common.cpp 134 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401
  1. /**
  2. * llama.cpp - git ee459f40f65810a810151b24eba5b8bd174ceffe - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "common.h"
  27. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  28. #define JSON_ASSERT GGML_ASSERT
  29. #include "json.hpp"
  30. #include "json-schema-to-grammar.h"
  31. #include "llama.h"
  32. #include <algorithm>
  33. #include <cassert>
  34. #include <cinttypes>
  35. #include <cmath>
  36. #include <codecvt>
  37. #include <cstdarg>
  38. #include <cstring>
  39. #include <ctime>
  40. #include <fstream>
  41. #include <iostream>
  42. #include <iterator>
  43. #include <regex>
  44. #include <sstream>
  45. #include <string>
  46. #include <unordered_map>
  47. #include <unordered_set>
  48. #include <vector>
  49. #if defined(__APPLE__) && defined(__MACH__)
  50. #include <sys/types.h>
  51. #include <sys/sysctl.h>
  52. #endif
  53. #if defined(_WIN32)
  54. #define WIN32_LEAN_AND_MEAN
  55. #ifndef NOMINMAX
  56. # define NOMINMAX
  57. #endif
  58. #include <locale>
  59. #include <windows.h>
  60. #include <fcntl.h>
  61. #include <io.h>
  62. #else
  63. #include <sys/ioctl.h>
  64. #include <sys/stat.h>
  65. #include <unistd.h>
  66. #endif
  67. #if defined(LLAMA_USE_CURL)
  68. #include <curl/curl.h>
  69. #include <curl/easy.h>
  70. #include <thread>
  71. #include <future>
  72. #endif
  73. #if defined(_MSC_VER)
  74. #pragma warning(disable: 4244 4267) // possible loss of data
  75. #endif
  76. #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
  77. #define GGML_USE_CUDA_SYCL
  78. #endif
  79. #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
  80. #define GGML_USE_CUDA_SYCL_VULKAN
  81. #endif
  82. #if defined(LLAMA_USE_CURL)
  83. #ifdef __linux__
  84. #include <linux/limits.h>
  85. #elif defined(_WIN32)
  86. #define PATH_MAX MAX_PATH
  87. #else
  88. #include <sys/syslimits.h>
  89. #endif
  90. #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  91. #endif // LLAMA_USE_CURL
  92. using json = nlohmann::ordered_json;
  93. //
  94. // CPU utils
  95. //
  96. int32_t cpu_get_num_physical_cores() {
  97. #ifdef __linux__
  98. // enumerate the set of thread siblings, num entries is num cores
  99. std::unordered_set<std::string> siblings;
  100. for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
  101. std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
  102. + std::to_string(cpu) + "/topology/thread_siblings");
  103. if (!thread_siblings.is_open()) {
  104. break; // no more cpus
  105. }
  106. std::string line;
  107. if (std::getline(thread_siblings, line)) {
  108. siblings.insert(line);
  109. }
  110. }
  111. if (!siblings.empty()) {
  112. return static_cast<int32_t>(siblings.size());
  113. }
  114. #elif defined(__APPLE__) && defined(__MACH__)
  115. int32_t num_physical_cores;
  116. size_t len = sizeof(num_physical_cores);
  117. int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
  118. if (result == 0) {
  119. return num_physical_cores;
  120. }
  121. result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
  122. if (result == 0) {
  123. return num_physical_cores;
  124. }
  125. #elif defined(_WIN32)
  126. //TODO: Implement
  127. #endif
  128. unsigned int n_threads = std::thread::hardware_concurrency();
  129. return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
  130. }
  131. #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
  132. #include <pthread.h>
  133. static void cpuid(unsigned leaf, unsigned subleaf,
  134. unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
  135. __asm__("movq\t%%rbx,%%rsi\n\t"
  136. "cpuid\n\t"
  137. "xchgq\t%%rbx,%%rsi"
  138. : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
  139. : "0"(leaf), "2"(subleaf));
  140. }
  141. static int pin_cpu(int cpu) {
  142. cpu_set_t mask;
  143. CPU_ZERO(&mask);
  144. CPU_SET(cpu, &mask);
  145. return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
  146. }
  147. static bool is_hybrid_cpu(void) {
  148. unsigned eax, ebx, ecx, edx;
  149. cpuid(7, 0, &eax, &ebx, &ecx, &edx);
  150. return !!(edx & (1u << 15));
  151. }
  152. static bool is_running_on_efficiency_core(void) {
  153. unsigned eax, ebx, ecx, edx;
  154. cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
  155. int intel_atom = 0x20;
  156. int core_type = (eax & 0xff000000u) >> 24;
  157. return core_type == intel_atom;
  158. }
  159. static int cpu_count_math_cpus(int n_cpu) {
  160. int result = 0;
  161. for (int cpu = 0; cpu < n_cpu; ++cpu) {
  162. if (pin_cpu(cpu)) {
  163. return -1;
  164. }
  165. if (is_running_on_efficiency_core()) {
  166. continue; // efficiency cores harm lockstep threading
  167. }
  168. ++cpu; // hyperthreading isn't useful for linear algebra
  169. ++result;
  170. }
  171. return result;
  172. }
  173. #endif // __x86_64__ && __linux__
  174. /**
  175. * Returns number of CPUs on system that are useful for math.
  176. */
  177. int32_t cpu_get_num_math() {
  178. #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
  179. int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
  180. if (n_cpu < 1) {
  181. return cpu_get_num_physical_cores();
  182. }
  183. if (is_hybrid_cpu()) {
  184. cpu_set_t affinity;
  185. if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
  186. int result = cpu_count_math_cpus(n_cpu);
  187. pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
  188. if (result > 0) {
  189. return result;
  190. }
  191. }
  192. }
  193. #endif
  194. return cpu_get_num_physical_cores();
  195. }
  196. //
  197. // CLI argument parsing
  198. //
  199. void gpt_params_handle_model_default(gpt_params & params) {
  200. if (!params.hf_repo.empty()) {
  201. // short-hand to avoid specifying --hf-file -> default it to --model
  202. if (params.hf_file.empty()) {
  203. if (params.model.empty()) {
  204. throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
  205. }
  206. params.hf_file = params.model;
  207. } else if (params.model.empty()) {
  208. std::string cache_directory = fs_get_cache_directory();
  209. const bool success = fs_create_directory_with_parents(cache_directory);
  210. if (!success) {
  211. throw std::runtime_error("failed to create cache directory: " + cache_directory);
  212. }
  213. params.model = cache_directory + string_split(params.hf_file, '/').back();
  214. }
  215. } else if (!params.model_url.empty()) {
  216. if (params.model.empty()) {
  217. auto f = string_split(params.model_url, '#').front();
  218. f = string_split(f, '?').front();
  219. f = string_split(f, '/').back();
  220. params.model = "models/" + f;
  221. }
  222. } else if (params.model.empty()) {
  223. params.model = DEFAULT_MODEL_PATH;
  224. }
  225. }
  226. bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
  227. bool invalid_param = false;
  228. std::string arg;
  229. const std::string arg_prefix = "--";
  230. llama_sampling_params & sparams = params.sparams;
  231. for (int i = 1; i < argc; i++) {
  232. arg = argv[i];
  233. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  234. std::replace(arg.begin(), arg.end(), '_', '-');
  235. }
  236. if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
  237. throw std::invalid_argument("error: unknown argument: " + arg);
  238. }
  239. if (invalid_param) {
  240. throw std::invalid_argument("error: invalid parameter for argument: " + arg);
  241. }
  242. }
  243. if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
  244. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  245. }
  246. gpt_params_handle_model_default(params);
  247. if (params.escape) {
  248. string_process_escapes(params.prompt);
  249. string_process_escapes(params.input_prefix);
  250. string_process_escapes(params.input_suffix);
  251. string_process_escapes(sparams.cfg_negative_prompt);
  252. for (auto & antiprompt : params.antiprompt) {
  253. string_process_escapes(antiprompt);
  254. }
  255. }
  256. if (!params.kv_overrides.empty()) {
  257. params.kv_overrides.emplace_back();
  258. params.kv_overrides.back().key[0] = 0;
  259. }
  260. return true;
  261. }
  262. bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
  263. const auto params_org = params; // the example can modify the default params
  264. try {
  265. if (!gpt_params_parse_ex(argc, argv, params) || params.usage) {
  266. params = params_org;
  267. params.usage = true;
  268. return false;
  269. }
  270. } catch (const std::invalid_argument & ex) {
  271. fprintf(stderr, "%s\n", ex.what());
  272. params = params_org;
  273. return false;
  274. }
  275. return true;
  276. }
  277. bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
  278. const char split_delim = ',';
  279. llama_sampling_params & sparams = params.sparams;
  280. if (arg == "-s" || arg == "--seed") {
  281. if (++i >= argc) {
  282. invalid_param = true;
  283. return true;
  284. }
  285. // TODO: this is temporary, in the future the sampling state will be moved fully to llama_sampling_context.
  286. params.seed = std::stoul(argv[i]);
  287. sparams.seed = std::stoul(argv[i]);
  288. return true;
  289. }
  290. if (arg == "-t" || arg == "--threads") {
  291. if (++i >= argc) {
  292. invalid_param = true;
  293. return true;
  294. }
  295. params.n_threads = std::stoi(argv[i]);
  296. if (params.n_threads <= 0) {
  297. params.n_threads = std::thread::hardware_concurrency();
  298. }
  299. return true;
  300. }
  301. if (arg == "-tb" || arg == "--threads-batch") {
  302. if (++i >= argc) {
  303. invalid_param = true;
  304. return true;
  305. }
  306. params.n_threads_batch = std::stoi(argv[i]);
  307. if (params.n_threads_batch <= 0) {
  308. params.n_threads_batch = std::thread::hardware_concurrency();
  309. }
  310. return true;
  311. }
  312. if (arg == "-td" || arg == "--threads-draft") {
  313. if (++i >= argc) {
  314. invalid_param = true;
  315. return true;
  316. }
  317. params.n_threads_draft = std::stoi(argv[i]);
  318. if (params.n_threads_draft <= 0) {
  319. params.n_threads_draft = std::thread::hardware_concurrency();
  320. }
  321. return true;
  322. }
  323. if (arg == "-tbd" || arg == "--threads-batch-draft") {
  324. if (++i >= argc) {
  325. invalid_param = true;
  326. return true;
  327. }
  328. params.n_threads_batch_draft = std::stoi(argv[i]);
  329. if (params.n_threads_batch_draft <= 0) {
  330. params.n_threads_batch_draft = std::thread::hardware_concurrency();
  331. }
  332. return true;
  333. }
  334. if (arg == "-p" || arg == "--prompt") {
  335. if (++i >= argc) {
  336. invalid_param = true;
  337. return true;
  338. }
  339. params.prompt = argv[i];
  340. return true;
  341. }
  342. if (arg == "-e" || arg == "--escape") {
  343. params.escape = true;
  344. return true;
  345. }
  346. if (arg == "--no-escape") {
  347. params.escape = false;
  348. return true;
  349. }
  350. if (arg == "--prompt-cache") {
  351. if (++i >= argc) {
  352. invalid_param = true;
  353. return true;
  354. }
  355. params.path_prompt_cache = argv[i];
  356. return true;
  357. }
  358. if (arg == "--prompt-cache-all") {
  359. params.prompt_cache_all = true;
  360. return true;
  361. }
  362. if (arg == "--prompt-cache-ro") {
  363. params.prompt_cache_ro = true;
  364. return true;
  365. }
  366. if (arg == "-bf" || arg == "--binary-file") {
  367. if (++i >= argc) {
  368. invalid_param = true;
  369. return true;
  370. }
  371. std::ifstream file(argv[i], std::ios::binary);
  372. if (!file) {
  373. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  374. invalid_param = true;
  375. return true;
  376. }
  377. // store the external file name in params
  378. params.prompt_file = argv[i];
  379. std::ostringstream ss;
  380. ss << file.rdbuf();
  381. params.prompt = ss.str();
  382. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
  383. return true;
  384. }
  385. if (arg == "-f" || arg == "--file") {
  386. if (++i >= argc) {
  387. invalid_param = true;
  388. return true;
  389. }
  390. std::ifstream file(argv[i]);
  391. if (!file) {
  392. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  393. invalid_param = true;
  394. return true;
  395. }
  396. // store the external file name in params
  397. params.prompt_file = argv[i];
  398. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
  399. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  400. params.prompt.pop_back();
  401. }
  402. return true;
  403. }
  404. if (arg == "--in-file") {
  405. if (++i >= argc) {
  406. invalid_param = true;
  407. return true;
  408. }
  409. std::ifstream file(argv[i]);
  410. if (!file) {
  411. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  412. invalid_param = true;
  413. return true;
  414. }
  415. params.in_files.push_back(argv[i]);
  416. return true;
  417. }
  418. if (arg == "-n" || arg == "--predict" || arg == "--n-predict") {
  419. if (++i >= argc) {
  420. invalid_param = true;
  421. return true;
  422. }
  423. params.n_predict = std::stoi(argv[i]);
  424. return true;
  425. }
  426. if (arg == "--top-k") {
  427. if (++i >= argc) {
  428. invalid_param = true;
  429. return true;
  430. }
  431. sparams.top_k = std::stoi(argv[i]);
  432. return true;
  433. }
  434. if (arg == "-c" || arg == "--ctx-size") {
  435. if (++i >= argc) {
  436. invalid_param = true;
  437. return true;
  438. }
  439. params.n_ctx = std::stoi(argv[i]);
  440. return true;
  441. }
  442. if (arg == "--grp-attn-n" || arg == "-gan") {
  443. if (++i >= argc) {
  444. invalid_param = true;
  445. return true;
  446. }
  447. params.grp_attn_n = std::stoi(argv[i]);
  448. return true;
  449. }
  450. if (arg == "--grp-attn-w" || arg == "-gaw") {
  451. if (++i >= argc) {
  452. invalid_param = true;
  453. return true;
  454. }
  455. params.grp_attn_w = std::stoi(argv[i]);
  456. return true;
  457. }
  458. if (arg == "--rope-freq-base") {
  459. if (++i >= argc) {
  460. invalid_param = true;
  461. return true;
  462. }
  463. params.rope_freq_base = std::stof(argv[i]);
  464. return true;
  465. }
  466. if (arg == "--rope-freq-scale") {
  467. if (++i >= argc) {
  468. invalid_param = true;
  469. return true;
  470. }
  471. params.rope_freq_scale = std::stof(argv[i]);
  472. return true;
  473. }
  474. if (arg == "--rope-scaling") {
  475. if (++i >= argc) {
  476. invalid_param = true;
  477. return true;
  478. }
  479. std::string value(argv[i]);
  480. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  481. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  482. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  483. else { invalid_param = true; }
