ggml-backend.cpp 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030
  1. /**
  2. * llama.cpp - commit ba1cb19cdd0d92e012e0f6e009e0620f854b6afd - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. // Note: porting this file to C++ is a work in progress
  27. #ifdef _WIN32
  28. #define WIN32_LEAN_AND_MEAN
  29. #ifndef NOMINMAX
  30. # define NOMINMAX
  31. #endif
  32. #include <windows.h>
  33. #endif
  34. #include "ggml-backend.h"
  35. #include "ggml-backend-impl.h"
  36. #include "ggml-alloc.h"
  37. #include "ggml-impl.h"
  38. #include <assert.h>
  39. #include <limits.h>
  40. #include <stdarg.h>
  41. #include <stdio.h>
  42. #include <stdlib.h>
  43. #include <string.h>
  44. #include <string>
  45. #include <vector>
  46. #ifdef __APPLE__
  47. #include <sys/types.h>
  48. #include <sys/sysctl.h>
  49. #endif
  50. // backend buffer type
  51. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  52. return buft->iface.get_name(buft);
  53. }
  54. ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  55. if (size == 0) {
  56. // return a dummy buffer for zero-sized allocations
  57. return ggml_backend_buffer_init(buft, {}, NULL, 0);
  58. }
  59. return buft->iface.alloc_buffer(buft, size);
  60. }
  61. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  62. return buft->iface.get_alignment(buft);
  63. }
  64. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  65. // get_max_size is optional, defaults to SIZE_MAX
  66. if (buft->iface.get_max_size) {
  67. return buft->iface.get_max_size(buft);
  68. }
  69. return SIZE_MAX;
  70. }
  71. size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  72. // get_alloc_size is optional, defaults to ggml_nbytes
  73. if (buft->iface.get_alloc_size) {
  74. size_t size = buft->iface.get_alloc_size(buft, tensor);
  75. assert(size >= ggml_nbytes(tensor));
  76. return size;
  77. }
  78. return ggml_nbytes(tensor);
  79. }
  80. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  81. if (buft->iface.is_host) {
  82. return buft->iface.is_host(buft);
  83. }
  84. return false;
  85. }
  86. ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
  87. return buft->device;
  88. }
  89. // backend buffer
  90. ggml_backend_buffer_t ggml_backend_buffer_init(
  91. ggml_backend_buffer_type_t buft,
  92. struct ggml_backend_buffer_i iface,
  93. void * context,
  94. size_t size) {
  95. ggml_backend_buffer_t buffer = new ggml_backend_buffer {
  96. /* .interface = */ iface,
  97. /* .buft = */ buft,
  98. /* .context = */ context,
  99. /* .size = */ size,
  100. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  101. };
  102. return buffer;
  103. }
  104. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  105. return ggml_backend_buft_name(ggml_backend_buffer_get_type(buffer));
  106. }
  107. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  108. if (buffer == NULL) {
  109. return;
  110. }
  111. if (buffer->iface.free_buffer != NULL) {
  112. buffer->iface.free_buffer(buffer);
  113. }
  114. // TODO: this needs to be freed in cuda and hip backends because
  115. // the cuda backend implementation compiled with msvc
  116. #if !defined(GGML_USE_CUDA) && !defined(GGML_USE_HIP)
  117. delete buffer;
  118. #endif
  119. }
  120. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  121. return buffer->size;
  122. }
  123. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  124. // get_base is optional if the buffer is zero-sized
  125. if (buffer->size == 0) {
  126. return NULL;
  127. }
  128. void * base = buffer->iface.get_base(buffer);
  129. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  130. return base;
  131. }
  132. void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  133. // init_tensor is optional
  134. if (buffer->iface.init_tensor) {
  135. buffer->iface.init_tensor(buffer, tensor);
  136. }
  137. }
  138. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  139. // clear is optional if the buffer is zero-sized
  140. if (buffer->size == 0) {
  141. return;
  142. }
  143. buffer->iface.clear(buffer, value);
  144. }
  145. size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
  146. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  147. }
  148. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  149. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  150. }
  151. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  152. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  153. }
  154. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  155. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  156. }
  157. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  158. buffer->usage = usage;
  159. // FIXME: add a generic callback to the buffer interface
  160. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  161. ggml_backend_multi_buffer_set_usage(buffer, usage);
  162. }
  163. }
  164. enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
  165. return buffer->usage;
  166. }
  167. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  168. return buffer->buft;
  169. }
  170. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  171. if (buffer->iface.reset) {
  172. buffer->iface.reset(buffer);
  173. }
  174. }
  175. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  176. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  177. if (dst_buf->iface.cpy_tensor) {
  178. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  179. }
  180. return false;
  181. }
  182. // backend
  183. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  184. if (backend == NULL) {
  185. return NULL;
  186. }
  187. return backend->guid;
  188. }
  189. const char * ggml_backend_name(ggml_backend_t backend) {
  190. if (backend == NULL) {
  191. return "NULL";
  192. }
  193. return backend->iface.get_name(backend);
  194. }
  195. void ggml_backend_free(ggml_backend_t backend) {
  196. if (backend == NULL) {
  197. return;
  198. }
  199. backend->iface.free(backend);
  200. }
  201. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  202. return ggml_backend_dev_buffer_type(backend->device);
  203. }
  204. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  205. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  206. }
  207. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  208. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  209. }
  210. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  211. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  212. }
  213. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  214. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  215. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  216. if (backend->iface.set_tensor_async == NULL) {
  217. ggml_backend_tensor_set(tensor, data, offset, size);
  218. } else {
  219. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  220. }
  221. }
  222. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  223. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  224. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  225. if (backend->iface.get_tensor_async == NULL) {
  226. ggml_backend_tensor_get(tensor, data, offset, size);
  227. } else {
  228. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  229. }
  230. }
  231. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  232. GGML_ASSERT(tensor);
  233. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  234. if (size == 0) {
  235. return;
  236. }
  237. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  238. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  239. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  240. buf->iface.set_tensor(buf, tensor, data, offset, size);
  241. }
  242. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  243. GGML_ASSERT(tensor);
  244. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  245. if (size == 0) {
  246. return;
  247. }
  248. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  249. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  250. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  251. buf->iface.get_tensor(buf, tensor, data, offset, size);
