sampling.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477
  1. /**
  2. * llama.cpp - git ee459f40f65810a810151b24eba5b8bd174ceffe - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define LLAMA_API_INTERNAL
  27. #include "sampling.h"
  28. #include <random>
  29. struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
  30. struct llama_sampling_context * result = new llama_sampling_context();
  31. result->params = params;
  32. result->grammar = nullptr;
  33. // if there is a grammar, parse it
  34. if (!params.grammar.empty()) {
  35. result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
  36. // will be empty (default) if there are parse errors
  37. if (result->parsed_grammar.rules.empty()) {
  38. fprintf(stderr, "%s: failed to parse grammar\n", __func__);
  39. delete result;
  40. return nullptr;
  41. }
  42. // Ensure that there is a "root" node.
  43. if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
  44. fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
  45. delete result;
  46. return nullptr;
  47. }
  48. std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
  49. result->grammar = llama_grammar_init(
  50. grammar_rules.data(),
  51. grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
  52. }
  53. result->prev.resize(params.n_prev);
  54. result->n_valid = 0;
  55. llama_sampling_set_rng_seed(result, params.seed);
  56. return result;
  57. }
  58. void llama_sampling_free(struct llama_sampling_context * ctx) {
  59. if (ctx->grammar != NULL) {
  60. llama_grammar_free(ctx->grammar);
  61. }
  62. delete ctx;
  63. }
  64. void llama_sampling_reset(llama_sampling_context * ctx) {
  65. if (ctx->grammar != NULL) {
  66. llama_grammar_free(ctx->grammar);
  67. ctx->grammar = NULL;
  68. }
  69. if (!ctx->parsed_grammar.rules.empty()) {
  70. std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
  71. ctx->grammar = llama_grammar_init(
  72. grammar_rules.data(),
  73. grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
  74. }
  75. std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
  76. ctx->cur.clear();
  77. ctx->n_valid = 0;
  78. }
  79. void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
  80. if (seed == LLAMA_DEFAULT_SEED) {
  81. seed = std::random_device{}();
  82. }
  83. ctx->rng.seed(seed);
  84. }
  85. void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
  86. if (dst->grammar) {
  87. llama_grammar_free(dst->grammar);
  88. dst->grammar = nullptr;
  89. }
  90. if (src->grammar) {
  91. dst->grammar = llama_grammar_copy(src->grammar);
  92. }
  93. dst->prev = src->prev;
  94. }
  95. llama_token llama_sampling_last(llama_sampling_context * ctx) {
  96. return ctx->prev.back();
  97. }
  98. std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
  99. const int size = ctx_sampling->prev.size();
  100. n = std::min(n, size);
  101. std::string result;
  102. for (int i = size - n; i < size; i++) {
  103. result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
  104. }
  105. return result;
  106. }
  107. std::string llama_sampling_print(const llama_sampling_params & params) {
  108. char result[1024];
  109. snprintf(result, sizeof(result),
  110. "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
  111. "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
  112. "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
  113. params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
  114. params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
  115. params.mirostat, params.mirostat_eta, params.mirostat_tau);
  116. return std::string(result);
  117. }
  118. std::string llama_sampling_order_print(const llama_sampling_params & params) {
  119. std::string result = "CFG -> Penalties ";
  120. if (params.mirostat == 0) {
  121. for (auto sampler_type : params.samplers_sequence) {
  122. const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
  123. if (!sampler_type_name.empty()) {
  124. result += "-> " + sampler_type_name + " ";
  125. }
  126. }
  127. } else {
  128. result += "-> mirostat ";
  129. }
  130. return result;
  131. }
  132. std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
  133. switch (sampler_type) {
  134. case llama_sampler_type::TOP_K: return "top_k";
  135. case llama_sampler_type::TFS_Z: return "tfs_z";
  136. case llama_sampler_type::TYPICAL_P: return "typical_p";
  137. case llama_sampler_type::TOP_P: return "top_p";
  138. case llama_sampler_type::MIN_P: return "min_p";
  139. case llama_sampler_type::TEMPERATURE: return "temperature";
  140. default : return "";
  141. }
  142. }
  143. std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
  144. std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
  145. {"top_k", llama_sampler_type::TOP_K},
  146. {"top_p", llama_sampler_type::TOP_P},
  147. {"typical_p", llama_sampler_type::TYPICAL_P},
  148. {"min_p", llama_sampler_type::MIN_P},
  149. {"tfs_z", llama_sampler_type::TFS_Z},
  150. {"temperature", llama_sampler_type::TEMPERATURE}
  151. };
  152. // since samplers names are written multiple ways
  153. // make it ready for both system names and input names
  154. std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
  155. {"top-k", llama_sampler_type::TOP_K},