  484. return true;
  485. }
  486. if (arg == "--rope-scale") {
  487. if (++i >= argc) {
  488. invalid_param = true;
  489. return true;
  490. }
  491. params.rope_freq_scale = 1.0f / std::stof(argv[i]);
  492. return true;
  493. }
  494. if (arg == "--yarn-orig-ctx") {
  495. if (++i >= argc) {
  496. invalid_param = true;
  497. return true;
  498. }
  499. params.yarn_orig_ctx = std::stoi(argv[i]);
  500. return true;
  501. }
  502. if (arg == "--yarn-ext-factor") {
  503. if (++i >= argc) {
  504. invalid_param = true;
  505. return true;
  506. }
  507. params.yarn_ext_factor = std::stof(argv[i]);
  508. return true;
  509. }
  510. if (arg == "--yarn-attn-factor") {
  511. if (++i >= argc) {
  512. invalid_param = true;
  513. return true;
  514. }
  515. params.yarn_attn_factor = std::stof(argv[i]);
  516. return true;
  517. }
  518. if (arg == "--yarn-beta-fast") {
  519. if (++i >= argc) {
  520. invalid_param = true;
  521. return true;
  522. }
  523. params.yarn_beta_fast = std::stof(argv[i]);
  524. return true;
  525. }
  526. if (arg == "--yarn-beta-slow") {
  527. if (++i >= argc) {
  528. invalid_param = true;
  529. return true;
  530. }
  531. params.yarn_beta_slow = std::stof(argv[i]);
  532. return true;
  533. }
  534. if (arg == "--pooling") {
  535. if (++i >= argc) {
  536. invalid_param = true;
  537. return true;
  538. }
  539. std::string value(argv[i]);
  540. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  541. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  542. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  543. else { invalid_param = true; }
  544. return true;
  545. }
  546. if (arg == "--defrag-thold" || arg == "-dt") {
  547. if (++i >= argc) {
  548. invalid_param = true;
  549. return true;
  550. }
  551. params.defrag_thold = std::stof(argv[i]);
  552. return true;
  553. }
  554. if (arg == "--samplers") {
  555. if (++i >= argc) {
  556. invalid_param = true;
  557. return true;
  558. }
  559. const auto sampler_names = string_split(argv[i], ';');
  560. sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, true);
  561. return true;
  562. }
  563. if (arg == "--sampling-seq") {
  564. if (++i >= argc) {
  565. invalid_param = true;
  566. return true;
  567. }
  568. sparams.samplers_sequence = llama_sampling_types_from_chars(argv[i]);
  569. return true;
  570. }
  571. if (arg == "--top-p") {
  572. if (++i >= argc) {
  573. invalid_param = true;
  574. return true;
  575. }
  576. sparams.top_p = std::stof(argv[i]);
  577. return true;
  578. }
  579. if (arg == "--min-p") {
  580. if (++i >= argc) {
  581. invalid_param = true;
  582. return true;
  583. }
  584. sparams.min_p = std::stof(argv[i]);
  585. return true;
  586. }
  587. if (arg == "--temp") {
  588. if (++i >= argc) {
  589. invalid_param = true;
  590. return true;
  591. }
  592. sparams.temp = std::stof(argv[i]);
  593. sparams.temp = std::max(sparams.temp, 0.0f);
  594. return true;
  595. }
  596. if (arg == "--tfs") {
  597. if (++i >= argc) {
  598. invalid_param = true;
  599. return true;
  600. }
  601. sparams.tfs_z = std::stof(argv[i]);
  602. return true;
  603. }
  604. if (arg == "--typical") {
  605. if (++i >= argc) {
  606. invalid_param = true;
  607. return true;
  608. }
  609. sparams.typical_p = std::stof(argv[i]);
  610. return true;
  611. }
  612. if (arg == "--repeat-last-n") {
  613. if (++i >= argc) {
  614. invalid_param = true;
  615. return true;
  616. }
  617. sparams.penalty_last_n = std::stoi(argv[i]);
  618. sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
  619. return true;
  620. }
  621. if (arg == "--repeat-penalty") {
  622. if (++i >= argc) {
  623. invalid_param = true;
  624. return true;
  625. }
  626. sparams.penalty_repeat = std::stof(argv[i]);
  627. return true;
  628. }
  629. if (arg == "--frequency-penalty") {
  630. if (++i >= argc) {
  631. invalid_param = true;
  632. return true;
  633. }
  634. sparams.penalty_freq = std::stof(argv[i]);
  635. return true;
  636. }
  637. if (arg == "--presence-penalty") {
  638. if (++i >= argc) {
  639. invalid_param = true;
  640. return true;
  641. }
  642. sparams.penalty_present = std::stof(argv[i]);
  643. return true;
  644. }
  645. if (arg == "--dynatemp-range") {
  646. if (++i >= argc) {
  647. invalid_param = true;
  648. return true;
  649. }
  650. sparams.dynatemp_range = std::stof(argv[i]);
  651. return true;
  652. }
  653. if (arg == "--dynatemp-exp") {
  654. if (++i >= argc) {
  655. invalid_param = true;
  656. return true;
  657. }
  658. sparams.dynatemp_exponent = std::stof(argv[i]);
  659. return true;
  660. }
  661. if (arg == "--mirostat") {
  662. if (++i >= argc) {
  663. invalid_param = true;
  664. return true;
  665. }
  666. sparams.mirostat = std::stoi(argv[i]);
  667. return true;
  668. }
  669. if (arg == "--mirostat-lr") {
  670. if (++i >= argc) {
  671. invalid_param = true;
  672. return true;
  673. }
  674. sparams.mirostat_eta = std::stof(argv[i]);
  675. return true;
  676. }
  677. if (arg == "--mirostat-ent") {
  678. if (++i >= argc) {
  679. invalid_param = true;
  680. return true;
  681. }
  682. sparams.mirostat_tau = std::stof(argv[i]);
  683. return true;
  684. }
  685. if (arg == "--cfg-negative-prompt") {
  686. if (++i >= argc) {
  687. invalid_param = true;
  688. return true;
  689. }
  690. sparams.cfg_negative_prompt = argv[i];
  691. return true;
  692. }
  693. if (arg == "--cfg-negative-prompt-file") {
  694. if (++i >= argc) {
  695. invalid_param = true;
  696. return true;
  697. }
  698. std::ifstream file(argv[i]);
  699. if (!file) {
  700. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  701. invalid_param = true;
  702. return true;
  703. }
  704. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
  705. if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
  706. sparams.cfg_negative_prompt.pop_back();
  707. }
  708. return true;
  709. }
  710. if (arg == "--cfg-scale") {
  711. if (++i >= argc) {
  712. invalid_param = true;
  713. return true;
  714. }
  715. sparams.cfg_scale = std::stof(argv[i]);
  716. return true;
  717. }
  718. if (arg == "-b" || arg == "--batch-size") {
  719. if (++i >= argc) {
  720. invalid_param = true;
  721. return true;
  722. }
  723. params.n_batch = std::stoi(argv[i]);
  724. return true;
  725. }
  726. if (arg == "-ub" || arg == "--ubatch-size") {
  727. if (++i >= argc) {
  728. invalid_param = true;
  729. return true;
  730. }
  731. params.n_ubatch = std::stoi(argv[i]);
  732. return true;
  733. }
  734. if (arg == "--keep") {
  735. if (++i >= argc) {
  736. invalid_param = true;
  737. return true;
  738. }
  739. params.n_keep = std::stoi(argv[i]);
  740. return true;
  741. }
  742. if (arg == "--draft") {
  743. if (++i >= argc) {
  744. invalid_param = true;
  745. return true;
  746. }
  747. params.n_draft = std::stoi(argv[i]);
  748. return true;
  749. }
  750. if (arg == "--chunks") {
  751. if (++i >= argc) {
  752. invalid_param = true;
  753. return true;
  754. }
  755. params.n_chunks = std::stoi(argv[i]);
  756. return true;
  757. }
  758. if (arg == "-np" || arg == "--parallel") {
  759. if (++i >= argc) {
  760. invalid_param = true;
  761. return true;
  762. }
  763. params.n_parallel = std::stoi(argv[i]);
  764. return true;
  765. }
  766. if (arg == "-ns" || arg == "--sequences") {
  767. if (++i >= argc) {
  768. invalid_param = true;
  769. return true;
  770. }
  771. params.n_sequences = std::stoi(argv[i]);
  772. return true;
  773. }
  774. if (arg == "--p-split" || arg == "-ps") {
  775. if (++i >= argc) {
  776. invalid_param = true;
  777. return true;
  778. }
  779. params.p_split = std::stof(argv[i]);
  780. return true;
  781. }
  782. if (arg == "-m" || arg == "--model") {
  783. if (++i >= argc) {
  784. invalid_param = true;
  785. return true;
  786. }
  787. params.model = argv[i];
  788. return true;
  789. }
  790. if (arg == "-md" || arg == "--model-draft") {
  791. if (++i >= argc) {
  792. invalid_param = true;
  793. return true;
  794. }
  795. params.model_draft = argv[i];
  796. return true;
  797. }
  798. if (arg == "-a" || arg == "--alias") {
  799. if (++i >= argc) {
  800. invalid_param = true;
  801. return true;
  802. }
  803. params.model_alias = argv[i];
  804. return true;
  805. }
  806. if (arg == "-mu" || arg == "--model-url") {
  807. if (++i >= argc) {
  808. invalid_param = true;
  809. return true;
  810. }
  811. params.model_url = argv[i];
  812. return true;
  813. }
  814. if (arg == "-hfr" || arg == "--hf-repo") {
  815. if (++i >= argc) {
  816. invalid_param = true;
  817. return true;
  818. }
  819. params.hf_repo = argv[i];
  820. return true;
  821. }
  822. if (arg == "-hff" || arg == "--hf-file") {
  823. if (++i >= argc) {
  824. invalid_param = true;
  825. return true;
  826. }
  827. params.hf_file = argv[i];
  828. return true;
  829. }
  830. if (arg == "--lora") {
  831. if (++i >= argc) {
  832. invalid_param = true;
  833. return true;
  834. }
  835. params.lora_adapter.emplace_back(argv[i], 1.0f);
  836. params.use_mmap = false;
  837. return true;
  838. }
  839. if (arg == "--lora-scaled") {
  840. if (++i >= argc) {
  841. invalid_param = true;
  842. return true;
  843. }
  844. const char* lora_adapter = argv[i];
  845. if (++i >= argc) {
  846. invalid_param = true;
  847. return true;
  848. }
  849. params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
  850. params.use_mmap = false;
  851. return true;
  852. }
  853. if (arg == "--lora-base") {
  854. if (++i >= argc) {
  855. invalid_param = true;
  856. return true;
  857. }
  858. params.lora_base = argv[i];
  859. return true;
  860. }
  861. if (arg == "--control-vector") {
  862. if (++i >= argc) {
  863. invalid_param = true;
  864. return true;
  865. }
  866. params.control_vectors.push_back({ 1.0f, argv[i], });
  867. return true;
  868. }
  869. if (arg == "--control-vector-scaled") {
  870. if (++i >= argc) {
  871. invalid_param = true;
  872. return true;
  873. }
  874. const char* fname = argv[i];
  875. if (++i >= argc) {
  876. invalid_param = true;
  877. return true;
  878. }
  879. params.control_vectors.push_back({ std::stof(argv[i]), fname, });
  880. return true;
  881. }
  882. if (arg == "--control-vector-layer-range") {
  883. if (++i >= argc) {
  884. invalid_param = true;
  885. return true;
  886. }
  887. params.control_vector_layer_start = std::stoi(argv[i]);
  888. if (++i >= argc) {
  889. invalid_param = true;
  890. return true;
  891. }
  892. params.control_vector_layer_end = std::stoi(argv[i]);
  893. return true;
  894. }
  895. if (arg == "--mmproj") {
  896. if (++i >= argc) {
  897. invalid_param = true;
  898. return true;
  899. }
  900. params.mmproj = argv[i];
  901. return true;
  902. }
  903. if (arg == "--image") {
  904. if (++i >= argc) {
  905. invalid_param = true;
  906. return true;
  907. }
  908. params.image.emplace_back(argv[i]);
  909. return true;
  910. }
  911. if (arg == "-i" || arg == "--interactive") {
  912. params.interactive = true;
  913. return true;
  914. }
  915. if (arg == "-sp" || arg == "--special") {
  916. params.special = true;
  917. return true;
  918. }
  919. if (arg == "--embedding" || arg == "--embeddings") {
  920. params.embedding = true;
  921. return true;
  922. }
  923. if (arg == "-if" || arg == "--interactive-first") {
  924. params.interactive_first = true;
  925. return true;
  926. }
  927. if (arg == "-cnv" || arg == "--conversation") {
  928. params.conversation = true;
  929. return true;
  930. }
  931. if (arg == "--infill") {
  932. params.infill = true;
  933. return true;
  934. }
  935. if (arg == "-dkvc" || arg == "--dump-kv-cache") {
  936. params.dump_kv_cache = true;
  937. return true;
  938. }
  939. if (arg == "-nkvo" || arg == "--no-kv-offload") {
  940. params.no_kv_offload = true;
  941. return true;
  942. }
  943. if (arg == "-ctk" || arg == "--cache-type-k") {
  944. params.cache_type_k = argv[++i];
  945. return true;
  946. }
  947. if (arg == "-ctv" || arg == "--cache-type-v") {
  948. params.cache_type_v = argv[++i];
  949. return true;
  950. }
  951. if (arg == "--multiline-input") {
  952. params.multiline_input = true;
  953. return true;
  954. }
  955. if (arg == "--simple-io") {
  956. params.simple_io = true;
  957. return true;
  958. }
  959. if (arg == "-cb" || arg == "--cont-batching") {
  960. params.cont_batching = true;
  961. return true;
  962. }
  963. if (arg == "-fa" || arg == "--flash-attn") {
  964. params.flash_attn = true;
  965. return true;
  966. }
  967. if (arg == "-co" || arg == "--color") {
  968. params.use_color = true;
  969. return true;
  970. }
  971. if (arg == "--mlock") {
  972. params.use_mlock = true;
  973. return true;
  974. }
  975. if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
  976. if (++i >= argc) {
  977. invalid_param = true;
  978. return true;
  979. }
  980. params.n_gpu_layers = std::stoi(argv[i]);
  981. if (!llama_supports_gpu_offload()) {
  982. fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n");
  983. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  984. }
  985. return true;
  986. }
  987. if (arg == "-ngld" || arg == "--gpu-layers-draft" || arg == "--gpu-layers-draft") {
  988. if (++i >= argc) {
  989. invalid_param = true;
  990. return true;
  991. }
  992. params.n_gpu_layers_draft = std::stoi(argv[i]);
  993. if (!llama_supports_gpu_offload()) {
  994. fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
  995. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  996. }
  997. return true;
  998. }
  999. if (arg == "--main-gpu" || arg == "-mg") {
  1000. if (++i >= argc) {
  1001. invalid_param = true;
  1002. return true;
  1003. }
  1004. params.main_gpu = std::stoi(argv[i]);
  1005. #ifndef GGML_USE_CUDA_SYCL_VULKAN
  1006. fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the main GPU has no effect.\n");
  1007. #endif // GGML_USE_CUDA_SYCL_VULKAN
  1008. return true;
  1009. }
  1010. if (arg == "--split-mode" || arg == "-sm") {
  1011. if (++i >= argc) {
  1012. invalid_param = true;
  1013. return true;
  1014. }
  1015. std::string arg_next = argv[i];
  1016. if (arg_next == "none") {
  1017. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  1018. }
  1019. else if (arg_next == "layer") {
  1020. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  1021. }
  1022. else if (arg_next == "row") {
  1023. #ifdef GGML_USE_SYCL