  252. }
  253. void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  254. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  255. if (size == 0) {
  256. return;
  257. }
  258. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  259. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  260. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  261. GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not implemented by backend buffer");
  262. buf->iface.memset_tensor(buf, tensor, value, offset, size);
  263. }
  264. void ggml_backend_synchronize(ggml_backend_t backend) {
  265. if (backend->iface.synchronize == NULL) {
  266. return;
  267. }
  268. backend->iface.synchronize(backend);
  269. }
  270. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  271. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  272. return backend->iface.graph_plan_create(backend, cgraph);
  273. }
  274. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  275. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  276. backend->iface.graph_plan_free(backend, plan);
  277. }
  278. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  279. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  280. return backend->iface.graph_plan_compute(backend, plan);
  281. }
  282. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  283. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  284. ggml_backend_synchronize(backend);
  285. return err;
  286. }
  287. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  288. return backend->iface.graph_compute(backend, cgraph);
  289. }
  290. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  291. return ggml_backend_dev_supports_op(backend->device, op);
  292. }
  293. bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  294. return ggml_backend_dev_supports_buft(backend->device, buft);
  295. }
  296. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  297. return ggml_backend_dev_offload_op(backend->device, op);
  298. }
  299. ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
  300. return backend->device;
  301. }
  302. // backend copy
  303. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  304. if (a->type != b->type) {
  305. return false;
  306. }
  307. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  308. if (a->ne[i] != b->ne[i]) {
  309. return false;
  310. }
  311. if (a->nb[i] != b->nb[i]) {
  312. return false;
  313. }
  314. }
  315. return true;
  316. }
  317. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  318. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  319. if (src == dst) {
  320. return;
  321. }
  322. if (ggml_backend_buffer_is_host(src->buffer)) {
  323. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  324. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  325. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  326. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  327. #ifndef NDEBUG
  328. GGML_LOG_DEBUG("%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  329. #endif
  330. size_t nbytes = ggml_nbytes(src);
  331. void * data = malloc(nbytes);
  332. ggml_backend_tensor_get(src, data, 0, nbytes);
  333. ggml_backend_tensor_set(dst, data, 0, nbytes);
  334. free(data);
  335. }
  336. }
  337. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  338. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  339. if (src == dst) {
  340. return;
  341. }
  342. if (backend_dst->iface.cpy_tensor_async != NULL) {
  343. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  344. return;
  345. }
  346. }
  347. // an async copy would normally happen after all the queued operations on both backends are completed
  348. // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
  349. ggml_backend_synchronize(backend_src);
  350. ggml_backend_synchronize(backend_dst);
  351. ggml_backend_tensor_copy(src, dst);
  352. }
  353. // events
  354. ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) {
  355. // null device is allowed for the transition period to the device interface
  356. if (device == NULL || device->iface.event_new == NULL) {
  357. return NULL;
  358. }
  359. return device->iface.event_new(device);
  360. }
  361. void ggml_backend_event_free(ggml_backend_event_t event) {
  362. if (event == NULL) {
  363. return;
  364. }
  365. event->device->iface.event_free(event->device, event);
  366. }
  367. void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
  368. GGML_ASSERT(backend->iface.event_record != NULL);
  369. backend->iface.event_record(backend, event);
  370. }
  371. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  372. GGML_ASSERT(event->device->iface.event_synchronize);
  373. event->device->iface.event_synchronize(event->device, event);
  374. }
  375. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  376. GGML_ASSERT(backend->iface.event_wait != NULL);
  377. backend->iface.event_wait(backend, event);
  378. }
  379. // Backend device
  380. const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
  381. return device->iface.get_name(device);
  382. }
  383. const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
  384. return device->iface.get_description(device);
  385. }
  386. void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
  387. device->iface.get_memory(device, free, total);
  388. }
  389. enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
  390. return device->iface.get_type(device);
  391. }
  392. void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
  393. memset(props, 0, sizeof(*props));
  394. device->iface.get_props(device, props);
  395. }
  396. ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
  397. return device->reg;
  398. }
  399. ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
  400. return device->iface.init_backend(device, params);
  401. }
  402. ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
  403. return device->iface.get_buffer_type(device);
  404. }
  405. ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
  406. if (device->iface.get_host_buffer_type == NULL) {
  407. return NULL;
  408. }
  409. return device->iface.get_host_buffer_type(device);
  410. }
  411. ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
  412. return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
  413. }
  414. bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  415. return device->iface.supports_op(device, op);
  416. }
  417. bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
  418. return device->iface.supports_buft(device, buft);
  419. }
  420. bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  421. if (device->iface.offload_op != NULL) {
  422. return device->iface.offload_op(device, op);
  423. }
  424. return false;
  425. }
  426. // Backend (reg)
  427. const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
  428. return reg->iface.get_name(reg);
  429. }
  430. size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
  431. return reg->iface.get_device_count(reg);
  432. }
  433. ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
  434. return reg->iface.get_device(reg, index);
  435. }
  436. void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  437. if (!reg->iface.get_proc_address) {
  438. return NULL;
  439. }
  440. return reg->iface.get_proc_address(reg, name);
  441. }
  442. // multi-buffer buffer
  443. struct ggml_backend_multi_buffer_context {
  444. ggml_backend_buffer_t * buffers;
  445. size_t n_buffers;
  446. };
  447. static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  448. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  449. for (size_t i = 0; i < ctx->n_buffers; i++) {
  450. ggml_backend_buffer_free(ctx->buffers[i]);
  451. }
  452. free(ctx->buffers);
  453. free(ctx);
  454. }
  455. static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  456. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  457. for (size_t i = 0; i < ctx->n_buffers; i++) {
  458. ggml_backend_buffer_clear(ctx->buffers[i], value);
  459. }
  460. }
  461. static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = {
