ggml-quants.c 639 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898
  1. /**
  2. * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define GGML_COMMON_IMPL_C
  27. #include "ggml-common.h"
  28. #include "ggml-quants.h"
  29. #include "ggml-impl.h"
  30. #include <math.h>
  31. #include <string.h>
  32. #include <assert.h>
  33. #include <float.h>
  34. #include <stdlib.h> // for qsort
  35. #include <stdio.h> // for GGML_ASSERT
  36. #define GROUP_MAX_EPS 1e-15f
  37. #define GROUP_MAX_EPS_IQ3_XXS 1e-8f
  38. #define GROUP_MAX_EPS_IQ2_S 1e-8f
  39. #define GROUP_MAX_EPS_IQ1_M 1e-7f
  40. #define GROUP_MAX_EPS_IQ1_S 1e-12f
  41. #if defined(_MSC_VER)
  42. // disable "possible loss of data" to avoid warnings for hundreds of casts
  43. // we should just be careful :)
  44. #pragma warning(disable: 4244 4267)
  45. #endif
  46. #define UNUSED GGML_UNUSED
  47. // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
  48. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  49. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  50. // multiply int8_t, add results pairwise twice
  51. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  52. // Get absolute values of x vectors
  53. const __m128i ax = _mm_sign_epi8(x, x);
  54. // Sign the values of the y vectors
  55. const __m128i sy = _mm_sign_epi8(y, x);
  56. // Perform multiplication and create 16-bit values
  57. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  58. const __m128i ones = _mm_set1_epi16(1);
  59. return _mm_madd_epi16(ones, dot);
  60. }
  61. #if __AVX__ || __AVX2__ || __AVX512F__
  62. // horizontally add 8 floats
  63. static inline float hsum_float_8(const __m256 x) {
  64. __m128 res = _mm256_extractf128_ps(x, 1);
  65. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  66. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  67. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  68. return _mm_cvtss_f32(res);
  69. }
  70. // horizontally add 8 int32_t
  71. static inline int hsum_i32_8(const __m256i a) {
  72. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  73. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  74. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  75. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  76. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  77. }
  78. // horizontally add 4 int32_t
  79. static inline int hsum_i32_4(const __m128i a) {
  80. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  81. const __m128i sum64 = _mm_add_epi32(hi64, a);
  82. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  83. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  84. }
  85. #if defined(__AVX2__) || defined(__AVX512F__)
  86. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  87. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  88. uint32_t x32;
  89. memcpy(&x32, x, sizeof(uint32_t));
  90. const __m256i shuf_mask = _mm256_set_epi64x(
  91. 0x0303030303030303, 0x0202020202020202,
  92. 0x0101010101010101, 0x0000000000000000);
  93. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  94. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  95. bytes = _mm256_or_si256(bytes, bit_mask);
  96. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  97. }
  98. // Unpack 32 4-bit fields into 32 bytes
  99. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  100. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  101. {
  102. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  103. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  104. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  105. return _mm256_and_si256(lowMask, bytes);
  106. }
  107. // add int16_t pairwise and return as float vector