  1024. fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
  1025. exit(1);
  1026. #endif // GGML_USE_SYCL
  1027. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  1028. }
  1029. else {
  1030. invalid_param = true;
  1031. return true;
  1032. }
  1033. #ifndef GGML_USE_CUDA_SYCL_VULKAN
  1034. fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the split mode has no effect.\n");
  1035. #endif // GGML_USE_CUDA_SYCL_VULKAN
  1036. return true;
  1037. }
  1038. if (arg == "--tensor-split" || arg == "-ts") {
  1039. if (++i >= argc) {
  1040. invalid_param = true;
  1041. return true;
  1042. }
  1043. std::string arg_next = argv[i];
  1044. // split string by , and /
  1045. const std::regex regex{ R"([,/]+)" };
  1046. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  1047. std::vector<std::string> split_arg{ it, {} };
  1048. if (split_arg.size() >= llama_max_devices()) {
  1049. invalid_param = true;
  1050. return true;
  1051. }
  1052. for (size_t i = 0; i < llama_max_devices(); ++i) {
  1053. if (i < split_arg.size()) {
  1054. params.tensor_split[i] = std::stof(split_arg[i]);
  1055. }
  1056. else {
  1057. params.tensor_split[i] = 0.0f;
  1058. }
  1059. }
  1060. #ifndef GGML_USE_CUDA_SYCL_VULKAN
  1061. fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
  1062. #endif // GGML_USE_CUDA_SYCL_VULKAN
  1063. return true;
  1064. }
  1065. if (arg == "--rpc") {
  1066. if (++i >= argc) {
  1067. invalid_param = true;
  1068. return true;
  1069. }
  1070. params.rpc_servers = argv[i];
  1071. return true;
  1072. }
  1073. if (arg == "--no-mmap") {
  1074. params.use_mmap = false;
  1075. return true;
  1076. }
  1077. if (arg == "--numa") {
  1078. if (++i >= argc) {
  1079. invalid_param = true;
  1080. return true;
  1081. }
  1082. std::string value(argv[i]);
  1083. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  1084. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  1085. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  1086. else { invalid_param = true; }
  1087. return true;
  1088. }
  1089. if (arg == "-v" || arg == "--verbose") {
  1090. params.verbosity = 1;
  1091. return true;
  1092. }
  1093. if (arg == "--verbosity") {
  1094. if (++i >= argc) {
  1095. invalid_param = true;
  1096. return true;
  1097. }
  1098. params.verbosity = std::stoi(argv[i]);
  1099. return true;
  1100. }
  1101. if (arg == "--verbose-prompt") {
  1102. params.verbose_prompt = true;
  1103. return true;
  1104. }
  1105. if (arg == "--no-display-prompt") {
  1106. params.display_prompt = false;
  1107. return true;
  1108. }
  1109. if (arg == "-r" || arg == "--reverse-prompt") {
  1110. if (++i >= argc) {
  1111. invalid_param = true;
  1112. return true;
  1113. }
  1114. params.antiprompt.emplace_back(argv[i]);
  1115. return true;
  1116. }
  1117. if (arg == "-ld" || arg == "--logdir") {
  1118. if (++i >= argc) {
  1119. invalid_param = true;
  1120. return true;
  1121. }
  1122. params.logdir = argv[i];
  1123. if (params.logdir.back() != DIRECTORY_SEPARATOR) {
  1124. params.logdir += DIRECTORY_SEPARATOR;
  1125. }
  1126. return true;
  1127. }
  1128. if (arg == "-lcs" || arg == "--lookup-cache-static") {
  1129. if (++i >= argc) {
  1130. invalid_param = true;
  1131. return true;
  1132. }
  1133. params.lookup_cache_static = argv[i];
  1134. return true;
  1135. }
  1136. if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
  1137. if (++i >= argc) {
  1138. invalid_param = true;
  1139. return true;
  1140. }
  1141. params.lookup_cache_dynamic = argv[i];
  1142. return true;
  1143. }
  1144. if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
  1145. if (++i >= argc) {
  1146. invalid_param = true;
  1147. return true;
  1148. }
  1149. params.logits_file = argv[i];
  1150. return true;
  1151. }
  1152. if (arg == "--perplexity" || arg == "--all-logits") {
  1153. params.logits_all = true;
  1154. return true;
  1155. }
  1156. if (arg == "--ppl-stride") {
  1157. if (++i >= argc) {
  1158. invalid_param = true;
  1159. return true;
  1160. }
  1161. params.ppl_stride = std::stoi(argv[i]);
  1162. return true;
  1163. }
  1164. if (arg == "--ppl-output-type") {
  1165. if (++i >= argc) {
  1166. invalid_param = true;
  1167. return true;
  1168. }
  1169. params.ppl_output_type = std::stoi(argv[i]);
  1170. return true;
  1171. }
  1172. if (arg == "-ptc" || arg == "--print-token-count") {
  1173. if (++i >= argc) {
  1174. invalid_param = true;
  1175. return true;
  1176. }
  1177. params.n_print = std::stoi(argv[i]);
  1178. return true;
  1179. }
  1180. if (arg == "--check-tensors") {
  1181. params.check_tensors = true;
  1182. return true;
  1183. }
  1184. if (arg == "--hellaswag") {
  1185. params.hellaswag = true;
  1186. return true;
  1187. }
  1188. if (arg == "--hellaswag-tasks") {
  1189. if (++i >= argc) {
  1190. invalid_param = true;
  1191. return true;
  1192. }
  1193. params.hellaswag_tasks = std::stoi(argv[i]);
  1194. return true;
  1195. }
  1196. if (arg == "--winogrande") {
  1197. params.winogrande = true;
  1198. return true;
  1199. }
  1200. if (arg == "--winogrande-tasks") {
  1201. if (++i >= argc) {
  1202. invalid_param = true;
  1203. return true;
  1204. }
  1205. params.winogrande_tasks = std::stoi(argv[i]);
  1206. return true;
  1207. }
  1208. if (arg == "--multiple-choice") {
  1209. params.multiple_choice = true;
  1210. return true;
  1211. }
  1212. if (arg == "--multiple-choice-tasks") {
  1213. if (++i >= argc) {
  1214. invalid_param = true;
  1215. return true;
  1216. }
  1217. params.multiple_choice_tasks = std::stoi(argv[i]);
  1218. return true;
  1219. }
  1220. if (arg == "--kl-divergence") {
  1221. params.kl_divergence = true;
  1222. return true;
  1223. }
  1224. if (arg == "--ignore-eos") {
  1225. params.ignore_eos = true;
  1226. return true;
  1227. }
  1228. if (arg == "--penalize-nl") {
  1229. sparams.penalize_nl = true;
  1230. return true;
  1231. }
  1232. if (arg == "-l" || arg == "--logit-bias") {
  1233. if (++i >= argc) {
  1234. invalid_param = true;
  1235. return true;
  1236. }
  1237. std::stringstream ss(argv[i]);
  1238. llama_token key;
  1239. char sign;
  1240. std::string value_str;
  1241. try {
  1242. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  1243. sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  1244. }
  1245. else {
  1246. throw std::exception();
  1247. }
  1248. }
  1249. catch (const std::exception&) {
  1250. invalid_param = true;
  1251. return true;
  1252. }
  1253. return true;
  1254. }
  1255. if (arg == "-h" || arg == "--help" || arg == "--usage" ) {
  1256. params.usage = true;
  1257. return true;
  1258. }
  1259. if (arg == "--version") {
  1260. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  1261. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  1262. exit(0);
  1263. }
  1264. if (arg == "--in-prefix-bos") {
  1265. params.input_prefix_bos = true;
  1266. return true;
  1267. }
  1268. if (arg == "--in-prefix") {
  1269. if (++i >= argc) {
  1270. invalid_param = true;
  1271. return true;
  1272. }
  1273. params.input_prefix = argv[i];
  1274. return true;
  1275. }
  1276. if (arg == "--in-suffix") {
  1277. if (++i >= argc) {
  1278. invalid_param = true;
  1279. return true;
  1280. }
  1281. params.input_suffix = argv[i];
  1282. return true;
  1283. }
  1284. if (arg == "--grammar") {
  1285. if (++i >= argc) {
  1286. invalid_param = true;
  1287. return true;
  1288. }
  1289. sparams.grammar = argv[i];
  1290. return true;
  1291. }
  1292. if (arg == "--grammar-file") {
  1293. if (++i >= argc) {
  1294. invalid_param = true;
  1295. return true;
  1296. }
  1297. std::ifstream file(argv[i]);
  1298. if (!file) {
  1299. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1300. invalid_param = true;
  1301. return true;
  1302. }
  1303. std::copy(
  1304. std::istreambuf_iterator<char>(file),
  1305. std::istreambuf_iterator<char>(),
  1306. std::back_inserter(sparams.grammar)
  1307. );
  1308. return true;
  1309. }
  1310. if (arg == "-j" || arg == "--json-schema") {
  1311. if (++i >= argc) {
  1312. invalid_param = true;
  1313. return true;
  1314. }
  1315. sparams.grammar = json_schema_to_grammar(json::parse(argv[i]));
  1316. return true;
  1317. }
  1318. if (arg == "--override-kv") {
  1319. if (++i >= argc) {
  1320. invalid_param = true;
  1321. return true;
  1322. }
  1323. if (!string_parse_kv_override(argv[i], params.kv_overrides)) {
  1324. fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
  1325. invalid_param = true;
  1326. return true;
  1327. }
  1328. return true;
  1329. }
  1330. if (arg == "--host") {
  1331. if (++i >= argc) {
  1332. invalid_param = true;
  1333. return true;
  1334. }
  1335. params.hostname = argv[i];
  1336. return true;
  1337. }
  1338. if (arg == "--port") {
  1339. if (++i >= argc) {
  1340. invalid_param = true;
  1341. return true;
  1342. }
  1343. params.port = std::stoi(argv[i]);
  1344. return true;
  1345. }
  1346. if (arg == "--path") {
  1347. if (++i >= argc) {
  1348. invalid_param = true;
  1349. return true;
  1350. }
  1351. params.public_path = argv[i];
  1352. return true;
  1353. }
  1354. if (arg == "--api-key") {
  1355. if (++i >= argc) {
  1356. invalid_param = true;
  1357. return true;
  1358. }
  1359. params.api_keys.push_back(argv[i]);
  1360. return true;
  1361. }
  1362. if (arg == "--api-key-file") {
  1363. if (++i >= argc) {
  1364. invalid_param = true;
  1365. return true;
  1366. }
  1367. std::ifstream key_file(argv[i]);
  1368. if (!key_file) {
  1369. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1370. invalid_param = true;
  1371. return true;
  1372. }
  1373. std::string key;
  1374. while (std::getline(key_file, key)) {
  1375. if (!key.empty()) {
  1376. params.api_keys.push_back(key);
  1377. }
  1378. }
  1379. key_file.close();
  1380. return true;
  1381. }
  1382. if (arg == "--ssl-key-file") {
  1383. if (++i >= argc) {
  1384. invalid_param = true;
  1385. return true;
  1386. }
  1387. params.ssl_file_key = argv[i];
  1388. return true;
  1389. }
  1390. if (arg == "--ssl-cert-file") {
  1391. if (++i >= argc) {
  1392. invalid_param = true;
  1393. return true;
  1394. }
  1395. params.ssl_file_cert = argv[i];
  1396. return true;
  1397. }
  1398. if (arg == "--timeout" || arg == "-to") {
  1399. if (++i >= argc) {
  1400. invalid_param = true;
  1401. return true;
  1402. }
  1403. params.timeout_read = std::stoi(argv[i]);
  1404. params.timeout_write = std::stoi(argv[i]);
  1405. return true;
  1406. }
  1407. if (arg == "--threads-http") {
  1408. if (++i >= argc) {
  1409. invalid_param = true;
  1410. return true;
  1411. }
  1412. params.n_threads_http = std::stoi(argv[i]);
  1413. return true;
  1414. }
  1415. if (arg == "-spf" || arg == "--system-prompt-file") {
  1416. if (++i >= argc) {
  1417. invalid_param = true;
  1418. return true;
  1419. }
  1420. std::ifstream file(argv[i]);
  1421. if (!file) {
  1422. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1423. invalid_param = true;
  1424. return true;
  1425. }
  1426. std::string system_prompt;
  1427. std::copy(
  1428. std::istreambuf_iterator<char>(file),
  1429. std::istreambuf_iterator<char>(),
  1430. std::back_inserter(system_prompt)
  1431. );
  1432. params.system_prompt = system_prompt;
  1433. return true;
  1434. }
  1435. if (arg == "--log-format") {
  1436. if (++i >= argc) {
  1437. invalid_param = true;
  1438. return true;
  1439. }
  1440. if (std::strcmp(argv[i], "json") == 0) {
  1441. params.log_json = true;
  1442. } else if (std::strcmp(argv[i], "text") == 0) {
  1443. params.log_json = false;
  1444. } else {
  1445. invalid_param = true;
  1446. return true;
  1447. }
  1448. return true;
  1449. }
  1450. if (arg == "--no-slots") {
  1451. params.endpoint_slots = false;
  1452. return true;
  1453. }
  1454. if (arg == "--metrics") {
  1455. params.endpoint_metrics = true;
  1456. return true;
  1457. }
  1458. if (arg == "--slot-save-path") {
  1459. if (++i >= argc) {
  1460. invalid_param = true;
  1461. return true;
  1462. }
  1463. params.slot_save_path = argv[i];
  1464. // if doesn't end with DIRECTORY_SEPARATOR, add it
  1465. if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
  1466. params.slot_save_path += DIRECTORY_SEPARATOR;
  1467. }
  1468. return true;
  1469. }
  1470. if (arg == "--chat-template") {
  1471. if (++i >= argc) {
  1472. invalid_param = true;
  1473. return true;
  1474. }
  1475. if (!llama_chat_verify_template(argv[i])) {
  1476. fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
  1477. fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
  1478. invalid_param = true;
  1479. return true;
  1480. }
  1481. params.chat_template = argv[i];
  1482. return true;
  1483. }
  1484. if (arg == "-pps") {
  1485. params.is_pp_shared = true;
  1486. return true;
  1487. }
  1488. if (arg == "-npp") {
  1489. if (++i >= argc) {
  1490. invalid_param = true;
  1491. return true;
  1492. }
  1493. auto p = string_split<int>(argv[i], split_delim);
  1494. params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
  1495. return true;
  1496. }
  1497. if (arg == "-ntg") {
  1498. if (++i >= argc) {
  1499. invalid_param = true;
  1500. return true;
  1501. }
  1502. auto p = string_split<int>(argv[i], split_delim);
  1503. params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
  1504. return true;
  1505. }
  1506. if (arg == "-npl") {
  1507. if (++i >= argc) {
  1508. invalid_param = true;
  1509. return true;
  1510. }
  1511. auto p = string_split<int>(argv[i], split_delim);
  1512. params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
  1513. return true;
  1514. }
  1515. if (arg == "--context-file") {
  1516. if (++i >= argc) {
  1517. invalid_param = true;
  1518. return true;
  1519. }
  1520. std::ifstream file(argv[i], std::ios::binary);
  1521. if (!file) {
  1522. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1523. invalid_param = true;
  1524. return true;
  1525. }
  1526. params.context_files.push_back(argv[i]);
  1527. return true;
  1528. }
  1529. if (arg == "--chunk-size") {
  1530. if (++i >= argc) {
  1531. invalid_param = true;
  1532. return true;
  1533. }
  1534. params.chunk_size = std::stoi(argv[i]);
  1535. return true;
  1536. }
  1537. if (arg == "--chunk-separator") {
  1538. if (++i >= argc) {
  1539. invalid_param = true;
  1540. return true;
  1541. }
  1542. params.chunk_separator = argv[i];
  1543. return true;
  1544. }
  1545. if (arg == "--junk") {
  1546. if (++i >= argc) {