  462. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  463. /* .get_base = */ NULL,
  464. /* .init_tensor = */ NULL,
  465. /* .memset_tensor = */ NULL,
  466. /* .set_tensor = */ NULL,
  467. /* .get_tensor = */ NULL,
  468. /* .cpy_tensor = */ NULL,
  469. /* .clear = */ ggml_backend_multi_buffer_clear,
  470. /* .reset = */ NULL,
  471. };
  472. ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  473. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  474. ctx->n_buffers = n_buffers;
  475. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  476. GGML_ASSERT(ctx->buffers != NULL);
  477. size_t total_size = 0;
  478. for (size_t i = 0; i < n_buffers; i++) {
  479. ctx->buffers[i] = buffers[i];
  480. total_size += ggml_backend_buffer_get_size(buffers[i]);
  481. }
  482. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_i, ctx, total_size);
  483. }
  484. bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  485. return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
  486. }
  487. void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  488. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  489. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  490. for (size_t i = 0; i < ctx->n_buffers; i++) {
  491. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  492. }
  493. }
  494. // creates a copy of the tensor with the same memory layout
  495. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  496. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  497. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  498. dup->nb[i] = tensor->nb[i];
  499. }
  500. return dup;
  501. }
  502. static bool ggml_is_view_op(enum ggml_op op) {
  503. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  504. }
  505. // scheduler
  506. #ifndef GGML_SCHED_MAX_BACKENDS
  507. #define GGML_SCHED_MAX_BACKENDS 16
  508. #endif
  509. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  510. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  511. #endif
  512. #ifndef GGML_SCHED_MAX_COPIES
  513. #define GGML_SCHED_MAX_COPIES 4
  514. #endif
  515. struct ggml_backend_sched_split {
  516. int backend_id;
  517. int i_start;
  518. int i_end;
  519. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  520. int n_inputs;
  521. // graph view of this split
  522. struct ggml_cgraph graph;
  523. };
  524. struct ggml_backend_sched {
  525. bool is_reset; // true if the scheduler has been reset since the last graph split
  526. bool is_alloc;
  527. int n_backends;
  528. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  529. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  530. ggml_gallocr_t galloc;
  531. // hash map of the nodes in the graph
  532. struct ggml_hash_set hash_set;
  533. int * hv_tensor_backend_ids; // [hash_set.size]
  534. struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
  535. int * node_backend_ids; // [graph_size]
  536. int * leaf_backend_ids; // [graph_size]
  537. int * prev_node_backend_ids; // [graph_size]
  538. int * prev_leaf_backend_ids; // [graph_size]
  539. // copy of the graph with modified inputs
  540. struct ggml_cgraph graph;
  541. // graph splits
  542. struct ggml_backend_sched_split * splits;
  543. int n_splits;
  544. int splits_capacity;
  545. // pipeline parallelism support
  546. int n_copies;
  547. int cur_copy;
  548. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  549. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  550. int n_graph_inputs;
  551. struct ggml_context * ctx;
  552. ggml_backend_sched_eval_callback callback_eval;
  553. void * callback_eval_user_data;
  554. char * context_buffer;
  555. size_t context_buffer_size;
  556. int debug;
  557. };
  558. #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
  559. #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
  560. #define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
  561. #define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
  562. // returns the priority of the backend, lower id is higher priority
  563. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  564. for (int i = 0; i < sched->n_backends; i++) {
  565. if (sched->backends[i] == backend) {
  566. return i;
  567. }
  568. }
  569. return -1;
  570. }
  571. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
  572. ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  573. if (buffer == NULL) {
  574. return -1;
  575. }
  576. // find highest prio backend that supports the buffer type and the op
  577. for (int i = 0; i < sched->n_backends; i++) {
  578. if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
  579. ggml_backend_supports_op(sched->backends[i], op)) {
  580. return i;
  581. }
  582. }
  583. #ifndef NDEBUG
  584. GGML_LOG_DEBUG("%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
  585. __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
  586. #endif
  587. return -1;
  588. }
  589. #if 0
  590. #define GGML_SCHED_MAX_SPLITS_DEBUG 4096
  591. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  592. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  593. #define GET_CAUSE(node) causes[hash_id(node)]
  594. #else
  595. #define SET_CAUSE(node, ...)
  596. #define GET_CAUSE(node) ""
  597. #endif
  598. // returns the backend that should be used for the node based on the current locations
  599. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  600. // assign pre-allocated nodes to their backend
  601. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
  602. if (cur_backend_id != -1) {
  603. SET_CAUSE(tensor, "1.dst");
  604. return cur_backend_id;
  605. }
  606. // view_src
  607. if (tensor->view_src != NULL) {
  608. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
  609. if (cur_backend_id != -1) {
  610. SET_CAUSE(tensor, "1.vsrc");
  611. return cur_backend_id;
  612. }
  613. }
  614. if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
  615. // since the tensor is pre-allocated, it cannot be moved to another backend
  616. ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  617. GGML_ABORT("pre-allocated tensor (%s) in a buffer (%s) that cannot run the operation (%s)", tensor->name, ggml_backend_buffer_name(buffer), ggml_op_name(tensor->op));
  618. }
  619. // graph input
  620. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  621. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  622. SET_CAUSE(tensor, "1.inp");
  623. return cur_backend_id;
  624. }
  625. // operations with weights are preferably run on the same backend as the weights
  626. for (int i = 0; i < GGML_MAX_SRC; i++) {
  627. const struct ggml_tensor * src = tensor->src[i];
  628. if (src == NULL) {
  629. continue;
  630. }
  631. // skip ROPE since the rope freqs tensor is too small to choose a backend based on it
  632. // not an ideal solution
  633. if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  634. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
  635. // check if a backend with higher prio wants to offload the op
  636. if (src_backend_id == sched->n_backends - 1) {
  637. for (int b = 0; b < src_backend_id; b++) {
  638. if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
  639. SET_CAUSE(tensor, "1.off");
  640. return b;
  641. }
  642. }
  643. }
  644. SET_CAUSE(tensor, "1.wgt%d", i);
  645. return src_backend_id;
  646. }
  647. }
  648. return -1;
  649. }
  650. static char * fmt_size(size_t size) {
  651. static char buffer[128];
  652. if (size >= 1024*1024) {
  653. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  654. } else {
  655. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  656. }
  657. return buffer;
  658. }
  659. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  660. int cur_split = 0;
  661. for (int i = 0; i < graph->n_nodes; i++) {
  662. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  663. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  664. GGML_LOG_DEBUG("\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  665. sched->splits[cur_split].n_inputs);
  666. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  667. GGML_LOG_DEBUG("[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  668. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  669. }
