- }
- slot.n_prompt_tokens_processed = slot.n_prompt_tokens - slot.n_past;
- if (slot.ga_n != 1)
- {
- int ga_i = 0;
- int32_t ga_n = slot.ga_n;
- int32_t ga_w = slot.ga_w;
- int32_t slot_npast = 0;
- for (int k = 0; k < slot.n_past; ++k)
- {
- while (slot_npast >= ga_i + ga_w) {
- const int bd = (ga_w/ga_n)*(ga_n - 1);
- slot_npast -= bd;
- ga_i += ga_w/ga_n;
- }
- slot_npast++;
- }
- slot.n_past_se = slot_npast;
- slot.ga_i = ga_i;
- }
- LOG_INFO("slot progression", {
- { "slot_id", slot.id },
- { "task_id", slot.task_id },
- { "n_past", slot.n_past },
- { "n_past_se", slot.n_past_se },
- { "ga_i", slot.ga_i },
- { "n_prompt_tokens_processed", slot.n_prompt_tokens_processed }
- });
- }
- slot.cache_tokens = prompt_tokens;
- if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0)
- {
- // we have to evaluate at least 1 token to generate logits.
- LOG_INFO("we have to evaluate at least 1 token to generate logits", {
- { "slot_id", slot.id },
- { "task_id", slot.task_id }
- });
- slot.n_past--;
- if (slot.ga_i > 0)
- {
- slot.n_past_se--;
- }
- }
- int p0 = (int) system_tokens.size() + slot.n_past;
- LOG_INFO("kv cache rm [p0, end)", {
- { "slot_id", slot.id },
- { "task_id", slot.task_id },
- { "p0", p0 }
- });
- llama_kv_cache_seq_rm(ctx, slot.id, p0, -1);
- LOG_VERBOSE("prompt ingested", {
- {"n_past", slot.n_past},
- {"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
- {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
- });
- const bool has_images = process_images(slot);
- // process the prefix of first image
- std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
- int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
- int32_t ga_i = slot.ga_i;
- int32_t ga_n = slot.ga_n;
- int32_t ga_w = slot.ga_w;
- for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
- {
- if (slot.ga_n != 1)
- {
- while (slot_npast >= ga_i + ga_w) {
- const int bd = (ga_w/ga_n)*(ga_n - 1);
- slot_npast -= bd;
- ga_i += ga_w/ga_n;
- }
- }
- llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id }, false);
- slot_npast++;
- }
- if (has_images && !ingest_images(slot, n_batch))
- {
- LOG_ERROR("failed processing images", {
- {"slot_id", slot.id},
- {"task_id", slot.task_id},
- });
- // FIXME @phymbert: to be properly tested
- // early returning without changing the slot state will block the slot for ever
- // no one at the moment is checking the return value
- return false;
- }
- // extract the logits only for the last token
- if (batch.n_tokens > 0)
- {
- batch.logits[batch.n_tokens - 1] = true;
- }
- slot.n_decoded = 0;
- slot.i_batch = batch.n_tokens - 1;
- }
- }
- }
- if (batch.n_tokens == 0)
- {
- all_slots_are_idle = true;
- return true;
- }
- for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
- {
- const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
- for (auto & slot : slots)
- {
- if (slot.ga_n != 1)
- {
- // context extension via Self-Extend
- while (slot.n_past_se >= slot.ga_i + slot.ga_w)
- {
- const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
- const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
- const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
- LOG_TEE("\n");
- LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
- LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
- LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
- llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
- llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
- llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
- slot.n_past_se -= bd;
- slot.ga_i += slot.ga_w / slot.ga_n;
- LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
- }
- slot.n_past_se += n_tokens;
- }
- }
- llama_batch batch_view =
- {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- 0, 0, 0, // unused
- };
- const int ret = llama_decode(ctx, batch_view);
- if (ret != 0)
- {
- if (n_batch == 1 || ret < 0)
- {
- // if you get here, it means the KV cache is full - try increasing it via the context size
- LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
- return false;
- }
- LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
- // retry with half the batch size to try to find a free slot in the KV cache
- n_batch /= 2;
- i -= n_batch;
- continue;
- }
- for (auto & slot : slots)
- {
- if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
- {
- continue;
- }
- // prompt evaluated for embedding
- if (slot.embedding)
- {
- send_embedding(slot, batch_view);
- slot.release();
- slot.i_batch = -1;
- continue;
- }
- completion_token_output result;
- const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
- llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
- slot.n_decoded += 1;
- if (slot.n_decoded == 1)
- {
- slot.t_start_genereration = ggml_time_us();
- slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
- metrics.on_prompt_eval(slot);
- }
- llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
- result.tok = id;
- const int32_t n_probs = slot.sparams.n_probs;
- if (slot.sparams.temp <= 0 && n_probs > 0)
- {