  1547. invalid_param = true;
  1548. return true;
  1549. }
  1550. params.n_junk = std::stoi(argv[i]);
  1551. return true;
  1552. }
  1553. if (arg == "--pos") {
  1554. if (++i >= argc) {
  1555. invalid_param = true;
  1556. return true;
  1557. }
  1558. params.i_pos = std::stoi(argv[i]);
  1559. return true;
  1560. }
  1561. if (arg == "-o" || arg == "--output" || arg == "--output-file") {
  1562. if (++i >= argc) {
  1563. invalid_param = true;
  1564. return true;
  1565. }
  1566. params.out_file = argv[i];
  1567. return true;
  1568. }
  1569. if (arg == "-ofreq" || arg == "--output-frequency") {
  1570. if (++i >= argc) {
  1571. invalid_param = true;
  1572. return true;
  1573. }
  1574. params.n_out_freq = std::stoi(argv[i]);
  1575. return true;
  1576. }
  1577. if (arg == "--save-frequency") {
  1578. if (++i >= argc) {
  1579. invalid_param = true;
  1580. return true;
  1581. }
  1582. params.n_save_freq = std::stoi(argv[i]);
  1583. return true;
  1584. }
  1585. if (arg == "--process-output") {
  1586. params.process_output = true;
  1587. return true;
  1588. }
  1589. if (arg == "--no-ppl") {
  1590. params.compute_ppl = false;
  1591. return true;
  1592. }
  1593. if (arg == "--chunk" || arg == "--from-chunk") {
  1594. if (++i >= argc) {
  1595. invalid_param = true;
  1596. return true;
  1597. }
  1598. params.i_chunk = std::stoi(argv[i]);
  1599. return true;
  1600. }
  1601. #ifndef LOG_DISABLE_LOGS
  1602. // Parse args for logging parameters
  1603. if (log_param_single_parse(argv[i])) {
  1604. // Do nothing, log_param_single_parse automatically does it's thing
  1605. // and returns if a match was found and parsed.
  1606. return true;
  1607. }
  1608. if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) {
  1609. // We have a matching known parameter requiring an argument,
  1610. // now we need to check if there is anything after this argv
  1611. // and flag invalid_param or parse it.
  1612. if (++i >= argc) {
  1613. invalid_param = true;
  1614. return true;
  1615. }
  1616. if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) {
  1617. invalid_param = true;
  1618. return true;
  1619. }
  1620. return true;
  1621. }
  1622. // End of Parse args for logging parameters
  1623. #endif // LOG_DISABLE_LOGS
  1624. return false;
  1625. }
  1626. #ifdef __GNUC__
  1627. #ifdef __MINGW32__
  1628. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  1629. #else
  1630. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  1631. #endif
  1632. #else
  1633. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  1634. #endif
  1635. void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
  1636. const llama_sampling_params & sparams = params.sparams;
  1637. std::string sampler_type_chars;
  1638. std::string sampler_type_names;
  1639. for (const auto sampler_type : sparams.samplers_sequence) {
  1640. sampler_type_chars += static_cast<char>(sampler_type);
  1641. sampler_type_names += llama_sampling_type_to_str(sampler_type) + ";";
  1642. }
  1643. sampler_type_names.pop_back();
  1644. struct option_info {
  1645. LLAMA_COMMON_ATTRIBUTE_FORMAT(4, 5)
  1646. option_info(const std::string & tags, const char * args, const char * desc, ...) : tags(tags), args(args), desc(desc) {
  1647. va_list args_list;
  1648. va_start(args_list, desc);
  1649. char buffer[1024];
  1650. vsnprintf(buffer, sizeof(buffer), desc, args_list);
  1651. va_end(args_list);
  1652. this->desc = buffer;
  1653. }
  1654. option_info(const std::string & grp) : grp(grp) {}
  1655. std::string tags;
  1656. std::string args;
  1657. std::string desc;
  1658. std::string grp;
  1659. };
  1660. std::vector<option_info> options;
  1661. // TODO: filter by tags
  1662. options.push_back({ "general" });
  1663. options.push_back({ "*", "-h, --help, --usage", "print usage and exit" });
  1664. options.push_back({ "*", " --version", "show version and build info" });
  1665. options.push_back({ "*", "-v, --verbose", "print verbose information" });
  1666. options.push_back({ "*", " --verbosity N", "set specific verbosity level (default: %d)", params.verbosity });
  1667. options.push_back({ "*", " --verbose-prompt", "print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false" });
  1668. options.push_back({ "*", " --no-display-prompt", "don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false" });
  1669. options.push_back({ "*", "-co, --color", "colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false" });
  1670. options.push_back({ "*", "-s, --seed SEED", "RNG seed (default: %d, use random seed for < 0)", params.seed });
  1671. options.push_back({ "*", "-t, --threads N", "number of threads to use during generation (default: %d)", params.n_threads });
  1672. options.push_back({ "*", "-tb, --threads-batch N", "number of threads to use during batch and prompt processing (default: same as --threads)" });
  1673. options.push_back({ "speculative", "-td, --threads-draft N", "number of threads to use during generation (default: same as --threads)" });
  1674. options.push_back({ "speculative", "-tbd, --threads-batch-draft N",
  1675. "number of threads to use during batch and prompt processing (default: same as --threads-draft)" });
  1676. options.push_back({ "speculative", " --draft N", "number of tokens to draft for speculative decoding (default: %d)", params.n_draft });
  1677. options.push_back({ "speculative", "-ps, --p-split N", "speculative decoding split probability (default: %.1f)", (double)params.p_split });
  1678. options.push_back({ "*", "-lcs, --lookup-cache-static FNAME",
  1679. "path to static lookup cache to use for lookup decoding (not updated by generation)" });
  1680. options.push_back({ "*", "-lcd, --lookup-cache-dynamic FNAME",
  1681. "path to dynamic lookup cache to use for lookup decoding (updated by generation)" });
  1682. options.push_back({ "*", "-c, --ctx-size N", "size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx });
  1683. options.push_back({ "*", "-n, --predict N", "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict });
  1684. options.push_back({ "*", "-b, --batch-size N", "logical maximum batch size (default: %d)", params.n_batch });
  1685. options.push_back({ "*", "-ub, --ubatch-size N", "physical maximum batch size (default: %d)", params.n_ubatch });
  1686. options.push_back({ "*", " --keep N", "number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep });
  1687. options.push_back({ "*", " --chunks N", "max number of chunks to process (default: %d, -1 = all)", params.n_chunks });
  1688. options.push_back({ "*", "-fa, --flash-attn", "enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled" });
  1689. options.push_back({ "*", "-p, --prompt PROMPT", "prompt to start generation with (default: '%s')", params.prompt.c_str() });
  1690. options.push_back({ "*", "-f, --file FNAME", "a file containing the prompt (default: none)" });
  1691. options.push_back({ "*", " --in-file FNAME", "an input file (repeat to specify multiple files)" });
  1692. options.push_back({ "*", "-bf, --binary-file FNAME", "binary file containing the prompt (default: none)" });
  1693. options.push_back({ "*", "-e, --escape", "process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false" });
  1694. options.push_back({ "*", " --no-escape", "do not process escape sequences" });
  1695. options.push_back({ "main", "-ptc, --print-token-count N", "print token count every N tokens (default: %d)", params.n_print });
  1696. options.push_back({ "main", " --prompt-cache FNAME", "file to cache prompt state for faster startup (default: none)" });
  1697. options.push_back({ "main", " --prompt-cache-all", "if specified, saves user input and generations to cache as well\n"
  1698. "not supported with --interactive or other interactive options" });
  1699. options.push_back({ "main", " --prompt-cache-ro", "if specified, uses the prompt cache but does not update it" });
  1700. options.push_back({ "main", "-r, --reverse-prompt PROMPT",
  1701. "halt generation at PROMPT, return control in interactive mode\n"
  1702. "can be specified more than once for multiple prompts" });
  1703. options.push_back({ "main", "-sp, --special", "special tokens output enabled (default: %s)", params.special ? "true" : "false" });
  1704. options.push_back({ "main", "-cnv, --conversation", "run in conversation mode (does not print special tokens and suffix/prefix) (default: %s)", params.conversation ? "true" : "false" });
  1705. options.push_back({ "main infill", "-i, --interactive", "run in interactive mode (default: %s)", params.interactive ? "true" : "false" });
  1706. options.push_back({ "main infill", "-if, --interactive-first", "run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false" });
  1707. options.push_back({ "main infill", "-mli, --multiline-input", "allows you to write or paste multiple lines without ending each in '\\'" });
  1708. options.push_back({ "main infill", " --in-prefix-bos", "prefix BOS to user inputs, preceding the `--in-prefix` string" });
  1709. options.push_back({ "main infill", " --in-prefix STRING", "string to prefix user inputs with (default: empty)" });
  1710. options.push_back({ "main infill", " --in-suffix STRING", "string to suffix after user inputs with (default: empty)" });
  1711. options.push_back({ "sampling" });
  1712. options.push_back({ "*", " --samplers SAMPLERS", "samplers that will be used for generation in the order, separated by \';\'\n"
  1713. "(default: %s)", sampler_type_names.c_str() });
  1714. options.push_back({ "*", " --sampling-seq SEQUENCE",
  1715. "simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str() });
  1716. options.push_back({ "*", " --ignore-eos", "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)" });
  1717. options.push_back({ "*", " --penalize-nl", "penalize newline tokens (default: %s)", sparams.penalize_nl ? "true" : "false" });
  1718. options.push_back({ "*", " --temp N", "temperature (default: %.1f)", (double)sparams.temp });
  1719. options.push_back({ "*", " --top-k N", "top-k sampling (default: %d, 0 = disabled)", sparams.top_k });
  1720. options.push_back({ "*", " --top-p N", "top-p sampling (default: %.1f, 1.0 = disabled)", (double)sparams.top_p });
  1721. options.push_back({ "*", " --min-p N", "min-p sampling (default: %.1f, 0.0 = disabled)", (double)sparams.min_p });
  1722. options.push_back({ "*", " --tfs N", "tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)sparams.tfs_z });
  1723. options.push_back({ "*", " --typical N", "locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)sparams.typical_p });
  1724. options.push_back({ "*", " --repeat-last-n N", "last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", sparams.penalty_last_n });
  1725. options.push_back({ "*", " --repeat-penalty N", "penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)sparams.penalty_repeat });
  1726. options.push_back({ "*", " --presence-penalty N", "repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_present });
  1727. options.push_back({ "*", " --frequency-penalty N", "repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_freq });
  1728. options.push_back({ "*", " --dynatemp-range N", "dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)sparams.dynatemp_range });
  1729. options.push_back({ "*", " --dynatemp-exp N", "dynamic temperature exponent (default: %.1f)", (double)sparams.dynatemp_exponent });
  1730. options.push_back({ "*", " --mirostat N", "use Mirostat sampling.\n"
  1731. "Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"
  1732. "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", sparams.mirostat });
  1733. options.push_back({ "*", " --mirostat-lr N", "Mirostat learning rate, parameter eta (default: %.1f)", (double)sparams.mirostat_eta });
  1734. options.push_back({ "*", " --mirostat-ent N", "Mirostat target entropy, parameter tau (default: %.1f)", (double)sparams.mirostat_tau });
  1735. options.push_back({ "*", " -l TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n"
  1736. "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
  1737. "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'" });
  1738. options.push_back({ "main", " --cfg-negative-prompt PROMPT",
  1739. "negative prompt to use for guidance (default: '%s')", sparams.cfg_negative_prompt.c_str() });
  1740. options.push_back({ "main", " --cfg-negative-prompt-file FNAME",
  1741. "negative prompt file to use for guidance" });
  1742. options.push_back({ "main", " --cfg-scale N", "strength of guidance (default: %.1f, 1.0 = disable)", (double)sparams.cfg_scale });
  1743. options.push_back({ "grammar" });
  1744. options.push_back({ "*", " --grammar GRAMMAR", "BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", sparams.grammar.c_str() });
  1745. options.push_back({ "*", " --grammar-file FNAME", "file to read grammar from" });
  1746. options.push_back({ "*", "-j, --json-schema SCHEMA",
  1747. "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\n"
  1748. "For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead" });
  1749. options.push_back({ "embedding" });
  1750. options.push_back({ "embedding", " --pooling {none,mean,cls}",
  1751. "pooling type for embeddings, use model default if unspecified" });
  1752. options.push_back({ "context hacking" });
  1753. options.push_back({ "*", " --rope-scaling {none,linear,yarn}",
  1754. "RoPE frequency scaling method, defaults to linear unless specified by the model" });
  1755. options.push_back({ "*", " --rope-scale N", "RoPE context scaling factor, expands context by a factor of N" });
  1756. options.push_back({ "*", " --rope-freq-base N", "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)" });
  1757. options.push_back({ "*", " --rope-freq-scale N", "RoPE frequency scaling factor, expands context by a factor of 1/N" });
  1758. options.push_back({ "*", " --yarn-orig-ctx N", "YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx });
  1759. options.push_back({ "*", " --yarn-ext-factor N", "YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor });
  1760. options.push_back({ "*", " --yarn-attn-factor N", "YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor });
  1761. options.push_back({ "*", " --yarn-beta-slow N", "YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow });
  1762. options.push_back({ "*", " --yarn-beta-fast N", "YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast });
  1763. options.push_back({ "*", "-gan, --grp-attn-n N", "group-attention factor (default: %d)", params.grp_attn_n });