  108. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  109. const __m256i ones = _mm256_set1_epi16(1);
  110. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  111. return _mm256_cvtepi32_ps(summed_pairs);
  112. }
  113. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  114. #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
  115. const __m256i zero = _mm256_setzero_si256();
  116. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  117. return _mm256_cvtepi32_ps(summed_pairs);
  118. #else
  119. // Perform multiplication and create 16-bit values
  120. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  121. return sum_i16_pairs_float(dot);
  122. #endif
  123. }
  124. // multiply int8_t, add results pairwise twice and return as float vector
  125. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  126. #if __AVXVNNIINT8__
  127. const __m256i zero = _mm256_setzero_si256();
  128. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  129. return _mm256_cvtepi32_ps(summed_pairs);
  130. #else
  131. // Get absolute values of x vectors
  132. const __m256i ax = _mm256_sign_epi8(x, x);
  133. // Sign the values of the y vectors
  134. const __m256i sy = _mm256_sign_epi8(y, x);
  135. return mul_sum_us8_pairs_float(ax, sy);
  136. #endif
  137. }
  138. static inline __m128i packNibbles( __m256i bytes )
  139. {
  140. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  141. #if __AVX512F__
  142. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  143. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  144. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  145. #else
  146. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  147. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  148. __m256i low = _mm256_and_si256( lowByte, bytes );
  149. high = _mm256_srli_epi16( high, 4 );
  150. bytes = _mm256_or_si256( low, high );
  151. // Compress uint16_t lanes into bytes
  152. __m128i r0 = _mm256_castsi256_si128( bytes );
  153. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  154. return _mm_packus_epi16( r0, r1 );
  155. #endif
  156. }
  157. #elif defined(__AVX__)
  158. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  159. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  160. uint32_t x32;
  161. memcpy(&x32, x, sizeof(uint32_t));
  162. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  163. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  164. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  165. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  166. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  167. bytesl = _mm_or_si128(bytesl, bit_mask);
  168. bytesh = _mm_or_si128(bytesh, bit_mask);
  169. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  170. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  171. return MM256_SET_M128I(bytesh, bytesl);
  172. }
  173. // Unpack 32 4-bit fields into 32 bytes
  174. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  175. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  176. {
  177. // Load 16 bytes from memory
  178. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  179. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  180. const __m128i lowMask = _mm_set1_epi8(0xF);
  181. tmpl = _mm_and_si128(lowMask, tmpl);
  182. tmph = _mm_and_si128(lowMask, tmph);
  183. return MM256_SET_M128I(tmph, tmpl);
  184. }
  185. // add int16_t pairwise and return as float vector
  186. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  187. const __m128i ones = _mm_set1_epi16(1);
  188. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  189. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  190. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  191. return _mm256_cvtepi32_ps(summed_pairs);