- // for llama_sample_token_greedy we need to sort candidates
- llama_sample_softmax(ctx, &cur_p);
- }
- for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
- {
- result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
- }
- if (!process_token(result, slot))
- {
- slot.release();
- slot.print_timings();
- send_final_response(slot);
- metrics.on_prediction(slot);
- }
- slot.i_batch = -1;
- }
- }
- LOG_VERBOSE("slots updated", {});
- return true;
- }
- json model_meta() {
- return json{
- {"vocab_type", llama_vocab_type(model)},
- {"n_vocab", llama_n_vocab(model)},
- {"n_ctx_train", llama_n_ctx_train(model)},
- {"n_embd", llama_n_embd(model)},
- {"n_params", llama_model_n_params(model)},
- {"size", llama_model_size(model)},
- };
- }
- };
- static void server_print_usage(const char *argv0, const gpt_params ¶ms,
- const server_params &sparams)
- {
- printf("usage: %s [options]\n", argv0);
- printf("\n");
- printf("options:\n");
- printf(" -h, --help show this help message and exit\n");
- printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
- printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
- printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
- printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
- printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
- printf(" --rope-scaling {none,linear,yarn}\n");
- printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
- printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
- printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
- printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
- printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
- printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
- printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
- printf(" --pooling {none,mean,cls}\n");
- printf(" pooling type for embeddings, use model default if unspecified\n");
- printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
- printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
- printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
- if (llama_supports_mlock())
- {
- printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
- }
- if (llama_supports_mmap())
- {
- printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
- }
- printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
- printf(" - distribute: spread execution evenly over all nodes\n");
- printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
- printf(" - numactl: use the CPU map provided my numactl\n");
- if (llama_supports_gpu_offload()) {
- printf(" -ngl N, --n-gpu-layers N\n");
- printf(" number of layers to store in VRAM\n");
- printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
- printf(" how to split the model across multiple GPUs, one of:\n");
- printf(" - none: use one GPU only\n");
- printf(" - layer (default): split layers and KV across GPUs\n");
- printf(" - row: split rows across GPUs\n");
- printf(" -ts SPLIT --tensor-split SPLIT\n");
- printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
- printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
- printf(" or for intermediate results and KV (with split-mode = row)\n");
- }
- printf(" -m FNAME, --model FNAME\n");
- printf(" model path (default: %s)\n", params.model.c_str());
- printf(" -a ALIAS, --alias ALIAS\n");
- printf(" set an alias for the model, will be added as `model` field in completion response\n");
- printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
- printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
- printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
- printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
- printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
- printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
- printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
- printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
- printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
- printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
- printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
- printf(" -spf FNAME, --system-prompt-file FNAME\n");
- printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
- printf(" -ctk TYPE, --cache-type-k TYPE\n");
- printf(" KV cache data type for K (default: f16)\n");
- printf(" -ctv TYPE, --cache-type-v TYPE\n");
- printf(" KV cache data type for V (default: f16)\n");
- printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
- printf(" --log-format log output format: json or text (default: json)\n");
- printf(" --log-disable disables logging to a file.\n");
- printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
- printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
- printf("\n");
- printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
- printf(" --override-kv KEY=TYPE:VALUE\n");
- printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
- printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
- printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
- printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
- printf(" --chat-template JINJA_TEMPLATE\n");
- printf(" set custom jinja chat template (default: template taken from model's metadata)\n");
- printf(" Note: only commonly used templates are accepted, since we don't have jinja parser\n");
- printf("\n");
- }
- static void server_params_parse(int argc, char **argv, server_params &sparams,
- gpt_params ¶ms, llama_server_context& llama)
- {
- gpt_params default_params;
- server_params default_sparams;
- std::string arg;
- bool invalid_param = false;
- for (int i = 1; i < argc; i++)
- {
- arg = argv[i];
- if (arg == "--port")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.port = std::stoi(argv[i]);
- }
- else if (arg == "--host")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.hostname = argv[i];
- }
- else if (arg == "--path")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.public_path = argv[i];
- }
- else if (arg == "--api-key")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.api_keys.emplace_back(argv[i]);
- }
- else if (arg == "--api-key-file")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- std::ifstream key_file(argv[i]);
- if (!key_file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- break;
- }
- std::string key;
- while (std::getline(key_file, key)) {
- if (key.size() > 0) {
- sparams.api_keys.push_back(key);
- }
- }
- key_file.close();
- }
- else if (arg == "--timeout" || arg == "-to")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.read_timeout = std::stoi(argv[i]);
- sparams.write_timeout = std::stoi(argv[i]);
- }
- else if (arg == "-m" || arg == "--model")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.model = argv[i];
- }
- else if (arg == "-a" || arg == "--alias")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.model_alias = argv[i];
- }
- else if (arg == "-h" || arg == "--help")
- {
- server_print_usage(argv[0], default_params, default_sparams);
- exit(0);
- }
- else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_ctx = std::stoi(argv[i]);
- }
- else if (arg == "--rope-scaling")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- std::string value(argv[i]);
- /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
- else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
- else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
- else { invalid_param = true; break; }
- }
- else if (arg == "--rope-freq-base")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.rope_freq_base = std::stof(argv[i]);
- }
- else if (arg == "--rope-freq-scale")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.rope_freq_scale = std::stof(argv[i]);
- }
- else if (arg == "--yarn-ext-factor")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.yarn_ext_factor = std::stof(argv[i]);
- }
- else if (arg == "--yarn-attn-factor")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.yarn_attn_factor = std::stof(argv[i]);
- }
- else if (arg == "--yarn-beta-fast")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.yarn_beta_fast = std::stof(argv[i]);
- }
- else if (arg == "--yarn-beta-slow")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.yarn_beta_slow = std::stof(argv[i]);
- }
- else if (arg == "--pooling")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- std::string value(argv[i]);
- /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
- else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
- else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
- else { invalid_param = true; break; }
- }
- else if (arg == "--threads" || arg == "-t")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_threads = std::stoi(argv[i]);
- }
- else if (arg == "--grp-attn-n" || arg == "-gan")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.grp_attn_n = std::stoi(argv[i]);
- }
- else if (arg == "--grp-attn-w" || arg == "-gaw")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.grp_attn_w = std::stoi(argv[i]);
- }
- else if (arg == "--threads-batch" || arg == "-tb")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_threads_batch = std::stoi(argv[i]);
- }
- else if (arg == "--threads-http")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.n_threads_http = std::stoi(argv[i]);
- }
- else if (arg == "-b" || arg == "--batch-size")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_batch = std::stoi(argv[i]);
- }
- else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- if (llama_supports_gpu_offload()) {
- params.n_gpu_layers = std::stoi(argv[i]);
- } else {
- LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
- "See main README.md for information on enabling GPU BLAS support",
- {{"n_gpu_layers", params.n_gpu_layers}});
- }
- }
- else if (arg == "--split-mode" || arg == "-sm")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- std::string arg_next = argv[i];
- if (arg_next == "none")
- {
- params.split_mode = LLAMA_SPLIT_MODE_NONE;
- }
- else if (arg_next == "layer")
- {
- params.split_mode = LLAMA_SPLIT_MODE_LAYER;
- }
- else if (arg_next == "row")
- {
- params.split_mode = LLAMA_SPLIT_MODE_ROW;
