llama.h 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440
  1. /**
  2. * llama.cpp - git e782c9e735f93ab4767ffc37462c523b73a17ddc
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023 Georgi Gerganov
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #ifndef LLAMA_H
  27. #define LLAMA_H
  28. #include "ggml.h"
  29. #ifdef GGML_USE_CUBLAS
  30. #include "ggml-cuda.h"
  31. #define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
  32. #else
  33. #define LLAMA_MAX_DEVICES 1
  34. #endif // GGML_USE_CUBLAS
  35. #include <stddef.h>
  36. #include <stdint.h>
  37. #include <stdbool.h>
  38. #ifdef LLAMA_SHARED
  39. # if defined(_WIN32) && !defined(__MINGW32__)
  40. # ifdef LLAMA_BUILD
  41. # define LLAMA_API __declspec(dllexport)
  42. # else
  43. # define LLAMA_API __declspec(dllimport)
  44. # endif
  45. # else
  46. # define LLAMA_API __attribute__ ((visibility ("default")))
  47. # endif
  48. #else
  49. # define LLAMA_API
  50. #endif
  51. #ifdef __GNUC__
  52. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  53. #elif defined(_MSC_VER)
  54. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  55. #else
  56. # define DEPRECATED(func, hint) func
  57. #endif
  58. #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
  59. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  60. #define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
  61. #define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
  62. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  63. #define LLAMA_FILE_VERSION 3
  64. #define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
  65. #define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
  66. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  67. #define LLAMA_SESSION_VERSION 1
  68. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  69. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
  70. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  71. #define LLAMA_SUPPORTS_GPU_OFFLOAD
  72. #endif
  73. #ifdef __cplusplus
  74. extern "C" {
  75. #endif
  76. //
  77. // C interface
  78. //
  79. // TODO: show sample usage
  80. //
  81. struct llama_model;
  82. struct llama_context;
  83. typedef int llama_token;
  84. typedef struct llama_token_data {
  85. llama_token id; // token id
  86. float logit; // log-odds of the token
  87. float p; // probability of the token
  88. } llama_token_data;
  89. typedef struct llama_token_data_array {
  90. llama_token_data * data;
  91. size_t size;
  92. bool sorted;
  93. } llama_token_data_array;
  94. typedef void (*llama_progress_callback)(float progress, void *ctx);
  95. struct llama_context_params {
  96. uint32_t seed; // RNG seed, -1 for random
  97. int32_t n_ctx; // text context
  98. int32_t n_batch; // prompt processing batch size
  99. int32_t n_gpu_layers; // number of layers to store in VRAM
  100. int32_t main_gpu; // the GPU that is used for scratch and small tensors
  101. float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
  102. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  103. float rope_freq_base; // RoPE base frequency
  104. float rope_freq_scale; // RoPE frequency scaling factor
  105. // called with a progress value between 0 and 1, pass NULL to disable
  106. llama_progress_callback progress_callback;
  107. // context pointer passed to the progress callback
  108. void * progress_callback_user_data;
  109. // Keep the booleans together to avoid misalignment during copy-by-value.