  192. }
  193. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  194. const __m128i axl = _mm256_castsi256_si128(ax);
  195. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  196. const __m128i syl = _mm256_castsi256_si128(sy);
  197. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  198. // Perform multiplication and create 16-bit values
  199. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  200. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  201. return sum_i16_pairs_float(doth, dotl);
  202. }
  203. // multiply int8_t, add results pairwise twice and return as float vector
  204. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  205. const __m128i xl = _mm256_castsi256_si128(x);
  206. const __m128i xh = _mm256_extractf128_si256(x, 1);
  207. const __m128i yl = _mm256_castsi256_si128(y);
  208. const __m128i yh = _mm256_extractf128_si256(y, 1);
  209. // Get absolute values of x vectors
  210. const __m128i axl = _mm_sign_epi8(xl, xl);
  211. const __m128i axh = _mm_sign_epi8(xh, xh);
  212. // Sign the values of the y vectors
  213. const __m128i syl = _mm_sign_epi8(yl, xl);
  214. const __m128i syh = _mm_sign_epi8(yh, xh);
  215. // Perform multiplication and create 16-bit values
  216. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  217. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  218. return sum_i16_pairs_float(doth, dotl);
  219. }
  220. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  221. {
  222. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  223. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  224. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  225. __m128i low = _mm_and_si128( lowByte, bytes1 );
  226. high = _mm_srli_epi16( high, 4 );
  227. bytes1 = _mm_or_si128( low, high );
  228. high = _mm_andnot_si128( lowByte, bytes2 );
  229. low = _mm_and_si128( lowByte, bytes2 );
  230. high = _mm_srli_epi16( high, 4 );
  231. bytes2 = _mm_or_si128( low, high );
  232. return _mm_packus_epi16( bytes1, bytes2);
  233. }
  234. #endif
  235. #elif defined(__SSSE3__)
  236. // horizontally add 4x4 floats
  237. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  238. __m128 res_0 =_mm_hadd_ps(a, b);
  239. __m128 res_1 =_mm_hadd_ps(c, d);
  240. __m128 res =_mm_hadd_ps(res_0, res_1);
  241. res =_mm_hadd_ps(res, res);
  242. res =_mm_hadd_ps(res, res);
  243. return _mm_cvtss_f32(res);
  244. }
  245. #endif // __AVX__ || __AVX2__ || __AVX512F__
  246. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  247. #if defined(__ARM_NEON) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  248. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  249. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  250. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  251. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  252. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  253. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  254. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  255. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  256. // precomputed tables for expanding 8bits to 8 bytes:
  257. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  258. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  259. #endif
  260. #if defined(__loongarch_asx)
  261. #ifdef __clang__
  262. #define VREGS_PREFIX "$vr"
  263. #define XREGS_PREFIX "$xr"
  264. #else // GCC
  265. #define VREGS_PREFIX "$f"
  266. #define XREGS_PREFIX "$f"
  267. #endif
  268. #define __ALL_REGS "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31"
  269. // Convert __m128i to __m256i
  270. static inline __m256i ____m256i(__m128i in) {
  271. __m256i out = __lasx_xvldi(0);
  272. __asm__ volatile (
  273. ".irp i," __ALL_REGS "\n\t"