  1764. options.push_back({ "*", "-gaw, --grp-attn-w N", "group-attention width (default: %.1f)", (double)params.grp_attn_w });
  1765. options.push_back({ "*", "-dkvc, --dump-kv-cache", "verbose print of the KV cache" });
  1766. options.push_back({ "*", "-nkvo, --no-kv-offload", "disable KV offload" });
  1767. options.push_back({ "*", "-ctk, --cache-type-k TYPE", "KV cache data type for K (default: %s)", params.cache_type_k.c_str() });
  1768. options.push_back({ "*", "-ctv, --cache-type-v TYPE", "KV cache data type for V (default: %s)", params.cache_type_v.c_str() });
  1769. options.push_back({ "perplexity" });
  1770. options.push_back({ "perplexity", " --all-logits", "return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false" });
  1771. options.push_back({ "perplexity", " --hellaswag", "compute HellaSwag score over random tasks from datafile supplied with -f" });
  1772. options.push_back({ "perplexity", " --hellaswag-tasks N", "number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks });
  1773. options.push_back({ "perplexity", " --winogrande", "compute Winogrande score over random tasks from datafile supplied with -f" });
  1774. options.push_back({ "perplexity", " --winogrande-tasks N", "number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks });
  1775. options.push_back({ "perplexity", " --multiple-choice", "compute multiple choice score over random tasks from datafile supplied with -f" });
  1776. options.push_back({ "perplexity", " --multiple-choice-tasks N",
  1777. "number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks });
  1778. options.push_back({ "perplexity", " --kl-divergence", "computes KL-divergence to logits provided via --kl-divergence-base" });
  1779. options.push_back({ "perplexity", " --ppl-stride N", "stride for perplexity calculation (default: %d)", params.ppl_stride });
  1780. options.push_back({ "perplexity", " --ppl-output-type {0,1}",
  1781. "output type for perplexity calculation (default: %d)", params.ppl_output_type });
  1782. options.push_back({ "parallel" });
  1783. options.push_back({ "*", "-dt, --defrag-thold N", "KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold });
  1784. options.push_back({ "*", "-np, --parallel N", "number of parallel sequences to decode (default: %d)", params.n_parallel });
  1785. options.push_back({ "*", "-ns, --sequences N", "number of sequences to decode (default: %d)", params.n_sequences });
  1786. options.push_back({ "*", "-cb, --cont-batching", "enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled" });
  1787. options.push_back({ "multi-modality" });
  1788. options.push_back({ "*", " --mmproj FILE", "path to a multimodal projector file for LLaVA. see examples/llava/README.md" });
  1789. options.push_back({ "*", " --image FILE", "path to an image file. use with multimodal models. Specify multiple times for batching" });
  1790. options.push_back({ "backend" });
  1791. options.push_back({ "*", " --rpc SERVERS", "comma separated list of RPC servers" });
  1792. if (llama_supports_mlock()) {
  1793. options.push_back({ "*", " --mlock", "force system to keep model in RAM rather than swapping or compressing" });
  1794. }
  1795. if (llama_supports_mmap()) {
  1796. options.push_back({ "*", " --no-mmap", "do not memory-map model (slower load but may reduce pageouts if not using mlock)" });
  1797. }
  1798. options.push_back({ "*", " --numa TYPE", "attempt optimizations that help on some NUMA systems\n"
  1799. " - distribute: spread execution evenly over all nodes\n"
  1800. " - isolate: only spawn threads on CPUs on the node that execution started on\n"
  1801. " - numactl: use the CPU map provided by numactl\n"
  1802. "if run without this previously, it is recommended to drop the system page cache before using this\n"
  1803. "see https://github.com/ggerganov/llama.cpp/issues/1437" });
  1804. if (llama_supports_gpu_offload()) {
  1805. options.push_back({ "*", "-ngl, --gpu-layers N",
  1806. "number of layers to store in VRAM" });
  1807. options.push_back({ "*", "-ngld, --gpu-layers-draft N",
  1808. "number of layers to store in VRAM for the draft model" });
  1809. options.push_back({ "*", "-sm, --split-mode SPLIT_MODE",
  1810. "how to split the model across multiple GPUs, one of:\n"
  1811. " - none: use one GPU only\n"
  1812. " - layer (default): split layers and KV across GPUs\n"
  1813. " - row: split rows across GPUs" });
  1814. options.push_back({ "*", "-ts, --tensor-split SPLIT",
  1815. "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1" });
  1816. options.push_back({ "*", "-mg, --main-gpu i", "the GPU to use for the model (with split-mode = none),\n"
  1817. "or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu });
  1818. }
  1819. options.push_back({ "model" });
  1820. options.push_back({ "*", " --check-tensors", "check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false" });
  1821. options.push_back({ "*", " --override-kv KEY=TYPE:VALUE",
  1822. "advanced option to override model metadata by key. may be specified multiple times.\n"
  1823. "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false" });
  1824. options.push_back({ "*", " --lora FNAME", "apply LoRA adapter (implies --no-mmap)" });
  1825. options.push_back({ "*", " --lora-scaled FNAME S", "apply LoRA adapter with user defined scaling S (implies --no-mmap)" });
  1826. options.push_back({ "*", " --lora-base FNAME", "optional model to use as a base for the layers modified by the LoRA adapter" });
  1827. options.push_back({ "*", " --control-vector FNAME", "add a control vector" });
  1828. options.push_back({ "*", " --control-vector-scaled FNAME SCALE",
  1829. "add a control vector with user defined scaling SCALE" });
  1830. options.push_back({ "*", " --control-vector-layer-range START END",
  1831. "layer range to apply the control vector(s) to, start and end inclusive" });
  1832. options.push_back({ "*", "-m, --model FNAME", "model path (default: models/$filename with filename from --hf-file\n"
  1833. "or --model-url if set, otherwise %s)", DEFAULT_MODEL_PATH });
  1834. options.push_back({ "*", "-md, --model-draft FNAME", "draft model for speculative decoding (default: unused)" });
  1835. options.push_back({ "*", "-mu, --model-url MODEL_URL", "model download url (default: unused)" });
  1836. options.push_back({ "*", "-hfr, --hf-repo REPO", "Hugging Face model repository (default: unused)" });
  1837. options.push_back({ "*", "-hff, --hf-file FILE", "Hugging Face model file (default: unused)" });
  1838. options.push_back({ "retrieval" });
  1839. options.push_back({ "retrieval", " --context-file FNAME", "file to load context from (repeat to specify multiple files)" });
  1840. options.push_back({ "retrieval", " --chunk-size N", "minimum length of embedded text chunks (default: %d)", params.chunk_size });
  1841. options.push_back({ "retrieval", " --chunk-separator STRING",
  1842. "separator between chunks (default: '%s')", params.chunk_separator.c_str() });
  1843. options.push_back({ "passkey" });
  1844. options.push_back({ "passkey", " --junk N", "number of times to repeat the junk text (default: %d)", params.n_junk });
  1845. options.push_back({ "passkey", " --pos N", "position of the passkey in the junk text (default: %d)", params.i_pos });
  1846. options.push_back({ "imatrix" });
  1847. options.push_back({ "imatrix", "-o, --output FNAME", "output file (default: '%s')", params.out_file.c_str() });
  1848. options.push_back({ "imatrix", " --output-frequency N", "output the imatrix every N iterations (default: %d)", params.n_out_freq });
  1849. options.push_back({ "imatrix", " --save-frequency N", "save an imatrix copy every N iterations (default: %d)", params.n_save_freq });
  1850. options.push_back({ "imatrix", " --process-output", "collect data for the output tensor (default: %s)", params.process_output ? "true" : "false" });
  1851. options.push_back({ "imatrix", " --no-ppl", "do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false" });
  1852. options.push_back({ "imatrix", " --chunk N", "start processing the input from chunk N (default: %d)", params.i_chunk });
  1853. options.push_back({ "bench" });
  1854. options.push_back({ "bench", "-pps", "is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false" });
  1855. options.push_back({ "bench", "-npp n0,n1,...", "number of prompt tokens" });
  1856. options.push_back({ "bench", "-ntg n0,n1,...", "number of text generation tokens" });
  1857. options.push_back({ "bench", "-npl n0,n1,...", "number of parallel prompts" });
  1858. options.push_back({ "server" });
  1859. options.push_back({ "server", " --host HOST", "ip address to listen (default: %s)", params.hostname.c_str() });
  1860. options.push_back({ "server", " --port PORT", "port to listen (default: %d)", params.port });
  1861. options.push_back({ "server", " --path PATH", "path to serve static files from (default: %s)", params.public_path.c_str() });
  1862. options.push_back({ "server", " --embedding(s)", "enable embedding endpoint (default: %s)", params.embedding ? "enabled" : "disabled" });
  1863. options.push_back({ "server", " --api-key KEY", "API key to use for authentication (default: none)" });
  1864. options.push_back({ "server", " --api-key-file FNAME", "path to file containing API keys (default: none)" });
  1865. options.push_back({ "server", " --ssl-key-file FNAME", "path to file a PEM-encoded SSL private key" });
  1866. options.push_back({ "server", " --ssl-cert-file FNAME", "path to file a PEM-encoded SSL certificate" });
  1867. options.push_back({ "server", " --timeout N", "server read/write timeout in seconds (default: %d)", params.timeout_read });
  1868. options.push_back({ "server", " --threads-http N", "number of threads used to process HTTP requests (default: %d)", params.n_threads_http });
  1869. options.push_back({ "server", " --system-prompt-file FNAME",
  1870. "set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications" });
  1871. options.push_back({ "server", " --log-format {text,json}",
  1872. "log output format: json or text (default: json)" });
  1873. options.push_back({ "server", " --metrics", "enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled" });
  1874. options.push_back({ "server", " --no-slots", "disables slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled" });
  1875. options.push_back({ "server", " --slot-save-path PATH", "path to save slot kv cache (default: disabled)" });
  1876. options.push_back({ "server", " --chat-template JINJA_TEMPLATE",
  1877. "set custom jinja chat template (default: template taken from model's metadata)\n"
  1878. "only commonly used templates are accepted:\n"
  1879. "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" });
  1880. #ifndef LOG_DISABLE_LOGS
  1881. options.push_back({ "logging" });
  1882. options.push_back({ "*", " --simple-io", "use basic IO for better compatibility in subprocesses and limited consoles" });
  1883. options.push_back({ "*", "-ld, --logdir LOGDIR", "path under which to save YAML logs (no logging if unset)" });
  1884. options.push_back({ "logging", " --log-test", "Run simple logging test" });
  1885. options.push_back({ "logging", " --log-disable", "Disable trace logs" });
  1886. options.push_back({ "logging", " --log-enable", "Enable trace logs" });
  1887. options.push_back({ "logging", " --log-file FNAME", "Specify a log filename (without extension)" });
  1888. options.push_back({ "logging", " --log-new", "Create a separate new log file on start. "
  1889. "Each log file will have unique name: \"<name>.<ID>.log\"" });
  1890. options.push_back({ "logging", " --log-append", "Don't truncate the old log file." });
  1891. #endif // LOG_DISABLE_LOGS
  1892. printf("usage: %s [options]\n", argv[0]);
  1893. for (const auto & o : options) {
  1894. if (!o.grp.empty()) {
  1895. printf("\n%s:\n\n", o.grp.c_str());
  1896. continue;
  1897. }
  1898. printf(" %-32s", o.args.c_str());
  1899. if (o.args.length() > 30) {
  1900. printf("\n%34s", "");
  1901. }
  1902. const auto desc = o.desc;
  1903. size_t start = 0;
  1904. size_t end = desc.find('\n');
  1905. while (end != std::string::npos) {
  1906. printf("%s\n%34s", desc.substr(start, end - start).c_str(), "");
  1907. start = end + 1;
  1908. end = desc.find('\n', start);
  1909. }
  1910. printf("%s\n", desc.substr(start).c_str());
  1911. }
  1912. printf("\n");
  1913. }
  1914. std::string gpt_params_get_system_info(const gpt_params & params) {
  1915. std::ostringstream os;
  1916. os << "system_info: n_threads = " << params.n_threads;
  1917. if (params.n_threads_batch != -1) {
  1918. os << " (n_threads_batch = " << params.n_threads_batch << ")";
  1919. }
  1920. os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
  1921. return os.str();
  1922. }
  1923. //
  1924. // String utils
  1925. //
  1926. std::vector<std::string> string_split(std::string input, char separator) {
  1927. std::vector<std::string> parts;
  1928. size_t separator_pos = input.find(separator);
  1929. while (separator_pos != std::string::npos) {
  1930. std::string part = input.substr(0, separator_pos);
  1931. parts.emplace_back(part);
  1932. input = input.substr(separator_pos + 1);
  1933. separator_pos = input.find(separator);
  1934. }
  1935. parts.emplace_back(input);
  1936. return parts;
  1937. }
  1938. std::string string_strip(const std::string & str) {
  1939. size_t start = 0;
  1940. size_t end = str.size();
  1941. while (start < end && std::isspace(str[start])) {
  1942. start++;
  1943. }
  1944. while (end > start && std::isspace(str[end - 1])) {
  1945. end--;
  1946. }
  1947. return str.substr(start, end - start);
  1948. }
  1949. std::string string_get_sortable_timestamp() {
  1950. using clock = std::chrono::system_clock;
  1951. const clock::time_point current_time = clock::now();
  1952. const time_t as_time_t = clock::to_time_t(current_time);
  1953. char timestamp_no_ns[100];
  1954. std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
  1955. const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
  1956. current_time.time_since_epoch() % 1000000000).count();
  1957. char timestamp_ns[11];
  1958. snprintf(timestamp_ns, 11, "%09" PRId64, ns);
  1959. return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
  1960. }
  1961. void string_process_escapes(std::string & input) {
  1962. std::size_t input_len = input.length();
  1963. std::size_t output_idx = 0;
  1964. for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
  1965. if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
  1966. switch (input[++input_idx]) {