  670. GGML_LOG_DEBUG("\n");
  671. cur_split++;
  672. }
  673. struct ggml_tensor * node = graph->nodes[i];
  674. if (ggml_is_view_op(node->op)) {
  675. continue;
  676. }
  677. if (sched->debug > 1) {
  678. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  679. GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  680. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  681. for (int j = 0; j < GGML_MAX_SRC; j++) {
  682. struct ggml_tensor * src = node->src[j];
  683. if (src == NULL) {
  684. continue;
  685. }
  686. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  687. GGML_LOG_DEBUG(" %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  688. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  689. }
  690. GGML_LOG_DEBUG("\n");
  691. }
  692. }
  693. }
  694. static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
  695. ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
  696. ggml_backend_buffer_type_t buft = NULL;
  697. if (buf) {
  698. // the tensor is already allocated
  699. buft = buf->buft;
  700. } else {
  701. // see if the tensor already has a backend assigned, and use the buffer type of that backend
  702. int tensor_backend_id = tensor_backend_id(t);
  703. if (tensor_backend_id == -1 && t->view_src) {
  704. tensor_backend_id = tensor_backend_id(t->view_src);
  705. }
  706. if (tensor_backend_id != -1) {
  707. buft = sched->bufts[tensor_backend_id];
  708. }
  709. }
  710. return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
  711. }
  712. static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
  713. if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
  714. *node_backend_id = cur_backend_id;
  715. SET_CAUSE(node, "2.sup");
  716. }
  717. }
  718. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  719. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  720. // reset splits
  721. sched->n_splits = 0;
  722. sched->n_graph_inputs = 0;
  723. sched->is_reset = false;
  724. struct ggml_init_params params = {
  725. /* .mem_size = */ sched->context_buffer_size,
  726. /* .mem_buffer = */ sched->context_buffer,
  727. /* .no_alloc = */ true
  728. };
  729. ggml_free(sched->ctx);
  730. sched->ctx = ggml_init(params);
  731. if (sched->ctx == NULL) {
  732. GGML_ABORT("%s: failed to initialize context\n", __func__);
  733. }
  734. // pass 1: assign backends to ops with pre-allocated inputs
  735. for (int i = 0; i < graph->n_leafs; i++) {
  736. struct ggml_tensor * leaf = graph->leafs[i];
  737. int * leaf_backend_id = &tensor_backend_id(leaf);
  738. // do not overwrite user assignments
  739. if (*leaf_backend_id == -1) {
  740. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  741. }
  742. }
  743. for (int i = 0; i < graph->n_nodes; i++) {
  744. struct ggml_tensor * node = graph->nodes[i];
  745. int * node_backend_id = &tensor_backend_id(node);
  746. // do not overwrite user assignments
  747. if (*node_backend_id == -1) {
  748. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  749. #if 0
  750. // src
  751. if (node->op == GGML_OP_NONE) {
  752. continue;
  753. }
  754. for (int j = 0; j < GGML_MAX_SRC; j++) {
  755. struct ggml_tensor * src = node->src[j];
  756. if (src == NULL) {
  757. continue;
  758. }
  759. int * src_backend_id = &tensor_backend_id(src);
  760. if (*src_backend_id == -1) {
  761. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  762. }
  763. }
  764. #endif
  765. }
  766. }
  767. // pass 2: expand current backend assignments
  768. // assign the same backend to adjacent nodes
  769. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  770. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  771. // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
  772. // expand gpu down
  773. {
  774. int cur_backend_id = -1;
  775. for (int i = 0; i < graph->n_nodes; i++) {
  776. struct ggml_tensor * node = graph->nodes[i];
  777. if (ggml_is_view_op(node->op)) {
  778. continue;
  779. }
  780. int * node_backend_id = &tensor_backend_id(node);
  781. if (*node_backend_id != -1) {
  782. if (*node_backend_id == sched->n_backends - 1) {
  783. // skip cpu (lowest prio backend)
  784. cur_backend_id = -1;
  785. } else {
  786. cur_backend_id = *node_backend_id;
  787. }
  788. } else if (cur_backend_id != -1) {
  789. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  790. }
  791. }
  792. }
  793. // expand gpu up
  794. {
  795. int cur_backend_id = -1;
  796. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  797. struct ggml_tensor * node = graph->nodes[i];
  798. if (ggml_is_view_op(node->op)) {
  799. continue;
  800. }
  801. int * node_backend_id = &tensor_backend_id(node);
  802. if (*node_backend_id != -1) {
  803. if (*node_backend_id == sched->n_backends - 1) {
  804. // skip cpu (lowest prio backend)
  805. cur_backend_id = -1;
  806. } else {
  807. cur_backend_id = *node_backend_id;
  808. }
  809. } else if (cur_backend_id != -1) {
  810. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  811. }
  812. }
  813. }
  814. // expand rest down
  815. {
  816. int cur_backend_id = -1;
  817. for (int i = 0; i < graph->n_nodes; i++) {
  818. struct ggml_tensor * node = graph->nodes[i];
  819. if (ggml_is_view_op(node->op)) {
  820. continue;
  821. }
  822. int * node_backend_id = &tensor_backend_id(node);
  823. if (*node_backend_id != -1) {
  824. cur_backend_id = *node_backend_id;
  825. } else if (cur_backend_id != -1) {
  826. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  827. }
  828. }
  829. }
  830. // expand rest up
  831. {
  832. int cur_backend_id = -1;
  833. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  834. struct ggml_tensor * node = graph->nodes[i];
  835. if (ggml_is_view_op(node->op)) {
  836. continue;
  837. }
  838. int * node_backend_id = &tensor_backend_id(node);
  839. if (*node_backend_id != -1) {
  840. cur_backend_id = *node_backend_id;
  841. } else if (cur_backend_id != -1) {
  842. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  843. }
  844. }
  845. }
  846. // pass 3: upgrade nodes to higher prio backends with compatible buffer types
  847. // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
  848. // however, we also need to verify that the sources are in compatible buffer types
  849. // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
  850. // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
  851. // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
  852. // additionally, set remaining unassigned nodes to the backend with the most supported inputs
  853. // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
  854. for (int i = 0; i < graph->n_nodes; i++) {
  855. struct ggml_tensor * node = graph->nodes[i];
  856. if (ggml_is_view_op(node->op)) {
  857. continue;
  858. }
  859. int * node_backend_id = &tensor_backend_id(node);
  860. if (*node_backend_id == -1) {
  861. // unassigned node: find the backend with the most supported inputs
  862. int n_supported_best = -1;
  863. for (int b = 0; b < sched->n_backends; b++) {
  864. if (ggml_backend_supports_op(sched->backends[b], node)) {
  865. int n_supported = 0;
  866. for (int j = 0; j < GGML_MAX_SRC; j++) {
  867. struct ggml_tensor * src = node->src[j];
  868. if (src == NULL) {
  869. continue;
  870. }
  871. if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
  872. n_supported++;
  873. }
  874. }
  875. if (n_supported > n_supported_best) {
  876. n_supported_best = n_supported;
  877. *node_backend_id = b;
  878. SET_CAUSE(node, "3.best");
  879. }
  880. }
  881. }
  882. } else {
  883. // assigned node: upgrade to higher prio backend if possible
  884. for (int b = 0; b < *node_backend_id; b++) {
  885. if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
  886. bool supported = true;
  887. for (int j = 0; j < GGML_MAX_SRC; j++) {
  888. struct ggml_tensor * src = node->src[j];
  889. if (src == NULL) {
  890. continue;
  891. }
  892. if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
  893. supported = false;
  894. break;
  895. }
  896. }
  897. if (supported) {
