123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585 |
- // MIT License
- // Copyright (c) 2023 go-skynet authors
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #include "common.h"
- #include "llama.h"
- #include "binding.h"
- #include <cassert>
- #include <cinttypes>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <fstream>
- #include <iostream>
- #include <regex>
- #include <sstream>
- #include <string>
- #include <vector>
- #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
- #include <signal.h>
- #include <unistd.h>
- #elif defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #define NOMINMAX
- #include <signal.h>
- #include <windows.h>
- #endif
- #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || \
- defined(_WIN32)
- void sigint_handler(int signo) {
- if (signo == SIGINT) {
- _exit(130);
- }
- }
- #endif
- int eval(void *p, void *c, char *text) {
- gpt_params *params = (gpt_params *)params;
- llama_context *ctx = (llama_context *)ctx;
- auto n_past = 0;
- auto last_n_tokens_data = std::vector<llama_token>(params->repeat_last_n, 0);
- auto tokens = std::vector<llama_token>(params->n_ctx);
- auto n_prompt_tokens =
- llama_tokenize(ctx, text, tokens.data(), tokens.size(), true);
- if (n_prompt_tokens < 1) {
- fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
- return 1;
- }
- return llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past,
- params->n_threads);
- }
- int llama_predict(void *p, void *c, char *result, bool debug) {
- gpt_params *params = (gpt_params *)params;
- llama_context *ctx = (llama_context *)ctx;
- const int n_ctx = llama_n_ctx(ctx);
- if (params->seed <= 0) {
- params->seed = time(NULL);
- }
- std::mt19937 rng(params->seed);
- std::string path_session = params->path_prompt_cache;
- std::vector<llama_token> session_tokens;
- if (!path_session.empty()) {
- if (debug) {
- fprintf(stderr, "%s: attempting to load saved session from '%s'\n",
- __func__, path_session.c_str());
- }
- // fopen to check for existing session
- FILE *fp = std::fopen(path_session.c_str(), "rb");
- if (fp != NULL) {
- std::fclose(fp);
- session_tokens.resize(n_ctx);
- size_t n_token_count_out = 0;
- if (!llama_load_session_file(
- ctx, path_session.c_str(), session_tokens.data(),
- session_tokens.capacity(), &n_token_count_out)) {
- fprintf(stderr, "%s: error: failed to load session file '%s'\n",
- __func__, path_session.c_str());
- return 1;
- }
- session_tokens.resize(n_token_count_out);
- llama_set_rng_seed(ctx, params->seed);
- if (debug) {
- fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n",
- __func__, (int)session_tokens.size());
- }
- } else {
- if (debug) {
- fprintf(stderr, "%s: session file does not exist, will create\n",
- __func__);
- }
- }
- }
- std::vector<llama_token> embd_inp;
- if (!params->prompt.empty() || session_tokens.empty()) {
- // Add a space in front of the first character to match OG llama tokenizer
- // behavior
- params->prompt.insert(0, 1, ' ');
- embd_inp = ::llama_tokenize(ctx, params->prompt, true);
- } else {
- embd_inp = session_tokens;
- }
- // debug message about similarity of saved session, if applicable
- size_t n_matching_session_tokens = 0;
- if (session_tokens.size()) {
- for (llama_token id : session_tokens) {
- if (n_matching_session_tokens >= embd_inp.size() ||
- id != embd_inp[n_matching_session_tokens]) {
- break;
- }
- n_matching_session_tokens++;
- }
- if (debug) {
- if (params->prompt.empty() &&
- n_matching_session_tokens == embd_inp.size()) {
- fprintf(stderr, "%s: using full prompt from session file\n", __func__);
- } else if (n_matching_session_tokens >= embd_inp.size()) {
- fprintf(stderr, "%s: session file has exact match for prompt!\n",
- __func__);
- } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
- fprintf(stderr,
- "%s: warning: session file has low similarity to prompt (%zu / "
- "%zu tokens); will mostly be reevaluated\n",
- __func__, n_matching_session_tokens, embd_inp.size());
- } else {
- fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
- __func__, n_matching_session_tokens, embd_inp.size());