  110. bool low_vram; // if true, reduce VRAM usage at the cost of performance
  111. bool f16_kv; // use fp16 for KV cache
  112. bool logits_all; // the llama_eval() call computes all logits, not just the last one
  113. bool vocab_only; // only load the vocabulary, no weights
  114. bool use_mmap; // use mmap if possible
  115. bool use_mlock; // force system to keep model in RAM
  116. bool embedding; // embedding mode only
  117. };
  118. // model file types
  119. enum llama_ftype {
  120. LLAMA_FTYPE_ALL_F32 = 0,
  121. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  122. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  123. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  124. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  125. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  126. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  127. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  128. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  129. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  130. LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
  131. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
  132. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
  133. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
  134. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
  135. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
  136. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
  137. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
  138. LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
  139. };
  140. // model quantization parameters
  141. typedef struct llama_model_quantize_params {
  142. int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  143. enum llama_ftype ftype; // quantize to this llama_ftype
  144. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  145. bool quantize_output_tensor; // quantize output.weight
  146. } llama_model_quantize_params;
  147. // performance timing information
  148. struct llama_timings {
  149. double t_start_ms;
  150. double t_end_ms;
  151. double t_load_ms;
  152. double t_sample_ms;
  153. double t_p_eval_ms;
  154. double t_eval_ms;
  155. int32_t n_sample;
  156. int32_t n_p_eval;
  157. int32_t n_eval;
  158. };
  159. LLAMA_API int llama_max_devices();
  160. LLAMA_API struct llama_context_params llama_context_default_params();
  161. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
  162. LLAMA_API bool llama_mmap_supported();
  163. LLAMA_API bool llama_mlock_supported();
  164. // TODO: not great API - very likely to change
  165. // Initialize the llama + ggml backend
  166. // If numa is true, use NUMA optimizations
  167. // Call once at the start of the program
  168. LLAMA_API void llama_backend_init(bool numa);
  169. // Call once at the end of the program - currently only used for MPI
  170. LLAMA_API void llama_backend_free();
  171. LLAMA_API int64_t llama_time_us();
  172. LLAMA_API struct llama_model * llama_load_model_from_file(
  173. const char * path_model,
  174. struct llama_context_params params);
  175. LLAMA_API void llama_free_model(struct llama_model * model);
  176. LLAMA_API struct llama_context * llama_new_context_with_model(
  177. struct llama_model * model,
  178. struct llama_context_params params);
  179. // Various functions for loading a ggml llama model.
  180. // Allocate (almost) all memory needed for the model.
  181. // Return NULL on failure
  182. LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
  183. const char * path_model,
  184. struct llama_context_params params),
  185. "please use llama_load_model_from_file combined with llama_new_context_with_model instead");
  186. // Frees all allocated memory
  187. LLAMA_API void llama_free(struct llama_context * ctx);
  188. // Returns 0 on success
  189. LLAMA_API int llama_model_quantize(
  190. const char * fname_inp,
  191. const char * fname_out,
  192. const llama_model_quantize_params * params);
  193. // Apply a LoRA adapter to a loaded model
  194. // path_base_model is the path to a higher quality model to use as a base for
  195. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  196. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  197. // will be applied on top of the previous one
  198. // Returns 0 on success
  199. LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
  200. struct llama_context * ctx,
  201. const char * path_lora,
  202. const char * path_base_model,
  203. int n_threads),
  204. "please use llama_model_apply_lora_from_file instead");
  205. LLAMA_API int llama_model_apply_lora_from_file(
  206. const struct llama_model * model,
  207. const char * path_lora,
  208. const char * path_base_model,
  209. int n_threads);
  210. // Returns the number of tokens in the KV cache
  211. LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
  212. // Sets the current rng seed.
  213. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  214. // Returns the maximum size in bytes of the state (rng, logits, embedding
  215. // and kv_cache) - will often be smaller after compacting tokens
  216. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  217. // Copies the state to the specified destination address.
  218. // Destination needs to have allocated enough memory.
  219. // Returns the number of bytes copied
  220. LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
  221. // Set the state reading from the specified address
  222. // Returns the number of bytes read
  223. LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
  224. // Save/load session file
  225. LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
  226. LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
  227. // Run the llama inference to obtain the logits and probabilities for the next token.
  228. // tokens + n_tokens is the provided batch of new tokens to process
  229. // n_past is the number of tokens to use from previous eval calls
  230. // Returns 0 on success
  231. LLAMA_API int llama_eval(
  232. struct llama_context * ctx,
  233. const llama_token * tokens,
  234. int n_tokens,
  235. int n_past,
  236. int n_threads);
  237. // Same as llama_eval, but use float matrix input directly.