  898. *node_backend_id = b;
  899. SET_CAUSE(node, "3.upg");
  900. break;
  901. }
  902. }
  903. }
  904. }
  905. }
  906. // pass 4: assign backends to remaining src from dst and view_src
  907. for (int i = 0; i < graph->n_nodes; i++) {
  908. struct ggml_tensor * node = graph->nodes[i];
  909. int * cur_backend_id = &tensor_backend_id(node);
  910. if (node->view_src != NULL && *cur_backend_id == -1) {
  911. *cur_backend_id = tensor_backend_id(node->view_src);
  912. SET_CAUSE(node, "4.vsrc");
  913. }
  914. for (int j = 0; j < GGML_MAX_SRC; j++) {
  915. struct ggml_tensor * src = node->src[j];
  916. if (src == NULL) {
  917. continue;
  918. }
  919. int * src_backend_id = &tensor_backend_id(src);
  920. if (*src_backend_id == -1) {
  921. if (src->view_src != NULL) {
  922. // views are always on the same backend as the source
  923. *src_backend_id = tensor_backend_id(src->view_src);
  924. SET_CAUSE(src, "4.vsrc");
  925. } else {
  926. *src_backend_id = *cur_backend_id;
  927. SET_CAUSE(src, "4.cur");
  928. }
  929. }
  930. }
  931. }
  932. // pass 5: split graph, find tensors that need to be copied
  933. {
  934. int i_split = 0;
  935. struct ggml_backend_sched_split * split = &sched->splits[0];
  936. // find the backend of the first split, skipping view ops
  937. int i = 0;
  938. for (; i < graph->n_nodes; i++) {
  939. struct ggml_tensor * node = graph->nodes[i];
  940. if (!ggml_is_view_op(node->op)) {
  941. split->backend_id = tensor_backend_id(node);
  942. break;
  943. }
  944. }
  945. split->i_start = 0;
  946. split->n_inputs = 0;
  947. int cur_backend_id = split->backend_id;
  948. for (; i < graph->n_nodes; i++) {
  949. struct ggml_tensor * node = graph->nodes[i];
  950. if (ggml_is_view_op(node->op)) {
  951. continue;
  952. }
  953. const int node_backend_id = tensor_backend_id(node);
  954. assert(node_backend_id != -1); // all nodes should be assigned by now
  955. // check if we should start a new split based on the sources of the current node
  956. bool need_new_split = false;
  957. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  958. for (int j = 0; j < GGML_MAX_SRC; j++) {
  959. struct ggml_tensor * src = node->src[j];
  960. if (src == NULL) {
  961. continue;
  962. }
  963. // check if a weight is on a different and incompatible backend
  964. // by starting a new split, the memory of the previously offloaded weights can be reused
  965. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  966. int src_backend_id = tensor_backend_id(src);
  967. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  968. need_new_split = true;
  969. break;
  970. }
  971. }
  972. // check if the split has too many inputs
  973. // FIXME: count the number of inputs instead of only checking when full
  974. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  975. const size_t id = hash_id(src);
  976. int src_backend_id = sched->hv_tensor_backend_ids[id];
  977. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  978. if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
  979. need_new_split = true;
  980. break;
  981. }
  982. }
  983. }
  984. }
  985. if (node_backend_id != cur_backend_id || need_new_split) {
  986. split->i_end = i;
  987. i_split++;
  988. if (i_split >= sched->splits_capacity) {
  989. sched->splits_capacity *= 2;
  990. sched->splits = (ggml_backend_sched_split *)
  991. realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  992. GGML_ASSERT(sched->splits != NULL);
  993. }
  994. split = &sched->splits[i_split];
  995. split->backend_id = node_backend_id;
  996. split->i_start = i;
  997. split->n_inputs = 0;
  998. cur_backend_id = node_backend_id;
  999. }
  1000. // find inputs that are not on the same backend
  1001. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1002. struct ggml_tensor * src = node->src[j];
  1003. if (src == NULL) {
  1004. continue;
  1005. }
  1006. size_t src_id = hash_id(src);
  1007. const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
  1008. assert(src_backend_id != -1); // all inputs should be assigned by now
  1009. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1010. if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
  1011. ggml_backend_t backend = sched->backends[src_backend_id];
  1012. for (int c = 0; c < sched->n_copies; c++) {
  1013. struct ggml_tensor * tensor_copy;
  1014. if (c == sched->cur_copy) {
  1015. tensor_copy = src; // use the original tensor as the current copy
  1016. } else {
  1017. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1018. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1019. }
  1020. if (sched->n_copies > 1) {
  1021. ggml_set_input(tensor_copy);
  1022. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1023. }
  1024. tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
  1025. SET_CAUSE(tensor_copy, "4.cpy");
  1026. }
  1027. int n_graph_inputs = sched->n_graph_inputs++;
  1028. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1029. sched->graph_inputs[n_graph_inputs] = src;
  1030. }
  1031. }
  1032. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1033. // create a copy of the input in the split's backend
  1034. if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
  1035. ggml_backend_t backend = sched->backends[cur_backend_id];
  1036. for (int c = 0; c < sched->n_copies; c++) {
  1037. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1038. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1039. if (sched->n_copies > 1) {
  1040. ggml_set_input(tensor_copy);
  1041. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1042. }
  1043. tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
  1044. SET_CAUSE(tensor_copy, "4.cpy");
  1045. }
  1046. int n_inputs = split->n_inputs++;
  1047. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1048. split->inputs[n_inputs] = src;
  1049. }
  1050. node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
  1051. }
  1052. }
  1053. }
  1054. split->i_end = graph->n_nodes;
  1055. sched->n_splits = i_split + 1;
  1056. }
  1057. if (sched->debug) {
  1058. ggml_backend_sched_print_assignments(sched, graph);
  1059. }
  1060. // swap node_backend_ids and leaf _backend_ids with prevs
  1061. {
  1062. int * tmp = sched->node_backend_ids;
  1063. sched->node_backend_ids = sched->prev_node_backend_ids;
  1064. sched->prev_node_backend_ids = tmp;
  1065. tmp = sched->leaf_backend_ids;
  1066. sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
  1067. sched->prev_leaf_backend_ids = tmp;
  1068. }
  1069. int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
  1070. if (sched->graph.size < graph_size) {
  1071. sched->graph.size = graph_size;
  1072. sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
  1073. sched->graph.leafs = (ggml_tensor **) realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
  1074. GGML_ASSERT(sched->graph.nodes != NULL);
  1075. GGML_ASSERT(sched->graph.leafs != NULL);
  1076. }
  1077. sched->graph.n_nodes = 0;
  1078. sched->graph.n_leafs = 0;
  1079. struct ggml_cgraph * graph_copy = &sched->graph;
  1080. for (int i = 0; i < sched->n_splits; i++) {
  1081. struct ggml_backend_sched_split * split = &sched->splits[i];
  1082. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1083. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1084. for (int j = 0; j < split->n_inputs; j++) {
  1085. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1086. struct ggml_tensor * input = split->inputs[j];
  1087. const size_t input_id = hash_id(input);
  1088. struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
  1089. // add a dependency to the input source so that it is not freed before the copy is done
  1090. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1091. input_dep->src[0] = input;
  1092. sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
  1093. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1094. // add a dependency to the input copy so that it is allocated at the start of the split
  1095. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1096. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1097. }