- }
- }
- }
- // if we will use the cache for the full prompt without reaching the end of
- // the cache, force reevaluation of the last token token to recalculate the
- // cached logits
- if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() &&
- session_tokens.size() > embd_inp.size()) {
- session_tokens.resize(embd_inp.size() - 1);
- }
- // number of tokens to keep when resetting context
- if (params->n_keep < 0 || params->n_keep > (int)embd_inp.size()) {
- params->n_keep = (int)embd_inp.size();
- }
- // determine newline token
- auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
- // TODO: replace with ring-buffer
- std::vector<llama_token> last_n_tokens(n_ctx);
- std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
- bool need_to_save_session =
- !path_session.empty() && n_matching_session_tokens < embd_inp.size();
- int n_past = 0;
- int n_remain = params->n_predict;
- int n_consumed = 0;
- int n_session_consumed = 0;
- std::vector<llama_token> embd;
- std::string res = "";
- // do one empty run to warm up the model
- {
- const std::vector<llama_token> tmp = {
- llama_token_bos(),
- };
- llama_eval(ctx, tmp.data(), tmp.size(), 0, params->n_threads);
- llama_reset_timings(ctx);
- }
- while (n_remain != 0) {
- // predict
- if (embd.size() > 0) {
- // infinite text generation via context swapping
- // if we run out of context:
- // - take the n_keep first tokens from the original prompt (via n_past)
- // - take half of the last (n_ctx - n_keep) tokens and recompute the
- // logits in batches
- if (n_past + (int)embd.size() > n_ctx) {
- const int n_left = n_past - params->n_keep;
- // always keep the first token - BOS
- n_past = std::max(1, params->n_keep);
- // insert n_left/2 tokens at the start of embd from last_n_tokens
- embd.insert(embd.begin(),
- last_n_tokens.begin() + n_ctx - n_left / 2 - embd.size(),
- last_n_tokens.end() - embd.size());
- // stop saving session if we run out of context
- path_session.clear();
- }
- // try to reuse a matching prefix from the loaded session instead of
- // re-eval (via n_past)
- if (n_session_consumed < (int)session_tokens.size()) {
- size_t i = 0;
- for (; i < embd.size(); i++) {
- if (embd[i] != session_tokens[n_session_consumed]) {
- session_tokens.resize(n_session_consumed);
- break;
- }
- n_past++;
- n_session_consumed++;
- if (n_session_consumed >= (int)session_tokens.size()) {
- ++i;
- break;
- }
- }
- if (i > 0) {
- embd.erase(embd.begin(), embd.begin() + i);
- }
- }
- // evaluate tokens in batches
- // embd is typically prepared beforehand to fit within a batch, but not
- // always
- for (int i = 0; i < (int)embd.size(); i += params->n_batch) {
- int n_eval = (int)embd.size() - i;
- if (n_eval > params->n_batch) {
- n_eval = params->n_batch;
- }
- if (llama_eval(ctx, &embd[i], n_eval, n_past, params->n_threads)) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return 1;
- }
- n_past += n_eval;
- }
- if (embd.size() > 0 && !path_session.empty()) {
- session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
- n_session_consumed = session_tokens.size();
- }
- }
- embd.clear();
- if ((int)embd_inp.size() <= n_consumed) {
- // out of user input, sample next token
- const float temp = params->temp;
- const int32_t top_k =
- params->top_k <= 0 ? llama_n_vocab(ctx) : params->top_k;
- const float top_p = params->top_p;
- const float tfs_z = params->tfs_z;
- const float typical_p = params->typical_p;
- const int32_t repeat_last_n =
- params->repeat_last_n < 0 ? n_ctx : params->repeat_last_n;
- const float repeat_penalty = params->repeat_penalty;
- const float alpha_presence = params->presence_penalty;
- const float alpha_frequency = params->frequency_penalty;
- const int mirostat = params->mirostat;
- const float mirostat_tau = params->mirostat_tau;
- const float mirostat_eta = params->mirostat_eta;
- const bool penalize_nl = params->penalize_nl;
- // optionally save the session on first sample (for faster prompt loading
- // next time)
- if (!path_session.empty() && need_to_save_session &&
- !params->prompt_cache_ro) {
- need_to_save_session = false;
