Нема описа

jmorganca e117483ef6 Add `done_reason` пре 1 година
.github c8afe7168c use correct extension for feature and model request issue templates пре 1 година
api e117483ef6 Add `done_reason` пре 1 година
app 7027f264fb app: gracefully shut down `ollama serve` on windows (#3641) пре 1 година
auth e43648afe5 rerefactor пре 1 година
cmd 949d7832cf Revert "cmd: provide feedback if OLLAMA_MODELS is set on non-serve command (#3470)" (#3662) пре 1 година
convert 9f8691c6c8 Add llama2 / torch models for `ollama create` (#3607) пре 1 година
docs e6f9bfc0e8 Update api.md (#3705) пре 1 година
examples ba460802c2 examples: add more Go examples using the API (#3599) пре 1 година
format 7e33a017c0 partial offloading пре 1 година
gpu 26df674785 scale graph based on gpu count пре 1 година
integration aeb1fb5192 Add test case for context exhaustion пре 1 година
llm e117483ef6 Add `done_reason` пре 1 година
macapp fc6558f47f Correct directory reference in macapp/README (#3555) пре 1 година
openai 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) пре 1 година
parser 7c40a67841 Save and load sessions (#2063) пре 1 година
progress 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) пре 1 година
readline 5a5efee46b Add gemma safetensors conversion (#3250) пре 1 година
scripts 539043f5e0 CI automation for tagging latest images пре 1 година
server e117483ef6 Add `done_reason` пре 1 година
types 56f8aa6912 types/model: export IsValidNamePart (#3788) пре 1 година
version 2c7f956b38 add version пре 1 година
.dockerignore 5017a15bcb add `macapp` to `.dockerignore` пре 1 година
.gitattributes 38daf0a252 rename `.gitattributes` пре 1 година
.gitignore 58d95cc9bd Switch back to subprocessing for llama.cpp пре 1 година
.gitmodules fac9060da5 Init submodule with new path пре 1 година
.golangci.yaml 5a5efee46b Add gemma safetensors conversion (#3250) пре 1 година
.prettierrc.json 8685a5ad18 move .prettierrc.json to root пре 1 година
Dockerfile 8aec92fa6d rearranged conditional logic for static build, dockerfile updated пре 1 година
LICENSE df5fdd6647 `proto` -> `ollama` пре 1 година
README.md 63a7edd771 Update README.md пре 1 година
go.mod 9f8691c6c8 Add llama2 / torch models for `ollama create` (#3607) пре 1 година
go.sum 9f8691c6c8 Add llama2 / torch models for `ollama create` (#3607) пре 1 година
main.go 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) пре 1 година

README.md

ollama

Ollama

Discord

Get up and running with large language models locally.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3:

ollama run llama3

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3 8B 4.7GB ollama run llama3
Llama 3 70B 40GB ollama run llama3:70b
Mistral 7B 4.1GB ollama run mistral
Dolphin Phi 2.7B 1.6GB ollama run dolphin-phi
Phi-2 2.7B 1.7GB ollama run phi
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
Llama 2 13B 13B 7.3GB ollama run llama2:13b
Llama 2 70B 70B 39GB ollama run llama2:70b
Orca Mini 3B 1.9GB ollama run orca-mini
LLaVA 7B 4.5GB ollama run llava
Gemma 2B 1.4GB ollama run gemma:2b
Gemma 7B 4.8GB ollama run gemma:7b
Solar 10.7B 6.1GB ollama run solar

Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3 model:

ollama pull llama3

Create a Modelfile:

FROM llama3

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3

Copy a model

ollama cp llama3 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass in prompt as arguments

$ ollama run llama3 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

Install cmake and go:

brew install cmake go

Then generate dependencies:

go generate ./...

Then build the binary:

go build .

More detailed instructions can be found in the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.