  274. " .ifc %[out], " XREGS_PREFIX"\\i \n\t"
  275. " .irp j," __ALL_REGS "\n\t"
  276. " .ifc %[in], " VREGS_PREFIX "\\j \n\t"
  277. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  278. " .endif \n\t"
  279. " .endr \n\t"
  280. " .endif \n\t"
  281. ".endr \n\t"
  282. : [out] "+f" (out) : [in] "f" (in)
  283. );
  284. return out;
  285. }
  286. // Convert two __m128i to __m256i
  287. static inline __m256i lasx_set_q(__m128i inhi, __m128i inlo) {
  288. __m256i out;
  289. __asm__ volatile (
  290. ".irp i," __ALL_REGS "\n\t"
  291. " .ifc %[hi], " VREGS_PREFIX "\\i \n\t"
  292. " .irp j," __ALL_REGS "\n\t"
  293. " .ifc %[lo], " VREGS_PREFIX "\\j \n\t"
  294. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  295. " .endif \n\t"
  296. " .endr \n\t"
  297. " .endif \n\t"
  298. ".endr \n\t"
  299. ".ifnc %[out], %[hi] \n\t"
  300. ".irp i," __ALL_REGS "\n\t"
  301. " .ifc %[out], " XREGS_PREFIX "\\i \n\t"
  302. " .irp j," __ALL_REGS "\n\t"
  303. " .ifc %[hi], " VREGS_PREFIX "\\j \n\t"
  304. " xvori.b $xr\\i, $xr\\j, 0 \n\t"
  305. " .endif \n\t"
  306. " .endr \n\t"
  307. " .endif \n\t"
  308. ".endr \n\t"
  309. ".endif \n\t"
  310. : [out] "=f" (out), [hi] "+f" (inhi)
  311. : [lo] "f" (inlo)
  312. );
  313. return out;
  314. }
  315. // Convert __m256i low part to __m128i
  316. static inline __m128i lasx_extracti128_lo(__m256i in) {
  317. __m128i out;
  318. __asm__ volatile (
  319. ".ifnc %[out], %[in] \n\t"
  320. ".irp i," __ALL_REGS "\n\t"
  321. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  322. " .irp j," __ALL_REGS "\n\t"
  323. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  324. " vori.b $vr\\i, $vr\\j, 0 \n\t"
  325. " .endif \n\t"
  326. " .endr \n\t"
  327. " .endif \n\t"
  328. ".endr \n\t"
  329. ".endif \n\t"
  330. : [out] "=f" (out) : [in] "f" (in)
  331. );
  332. return out;
  333. }
  334. // Convert __m256i high part to __m128i
  335. static inline __m128i lasx_extracti128_hi(__m256i in) {
  336. __m128i out;
  337. __asm__ volatile (
  338. ".irp i," __ALL_REGS "\n\t"
  339. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  340. " .irp j," __ALL_REGS "\n\t"
  341. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  342. " xvpermi.q $xr\\i, $xr\\j, 0x11 \n\t"
  343. " .endif \n\t"
  344. " .endr \n\t"
  345. " .endif \n\t"
  346. ".endr \n\t"
  347. : [out] "=f" (out) : [in] "f" (in)
  348. );
  349. return out;
  350. }
  351. static __m256i lasx_set_w(int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0) {
  352. v8i32 __ret = {e0, e1, e2, e3, e4, e5, e6, e7};
  353. return (__m256i)__ret;
  354. }
  355. static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) {
  356. v4i32 __ret = {d, c, b, a};
  357. return (__m128i)__ret;
  358. }
  359. static __m256i lasx_set_d(int64_t a, int64_t b, int64_t c, int64_t d) {
  360. v4i64 __ret = {d, c, b, a};
  361. return (__m256i)__ret;
  362. }
  363. static __m256i lasx_insertf128( __m128i x, __m128i y) {
  364. return lasx_set_q(x, y);
  365. }
  366. static __m128i lsx_shuffle_b(__m128i a, __m128i b) {
  367. __m128i mask_f, zero, tmp0, tmp2, mask;
  368. int f = 0x8f;
  369. mask_f = __lsx_vreplgr2vr_b(f);
  370. zero = __lsx_vldi(0);
  371. tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits
  372. tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  373. mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask
  374. tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones
  375. return __lsx_vshuf_b(a, zero, tmp2);
  376. }
  377. static __m256i lasx_shuffle_b(__m256i a, __m256i b) {
  378. __m256i mask_f, zero, tmp0, tmp2, mask;
  379. int f = 0x8f;
  380. mask_f = __lasx_xvreplgr2vr_b(f);
  381. zero = __lasx_xvldi(0);