- }
- else {
- invalid_param = true;
- break;
- }
- #ifndef GGML_USE_CUBLAS
- fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
- #endif // GGML_USE_CUBLAS
- }
- else if (arg == "--tensor-split" || arg == "-ts")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
- std::string arg_next = argv[i];
- // split string by , and /
- const std::regex regex{R"([,/]+)"};
- std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
- std::vector<std::string> split_arg{it, {}};
- GGML_ASSERT(split_arg.size() <= llama_max_devices());
- for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
- {
- if (i_device < split_arg.size())
- {
- params.tensor_split[i_device] = std::stof(split_arg[i_device]);
- }
- else
- {
- params.tensor_split[i_device] = 0.0f;
- }
- }
- #else
- LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
- #endif // GGML_USE_CUBLAS
- }
- else if (arg == "--main-gpu" || arg == "-mg")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
- params.main_gpu = std::stoi(argv[i]);
- #else
- LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
- #endif
- }
- else if (arg == "--lora")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.lora_adapter.emplace_back(argv[i], 1.0f);
- params.use_mmap = false;
- }
- else if (arg == "--lora-scaled")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- const char * lora_adapter = argv[i];
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
- params.use_mmap = false;
- }
- else if (arg == "--lora-base")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.lora_base = argv[i];
- }
- else if (arg == "-v" || arg == "--verbose")
- {
- #if SERVER_VERBOSE != 1
- LOG_WARNING("server.cpp is not built with verbose logging.", {});
- #else
- server_verbose = true;
- #endif
- }
- else if (arg == "--mlock")
- {
- params.use_mlock = true;
- }
- else if (arg == "--no-mmap")
- {
- params.use_mmap = false;
- }
- else if (arg == "--numa") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- } else {
- std::string value(argv[i]);
- /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
- else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
- else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
- else { invalid_param = true; break; }
- }
- }
- else if (arg == "--embedding")
- {
- params.embedding = true;
- }
- else if (arg == "-cb" || arg == "--cont-batching")
- {
- params.cont_batching = true;
- }
- else if (arg == "-np" || arg == "--parallel")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_parallel = std::stoi(argv[i]);
- } else if (arg == "-n" || arg == "--n-predict")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_predict = std::stoi(argv[i]);
- } else if (arg == "-spf" || arg == "--system-prompt-file")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- std::ifstream file(argv[i]);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- break;
- }
- std::string systm_content;
- std::copy(
- std::istreambuf_iterator<char>(file),
- std::istreambuf_iterator<char>(),
- std::back_inserter(systm_content)
- );
- llama.system_prompt_process(json::parse(systm_content));
- }
- else if (arg == "-ctk" || arg == "--cache-type-k") {
- params.cache_type_k = argv[++i];
- }
- else if (arg == "-ctv" || arg == "--cache-type-v") {
- params.cache_type_v = argv[++i];
- }
- else if(arg == "--mmproj")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.mmproj = argv[i];
- }
- else if (arg == "--log-format")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- if (std::strcmp(argv[i], "json") == 0)
- {
- server_log_json = true;
- }
- else if (std::strcmp(argv[i], "text") == 0)
- {
- server_log_json = false;
- }
- else
- {
- invalid_param = true;
- break;
- }
- }
- else if (arg == "--log-disable")
- {
- log_set_target(stdout);
- LOG_INFO("logging to file is disabled.", {});
- }
- else if (arg == "--slots-endpoint-disable")
- {
- sparams.slots_endpoint = false;
- }
- else if (arg == "--metrics")
- {
- sparams.metrics_endpoint = true;
- }
- else if (arg == "--chat-template")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- if (!verify_custom_template(argv[i])) {
- fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
- fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
- invalid_param = true;
- break;
- }
- sparams.chat_template = argv[i];
- }
- else if (arg == "--override-kv")
- {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- char * sep = strchr(argv[i], '=');
- if (sep == nullptr || sep - argv[i] >= 128) {
- fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
- invalid_param = true;
- break;
- }
- struct llama_model_kv_override kvo;
- std::strncpy(kvo.key, argv[i], sep - argv[i]);
- kvo.key[sep - argv[i]] = 0;
- sep++;
- if (strncmp(sep, "int:", 4) == 0) {
- sep += 4;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
- kvo.val_i64 = std::atol(sep);
- } else if (strncmp(sep, "float:", 6) == 0) {
- sep += 6;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
- kvo.val_f64 = std::atof(sep);
- } else if (strncmp(sep, "bool:", 5) == 0) {
- sep += 5;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
