llama.go 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231
  1. package llama
  2. /*
  3. #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
  4. #include <stdlib.h>
  5. #include "llama.h"
  6. struct llama_sample_options
  7. {
  8. float repeat_penalty;
  9. float frequency_penalty;
  10. float presence_penalty;
  11. float temperature;
  12. int32_t top_k;
  13. float top_p;
  14. float tfs_z;
  15. float typical_p;
  16. int mirostat;
  17. float mirostat_tau;
  18. float mirostat_eta;
  19. };
  20. llama_token llama_sample(
  21. struct llama_context *ctx,
  22. struct llama_token_data *candidates,
  23. size_t n_candidates,
  24. const llama_token *last_tokens,
  25. size_t n_last_tokens,
  26. struct llama_sample_options *opts)
  27. {
  28. llama_token_data_array candidates_p = {
  29. candidates,
  30. n_candidates,
  31. false,
  32. };
  33. llama_sample_repetition_penalty(
  34. ctx, &candidates_p,
  35. last_tokens, n_last_tokens,
  36. opts->repeat_penalty);
  37. llama_sample_frequency_and_presence_penalties(
  38. ctx, &candidates_p,
  39. last_tokens, n_last_tokens,
  40. opts->frequency_penalty, opts->presence_penalty);
  41. if (opts->temperature <= 0) {
  42. return llama_sample_token_greedy(ctx, &candidates_p);
  43. }
  44. if (opts->mirostat == 1) {
  45. int mirostat_m = 100;
  46. float mirostat_mu = 2.0f * opts->mirostat_tau;
  47. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  48. return llama_sample_token_mirostat(
  49. ctx, &candidates_p,
  50. opts->mirostat_tau, opts->mirostat_eta,
  51. mirostat_m, &mirostat_mu);
  52. } else if (opts->mirostat == 2) {
  53. float mirostat_mu = 2.0f * opts->mirostat_tau;
  54. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  55. return llama_sample_token_mirostat_v2(
  56. ctx, &candidates_p,
  57. opts->mirostat_tau, opts->mirostat_eta,
  58. &mirostat_mu);
  59. } else {
  60. llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
  61. llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
  62. llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
  63. llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
  64. llama_sample_temperature(ctx, &candidates_p, opts->temperature);
  65. return llama_sample_token(ctx, &candidates_p);
  66. }
  67. }
  68. */
  69. import "C"
  70. import (
  71. "errors"
  72. "io"
  73. "os"
  74. "strings"
  75. "unsafe"
  76. "github.com/jmorganca/ollama/api"
  77. )
  78. type llama struct {
  79. params *C.struct_llama_context_params
  80. model *C.struct_llama_model
  81. ctx *C.struct_llama_context
  82. api.Options
  83. }
  84. func New(model string, opts api.Options) (*llama, error) {
  85. if _, err := os.Stat(model); err != nil {
  86. return nil, err
  87. }
  88. llm := llama{Options: opts}
  89. C.llama_init_backend(C.bool(llm.UseNUMA))
  90. params := C.llama_context_default_params()
  91. params.seed = C.uint(llm.Seed)
  92. params.n_ctx = C.int(llm.NumCtx)
  93. params.n_batch = C.int(llm.NumBatch)
  94. params.n_gpu_layers = C.int(llm.NumGPU)
  95. params.main_gpu = C.int(llm.MainGPU)
  96. params.low_vram = C.bool(llm.LowVRAM)
  97. params.f16_kv = C.bool(llm.F16KV)
  98. params.logits_all = C.bool(llm.LogitsAll)
  99. params.vocab_only = C.bool(llm.VocabOnly)
  100. params.use_mmap = C.bool(llm.UseMMap)
  101. params.use_mlock = C.bool(llm.UseMLock)
  102. params.embedding = C.bool(llm.EmbeddingOnly)
  103. llm.params = &params
  104. cModel := C.CString(model)
  105. defer C.free(unsafe.Pointer(cModel))