  156. {"top-p", llama_sampler_type::TOP_P},
  157. {"nucleus", llama_sampler_type::TOP_P},
  158. {"typical-p", llama_sampler_type::TYPICAL_P},
  159. {"typical", llama_sampler_type::TYPICAL_P},
  160. {"min-p", llama_sampler_type::MIN_P},
  161. {"tfs-z", llama_sampler_type::TFS_Z},
  162. {"tfs", llama_sampler_type::TFS_Z},
  163. {"temp", llama_sampler_type::TEMPERATURE}
  164. };
  165. std::vector<llama_sampler_type> sampler_types;
  166. sampler_types.reserve(names.size());
  167. for (const auto & name : names)
  168. {
  169. auto sampler_item = sampler_canonical_name_map.find(name);
  170. if (sampler_item != sampler_canonical_name_map.end())
  171. {
  172. sampler_types.push_back(sampler_item->second);
  173. }
  174. else
  175. {
  176. if (allow_alt_names)
  177. {
  178. sampler_item = sampler_alt_name_map.find(name);
  179. if (sampler_item != sampler_alt_name_map.end())
  180. {
  181. sampler_types.push_back(sampler_item->second);
  182. }
  183. }
  184. }
  185. }
  186. return sampler_types;
  187. }
  188. std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
  189. std::unordered_map<char, llama_sampler_type> sampler_name_map {
  190. {'k', llama_sampler_type::TOP_K},
  191. {'p', llama_sampler_type::TOP_P},
  192. {'y', llama_sampler_type::TYPICAL_P},
  193. {'m', llama_sampler_type::MIN_P},
  194. {'f', llama_sampler_type::TFS_Z},
  195. {'t', llama_sampler_type::TEMPERATURE}
  196. };
  197. std::vector<llama_sampler_type> sampler_types;
  198. sampler_types.reserve(names_string.size());
  199. for (const auto & c : names_string) {
  200. const auto sampler_item = sampler_name_map.find(c);
  201. if (sampler_item != sampler_name_map.end()) {
  202. sampler_types.push_back(sampler_item->second);
  203. }
  204. }
  205. return sampler_types;
  206. }
  207. // no reasons to expose this function in header
  208. static void sampler_queue(
  209. struct llama_context * ctx_main,
  210. const llama_sampling_params & params,
  211. llama_token_data_array & cur_p,
  212. size_t min_keep) {
  213. const float temp = params.temp;
  214. const float dynatemp_range = params.dynatemp_range;
  215. const float dynatemp_exponent = params.dynatemp_exponent;
  216. const int32_t top_k = params.top_k;
  217. const float top_p = params.top_p;
  218. const float min_p = params.min_p;
  219. const float tfs_z = params.tfs_z;
  220. const float typical_p = params.typical_p;
  221. const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
  222. for (auto sampler_type : samplers_sequence) {
  223. switch (sampler_type) {
  224. case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
  225. case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
  226. case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
  227. case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
  228. case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
  229. case llama_sampler_type::TEMPERATURE:
  230. if (dynatemp_range > 0) {
  231. float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
  232. float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
  233. llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
  234. } else {
  235. llama_sample_temp(ctx_main, &cur_p, temp);
  236. }
  237. break;
  238. default : break;
  239. }
  240. }
  241. }
  242. static llama_token llama_sampling_sample_impl(
  243. struct llama_sampling_context * ctx_sampling,
  244. struct llama_context * ctx_main,
  245. struct llama_context * ctx_cfg,
  246. const int idx,
  247. bool is_resampling) {
  248. const llama_sampling_params & params = ctx_sampling->params;
  249. const float temp = params.temp;
  250. const int mirostat = params.mirostat;
  251. const float mirostat_tau = params.mirostat_tau;
  252. const float mirostat_eta = params.mirostat_eta;
  253. std::vector<float> original_logits;
  254. auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
  255. if (ctx_sampling->grammar != NULL && !is_resampling) {
  256. GGML_ASSERT(!original_logits.empty());
  257. }
  258. llama_token id = 0;
  259. // Get a pointer to the logits
  260. float * logits = llama_get_logits_ith(ctx_main, idx);
  261. if (temp < 0.0) {
  262. // greedy sampling, with probs
  263. llama_sample_softmax(ctx_main, &cur_p);
  264. id = cur_p.data[0].id;
  265. } else if (temp == 0.0) {
  266. // greedy sampling, no probs
  267. id = llama_sample_token_greedy(ctx_main, &cur_p);
  268. } else {
  269. if (mirostat == 1) {
  270. const int mirostat_m = 100;
  271. llama_sample_temp(ctx_main, &cur_p, temp);
  272. id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
  273. } else if (mirostat == 2) {
  274. llama_sample_temp(ctx_main, &cur_p, temp);
  275. id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
  276. } else {
  277. // temperature sampling
  278. size_t min_keep = std::max(1, params.min_keep);
  279. sampler_queue(ctx_main, params, cur_p, min_keep);
  280. id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
  281. //{
  282. // const int n_top = 10;
  283. // LOG("top %d candidates:\n", n_top);
  284. // for (int i = 0; i < n_top; i++) {
  285. // const llama_token id = cur_p.data[i].id;
  286. // (void)id; // To avoid a warning that id is unused when logging is disabled.