  1967. case 'n': input[output_idx++] = '\n'; break;
  1968. case 'r': input[output_idx++] = '\r'; break;
  1969. case 't': input[output_idx++] = '\t'; break;
  1970. case '\'': input[output_idx++] = '\''; break;
  1971. case '\"': input[output_idx++] = '\"'; break;
  1972. case '\\': input[output_idx++] = '\\'; break;
  1973. case 'x':
  1974. // Handle \x12, etc
  1975. if (input_idx + 2 < input_len) {
  1976. const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
  1977. char *err_p = nullptr;
  1978. const long val = std::strtol(x, &err_p, 16);
  1979. if (err_p == x + 2) {
  1980. input_idx += 2;
  1981. input[output_idx++] = char(val);
  1982. break;
  1983. }
  1984. }
  1985. // fall through
  1986. default: input[output_idx++] = '\\';
  1987. input[output_idx++] = input[input_idx]; break;
  1988. }
  1989. } else {
  1990. input[output_idx++] = input[input_idx];
  1991. }
  1992. }
  1993. input.resize(output_idx);
  1994. }
  1995. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
  1996. const char * sep = strchr(data, '=');
  1997. if (sep == nullptr || sep - data >= 128) {
  1998. fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
  1999. return false;
  2000. }
  2001. llama_model_kv_override kvo;
  2002. std::strncpy(kvo.key, data, sep - data);
  2003. kvo.key[sep - data] = 0;
  2004. sep++;
  2005. if (strncmp(sep, "int:", 4) == 0) {
  2006. sep += 4;
  2007. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
  2008. kvo.val_i64 = std::atol(sep);
  2009. } else if (strncmp(sep, "float:", 6) == 0) {
  2010. sep += 6;
  2011. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
  2012. kvo.val_f64 = std::atof(sep);
  2013. } else if (strncmp(sep, "bool:", 5) == 0) {
  2014. sep += 5;
  2015. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
  2016. if (std::strcmp(sep, "true") == 0) {
  2017. kvo.val_bool = true;
  2018. } else if (std::strcmp(sep, "false") == 0) {
  2019. kvo.val_bool = false;
  2020. } else {
  2021. fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
  2022. return false;
  2023. }
  2024. } else if (strncmp(sep, "str:", 4) == 0) {
  2025. sep += 4;
  2026. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
  2027. if (strlen(sep) > 127) {
  2028. fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
  2029. return false;
  2030. }
  2031. strncpy(kvo.val_str, sep, 127);
  2032. kvo.val_str[127] = '\0';
  2033. } else {
  2034. fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
  2035. return false;
  2036. }
  2037. overrides.emplace_back(std::move(kvo));
  2038. return true;
  2039. }
  2040. //
  2041. // Filesystem utils
  2042. //
  2043. // Validate if a filename is safe to use
  2044. // To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
  2045. bool fs_validate_filename(const std::string & filename) {
  2046. if (!filename.length()) {
  2047. // Empty filename invalid
  2048. return false;
  2049. }
  2050. if (filename.length() > 255) {
  2051. // Limit at common largest possible filename on Linux filesystems
  2052. // to avoid unnecessary further validation
  2053. // (On systems with smaller limits it will be caught by the OS)
  2054. return false;
  2055. }
  2056. std::u32string filename_utf32;
  2057. try {
  2058. std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
  2059. filename_utf32 = converter.from_bytes(filename);
  2060. // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
  2061. // or invalid encodings were encountered. Reject such attempts
  2062. std::string filename_reencoded = converter.to_bytes(filename_utf32);
  2063. if (filename_reencoded != filename) {
  2064. return false;
  2065. }
  2066. } catch (const std::exception &) {
  2067. return false;
  2068. }
  2069. // Check for forbidden codepoints:
  2070. // - Control characters
  2071. // - Unicode equivalents of illegal characters
  2072. // - UTF-16 surrogate pairs
  2073. // - UTF-8 replacement character
  2074. // - Byte order mark (BOM)
  2075. // - Illegal characters: / \ : * ? " < > |
  2076. for (char32_t c : filename_utf32) {
  2077. if (c <= 0x1F // Control characters (C0)
  2078. || c == 0x7F // Control characters (DEL)
  2079. || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
  2080. || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
  2081. || c == 0x2215 // Division Slash (forward slash equivalent)
  2082. || c == 0x2216 // Set Minus (backslash equivalent)
  2083. || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
  2084. || c == 0xFFFD // Replacement Character (UTF-8)
  2085. || c == 0xFEFF // Byte Order Mark (BOM)
  2086. || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
  2087. || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
  2088. return false;
  2089. }
  2090. }
  2091. // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
  2092. // Unicode and other whitespace is not affected, only 0x20 space
  2093. if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
  2094. return false;
  2095. }
  2096. // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
  2097. if (filename.find("..") != std::string::npos) {
  2098. return false;
  2099. }
  2100. // Reject "."
  2101. if (filename == ".") {
  2102. return false;
  2103. }
  2104. return true;
  2105. }
  2106. // returns true if successful, false otherwise
  2107. bool fs_create_directory_with_parents(const std::string & path) {
  2108. #ifdef _WIN32
  2109. std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
  2110. std::wstring wpath = converter.from_bytes(path);
  2111. // if the path already exists, check whether it's a directory
  2112. const DWORD attributes = GetFileAttributesW(wpath.c_str());
  2113. if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  2114. return true;
  2115. }
  2116. size_t pos_slash = 0;
  2117. // process path from front to back, procedurally creating directories
  2118. while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
  2119. const std::wstring subpath = wpath.substr(0, pos_slash);
  2120. const wchar_t * test = subpath.c_str();
  2121. const bool success = CreateDirectoryW(test, NULL);
  2122. if (!success) {
  2123. const DWORD error = GetLastError();
  2124. // if the path already exists, ensure that it's a directory
  2125. if (error == ERROR_ALREADY_EXISTS) {
  2126. const DWORD attributes = GetFileAttributesW(subpath.c_str());
  2127. if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  2128. return false;
  2129. }
  2130. } else {
  2131. return false;
  2132. }
  2133. }
  2134. pos_slash += 1;
  2135. }
  2136. return true;
  2137. #else
  2138. // if the path already exists, check whether it's a directory
  2139. struct stat info;
  2140. if (stat(path.c_str(), &info) == 0) {
  2141. return S_ISDIR(info.st_mode);
  2142. }
  2143. size_t pos_slash = 1; // skip leading slashes for directory creation
  2144. // process path from front to back, procedurally creating directories
  2145. while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
  2146. const std::string subpath = path.substr(0, pos_slash);
  2147. struct stat info;
  2148. // if the path already exists, ensure that it's a directory
  2149. if (stat(subpath.c_str(), &info) == 0) {
  2150. if (!S_ISDIR(info.st_mode)) {
  2151. return false;
  2152. }
  2153. } else {
  2154. // create parent directories
  2155. const int ret = mkdir(subpath.c_str(), 0755);
  2156. if (ret != 0) {
  2157. return false;
  2158. }
  2159. }
  2160. pos_slash += 1;
  2161. }
  2162. return true;
  2163. #endif // _WIN32
  2164. }
  2165. std::string fs_get_cache_directory() {
  2166. std::string cache_directory = "";
  2167. auto ensure_trailing_slash = [](std::string p) {
  2168. // Make sure to add trailing slash
  2169. if (p.back() != DIRECTORY_SEPARATOR) {
  2170. p += DIRECTORY_SEPARATOR;
  2171. }
  2172. return p;
  2173. };
  2174. if (getenv("LLAMA_CACHE")) {
  2175. cache_directory = std::getenv("LLAMA_CACHE");
  2176. } else {
  2177. #ifdef __linux__
  2178. if (std::getenv("XDG_CACHE_HOME")) {
  2179. cache_directory = std::getenv("XDG_CACHE_HOME");
  2180. } else {
  2181. cache_directory = std::getenv("HOME") + std::string("/.cache/");
  2182. }
  2183. #elif defined(__APPLE__)
  2184. cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
  2185. #elif defined(_WIN32)
  2186. cache_directory = std::getenv("LOCALAPPDATA");
  2187. #endif // __linux__
  2188. cache_directory = ensure_trailing_slash(cache_directory);
  2189. cache_directory += "llama.cpp";
  2190. }
  2191. return ensure_trailing_slash(cache_directory);
  2192. }
  2193. //
  2194. // Model utils
  2195. //
  2196. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
  2197. auto mparams = llama_model_params_from_gpt_params(params);
  2198. llama_model * model = nullptr;
  2199. if (!params.hf_repo.empty() && !params.hf_file.empty()) {
  2200. model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams);
  2201. } else if (!params.model_url.empty()) {
  2202. model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams);
  2203. } else {
  2204. model = llama_load_model_from_file(params.model.c_str(), mparams);
  2205. }
  2206. if (model == NULL) {
  2207. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
  2208. return std::make_tuple(nullptr, nullptr);
  2209. }
  2210. auto cparams = llama_context_params_from_gpt_params(params);
  2211. llama_context * lctx = llama_new_context_with_model(model, cparams);
  2212. if (lctx == NULL) {
  2213. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
  2214. llama_free_model(model);
  2215. return std::make_tuple(nullptr, nullptr);
  2216. }
  2217. if (!params.control_vectors.empty()) {
  2218. if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
  2219. if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
  2220. const auto cvec = llama_control_vector_load(params.control_vectors);
  2221. if (cvec.n_embd == -1) {
  2222. llama_free(lctx);
  2223. llama_free_model(model);
  2224. return std::make_tuple(nullptr, nullptr);
  2225. }
  2226. int err = llama_control_vector_apply(lctx,
  2227. cvec.data.data(),
  2228. cvec.data.size(),
  2229. cvec.n_embd,
  2230. params.control_vector_layer_start,
  2231. params.control_vector_layer_end);
  2232. if (err) {
  2233. llama_free(lctx);
  2234. llama_free_model(model);
  2235. return std::make_tuple(nullptr, nullptr);
  2236. }
  2237. }
  2238. for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
  2239. const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
  2240. float lora_scale = std::get<1>(params.lora_adapter[i]);
  2241. int err = llama_model_apply_lora_from_file(model,
  2242. lora_adapter.c_str(),
  2243. lora_scale,
  2244. ((i > 0) || params.lora_base.empty())
  2245. ? NULL
  2246. : params.lora_base.c_str(),
  2247. params.n_threads);
  2248. if (err != 0) {
  2249. fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
  2250. llama_free(lctx);
  2251. llama_free_model(model);
  2252. return std::make_tuple(nullptr, nullptr);
  2253. }
  2254. }
  2255. if (params.ignore_eos) {
  2256. params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  2257. }
  2258. if (params.warmup) {
  2259. LOG("warming up the model with an empty run\n");
  2260. std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
  2261. llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
  2262. llama_kv_cache_clear(lctx);
  2263. llama_synchronize(lctx);
  2264. llama_reset_timings(lctx);
  2265. }
  2266. return std::make_tuple(model, lctx);
  2267. }
  2268. struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
  2269. auto mparams = llama_model_default_params();
  2270. if (params.n_gpu_layers != -1) {
  2271. mparams.n_gpu_layers = params.n_gpu_layers;
  2272. }
  2273. mparams.rpc_servers = params.rpc_servers.c_str();
  2274. mparams.main_gpu = params.main_gpu;
  2275. mparams.split_mode = params.split_mode;
  2276. mparams.tensor_split = params.tensor_split;
  2277. mparams.use_mmap = params.use_mmap;
  2278. mparams.use_mlock = params.use_mlock;
  2279. mparams.check_tensors = params.check_tensors;
  2280. if (params.kv_overrides.empty()) {
  2281. mparams.kv_overrides = NULL;
  2282. } else {
  2283. GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
  2284. mparams.kv_overrides = params.kv_overrides.data();
  2285. }
  2286. return mparams;
  2287. }
  2288. static ggml_type kv_cache_type_from_str(const std::string & s) {
  2289. if (s == "f32") {
  2290. return GGML_TYPE_F32;
  2291. }
  2292. if (s == "f16") {
  2293. return GGML_TYPE_F16;
  2294. }
  2295. if (s == "q8_0") {
  2296. return GGML_TYPE_Q8_0;
  2297. }
  2298. if (s == "q4_0") {
  2299. return GGML_TYPE_Q4_0;
  2300. }
  2301. if (s == "q4_1") {
  2302. return GGML_TYPE_Q4_1;
  2303. }
  2304. if (s == "iq4_nl") {
  2305. return GGML_TYPE_IQ4_NL;
  2306. }
  2307. if (s == "q5_0") {
  2308. return GGML_TYPE_Q5_0;
  2309. }
  2310. if (s == "q5_1") {
  2311. return GGML_TYPE_Q5_1;
  2312. }
  2313. throw std::runtime_error("Invalid cache type: " + s);
  2314. }
  2315. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
  2316. auto cparams = llama_context_default_params();
  2317. cparams.n_ctx = params.n_ctx;
  2318. cparams.n_seq_max = params.n_parallel;
  2319. cparams.n_batch = params.n_batch;
  2320. cparams.n_ubatch = params.n_ubatch;
  2321. cparams.n_threads = params.n_threads;
  2322. cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
  2323. cparams.seed = params.seed;
  2324. cparams.logits_all = params.logits_all;
  2325. cparams.embeddings = params.embedding;
  2326. cparams.rope_scaling_type = params.rope_scaling_type;
  2327. cparams.rope_freq_base = params.rope_freq_base;
  2328. cparams.rope_freq_scale = params.rope_freq_scale;
  2329. cparams.yarn_ext_factor = params.yarn_ext_factor;
  2330. cparams.yarn_attn_factor = params.yarn_attn_factor;
  2331. cparams.yarn_beta_fast = params.yarn_beta_fast;
  2332. cparams.yarn_beta_slow = params.yarn_beta_slow;
  2333. cparams.yarn_orig_ctx = params.yarn_orig_ctx;
  2334. cparams.pooling_type = params.pooling_type;
  2335. cparams.defrag_thold = params.defrag_thold;
  2336. cparams.cb_eval = params.cb_eval;
  2337. cparams.cb_eval_user_data = params.cb_eval_user_data;
  2338. cparams.offload_kqv = !params.no_kv_offload;
  2339. cparams.flash_attn = params.flash_attn;
  2340. cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
  2341. cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
  2342. return cparams;
  2343. }
  2344. #ifdef LLAMA_USE_CURL
  2345. static bool starts_with(const std::string & str, const std::string & prefix) {
  2346. // While we wait for C++20's std::string::starts_with...