  106. llm.model = C.llama_load_model_from_file(cModel, params)
  107. llm.ctx = C.llama_new_context_with_model(llm.model, params)
  108. // warm up the model
  109. bos := []C.llama_token{C.llama_token_bos()}
  110. C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
  111. C.llama_reset_timings(llm.ctx)
  112. return &llm, nil
  113. }
  114. func (llm *llama) Close() {
  115. defer C.llama_free_model(llm.model)
  116. defer C.llama_free(llm.ctx)
  117. C.llama_print_timings(llm.ctx)
  118. }
  119. func (llm *llama) Predict(prompt string, fn func(string)) error {
  120. if tokens := llm.tokenize(prompt); tokens != nil {
  121. return llm.generate(tokens, fn)
  122. }
  123. return errors.New("llama: tokenize")
  124. }
  125. func (llm *llama) tokenize(prompt string) []C.llama_token {
  126. cPrompt := C.CString(prompt)
  127. defer C.free(unsafe.Pointer(cPrompt))
  128. tokens := make([]C.llama_token, llm.NumCtx)
  129. if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(tokens), C.int(len(tokens)), true); n > 0 {
  130. return tokens[:n]
  131. }
  132. return nil
  133. }
  134. func (llm *llama) detokenize(tokens ...C.llama_token) string {
  135. var sb strings.Builder
  136. for _, token := range tokens {
  137. sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, token)))
  138. }
  139. return sb.String()
  140. }
  141. func (llm *llama) generate(tokens []C.llama_token, fn func(string)) error {
  142. var opts C.struct_llama_sample_options
  143. opts.repeat_penalty = C.float(llm.RepeatPenalty)
  144. opts.frequency_penalty = C.float(llm.FrequencyPenalty)
  145. opts.presence_penalty = C.float(llm.PresencePenalty)
  146. opts.temperature = C.float(llm.Temperature)
  147. opts.top_k = C.int(llm.TopK)
  148. opts.top_p = C.float(llm.TopP)
  149. opts.tfs_z = C.float(llm.TFSZ)
  150. opts.typical_p = C.float(llm.TypicalP)
  151. opts.mirostat = C.int(llm.Mirostat)
  152. opts.mirostat_tau = C.float(llm.MirostatTau)
  153. opts.mirostat_eta = C.float(llm.MirostatEta)
  154. pastTokens := deque[C.llama_token]{capacity: llm.RepeatLastN}
  155. for C.llama_get_kv_cache_token_count(llm.ctx) < C.int(llm.NumCtx) {
  156. if retval := C.llama_eval(llm.ctx, unsafe.SliceData(tokens), C.int(len(tokens)), C.llama_get_kv_cache_token_count(llm.ctx), C.int(llm.NumThread)); retval != 0 {
  157. return errors.New("llama: eval")
  158. }
  159. token, err := llm.sample(pastTokens, &opts)
  160. switch {
  161. case err != nil:
  162. return err
  163. case errors.Is(err, io.EOF):
  164. return nil
  165. }
  166. fn(llm.detokenize(token))
  167. tokens = []C.llama_token{token}
  168. pastTokens.PushLeft(token)
  169. }
  170. return nil
  171. }
  172. func (llm *llama) sample(pastTokens deque[C.llama_token], opts *C.struct_llama_sample_options) (C.llama_token, error) {
  173. numVocab := int(C.llama_n_vocab(llm.ctx))
  174. logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
  175. candidates := make([]C.struct_llama_token_data, 0, numVocab)
  176. for i := 0; i < numVocab; i++ {
  177. candidates = append(candidates, C.llama_token_data{
  178. id: C.int(i),
  179. logit: logits[i],
  180. p: 0,
  181. })
  182. }
  183. token := C.llama_sample(
  184. llm.ctx,
  185. unsafe.SliceData(candidates), C.ulong(len(candidates)),
  186. unsafe.SliceData(pastTokens.Data()), C.ulong(pastTokens.Len()),
  187. opts)
  188. if token != C.llama_token_eos() {
  189. return token, nil
  190. }
  191. return 0, io.EOF
  192. }