- if (std::strcmp(sep, "true") == 0) {
- kvo.val_bool = true;
- } else if (std::strcmp(sep, "false") == 0) {
- kvo.val_bool = false;
- } else {
- fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
- invalid_param = true;
- break;
- }
- } else {
- fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
- invalid_param = true;
- break;
- }
- params.kv_overrides.push_back(kvo);
- }
- else
- {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- server_print_usage(argv[0], default_params, default_sparams);
- exit(1);
- }
- }
- if (!params.kv_overrides.empty()) {
- params.kv_overrides.emplace_back();
- params.kv_overrides.back().key[0] = 0;
- }
- if (invalid_param)
- {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- server_print_usage(argv[0], default_params, default_sparams);
- exit(1);
- }
- }
- /* llama.cpp completion api semantics */
- static json format_partial_response(
- llama_server_context &llama, server_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
- ) {
- json res = json
- {
- {"content", content },
- {"stop", false},
- {"slot_id", slot->id },
- {"multimodal", llama.multimodal }
- };
- if (slot->sparams.n_probs > 0)
- {
- res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
- }
- return res;
- }
- static json format_tokenizer_response(const std::vector<llama_token> &tokens)
- {
- return json {
- {"tokens", tokens}
- };
- }
- static json format_detokenized_response(std::string content)
- {
- return json {
- {"content", content}
- };
- }
- static void log_server_request(const httplib::Request &req, const httplib::Response &res)
- {
- // skip GH copilot requests when using default port
- if (req.path == "/v1/health" || req.path == "/v1/completions")
- {
- return;
- }
- LOG_INFO("request", {
- {"remote_addr", req.remote_addr},
- {"remote_port", req.remote_port},
- {"status", res.status},
- {"method", req.method},
- {"path", req.path},
- {"params", req.params},
- });
- LOG_VERBOSE("request", {
- {"request", req.body},
- {"response", res.body},
- });
- }
- static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, server_slot *slot)
- {
- auto & gtps = slot->generated_token_probs;
- auto translator = token_translator{llama.ctx};
- auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
- const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
- if (slot->generated_text.capacity() < slot->generated_text.size() + len)
- {
- slot->generated_text.reserve(slot->generated_text.size() + len);
- }
- for (const completion_token_output & cto : gtps)
- {
- slot->generated_text += translator(cto);
- }
- }
- std::function<void(int)> shutdown_handler;
- std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
- inline void signal_handler(int signal) {
- if (is_terminating.test_and_set()) {
- // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
- // this is for better developer experience, we can remove when the server is stable enough
- fprintf(stderr, "Received second interrupt, terminating immediately.\n");
- exit(1);
- }
- shutdown_handler(signal);
- }
- #if defined(_WIN32)
- char* wchar_to_char(const wchar_t* wstr) {
- if (wstr == nullptr) return nullptr;
- // Determine the number of bytes needed for the UTF-8 string
- int bytes = WideCharToMultiByte(CP_UTF8, 0, wstr, -1, nullptr, 0, nullptr, nullptr);
- char* str = new char[bytes];
- // Convert the wide-character string to a UTF-8 string
- WideCharToMultiByte(CP_UTF8, 0, wstr, -1, str, bytes, nullptr, nullptr);
- return str;
- }
- int wmain(int argc, wchar_t **wargv) {
- char** argv = new char*[argc];
- for (int i = 0; i < argc; ++i) {
- argv[i] = wchar_to_char(wargv[i]);
- }
- #else
- int main(int argc, char **argv) {
- #endif
- #if SERVER_VERBOSE != 1
- log_disable();
- #endif
- // own arguments required by this example
- gpt_params params;
- server_params sparams;
- // struct that contains llama context and inference
- llama_server_context llama;
- server_params_parse(argc, argv, sparams, params, llama);
- if (params.model_alias == "unknown")
- {
- params.model_alias = params.model;
- }
- llama_backend_init();
- llama_numa_init(params.numa);
- LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
- {"commit", LLAMA_COMMIT}});
- LOG_INFO("system info", {
- {"n_threads", params.n_threads},
- {"n_threads_batch", params.n_threads_batch},
- {"total_threads", std::thread::hardware_concurrency()},
- {"system_info", llama_print_system_info()},
- });
- httplib::Server svr;
- std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
- svr.set_default_headers({{"Server", "llama.cpp"}});
- // CORS preflight
- svr.Options(R"(.*)", [](const httplib::Request &req, httplib::Response &res) {
- res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
- res.set_header("Access-Control-Allow-Credentials", "true");
- res.set_header("Access-Control-Allow-Methods", "POST");
- res.set_header("Access-Control-Allow-Headers", "*");
- });
- svr.Get("/health", [&](const httplib::Request& req, httplib::Response& res) {
- server_state current_state = state.load();
- switch(current_state) {