  2347. return str.rfind(prefix, 0) == 0;
  2348. }
  2349. static bool llama_download_file(const std::string & url, const std::string & path) {
  2350. // Initialize libcurl
  2351. std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
  2352. if (!curl) {
  2353. fprintf(stderr, "%s: error initializing libcurl\n", __func__);
  2354. return false;
  2355. }
  2356. bool force_download = false;
  2357. // Set the URL, allow to follow http redirection
  2358. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  2359. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  2360. #if defined(_WIN32)
  2361. // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
  2362. // operating system. Currently implemented under MS-Windows.
  2363. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  2364. #endif
  2365. // Check if the file already exists locally
  2366. struct stat model_file_info;
  2367. auto file_exists = (stat(path.c_str(), &model_file_info) == 0);
  2368. // If the file exists, check its JSON metadata companion file.
  2369. std::string metadata_path = path + ".json";
  2370. nlohmann::json metadata;
  2371. std::string etag;
  2372. std::string last_modified;
  2373. if (file_exists) {
  2374. // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
  2375. std::ifstream metadata_in(metadata_path);
  2376. if (metadata_in.good()) {
  2377. try {
  2378. metadata_in >> metadata;
  2379. fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
  2380. if (metadata.contains("url") && metadata.at("url").is_string()) {
  2381. auto previous_url = metadata.at("url").get<std::string>();
  2382. if (previous_url != url) {
  2383. fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
  2384. return false;
  2385. }
  2386. }
  2387. if (metadata.contains("etag") && metadata.at("etag").is_string()) {
  2388. etag = metadata.at("etag");
  2389. }
  2390. if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
  2391. last_modified = metadata.at("lastModified");
  2392. }
  2393. } catch (const nlohmann::json::exception & e) {
  2394. fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
  2395. return false;
  2396. }
  2397. }
  2398. } else {
  2399. fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str());
  2400. }
  2401. // Send a HEAD request to retrieve the etag and last-modified headers
  2402. struct llama_load_model_from_url_headers {
  2403. std::string etag;
  2404. std::string last_modified;
  2405. };
  2406. llama_load_model_from_url_headers headers;
  2407. {
  2408. typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
  2409. auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
  2410. llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
  2411. static std::regex header_regex("([^:]+): (.*)\r\n");
  2412. static std::regex etag_regex("ETag", std::regex_constants::icase);
  2413. static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
  2414. std::string header(buffer, n_items);
  2415. std::smatch match;
  2416. if (std::regex_match(header, match, header_regex)) {
  2417. const std::string & key = match[1];
  2418. const std::string & value = match[2];
  2419. if (std::regex_match(key, match, etag_regex)) {
  2420. headers->etag = value;
  2421. } else if (std::regex_match(key, match, last_modified_regex)) {
  2422. headers->last_modified = value;
  2423. }
  2424. }
  2425. return n_items;
  2426. };
  2427. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
  2428. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
  2429. curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
  2430. curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
  2431. CURLcode res = curl_easy_perform(curl.get());
  2432. if (res != CURLE_OK) {
  2433. fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
  2434. return false;
  2435. }
  2436. long http_code = 0;
  2437. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  2438. if (http_code != 200) {
  2439. // HEAD not supported, we don't know if the file has changed
  2440. // force trigger downloading
  2441. force_download = true;
  2442. fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
  2443. }
  2444. }
  2445. bool should_download = !file_exists || force_download;
  2446. if (!should_download) {
  2447. if (!etag.empty() && etag != headers.etag) {
  2448. fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
  2449. should_download = true;
  2450. } else if (!last_modified.empty() && last_modified != headers.last_modified) {
  2451. fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
  2452. should_download = true;
  2453. }
  2454. }
  2455. if (should_download) {
  2456. std::string path_temporary = path + ".downloadInProgress";
  2457. if (file_exists) {
  2458. fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
  2459. if (remove(path.c_str()) != 0) {
  2460. fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str());
  2461. return false;
  2462. }
  2463. }
  2464. // Set the output file
  2465. std::unique_ptr<FILE, decltype(&fclose)> outfile(fopen(path_temporary.c_str(), "wb"), fclose);
  2466. if (!outfile) {
  2467. fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str());
  2468. return false;
  2469. }
  2470. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
  2471. auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
  2472. return fwrite(data, size, nmemb, (FILE *)fd);
  2473. };
  2474. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
  2475. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  2476. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
  2477. // display download progress
  2478. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
  2479. // helper function to hide password in URL
  2480. auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
  2481. std::size_t protocol_pos = url.find("://");
  2482. if (protocol_pos == std::string::npos) {
  2483. return url; // Malformed URL
  2484. }
  2485. std::size_t at_pos = url.find('@', protocol_pos + 3);
  2486. if (at_pos == std::string::npos) {
  2487. return url; // No password in URL
  2488. }
  2489. return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
  2490. };
  2491. // start the download
  2492. fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
  2493. llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
  2494. auto res = curl_easy_perform(curl.get());
  2495. if (res != CURLE_OK) {
  2496. fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
  2497. return false;
  2498. }
  2499. long http_code = 0;
  2500. curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  2501. if (http_code < 200 || http_code >= 400) {
  2502. fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
  2503. return false;
  2504. }
  2505. // Causes file to be closed explicitly here before we rename it.
  2506. outfile.reset();
  2507. // Write the updated JSON metadata file.
  2508. metadata.update({
  2509. {"url", url},
  2510. {"etag", headers.etag},
  2511. {"lastModified", headers.last_modified}
  2512. });
  2513. std::ofstream(metadata_path) << metadata.dump(4);
  2514. fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
  2515. if (rename(path_temporary.c_str(), path.c_str()) != 0) {
  2516. fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
  2517. return false;
  2518. }
  2519. }
  2520. return true;
  2521. }
  2522. struct llama_model * llama_load_model_from_url(
  2523. const char * model_url,
  2524. const char * path_model,
  2525. const struct llama_model_params & params) {
  2526. // Basic validation of the model_url
  2527. if (!model_url || strlen(model_url) == 0) {
  2528. fprintf(stderr, "%s: invalid model_url\n", __func__);
  2529. return NULL;
  2530. }
  2531. if (!llama_download_file(model_url, path_model)) {
  2532. return NULL;
  2533. }
  2534. // check for additional GGUFs split to download
  2535. int n_split = 0;
  2536. {
  2537. struct gguf_init_params gguf_params = {
  2538. /*.no_alloc = */ true,
  2539. /*.ctx = */ NULL,
  2540. };
  2541. auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
  2542. if (!ctx_gguf) {
  2543. fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model);
  2544. return NULL;
  2545. }
  2546. auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
  2547. if (key_n_split >= 0) {
  2548. n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
  2549. }
  2550. gguf_free(ctx_gguf);
  2551. }
  2552. if (n_split > 1) {
  2553. char split_prefix[PATH_MAX] = {0};
  2554. char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  2555. // Verify the first split file format
  2556. // and extract split URL and PATH prefixes
  2557. {
  2558. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
  2559. fprintf(stderr, "\n%s: unexpected model file name: %s"
  2560. " n_split=%d\n", __func__, path_model, n_split);
  2561. return NULL;
  2562. }
  2563. if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
  2564. fprintf(stderr, "\n%s: unexpected model url: %s"
  2565. " n_split=%d\n", __func__, model_url, n_split);
  2566. return NULL;
  2567. }
  2568. }
  2569. // Prepare download in parallel
  2570. std::vector<std::future<bool>> futures_download;
  2571. for (int idx = 1; idx < n_split; idx++) {
  2572. futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split](int download_idx) -> bool {
  2573. char split_path[PATH_MAX] = {0};
  2574. llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
  2575. char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  2576. llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
  2577. return llama_download_file(split_url, split_path);
  2578. }, idx));
  2579. }
  2580. // Wait for all downloads to complete
  2581. for (auto & f : futures_download) {
  2582. if (!f.get()) {
  2583. return NULL;
  2584. }
  2585. }
  2586. }
  2587. return llama_load_model_from_file(path_model, params);
  2588. }
  2589. struct llama_model * llama_load_model_from_hf(
  2590. const char * repo,
  2591. const char * model,
  2592. const char * path_model,
  2593. const struct llama_model_params & params) {
  2594. // construct hugging face model url:
  2595. //
  2596. // --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
  2597. // https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
  2598. //
  2599. // --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
  2600. // https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
  2601. //
  2602. std::string model_url = "https://huggingface.co/";
  2603. model_url += repo;
  2604. model_url += "/resolve/main/";
  2605. model_url += model;
  2606. return llama_load_model_from_url(model_url.c_str(), path_model, params);
  2607. }
  2608. #else
  2609. struct llama_model * llama_load_model_from_url(
  2610. const char * /*model_url*/,
  2611. const char * /*path_model*/,
  2612. const struct llama_model_params & /*params*/) {
  2613. fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
  2614. return nullptr;
  2615. }
  2616. struct llama_model * llama_load_model_from_hf(
  2617. const char * /*repo*/,
  2618. const char * /*model*/,
  2619. const char * /*path_model*/,
  2620. const struct llama_model_params & /*params*/) {
  2621. fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
  2622. return nullptr;
  2623. }
  2624. #endif // LLAMA_USE_CURL
  2625. //
  2626. // Batch utils
  2627. //
  2628. void llama_batch_clear(struct llama_batch & batch) {
  2629. batch.n_tokens = 0;
  2630. }
  2631. void llama_batch_add(
  2632. struct llama_batch & batch,
  2633. llama_token id,
  2634. llama_pos pos,
  2635. const std::vector<llama_seq_id> & seq_ids,
  2636. bool logits) {
  2637. batch.token [batch.n_tokens] = id;
  2638. batch.pos [batch.n_tokens] = pos;
  2639. batch.n_seq_id[batch.n_tokens] = seq_ids.size();
  2640. for (size_t i = 0; i < seq_ids.size(); ++i) {
  2641. batch.seq_id[batch.n_tokens][i] = seq_ids[i];
  2642. }
  2643. batch.logits [batch.n_tokens] = logits;
  2644. batch.n_tokens++;
  2645. }
  2646. //
  2647. // Vocab utils
  2648. //
  2649. std::vector<llama_token> llama_tokenize(
  2650. const struct llama_context * ctx,
  2651. const std::string & text,
  2652. bool add_special,
  2653. bool parse_special) {
  2654. return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
  2655. }
  2656. std::vector<llama_token> llama_tokenize(
  2657. const struct llama_model * model,
  2658. const std::string & text,
  2659. bool add_special,
  2660. bool parse_special) {
  2661. // upper limit for the number of tokens
  2662. int n_tokens = text.length() + 2 * add_special;
  2663. std::vector<llama_token> result(n_tokens);
  2664. n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
  2665. if (n_tokens < 0) {
  2666. result.resize(-n_tokens);
  2667. int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
  2668. GGML_ASSERT(check == -n_tokens);
  2669. } else {
  2670. result.resize(n_tokens);
  2671. }
  2672. return result;
  2673. }
  2674. std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  2675. std::vector<char> result(8, 0);
  2676. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  2677. if (n_tokens < 0) {
  2678. result.resize(-n_tokens);
  2679. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  2680. GGML_ASSERT(check == -n_tokens);
  2681. } else {
  2682. result.resize(n_tokens);
  2683. }
  2684. return std::string(result.data(), result.size());
  2685. }
  2686. std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
  2687. const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
  2688. std::string piece;
  2689. std::string result;
  2690. for (size_t i = 0; i < tokens.size(); ++i) {
  2691. piece = llama_token_to_piece(ctx, tokens[i]);
  2692. // remove the leading space of the first non-BOS token
  2693. if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
  2694. piece = piece.substr(1);
  2695. }
  2696. result += piece;
  2697. }
  2698. return result;
  2699. }
  2700. std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
  2701. std::string piece;
  2702. std::string result;
  2703. for (size_t i = 0; i < tokens.size(); ++i) {
  2704. piece = llama_token_to_piece(ctx, tokens[i]);
  2705. result += piece;
  2706. }
  2707. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  2708. return result;
  2709. }
  2710. bool llama_should_add_bos_token(const llama_model * model) {
  2711. const int add_bos = llama_add_bos_token(model);
  2712. return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
  2713. }
  2714. bool llama_chat_verify_template(const std::string & tmpl) {
  2715. llama_chat_message chat[] = {{"user", "test"}};
  2716. int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
  2717. return res >= 0;
  2718. }
  2719. //
  2720. // KV cache utils
  2721. //
  2722. void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
  2723. static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
  2724. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
  2725. view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  2726. llama_kv_cache_view_cell * c_curr = view.cells;
  2727. llama_seq_id * cs_curr = view.cells_sequences;
  2728. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  2729. if (i % row_size == 0) {
  2730. printf("\n%5d: ", i);
  2731. }
  2732. int seq_count = 0;
  2733. for (int j = 0; j < view.n_seq_max; j++) {
  2734. if (cs_curr[j] >= 0) { seq_count++; }
  2735. }
  2736. putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
  2737. }
  2738. printf("\n=== Done dumping\n");
  2739. }
  2740. void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
  2741. static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  2742. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
  2743. view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  2744. std::unordered_map<llama_seq_id, size_t> seqs;
  2745. llama_kv_cache_view_cell * c_curr = view.cells;
  2746. llama_seq_id * cs_curr = view.cells_sequences;
  2747. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  2748. for (int j = 0; j < view.n_seq_max; j++) {
  2749. if (cs_curr[j] < 0) { continue; }
  2750. if (seqs.find(cs_curr[j]) == seqs.end()) {