- llama_save_session_file(ctx, path_session.c_str(),
- session_tokens.data(), session_tokens.size());
- }
- llama_token id = 0;
- {
- auto logits = llama_get_logits(ctx);
- auto n_vocab = llama_n_vocab(ctx);
- // Apply params.logit_bias map
- for (auto it = params->logit_bias.begin();
- it != params->logit_bias.end(); it++) {
- logits[it->first] += it->second;
- }
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(
- llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array candidates_p = {candidates.data(),
- candidates.size(), false};
- // Apply penalties
- float nl_logit = logits[llama_token_nl()];
- auto last_n_repeat =
- std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
- llama_sample_repetition_penalty(
- ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, repeat_penalty);
- llama_sample_frequency_and_presence_penalties(
- ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, alpha_frequency, alpha_presence);
- if (!penalize_nl) {
- logits[llama_token_nl()] = nl_logit;
- }
- if (temp <= 0) {
- // Greedy sampling
- id = llama_sample_token_greedy(ctx, &candidates_p);
- } else {
- if (mirostat == 1) {
- static float mirostat_mu = 2.0f * mirostat_tau;
- const int mirostat_m = 100;
- llama_sample_temperature(ctx, &candidates_p, temp);
- id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau,
- mirostat_eta, mirostat_m,
- &mirostat_mu);
- } else if (mirostat == 2) {
- static float mirostat_mu = 2.0f * mirostat_tau;
- llama_sample_temperature(ctx, &candidates_p, temp);
- id = llama_sample_token_mirostat_v2(
- ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
- } else {
- // Temperature sampling
- llama_sample_top_k(ctx, &candidates_p, top_k, 1);
- llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
- llama_sample_typical(ctx, &candidates_p, typical_p, 1);
- llama_sample_top_p(ctx, &candidates_p, top_p, 1);
- llama_sample_temperature(ctx, &candidates_p, temp);
- id = llama_sample_token(ctx, &candidates_p);
- }
- }
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(id);
- }
- // add it to the context
- embd.push_back(id);
- // decrement remaining sampling budget
- --n_remain;
- // call the token callback, no need to check if one is actually
- // registered, that will be handled on the Go side.
- auto token_str = llama_token_to_str(ctx, id);
- if (!tokenCallback(ctx, (char *)token_str)) {
- break;
- }
- } else {
- // some user input remains from prompt or interaction, forward it to
- // processing
- while ((int)embd_inp.size() > n_consumed) {
- embd.push_back(embd_inp[n_consumed]);
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(embd_inp[n_consumed]);
- ++n_consumed;
- if ((int)embd.size() >= params->n_batch) {
- break;
- }
- }
- }
- for (auto id : embd) {
- res += llama_token_to_str(ctx, id);
- }
- // check for stop prompt
- if (params->antiprompt.size()) {
- std::string last_output;
- for (auto id : last_n_tokens) {
- last_output += llama_token_to_str(ctx, id);
- }
- // Check if each of the reverse prompts appears at the end of the output.
- for (std::string &antiprompt : params->antiprompt) {
- // size_t extra_padding = params.interactive ? 0 : 2;
- size_t extra_padding = 2;
- size_t search_start_pos =
- last_output.length() >
- static_cast<size_t>(antiprompt.length() + extra_padding)
- ? last_output.length() -
- static_cast<size_t>(antiprompt.length() + extra_padding)
- : 0;
- if (last_output.find(antiprompt.c_str(), search_start_pos) !=
- std::string::npos) {
- goto end;
- }
- }
- }
- // end of text token
- if (!embd.empty() && embd.back() == llama_token_eos()) {
- break;
- }
- }
- if (!path_session.empty() && params->prompt_cache_all &&
- !params->prompt_cache_ro) {
- if (debug) {
- fprintf(stderr, "\n%s: saving final output to session file '%s'\n",
- __func__, path_session.c_str());
- }
- llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(),
- session_tokens.size());
- }
- end:
- #if defined(_WIN32)
- signal(SIGINT, SIG_DFL);
- #endif
- if (debug) {
- llama_print_timings(ctx);
- llama_reset_timings(ctx);
- }
- strcpy(result, res.c_str());
- return 0;
- }