  287. // LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
  288. // }
  289. //}
  290. //LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
  291. }
  292. }
  293. if (ctx_sampling->grammar != NULL && !is_resampling) {
  294. // Create an array with a single token data element for the sampled id
  295. llama_token_data single_token_data = {id, logits[id], 0.0f};
  296. llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
  297. // Apply grammar constraints to the single token
  298. llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
  299. // Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
  300. bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
  301. // If the token is not valid according to the grammar, perform resampling
  302. if (!is_valid) {
  303. LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
  304. // Restore logits from the copy
  305. std::copy(original_logits.begin(), original_logits.end(), logits);
  306. return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true);
  307. }
  308. }
  309. ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size;
  310. return id;
  311. }
  312. static llama_token_data_array llama_sampling_prepare_impl(
  313. struct llama_sampling_context * ctx_sampling,
  314. struct llama_context * ctx_main,
  315. struct llama_context * ctx_cfg,
  316. const int idx,
  317. bool apply_grammar,
  318. std::vector<float> * original_logits) {
  319. const llama_sampling_params & params = ctx_sampling->params;
  320. const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
  321. const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
  322. const float penalty_repeat = params.penalty_repeat;
  323. const float penalty_freq = params.penalty_freq;
  324. const float penalty_present = params.penalty_present;
  325. const bool penalize_nl = params.penalize_nl;
  326. auto & prev = ctx_sampling->prev;
  327. auto & cur = ctx_sampling->cur;
  328. // Get a pointer to the logits
  329. float * logits = llama_get_logits_ith(ctx_main, idx);
  330. if (ctx_sampling->grammar != NULL && !apply_grammar) {
  331. GGML_ASSERT(original_logits != NULL);
  332. // Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
  333. *original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
  334. }
  335. // apply params.logit_bias map
  336. for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
  337. logits[it->first] += it->second;
  338. }
  339. if (ctx_cfg) {
  340. float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
  341. llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
  342. }
  343. cur.clear();
  344. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  345. cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  346. }
  347. llama_token_data_array cur_p = { cur.data(), cur.size(), false };
  348. // apply penalties
  349. const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
  350. const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
  351. if (penalty_tokens_used_size) {
  352. const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
  353. llama_sample_repetition_penalties(ctx_main, &cur_p,
  354. penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
  355. penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
  356. if (!penalize_nl) {
  357. for (size_t idx = 0; idx < cur_p.size; idx++) {
  358. if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
  359. cur_p.data[idx].logit = nl_logit;
  360. break;
  361. }
  362. }
  363. }
  364. }
  365. // apply grammar checks before sampling logic
  366. if (apply_grammar && ctx_sampling->grammar != NULL) {
  367. llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
  368. }
  369. return cur_p;
  370. }
  371. llama_token llama_sampling_sample(
  372. struct llama_sampling_context * ctx_sampling,
  373. struct llama_context * ctx_main,
  374. struct llama_context * ctx_cfg,
  375. const int idx) {
  376. // Call the implementation function with is_resampling set to false by default
  377. return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false);
  378. }
  379. llama_token_data_array llama_sampling_prepare(
  380. struct llama_sampling_context * ctx_sampling,
  381. struct llama_context * ctx_main,
  382. struct llama_context * ctx_cfg,
  383. const int idx,
  384. bool apply_grammar,
  385. std::vector<float> * original_logits) {
  386. return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
  387. }
  388. void llama_sampling_accept(
  389. struct llama_sampling_context * ctx_sampling,
  390. struct llama_context * ctx_main,
  391. llama_token id,
  392. bool apply_grammar) {
  393. ctx_sampling->prev.erase(ctx_sampling->prev.begin());
  394. ctx_sampling->prev.push_back(id);
  395. if (ctx_sampling->grammar != NULL && apply_grammar) {
  396. llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
  397. }
  398. }