  2751. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  2752. const size_t sz = seqs.size();
  2753. seqs[cs_curr[j]] = sz;
  2754. }
  2755. }
  2756. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  2757. }
  2758. printf("=== Sequence legend: ");
  2759. for (const auto & it : seqs) {
  2760. printf("%zu=%d, ", it.second, it.first);
  2761. }
  2762. printf("'+'=other sequence ids");
  2763. c_curr = view.cells;
  2764. cs_curr = view.cells_sequences;
  2765. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  2766. if (i % row_size == 0) {
  2767. printf("\n%5d: ", i);
  2768. }
  2769. for (int j = 0; j < view.n_seq_max; j++) {
  2770. if (cs_curr[j] >= 0) {
  2771. const auto & it = seqs.find(cs_curr[j]);
  2772. putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
  2773. } else {
  2774. putchar('.');
  2775. }
  2776. }
  2777. putchar(' ');
  2778. }
  2779. printf("\n=== Done dumping\n");
  2780. }
  2781. //
  2782. // Embedding utils
  2783. //
  2784. void llama_embd_normalize(const float * inp, float * out, int n) {
  2785. double sum = 0.0;
  2786. for (int i = 0; i < n; i++) {
  2787. sum += inp[i] * inp[i];
  2788. }
  2789. sum = sqrt(sum);
  2790. const float norm = sum > 0.0 ? 1.0f / sum : 0.0f;
  2791. for (int i = 0; i < n; i++) {
  2792. out[i] = inp[i] * norm;
  2793. }
  2794. }
  2795. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
  2796. double sum = 0.0;
  2797. double sum1 = 0.0;
  2798. double sum2 = 0.0;
  2799. for (int i = 0; i < n; i++) {
  2800. sum += embd1[i] * embd2[i];
  2801. sum1 += embd1[i] * embd1[i];
  2802. sum2 += embd2[i] * embd2[i];
  2803. }
  2804. return sum / (sqrt(sum1) * sqrt(sum2));
  2805. }
  2806. //
  2807. // Control vector utils
  2808. //
  2809. static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
  2810. int32_t n_tensors;
  2811. size_t n_bytes = 0;
  2812. uint32_t max_direction_layer = 0;
  2813. llama_control_vector_data result = { -1, {} };
  2814. // calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
  2815. {
  2816. struct ggml_init_params meta_params = {
  2817. /* .mem_size = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(),
  2818. /* .mem_buffer = */ nullptr,
  2819. /* .no_alloc = */ true,
  2820. };
  2821. ggml_context * meta_ctx = ggml_init(meta_params);
  2822. struct gguf_init_params meta_gguf_params = {
  2823. /* .no_alloc = */ true,
  2824. /* .ctx = */ &meta_ctx,
  2825. };
  2826. struct gguf_context * meta_ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
  2827. if (!meta_ctx_gguf) {
  2828. fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
  2829. ggml_free(meta_ctx);
  2830. return result;
  2831. }
  2832. n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
  2833. for (int i = 0; i < n_tensors; i++) {
  2834. std::string name = gguf_get_tensor_name(meta_ctx_gguf, i);
  2835. // split on '.'
  2836. size_t dotpos = name.find('.');
  2837. if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
  2838. try {
  2839. uint32_t layer = std::stoi(name.substr(dotpos + 1));
  2840. if (layer == 0) {
  2841. fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
  2842. ggml_free(meta_ctx);
  2843. gguf_free(meta_ctx_gguf);
  2844. return result;
  2845. }
  2846. if (layer > max_direction_layer) {
  2847. max_direction_layer = layer;
  2848. }
  2849. } catch (...) {
  2850. fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
  2851. ggml_free(meta_ctx);
  2852. gguf_free(meta_ctx_gguf);
  2853. return result;
  2854. }
  2855. }
  2856. struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
  2857. if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
  2858. fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
  2859. ggml_free(meta_ctx);
  2860. gguf_free(meta_ctx_gguf);
  2861. return result;
  2862. }
  2863. if (result.n_embd == -1) {
  2864. result.n_embd = ggml_nelements(tensor_meta);
  2865. } else if (ggml_nelements(tensor_meta) != result.n_embd) {
  2866. fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, load_info.fname.c_str());
  2867. ggml_free(meta_ctx);
  2868. gguf_free(meta_ctx_gguf);
  2869. return result;
  2870. }
  2871. n_bytes += ggml_nbytes(tensor_meta);
  2872. }
  2873. ggml_free(meta_ctx);
  2874. gguf_free(meta_ctx_gguf);
  2875. }
  2876. if (n_tensors == 0) {
  2877. fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
  2878. return result;
  2879. }
  2880. // load and scale tensors into final control vector context
  2881. struct ggml_init_params ggml_params = {
  2882. /* .mem_size = */ ggml_tensor_overhead() * n_tensors + n_bytes,
  2883. /* .mem_buffer = */ nullptr,
  2884. /* .no_alloc = */ false,
  2885. };
  2886. struct ggml_context * ctx = ggml_init(ggml_params);
  2887. struct gguf_init_params params = {
  2888. /*.no_alloc = */ false,
  2889. /*.ctx = */ &ctx,
  2890. };
  2891. struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), params);
  2892. if (!ctx_gguf) {
  2893. fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
  2894. ggml_free(ctx);
  2895. return result;
  2896. }
  2897. // do not store data for layer 0 (it's not used)
  2898. result.data.resize(result.n_embd * max_direction_layer);
  2899. for (uint32_t il = 1; il <= max_direction_layer; il++) {
  2900. const std::string name = "direction." + std::to_string(il);
  2901. const ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
  2902. float * dst = result.data.data() + result.n_embd * (il - 1);
  2903. if (tensor) {
  2904. const float * src = (const float *) tensor->data;
  2905. for (int j = 0; j < result.n_embd; j++) {
  2906. dst[j] = src[j] * load_info.strength;
  2907. }
  2908. } else {
  2909. for (int j = 0; j < result.n_embd; j++) {
  2910. dst[j] = 0.0f;
  2911. }
  2912. }
  2913. }
  2914. return result;
  2915. }
  2916. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
  2917. llama_control_vector_data result = { -1, {} };
  2918. for (const auto & info : load_infos) {
  2919. auto cur = llama_control_vector_load_one(info);
  2920. if (cur.n_embd == -1) {
  2921. return result;
  2922. }
  2923. if (result.n_embd != -1 && (result.n_embd != cur.n_embd || result.data.size() != cur.data.size())) {
  2924. fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, info.fname.c_str());
  2925. return result;
  2926. }
  2927. if (result.n_embd == -1) {
  2928. result = std::move(cur);
  2929. } else {
  2930. for (size_t i = 0; i < cur.data.size(); i++) {
  2931. result.data[i] += cur.data[i];
  2932. }
  2933. }
  2934. }
  2935. if (result.n_embd == -1) {
  2936. fprintf(stderr, "%s: no vectors passed\n", __func__);
  2937. }
  2938. return result;
  2939. }
  2940. //
  2941. // YAML utils
  2942. //
  2943. void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector<float> & data) {
  2944. if (data.empty()) {
  2945. fprintf(stream, "%s:\n", prop_name);
  2946. return;
  2947. }
  2948. fprintf(stream, "%s: [", prop_name);
  2949. for (size_t i = 0; i < data.size() - 1; ++i) {
  2950. fprintf(stream, "%e, ", data[i]);
  2951. }
  2952. fprintf(stream, "%e]\n", data.back());
  2953. }
  2954. void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector<int> & data) {
  2955. if (data.empty()) {
  2956. fprintf(stream, "%s:\n", prop_name);
  2957. return;
  2958. }
  2959. fprintf(stream, "%s: [", prop_name);
  2960. for (size_t i = 0; i < data.size() - 1; ++i) {
  2961. fprintf(stream, "%d, ", data[i]);
  2962. }
  2963. fprintf(stream, "%d]\n", data.back());
  2964. }
  2965. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) {
  2966. std::string data_str(data == NULL ? "" : data);
  2967. if (data_str.empty()) {
  2968. fprintf(stream, "%s:\n", prop_name);
  2969. return;
  2970. }
  2971. size_t pos_start = 0;
  2972. size_t pos_found = 0;
  2973. if (std::isspace(data_str[0]) || std::isspace(data_str.back())) {
  2974. data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
  2975. data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
  2976. data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
  2977. data_str = "\"" + data_str + "\"";
  2978. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  2979. return;
  2980. }
  2981. if (data_str.find('\n') == std::string::npos) {
  2982. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  2983. return;
  2984. }
  2985. fprintf(stream, "%s: |\n", prop_name);
  2986. while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
  2987. fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
  2988. pos_start = pos_found + 1;
  2989. }
  2990. }
  2991. void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
  2992. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
  2993. const llama_sampling_params & sparams = params.sparams;
  2994. fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
  2995. fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
  2996. fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
  2997. fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
  2998. fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
  2999. fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
  3000. fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
  3001. fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
  3002. fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
  3003. fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
  3004. fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
  3005. fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
  3006. fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
  3007. fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
  3008. fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
  3009. fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
  3010. fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
  3011. fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
  3012. fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
  3013. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  3014. fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
  3015. fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
  3016. fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
  3017. #ifdef NDEBUG
  3018. fprintf(stream, "debug: false\n");
  3019. #else
  3020. fprintf(stream, "debug: true\n");
  3021. #endif // NDEBUG
  3022. fprintf(stream, "model_desc: %s\n", model_desc);
  3023. fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
  3024. #ifdef __OPTIMIZE__
  3025. fprintf(stream, "optimize: true\n");
  3026. #else
  3027. fprintf(stream, "optimize: false\n");
  3028. #endif // __OPTIMIZE__
  3029. fprintf(stream, "time: %s\n", timestamp.c_str());
  3030. fprintf(stream, "\n");
  3031. fprintf(stream, "###############\n");
  3032. fprintf(stream, "# User Inputs #\n");
  3033. fprintf(stream, "###############\n");
  3034. fprintf(stream, "\n");
  3035. fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
  3036. fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
  3037. yaml_dump_string_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
  3038. fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
  3039. fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
  3040. fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
  3041. fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
  3042. fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
  3043. fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
  3044. fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
  3045. yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str());
  3046. fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
  3047. fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
  3048. fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
  3049. const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
  3050. const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
  3051. fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
  3052. yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str());
  3053. fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
  3054. yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str());
  3055. fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
  3056. fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
  3057. fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
  3058. fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
  3059. fprintf(stream, "logit_bias:\n");
  3060. for (std::pair<llama_token, float> lb : sparams.logit_bias) {
  3061. if (ignore_eos && lb.first == logit_bias_eos->first) {
  3062. continue;
  3063. }
  3064. fprintf(stream, " %d: %f", lb.first, lb.second);
  3065. }
  3066. fprintf(stream, "lora:\n");
  3067. for (std::tuple<std::string, float> la : params.lora_adapter) {
  3068. if (std::get<1>(la) != 1.0f) {
  3069. continue;
  3070. }
  3071. fprintf(stream, " - %s\n", std::get<0>(la).c_str());
  3072. }
  3073. fprintf(stream, "lora_scaled:\n");
  3074. for (std::tuple<std::string, float> la : params.lora_adapter) {
  3075. if (std::get<1>(la) == 1.0f) {
  3076. continue;
  3077. }
  3078. fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
  3079. }
  3080. fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
  3081. fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
  3082. fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
  3083. fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
  3084. fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
  3085. fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
  3086. fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
  3087. fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
  3088. fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
  3089. fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
  3090. fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
  3091. fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
  3092. fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
  3093. fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
  3094. fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
  3095. fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
  3096. fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
  3097. fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
  3098. yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str());
  3099. fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
  3100. fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
  3101. fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
  3102. yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens);
  3103. fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
  3104. fprintf(stream, "reverse_prompt:\n");
  3105. for (std::string ap : params.antiprompt) {
  3106. size_t pos = 0;
  3107. while ((pos = ap.find('\n', pos)) != std::string::npos) {
  3108. ap.replace(pos, 1, "\\n");
  3109. pos += 1;
  3110. }
  3111. fprintf(stream, " - %s\n", ap.c_str());
  3112. }
  3113. fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
  3114. fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
  3115. fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
  3116. fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
  3117. fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
  3118. fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
  3119. fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
  3120. const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
  3121. yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
  3122. fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
  3123. fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
  3124. fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
  3125. fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
  3126. fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
  3127. fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
  3128. fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
  3129. fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
  3130. }