  1098. for (int j = split->i_start; j < split->i_end; j++) {
  1099. assert(graph_copy->size > graph_copy->n_nodes);
  1100. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1101. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1102. }
  1103. }
  1104. if (sched->n_copies > 1) {
  1105. // add input copies as leafs so that they are allocated first
  1106. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1107. struct ggml_tensor * input = sched->graph_inputs[i];
  1108. size_t id = hash_id(input);
  1109. int backend_id = tensor_backend_id(input);
  1110. for (int c = 0; c < sched->n_copies; c++) {
  1111. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1112. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1113. assert(graph_copy->size > graph_copy->n_leafs);
  1114. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1115. }
  1116. }
  1117. for (int i = 0; i < sched->n_splits; i++) {
  1118. struct ggml_backend_sched_split * split = &sched->splits[i];
  1119. int backend_id = split->backend_id;
  1120. for (int j = 0; j < split->n_inputs; j++) {
  1121. struct ggml_tensor * input = split->inputs[j];
  1122. size_t id = hash_id(input);
  1123. for (int c = 0; c < sched->n_copies; c++) {
  1124. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1125. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1126. assert(graph_copy->size > graph_copy->n_leafs);
  1127. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1128. }
  1129. }
  1130. }
  1131. }
  1132. // add leafs from the original graph
  1133. for (int i = 0; i < graph->n_leafs; i++) {
  1134. struct ggml_tensor * leaf = graph->leafs[i];
  1135. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1136. assert(graph_copy->size > graph_copy->n_leafs);
  1137. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1138. }
  1139. }
  1140. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1141. bool backend_ids_changed = false;
  1142. for (int i = 0; i < sched->graph.n_nodes; i++) {
  1143. if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
  1144. sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
  1145. backend_ids_changed = true;
  1146. break;
  1147. }
  1148. }
  1149. if (!backend_ids_changed) {
  1150. for (int i = 0; i < sched->graph.n_leafs; i++) {
  1151. if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
  1152. sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
  1153. backend_ids_changed = true;
  1154. break;
  1155. }
  1156. }
  1157. }
  1158. // allocate graph
  1159. if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1160. // the re-allocation may cause the split inputs to be moved to a different address
  1161. ggml_backend_sched_synchronize(sched);
  1162. #ifndef NDEBUG
  1163. GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
  1164. #endif
  1165. ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1166. if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1167. GGML_LOG_ERROR("%s: failed to allocate graph\n", __func__);
  1168. return false;
  1169. }
  1170. }
  1171. return true;
  1172. }
  1173. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1174. struct ggml_backend_sched_split * splits = sched->splits;
  1175. for (int i = 0; i < sched->n_splits; i++) {
  1176. struct ggml_backend_sched_split * split = &splits[i];
  1177. int split_backend_id = split->backend_id;
  1178. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1179. // copy the input tensors to the split backend
  1180. for (int j = 0; j < split->n_inputs; j++) {
  1181. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1182. struct ggml_tensor * input = split->inputs[j];
  1183. struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
  1184. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1185. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1186. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1187. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1188. } else {
  1189. ggml_backend_synchronize(split_backend);
  1190. }
  1191. ggml_backend_tensor_copy(input, input_cpy);
  1192. } else {
  1193. // wait for the split backend to finish using the input before overwriting it
  1194. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1195. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1196. } else {
  1197. ggml_backend_synchronize(split_backend);
  1198. }
  1199. // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
  1200. // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
  1201. if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
  1202. ggml_backend_synchronize(input_backend);
  1203. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1204. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1205. } else {
  1206. ggml_backend_synchronize(split_backend);
  1207. }
  1208. ggml_backend_tensor_copy(input, input_cpy);
  1209. }
  1210. }
  1211. }
  1212. if (!sched->callback_eval) {
  1213. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1214. if (ec != GGML_STATUS_SUCCESS) {
  1215. return ec;
  1216. }
  1217. } else {
  1218. // similar to ggml_backend_compare_graph_backend
  1219. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1220. struct ggml_tensor * t = split->graph.nodes[j0];
  1221. // check if the user needs data from this node
  1222. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1223. int j1 = j0;
  1224. // determine the range [j0, j1] of nodes that can be computed together
  1225. while (!need && j1 < split->graph.n_nodes - 1) {
  1226. t = split->graph.nodes[++j1];
  1227. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1228. }
  1229. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1230. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1231. if (ec != GGML_STATUS_SUCCESS) {
  1232. return ec;
  1233. }
  1234. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1235. ggml_backend_synchronize(split_backend);
  1236. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1237. break;
  1238. }
  1239. j0 = j1;
  1240. }
  1241. }
  1242. // record the event of this copy
  1243. if (split->n_inputs > 0) {
  1244. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1245. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy], split_backend);
  1246. }
  1247. }
  1248. }
  1249. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1250. return GGML_STATUS_SUCCESS;
  1251. }
  1252. ggml_backend_sched_t ggml_backend_sched_new(
  1253. ggml_backend_t * backends,
  1254. ggml_backend_buffer_type_t * bufts,
  1255. int n_backends,
  1256. size_t graph_size,
  1257. bool parallel) {
  1258. GGML_ASSERT(n_backends > 0);
  1259. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1260. GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
  1261. struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched));
  1262. const char * GGML_SCHED_DEBUG = getenv("GGML_SCHED_DEBUG");
  1263. sched->debug = GGML_SCHED_DEBUG ? atoi(GGML_SCHED_DEBUG) : 0;
  1264. sched->n_backends = n_backends;
  1265. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1266. // initialize hash table
  1267. // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
  1268. sched->hash_set = ggml_hash_set_new(graph_size);
  1269. sched->hv_tensor_backend_ids = (int *) malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1270. sched->hv_tensor_copies = (ggml_tensor **) malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1271. const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
  1272. const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1273. sched->node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1274. sched->leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1275. sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
  1276. sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
  1277. sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
  1278. sched->context_buffer = (char *) malloc(sched->context_buffer_size);
  1279. const int initial_splits_capacity = 16;
  1280. sched->splits = (ggml_backend_sched_split *) calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1281. sched->splits_capacity = initial_splits_capacity;
  1282. for (int b = 0; b < n_backends; b++) {