- case SERVER_STATE_READY: {
- // request slots data using task queue
- task_server task;
- task.id = llama.queue_tasks.get_new_id();
- task.type = TASK_TYPE_METRICS;
- task.target_id = -1;
- llama.queue_results.add_waiting_task_id(task.id);
- llama.queue_tasks.post(task);
- // get the result
- task_result result = llama.queue_results.recv(task.id);
- llama.queue_results.remove_waiting_task_id(task.id);
- int n_idle_slots = result.result_json["idle"];
- int n_processing_slots = result.result_json["processing"];
- json health = {
- {"status", "ok"},
- {"slots_idle", n_idle_slots},
- {"slots_processing", n_processing_slots}};
- res.status = 200; // HTTP OK
- if (sparams.slots_endpoint && req.has_param("include_slots")) {
- health["slots"] = result.result_json["slots"];
- }
- if (n_idle_slots == 0) {
- health["status"] = "no slot available";
- if (req.has_param("fail_on_no_slot")) {
- res.status = 503; // HTTP Service Unavailable
- }
- }
- res.set_content(health.dump(), "application/json");
- break;
- }
- case SERVER_STATE_LOADING_MODEL:
- res.set_content(R"({"status": "loading model"})", "application/json");
- res.status = 503; // HTTP Service Unavailable
- break;
- case SERVER_STATE_ERROR:
- res.set_content(R"({"status": "error", "error": "Model failed to load"})", "application/json");
- res.status = 500; // HTTP Internal Server Error
- break;
- }
- });
- if (sparams.slots_endpoint) {
- svr.Get("/slots", [&](const httplib::Request&, httplib::Response& res) {
- // request slots data using task queue
- task_server task;
- task.id = llama.queue_tasks.get_new_id();
- task.type = TASK_TYPE_METRICS;
- task.target_id = -1;
- llama.queue_results.add_waiting_task_id(task.id);
- llama.queue_tasks.post(task);
- // get the result
- task_result result = llama.queue_results.recv(task.id);
- llama.queue_results.remove_waiting_task_id(task.id);
- res.set_content(result.result_json["slots"].dump(), "application/json");
- res.status = 200; // HTTP OK
- });
- }
- if (sparams.metrics_endpoint) {
- svr.Get("/metrics", [&](const httplib::Request&, httplib::Response& res) {
- // request slots data using task queue
- task_server task;
- task.id = llama.queue_tasks.get_new_id();
- task.type = TASK_TYPE_METRICS;
- task.target_id = -1;
- llama.queue_results.add_waiting_task_id(task.id);
- llama.queue_tasks.post(task);
- // get the result
- task_result result = llama.queue_results.recv(task.id);
- llama.queue_results.remove_waiting_task_id(task.id);
- json data = result.result_json;
- uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"];
- uint64_t t_prompt_processing = data["t_prompt_processing"];
- uint64_t n_tokens_predicted = data["n_tokens_predicted"];
- uint64_t t_tokens_generation = data["t_tokens_generation"];
- int32_t kv_cache_used_cells = data["kv_cache_used_cells"];
- // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
- json all_metrics_def = json {
- {"counter", {{
- {"name", "prompt_tokens_total"},
- {"help", "Number of prompt tokens processed."},
- {"value", data["n_prompt_tokens_processed_total"]}
- }, {
- {"name", "tokens_predicted_total"},
- {"help", "Number of generation tokens processed."},
- {"value", data["n_tokens_predicted_total"]}
- }}},
- {"gauge", {{
- {"name", "prompt_tokens_seconds"},
- {"help", "Average prompt throughput in tokens/s."},
- {"value", n_prompt_tokens_processed ? 1e3 / t_prompt_processing * n_prompt_tokens_processed : 0}
- },{
- {"name", "predicted_tokens_seconds"},
- {"help", "Average generation throughput in tokens/s."},
- {"value", n_tokens_predicted ? 1e3 / t_tokens_generation * n_tokens_predicted : 0}
- },{
- {"name", "kv_cache_usage_ratio"},
- {"help", "KV-cache usage. 1 means 100 percent usage."},
- {"value", 1. * kv_cache_used_cells / params.n_ctx}
- },{
- {"name", "kv_cache_tokens"},
- {"help", "KV-cache tokens."},
- {"value", data["kv_cache_tokens_count"]}
- },{
- {"name", "requests_processing"},
- {"help", "Number of request processing."},
- {"value", data["processing"]}
- },{
- {"name", "requests_deferred"},
- {"help", "Number of request deferred."},
- {"value", data["deferred"]}
- }}}
- };
- std::stringstream prometheus;
- for (const auto& el : all_metrics_def.items()) {
- const auto& type = el.key();
- const auto& metrics_def = el.value();
- for (const auto& metric_def : metrics_def) {
- std::string name = metric_def["name"];
- std::string help = metric_def["help"];
- auto value = json_value(metric_def, "value", 0);
- prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
- << "# TYPE llamacpp:" << name << " " << type << "\n"
- << "llamacpp:" << name << " " << value << "\n";
- }
- }
- res.set_content(prometheus.str(), "text/plain; version=0.0.4");
- res.status = 200; // HTTP OK
- });
- }
- svr.set_logger(log_server_request);
- svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
- {
- const char fmt[] = "500 Internal Server Error\n%s";
- char buf[BUFSIZ];
- try
- {
- std::rethrow_exception(std::move(ep));
- }
- catch (std::exception &e)
- {
- snprintf(buf, sizeof(buf), fmt, e.what());
- }
- catch (...)