- void llama_binding_free_model(void *ctx) { llama_free((llama_context *)ctx); }
- void llama_free_params(void *params) { delete (gpt_params *)params; }
- void *llama_allocate_params(
- const char *prompt, int seed, int threads, int tokens, int top_k,
- float top_p, float temp, float repeat_penalty, int repeat_last_n,
- bool ignore_eos, bool memory_f16, int n_batch, int n_keep,
- const char **antiprompt, int antiprompt_count, float tfs_z, float typical_p,
- float frequency_penalty, float presence_penalty, int mirostat,
- float mirostat_eta, float mirostat_tau, bool penalize_nl,
- const char *logit_bias, const char *session_file, bool prompt_cache_all,
- bool mlock, bool mmap, const char *maingpu, const char *tensorsplit,
- bool prompt_cache_ro) {
- gpt_params *params = new gpt_params;
- params->seed = seed;
- params->n_threads = threads;
- params->n_predict = tokens;
- params->repeat_last_n = repeat_last_n;
- params->prompt_cache_ro = prompt_cache_ro;
- params->top_k = top_k;
- params->top_p = top_p;
- params->memory_f16 = memory_f16;
- params->temp = temp;
- params->use_mmap = mmap;
- params->use_mlock = mlock;
- params->repeat_penalty = repeat_penalty;
- params->n_batch = n_batch;
- params->n_keep = n_keep;
- if (maingpu[0] != '\0') {
- params->main_gpu = std::stoi(maingpu);
- }
- if (tensorsplit[0] != '\0') {
- std::string arg_next = tensorsplit;
- // split string by , and /
- const std::regex regex{R"([,/]+)"};
- std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
- std::vector<std::string> split_arg{it, {}};
- GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
- for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
- if (i < split_arg.size()) {
- params->tensor_split[i] = std::stof(split_arg[i]);
- } else {
- params->tensor_split[i] = 0.0f;
- }
- }
- }
- params->prompt_cache_all = prompt_cache_all;
- params->path_prompt_cache = session_file;
- if (ignore_eos) {
- params->logit_bias[llama_token_eos()] = -INFINITY;
- }
- if (antiprompt_count > 0) {
- for (int i = 0; i < antiprompt_count; i++) {
- params->antiprompt.push_back(std::string(antiprompt[i]));
- }
- }
- params->tfs_z = tfs_z;
- params->typical_p = typical_p;
- params->presence_penalty = presence_penalty;
- params->mirostat = mirostat;
- params->mirostat_eta = mirostat_eta;
- params->mirostat_tau = mirostat_tau;
- params->penalize_nl = penalize_nl;
- std::stringstream ss(logit_bias);
- llama_token key;
- char sign;
- std::string value_str;
- if (ss >> key && ss >> sign && std::getline(ss, value_str) &&
- (sign == '+' || sign == '-')) {
- params->logit_bias[key] =
- std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
- }
- params->frequency_penalty = frequency_penalty;
- params->prompt = prompt;
- return params;
- }
- void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
- bool mlock, bool embeddings, bool mmap, bool low_vram,
- bool vocab_only, int n_gpu_layers, int n_batch,
- const char *maingpu, const char *tensorsplit, bool numa) {
- auto lparams = llama_context_default_params();
- lparams.n_ctx = n_ctx;
- lparams.seed = n_seed;
- lparams.f16_kv = memory_f16;
- lparams.embedding = embeddings;
- lparams.use_mlock = mlock;
- lparams.n_gpu_layers = n_gpu_layers;
- lparams.use_mmap = mmap;
- lparams.low_vram = low_vram;
- lparams.vocab_only = vocab_only;
- if (maingpu[0] != '\0') {
- lparams.main_gpu = std::stoi(maingpu);
- }
- if (tensorsplit[0] != '\0') {
- std::string arg_next = tensorsplit;
- // split string by , and /
- const std::regex regex{R"([,/]+)"};
- std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
- std::vector<std::string> split_arg{it, {}};
- GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
- for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
- if (i < split_arg.size()) {
- lparams.tensor_split[i] = std::stof(split_arg[i]);
- } else {
- lparams.tensor_split[i] = 0.0f;
- }
- }
- }
- lparams.n_batch = n_batch;
- llama_init_backend(numa);
- struct llama_model *model = llama_load_model_from_file(fname, lparams);
- if (!model) {
- return nullptr;
- }
- return llama_new_context_with_model(model, lparams);
- }
|