  1283. sched->backends[b] = backends[b];
  1284. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1285. GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
  1286. if (sched->n_copies > 1) {
  1287. for (int c = 0; c < sched->n_copies; c++) {
  1288. sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
  1289. }
  1290. }
  1291. }
  1292. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1293. ggml_backend_sched_reset(sched);
  1294. return sched;
  1295. }
  1296. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1297. if (sched == NULL) {
  1298. return;
  1299. }
  1300. for (int b = 0; b < sched->n_backends; b++) {
  1301. for (int c = 0; c < sched->n_copies; c++) {
  1302. ggml_backend_event_free(sched->events[b][c]);
  1303. }
  1304. }
  1305. ggml_gallocr_free(sched->galloc);
  1306. ggml_free(sched->ctx);
  1307. ggml_hash_set_free(&sched->hash_set);
  1308. free(sched->splits);
  1309. free(sched->hv_tensor_backend_ids);
  1310. free(sched->hv_tensor_copies);
  1311. free(sched->node_backend_ids);
  1312. free(sched->leaf_backend_ids);
  1313. free(sched->prev_node_backend_ids);
  1314. free(sched->prev_leaf_backend_ids);
  1315. free(sched->context_buffer);
  1316. free(sched->graph.nodes);
  1317. free(sched->graph.leafs);
  1318. free(sched);
  1319. }
  1320. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1321. // reset state for the next run
  1322. if (!sched->is_reset) {
  1323. ggml_hash_set_reset(&sched->hash_set);
  1324. memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1325. memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1326. sched->is_reset = true;
  1327. }
  1328. sched->is_alloc = false;
  1329. }
  1330. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1331. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
  1332. ggml_backend_sched_split_graph(sched, measure_graph);
  1333. ggml_backend_sched_synchronize(sched);
  1334. if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1335. return false;
  1336. }
  1337. ggml_backend_sched_reset(sched);
  1338. return true;
  1339. }
  1340. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1341. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
  1342. ggml_backend_sched_split_graph(sched, graph);
  1343. if (!ggml_backend_sched_alloc_splits(sched)) {
  1344. return false;
  1345. }
  1346. sched->is_alloc = true;
  1347. return true;
  1348. }
  1349. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1350. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1351. ggml_backend_sched_synchronize(sched);
  1352. return err;
  1353. }
  1354. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1355. if (!sched->is_reset && !sched->is_alloc) {
  1356. ggml_backend_sched_reset(sched);
  1357. }
  1358. if (!sched->is_alloc) {
  1359. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1360. return GGML_STATUS_ALLOC_FAILED;
  1361. }
  1362. }
  1363. return ggml_backend_sched_compute_splits(sched);
  1364. }
  1365. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1366. for (int i = 0; i < sched->n_backends; i++) {
  1367. ggml_backend_synchronize(sched->backends[i]);
  1368. }
  1369. }
  1370. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1371. sched->callback_eval = callback;
  1372. sched->callback_eval_user_data = user_data;
  1373. }
  1374. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1375. return sched->n_splits;
  1376. }
  1377. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1378. return sched->n_copies;
  1379. }
  1380. int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
  1381. return sched->n_backends;
  1382. }
  1383. ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
  1384. GGML_ASSERT(i >= 0 && i < sched->n_backends);
  1385. return sched->backends[i];
  1386. }
  1387. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1388. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1389. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1390. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1391. }
  1392. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1393. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1394. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1395. tensor_backend_id(node) = backend_index;
  1396. SET_CAUSE(node, "usr");
  1397. sched->is_reset = false;
  1398. }
  1399. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1400. int backend_index = tensor_backend_id(node);
  1401. if (backend_index == -1) {
  1402. return NULL;
  1403. }
  1404. return sched->backends[backend_index];
  1405. }
  1406. // utils
  1407. void ggml_backend_view_init(struct ggml_tensor * tensor) {
  1408. GGML_ASSERT(tensor->buffer == NULL);
  1409. GGML_ASSERT(tensor->view_src != NULL);
  1410. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1411. GGML_ASSERT(tensor->view_src->data != NULL);
  1412. tensor->buffer = tensor->view_src->buffer;
  1413. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1414. ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  1415. }
  1416. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1417. GGML_ASSERT(tensor->buffer == NULL);
  1418. GGML_ASSERT(tensor->data == NULL);
  1419. GGML_ASSERT(tensor->view_src == NULL);
  1420. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1421. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1422. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1423. tensor->buffer = buffer;
  1424. tensor->data = addr;
  1425. ggml_backend_buffer_init_tensor(buffer, tensor);
  1426. }
  1427. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1428. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1429. GGML_ASSERT(src != NULL);
  1430. GGML_ASSERT(src->data && "graph must be allocated");
  1431. size_t id = ggml_hash_insert(&hash_set, src);
  1432. if (id == GGML_HASHSET_ALREADY_EXISTS) {
  1433. return node_copies[ggml_hash_find(&hash_set, src)];
  1434. }
  1435. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1436. if (src->view_src != NULL) {
  1437. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1438. dst->view_offs = src->view_offs;
  1439. }
  1440. dst->op = src->op;
  1441. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1442. ggml_set_name(dst, src->name);
  1443. // copy src
  1444. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1445. struct ggml_tensor * s = src->src[i];
  1446. if (s == NULL) {
  1447. continue;
  1448. }
  1449. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1450. }
  1451. node_copies[id] = dst;
  1452. return dst;
  1453. }
  1454. static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1455. size_t id = ggml_hash_find(hash_set, src);
  1456. if (node_init[id]) {
  1457. return;
  1458. }
  1459. node_init[id] = true;
  1460. struct ggml_tensor * dst = node_copies[id];
  1461. if (dst->view_src != NULL) {
  1462. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1463. ggml_backend_view_init(dst);
  1464. }
  1465. else {
  1466. ggml_backend_tensor_copy(src, dst);
  1467. }
  1468. // init src
  1469. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1470. struct ggml_tensor * s = src->src[i];
  1471. if (s == NULL) {
  1472. continue;
  1473. }
  1474. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1475. }
  1476. }
  1477. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1478. struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
  1479. struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1480. bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
  1481. struct ggml_init_params params = {
  1482. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1483. /* .mem_buffer = */ NULL,
  1484. /* .no_alloc = */ true
  1485. };
  1486. struct ggml_context * ctx_allocated = ggml_init(params);
  1487. struct ggml_context * ctx_unallocated = ggml_init(params);
  1488. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1489. GGML_LOG_ERROR("%s: failed to allocate context for graph copy\n", __func__);
  1490. ggml_hash_set_free(&hash_set);
  1491. free(node_copies);
  1492. free(node_init);
  1493. ggml_free(ctx_allocated);
  1494. ggml_free(ctx_unallocated);
  1495. return {
  1496. /* .buffer = */ NULL,