  382. tmp0 = __lasx_xvand_v(b, mask_f); // get mask with low 4 bit and sign bits
  383. tmp0 = __lasx_xvori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  384. mask = __lasx_xvsle_b(zero, tmp0); // if mask >= 0, set mask
  385. tmp2 = __lasx_xvand_v(tmp0, mask); // maskout the in2 < ones
  386. return __lasx_xvshuf_b(a, zero, tmp2);
  387. }
  388. static __m256i lasx_extu8_16(__m128i a) {
  389. __m128i zero = __lsx_vldi(0);
  390. __m128i vlo = __lsx_vilvl_b(zero, a);
  391. __m128i vhi = __lsx_vilvh_b(zero, a);
  392. return lasx_set_q(vhi, vlo);
  393. }
  394. static __m256i lasx_ext8_16(__m128i a) {
  395. __m128i sign = __lsx_vslti_b(a, 0);
  396. __m128i vlo = __lsx_vilvl_b(sign, a);
  397. __m128i vhi = __lsx_vilvh_b(sign, a);
  398. return lasx_set_q(vhi, vlo);
  399. }
  400. static __m256i lasx_ext16_32(__m128i a) {
  401. __m256i tmp1;
  402. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 0), 0);
  403. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 1), 1);
  404. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 2), 2);
  405. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 3), 3);
  406. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 4), 4);
  407. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 5), 5);
  408. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 6), 6);
  409. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 7), 7);
  410. return tmp1;
  411. }
  412. static __m128i lasx_extracti128( __m256i a, int pos) {
  413. __m128i ret;
  414. if( pos == 0)
  415. {
  416. ret = lasx_extracti128_lo(a);
  417. } else {
  418. ret = lasx_extracti128_hi(a);
  419. }
  420. return ret;
  421. }
  422. static __m128 lasx_extractf128( __m256 a, int pos) {
  423. __m128 ret;
  424. if( pos == 0)
  425. {
  426. ret = (__m128)lasx_extracti128_lo((__m256i)a);
  427. } else {
  428. ret = (__m128)lasx_extracti128_hi((__m256i)a);
  429. }
  430. return ret;
  431. }
  432. static __m128i lsx_hadd_h(__m128i a, __m128i b) {
  433. __m128i tmp1 = __lsx_vpickev_h(b, a);
  434. __m128i tmp2 = __lsx_vpickod_h(b, a);
  435. return __lsx_vadd_h(tmp1, tmp2);
  436. }
  437. static __m128i lsx_hadd_w(__m128i a, __m128i b) {
  438. __m128i tmp1 = __lsx_vpickev_w(b, a);
  439. __m128i tmp2 = __lsx_vpickod_w(b, a);
  440. return __lsx_vadd_w(tmp1, tmp2);
  441. }
  442. static __m128 lsx_hadd_s(__m128 a, __m128 b) {
  443. __m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a);
  444. __m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a);
  445. return __lsx_vfadd_s(tmp1, tmp2);
  446. }
  447. static __m256i lasx_maddubs_h(__m256i a, __m256i b) {
  448. __m256i tmp1, tmp2;
  449. tmp1 = __lasx_xvmulwev_h_b(a, b);
  450. tmp2 = __lasx_xvmulwod_h_b(a, b);
  451. return __lasx_xvsadd_h(tmp1, tmp2);
  452. }
  453. static __m256i lasx_madd_h(__m256i a, __m256i b) {
  454. __m256i tmp1, tmp2;
  455. tmp1 = __lasx_xvmulwev_w_h(a, b);
  456. tmp2 = __lasx_xvmulwod_w_h(a, b);
  457. return __lasx_xvadd_w(tmp1, tmp2);
  458. }
  459. static __m256i lasx_packs_w(__m256i a, __m256i b) {
  460. __m256i tmp, tmp1;
  461. tmp = __lasx_xvsat_w(a, 15);
  462. tmp1 = __lasx_xvsat_w(b, 15);
  463. return __lasx_xvpickev_h(tmp1, tmp);
  464. }
  465. static __m256i lasx_packs_h(__m256i a, __m256i b) {
  466. __m256i tmp, tmp1;
  467. tmp = __lasx_xvsat_h(a, 7);
  468. tmp1 = __lasx_xvsat_h(b, 7);
  469. return __lasx_xvpickev_b(tmp1, tmp);
  470. }
  471. static __m128i lsx_packs_w(__m128i a, __m128i b) {
  472. __m128i tmp, tmp1;
  473. tmp = __lsx_vsat_w(a, 15);
  474. tmp1 = __lsx_vsat_w(b, 15);
  475. return __lsx_vpickev_h(tmp1, tmp);
  476. }
  477. static __m128i lsx_packs_h(__m128i a, __m128i b) {
  478. __m128i tmp, tmp1;
  479. tmp = __lsx_vsat_h(a, 7);
  480. tmp1 = __lsx_vsat_h(b, 7);