- {
- snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
- }
- res.set_content(buf, "text/plain; charset=utf-8");
- res.status = 500;
- });
- svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
- {
- if (res.status == 401)
- {
- res.set_content("Unauthorized", "text/plain; charset=utf-8");
- }
- if (res.status == 400)
- {
- res.set_content("Invalid request", "text/plain; charset=utf-8");
- }
- else if (res.status == 404)
- {
- res.set_content("File Not Found", "text/plain; charset=utf-8");
- res.status = 404;
- }
- });
- // set timeouts and change hostname and port
- svr.set_read_timeout (sparams.read_timeout);
- svr.set_write_timeout(sparams.write_timeout);
- if (!svr.bind_to_port(sparams.hostname, sparams.port))
- {
- fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
- return 1;
- }
- // Set the base directory for serving static files
- svr.set_base_dir(sparams.public_path);
- std::unordered_map<std::string, std::string> log_data;
- log_data["hostname"] = sparams.hostname;
- log_data["port"] = std::to_string(sparams.port);
- if (sparams.api_keys.size() == 1) {
- log_data["api_key"] = "api_key: ****" + sparams.api_keys[0].substr(sparams.api_keys[0].length() - 4);
- } else if (sparams.api_keys.size() > 1) {
- log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
- }
- // load the model
- if (!llama.load_model(params))
- {
- state.store(SERVER_STATE_ERROR);
- return 1;
- } else {
- llama.initialize();
- state.store(SERVER_STATE_READY);
- LOG_INFO("model loaded", {});
- }
- const auto model_meta = llama.model_meta();
- if (sparams.chat_template.empty()) { // custom chat template is not supplied
- // check if the template comes with the model is supported by us
- llama.validate_model_chat_template(sparams);
- }
- // Middleware for API key validation
- auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
- // If API key is not set, skip validation
- if (sparams.api_keys.empty()) {
- return true;
- }
- // Check for API key in the header
- auto auth_header = req.get_header_value("Authorization");
- std::string prefix = "Bearer ";
- if (auth_header.substr(0, prefix.size()) == prefix) {
- std::string received_api_key = auth_header.substr(prefix.size());
- if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) {
- return true; // API key is valid
- }
- }
- // API key is invalid or not provided
- res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
- res.status = 401; // Unauthorized
- LOG_WARNING("Unauthorized: Invalid API Key", {});
- return false;
- };
- // this is only called if no index.html is found in the public --path
- svr.Get("/", [](const httplib::Request &, httplib::Response &res)
- {
- res.set_content("server running", "text/plain; charset=utf-8");
- res.status = 200; // Unauthorized
- return true;
- });
- svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
- {
- res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
- if (!validate_api_key(req, res)) {
- return;
- }
- json data = json::parse(req.body);
- const int task_id = llama.queue_tasks.get_new_id();
- llama.queue_results.add_waiting_task_id(task_id);
- llama.request_completion(task_id, data, false, false, -1);
- if (!json_value(data, "stream", false)) {
- std::string completion_text;
- task_result result = llama.queue_results.recv(task_id);
- if (!result.error && result.stop) {
- res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
- }
- else
- {
- res.status = 404;
- res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
- }
- llama.queue_results.remove_waiting_task_id(task_id);
- } else {
- const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink)
- {
- while (true)
- {
- task_result result = llama.queue_results.recv(task_id);
- if (!result.error) {
- const std::string str =
- "data: " +
- result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n";
- LOG_VERBOSE("data stream", {
- { "to_send", str }
- });
- if (!sink.write(str.c_str(), str.size()))
- {
- llama.queue_results.remove_waiting_task_id(task_id);
- return false;
- }
- if (result.stop) {
- break;
- }
- } else {
- const std::string str =
- "error: " +
- result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n";
- LOG_VERBOSE("data stream", {
- { "to_send", str }
- });