  238. LLAMA_API int llama_eval_embd(
  239. struct llama_context * ctx,
  240. const float * embd,
  241. int n_tokens,
  242. int n_past,
  243. int n_threads);
  244. // Export a static computation graph for context of 511 and batch size of 1
  245. // NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
  246. // parameters here to keep things simple
  247. // IMPORTANT: do not use for anything else other than debugging and testing!
  248. LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
  249. // Convert the provided text into tokens.
  250. // The tokens pointer must be large enough to hold the resulting tokens.
  251. // Returns the number of tokens on success, no more than n_max_tokens
  252. // Returns a negative number on failure - the number of tokens that would have been returned
  253. // TODO: not sure if correct
  254. LLAMA_API int llama_tokenize(
  255. struct llama_context * ctx,
  256. const char * text,
  257. llama_token * tokens,
  258. int n_max_tokens,
  259. bool add_bos);
  260. LLAMA_API int llama_tokenize_with_model(
  261. const struct llama_model * model,
  262. const char * text,
  263. llama_token * tokens,
  264. int n_max_tokens,
  265. bool add_bos);
  266. LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
  267. LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
  268. LLAMA_API int llama_n_embd (const struct llama_context * ctx);
  269. LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
  270. LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
  271. LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
  272. // Get the vocabulary as output parameters.
  273. // Returns number of results.
  274. LLAMA_API int llama_get_vocab(
  275. const struct llama_context * ctx,
  276. const char * * strings,
  277. float * scores,
  278. int capacity);
  279. LLAMA_API int llama_get_vocab_from_model(
  280. const struct llama_model * model,
  281. const char * * strings,
  282. float * scores,
  283. int capacity);
  284. // Token logits obtained from the last call to llama_eval()
  285. // The logits for the last token are stored in the last row
  286. // Can be mutated in order to change the probabilities of the next token
  287. // Rows: n_tokens
  288. // Cols: n_vocab
  289. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  290. // Get the embeddings for the input
  291. // shape: [n_embd] (1-dimensional)
  292. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  293. // Token Id -> String. Uses the vocabulary in the provided context
  294. LLAMA_API const char * llama_token_to_str(
  295. const struct llama_context * ctx,
  296. llama_token token);
  297. LLAMA_API const char * llama_token_to_str_with_model(
  298. const struct llama_model * model,
  299. llama_token token);
  300. // Special tokens
  301. LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
  302. LLAMA_API llama_token llama_token_eos(); // end-of-sentence
  303. LLAMA_API llama_token llama_token_nl(); // next-line
  304. // Sampling functions
  305. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  306. LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
  307. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  308. LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
  309. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  310. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
  311. /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  312. /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  313. /// @params smooth_factor Smooth factor between guidance logits and original logits. 1.0f means only use guidance logits. 0.0f means only original logits.
  314. LLAMA_API void llama_sample_classifier_free_guidance(
  315. struct llama_context * ctx,
  316. llama_token_data_array * candidates,
  317. struct llama_context * guidance_ctx,
  318. float scale,
  319. float smooth_factor);
  320. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  321. LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
  322. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  323. LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
  324. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  325. LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  326. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  327. LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
  328. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  329. LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  330. LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
  331. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  332. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  333. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  334. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  335. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  336. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  337. LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
  338. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  339. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  340. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  341. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  342. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  343. LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
  344. /// @details Selects the token with the highest probability.
  345. LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
  346. /// @details Randomly selects a token from the candidates based on their probabilities.
  347. LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
  348. // Performance information
  349. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  350. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  351. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  352. // Print system information
  353. LLAMA_API const char * llama_print_system_info(void);
  354. #ifdef __cplusplus
  355. }
  356. #endif
  357. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  358. #ifdef LLAMA_API_INTERNAL
  359. #include <vector>
  360. #include <string>
  361. struct ggml_tensor;
  362. const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
  363. #endif
  364. #endif // LLAMA_H