  1497. /* .ctx_allocated = */ NULL,
  1498. /* .ctx_unallocated = */ NULL,
  1499. /* .graph = */ NULL,
  1500. };
  1501. }
  1502. // dup nodes
  1503. for (int i = 0; i < graph->n_nodes; i++) {
  1504. struct ggml_tensor * node = graph->nodes[i];
  1505. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1506. }
  1507. // allocate nodes
  1508. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1509. if (buffer == NULL) {
  1510. GGML_LOG_ERROR("%s: failed to allocate buffer for graph copy\n", __func__);
  1511. ggml_hash_set_free(&hash_set);
  1512. free(node_copies);
  1513. free(node_init);
  1514. ggml_free(ctx_allocated);
  1515. ggml_free(ctx_unallocated);
  1516. return {
  1517. /* .buffer = */ NULL,
  1518. /* .ctx_allocated = */ NULL,
  1519. /* .ctx_unallocated = */ NULL,
  1520. /* .graph = */ NULL,
  1521. };
  1522. }
  1523. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1524. // copy data and init views
  1525. for (int i = 0; i < graph->n_nodes; i++) {
  1526. struct ggml_tensor * node = graph->nodes[i];
  1527. graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
  1528. }
  1529. // build graph copy
  1530. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1531. for (int i = 0; i < graph->n_nodes; i++) {
  1532. struct ggml_tensor * node = graph->nodes[i];
  1533. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
  1534. graph_copy->nodes[i] = node_copy;
  1535. }
  1536. graph_copy->n_nodes = graph->n_nodes;
  1537. ggml_hash_set_free(&hash_set);
  1538. free(node_copies);
  1539. free(node_init);
  1540. return {
  1541. /* .buffer = */ buffer,
  1542. /* .ctx_allocated = */ ctx_allocated,
  1543. /* .ctx_unallocated = */ ctx_unallocated,
  1544. /* .graph = */ graph_copy,
  1545. };
  1546. }
  1547. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1548. ggml_backend_buffer_free(copy.buffer);
  1549. ggml_free(copy.ctx_allocated);
  1550. ggml_free(copy.ctx_unallocated);
  1551. }
  1552. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1553. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1554. if (copy.buffer == NULL) {
  1555. return false;
  1556. }
  1557. struct ggml_cgraph * g1 = graph;
  1558. struct ggml_cgraph * g2 = copy.graph;
  1559. assert(g1->n_nodes == g2->n_nodes);
  1560. for (int i = 0; i < g1->n_nodes; i++) {
  1561. //printf("eval %d/%d\n", i, g1->n_nodes);
  1562. struct ggml_tensor * t1 = g1->nodes[i];
  1563. struct ggml_tensor * t2 = g2->nodes[i];
  1564. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1565. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1566. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1567. ggml_backend_graph_compute(backend1, &g1v);
  1568. ggml_backend_graph_compute(backend2, &g2v);
  1569. if (ggml_is_view_op(t1->op)) {
  1570. continue;
  1571. }
  1572. // compare results, calculate rms etc
  1573. if (!callback(i, t1, t2, user_data)) {
  1574. break;
  1575. }
  1576. }
  1577. ggml_backend_graph_copy_free(copy);
  1578. return true;
  1579. }
  1580. // CPU backend - buffer
  1581. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  1582. uintptr_t data = (uintptr_t)buffer->context;
  1583. // align the buffer
  1584. if (data % TENSOR_ALIGNMENT != 0) {
  1585. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  1586. }
  1587. return (void *)data;
  1588. }
  1589. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  1590. ggml_aligned_free(buffer->context, buffer->size);
  1591. }
  1592. static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  1593. memset((char *)tensor->data + offset, value, size);
  1594. GGML_UNUSED(buffer);
  1595. }
  1596. static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1597. memcpy((char *)tensor->data + offset, data, size);
  1598. GGML_UNUSED(buffer);
  1599. }
  1600. static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1601. memcpy(data, (const char *)tensor->data + offset, size);
  1602. GGML_UNUSED(buffer);
  1603. }
  1604. static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  1605. if (ggml_backend_buffer_is_host(src->buffer)) {
  1606. memcpy(dst->data, src->data, ggml_nbytes(src));
  1607. return true;
  1608. }
  1609. return false;
  1610. GGML_UNUSED(buffer);
  1611. }
  1612. static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  1613. memset(buffer->context, value, buffer->size);
  1614. }
  1615. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
  1616. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  1617. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1618. /* .init_tensor = */ NULL, // no initialization required
  1619. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1620. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1621. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1622. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1623. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1624. /* .reset = */ NULL,
  1625. };
  1626. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
  1627. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  1628. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1629. /* .init_tensor = */ NULL, // no initialization required
  1630. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1631. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1632. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1633. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1634. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1635. /* .reset = */ NULL,
  1636. };
  1637. // CPU backend buffer type
  1638. // this buffer type is defined here to make it available to all backends
  1639. static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  1640. return "CPU";
  1641. GGML_UNUSED(buft);
  1642. }
  1643. static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  1644. void * data = ggml_aligned_malloc(size);
  1645. if (data == NULL) {
  1646. GGML_LOG_ERROR("%s: failed to allocate buffer of size %zu\n", __func__, size);
  1647. return NULL;
  1648. }
  1649. return ggml_backend_buffer_init(buft, ggml_backend_cpu_buffer_i, data, size);
  1650. }
  1651. static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  1652. return TENSOR_ALIGNMENT;
  1653. GGML_UNUSED(buft);
  1654. }
  1655. static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  1656. return true;
  1657. GGML_UNUSED(buft);
  1658. }
  1659. ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  1660. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1661. /* .iface = */ {
  1662. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  1663. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1664. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1665. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1666. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1667. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1668. },
  1669. /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1670. /* .context = */ NULL,
  1671. };
  1672. return &ggml_backend_cpu_buffer_type;
  1673. }
  1674. static const char * ggml_backend_cpu_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
  1675. return "CPU_Mapped";
  1676. GGML_UNUSED(buft);
  1677. }
  1678. static ggml_backend_buffer_type_t ggml_backend_cpu_buffer_from_ptr_type(void) {
  1679. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1680. /* .iface = */ {
  1681. /* .get_name = */ ggml_backend_cpu_buffer_from_ptr_type_get_name,
  1682. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1683. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1684. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1685. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1686. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1687. },
  1688. /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1689. /* .context = */ NULL,
  1690. };
  1691. return &ggml_backend_cpu_buffer_type;
  1692. }
  1693. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  1694. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  1695. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_from_ptr_type(), ggml_backend_cpu_buffer_from_ptr_i, ptr, size);
  1696. }