- if (!sink.write(str.c_str(), str.size()))
- {
- llama.queue_results.remove_waiting_task_id(task_id);
- return false;
- }
- break;
- }
- }
- llama.queue_results.remove_waiting_task_id(task_id);
- sink.done();
- return true;
- };
- auto on_complete = [task_id, &llama] (bool)
- {
- // cancel
- llama.request_cancel(task_id);
- llama.queue_results.remove_waiting_task_id(task_id);
- };
- res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
- }
- });
- svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
- {
- res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
- const json body = json::parse(req.body);
- std::vector<llama_token> tokens;
- if (body.count("content") != 0)
- {
- tokens = llama.tokenize(body["content"], false);
- }
- const json data = format_tokenizer_response(tokens);
- return res.set_content(data.dump(), "application/json; charset=utf-8");
- });
- svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
- {
- res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
- const json body = json::parse(req.body);
- std::string content;
- if (body.count("tokens") != 0)
- {
- const std::vector<llama_token> tokens = body["tokens"];
- content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
- }
- const json data = format_detokenized_response(content);
- return res.set_content(data.dump(), "application/json; charset=utf-8");
- });
- svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
- {
- res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
- const json body = json::parse(req.body);
- json prompt;
- if (body.count("content") != 0)
- {
- prompt = body["content"];
- }
- else
- {
- prompt = "";
- }
- json image_data;
- if (body.count("image_data") != 0) {
- image_data = body["image_data"];
- }
- else
- {
- image_data = "";
- }
- // create and queue the task
- const int task_id = llama.queue_tasks.get_new_id();
- llama.queue_results.add_waiting_task_id(task_id);
- llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, false, true, -1);
- // get the result
- task_result result = llama.queue_results.recv(task_id);
- llama.queue_results.remove_waiting_task_id(task_id);
- // send the result
- return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
- });
- // GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
- // "Bus error: 10" - this is on macOS, it does not crash on Linux
- //std::thread t2([&]()
- /*{
- bool running = true;
- while (running)
- {
- running = llama.update_slots();
- }
- }*/
- //);
- if (sparams.n_threads_http < 1) {
- // +2 threads for monitoring endpoints
- sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
- }
- log_data["n_threads_http"] = std::to_string(sparams.n_threads_http);
- svr.new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
- LOG_INFO("HTTP server listening", log_data);
- // run the HTTP server in a thread - see comment below
- std::thread t([&]()
- {
- if (!svr.listen_after_bind())
- {
- state.store(SERVER_STATE_ERROR);
- return 1;
- }
- return 0;
- });
- llama.queue_tasks.on_new_task(std::bind(
- &llama_server_context::process_single_task, &llama, std::placeholders::_1));
- llama.queue_tasks.on_finish_multitask(std::bind(
- &llama_server_context::on_finish_multitask, &llama, std::placeholders::_1));
- llama.queue_tasks.on_run_slots(std::bind(
- &llama_server_context::update_slots, &llama));
- llama.queue_results.on_multitask_update(std::bind(
- &llama_server_queue::update_multitask,
- &llama.queue_tasks,
- std::placeholders::_1,
- std::placeholders::_2,
- std::placeholders::_3
- ));
- shutdown_handler = [&](int) {
- llama.queue_tasks.terminate();
- };
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- struct sigaction sigint_action;
- sigint_action.sa_handler = signal_handler;
- sigemptyset (&sigint_action.sa_mask);
- sigint_action.sa_flags = 0;
- sigaction(SIGINT, &sigint_action, NULL);
- #elif defined (_WIN32)
- auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
- return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
- };
- SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
- for (int i = 0; i < argc; ++i) {
- delete[] argv[i];
- }
- delete[] argv;
- #endif
- llama.queue_tasks.start_loop();
- svr.stop();
- t.join();
- llama_backend_free();
- return 0;
- }
|