  481. return __lsx_vpickev_b(tmp1, tmp);
  482. }
  483. static __m128i lsx_packus_h(__m128i a, __m128i b) {
  484. __m128i tmp, tmp1;
  485. tmp = __lsx_vsat_hu(a, 7);
  486. tmp1 = __lsx_vsat_hu(b, 7);
  487. return __lsx_vpickev_b(tmp1, tmp);
  488. }
  489. static __m128i lsx_maddubs_h(__m128i a, __m128i b) {
  490. __m128i tmp1, tmp2;
  491. tmp1 = __lsx_vmulwev_h_b(a, b);
  492. tmp2 = __lsx_vmulwod_h_b(a, b);
  493. return __lsx_vsadd_h(tmp1, tmp2);
  494. }
  495. static __m128i lsx_madd_h(__m128i a, __m128i b) {
  496. __m128i tmp1, tmp2;
  497. tmp1 = __lsx_vmulwev_w_h(a, b);
  498. tmp2 = __lsx_vmulwod_w_h(a, b);
  499. return __lsx_vadd_w(tmp1, tmp2);
  500. }
  501. // multiply int8_t, add results pairwise twice
  502. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  503. // Get absolute values of x vectors
  504. const __m128i ax = __lsx_vsigncov_b(x, x);
  505. // Sign the values of the y vectors
  506. const __m128i sy = __lsx_vsigncov_b(x, y);
  507. // Perform multiplication and create 16-bit values
  508. const __m128i dot = lsx_maddubs_h(ax, sy);
  509. const __m128i ones = __lsx_vreplgr2vr_h(1);
  510. return lsx_madd_h(ones, dot);
  511. }
  512. // horizontally add 8 floats
  513. static inline float hsum_float_8(const __m256 x) {
  514. __m128 res = lasx_extractf128(x, 1);
  515. ft_union tmp;
  516. res = __lsx_vfadd_s(res, lasx_extractf128(x, 0));
  517. res = __lsx_vfadd_s(res, (__m128)__lsx_vpickod_d((__m128i)res, (__m128i)res));
  518. res = __lsx_vfadd_s(res, (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w(res, 1), 0));
  519. tmp.i = __lsx_vpickve2gr_w(res, 0);
  520. return tmp.f;
  521. }
  522. // horizontally add 8 int32_t
  523. static inline int hsum_i32_8(const __m256i a) {
  524. __m256i tmp1 = __lasx_xvpermi_q(a, a, 0x11);
  525. __m256i tmp2 = __lasx_xvpermi_q(a, a, 0x00);
  526. __m128i tmp1_128 = lasx_extracti128_lo(tmp1);
  527. __m128i tmp2_128 = lasx_extracti128_lo(tmp2);
  528. __m128i sum128 = __lsx_vadd_w(tmp1_128, tmp2_128);
  529. __m128i ev = __lsx_vpickev_w(sum128, sum128);
  530. __m128i od = __lsx_vpickod_w(sum128, sum128);
  531. __m128i sum64 = __lsx_vadd_w(ev, od);
  532. int sum64_1, sum64_2;
  533. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  534. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  535. return sum64_1 + sum64_2;
  536. }
  537. // horizontally add 4 int32_t
  538. static inline int hsum_i32_4(const __m128i a) {
  539. __m128i ev = __lsx_vpickev_w(a, a);
  540. __m128i od = __lsx_vpickod_w(a, a);
  541. __m128i sum64 = __lsx_vadd_w(ev, od);
  542. int sum64_1, sum64_2;
  543. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  544. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  545. return sum64_1 + sum64_2;
  546. }
  547. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  548. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  549. uint32_t x32;
  550. memcpy(&x32, x, sizeof(uint32_t));
  551. const __m256i shuf_mask = lasx_set_d(
  552. 0x0303030303030303, 0x0202020202020202,
  553. 0x0101010101010101, 0x0000000000000000);
  554. __m256i bytes = lasx_shuffle_b(__lasx_xvreplgr2vr_w(x32), shuf_mask);
  555. const __m256i bit_mask = __lasx_xvreplgr2vr_d(0x7fbfdfeff7fbfdfe);
  556. bytes = __lasx_xvor_v(bytes, bit_mask);
  557. return __lasx_xvseq_b(bytes, __lasx_xvreplgr2vr_d(-1));
  558. }
  559. // Unpack 32 4-bit fields into 32 bytes
  560. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  561. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) {
  562. const __m128i lo = __lsx_vld((const __m128i *)rsi, 0);
  563. __m128i hi = __lsx_vsrli_h(lo, 4);
  564. return __lasx_xvandi_b(lasx_insertf128(hi, lo), 0xf);
  565. }
  566. // add int16_t pairwise and return as float vector
  567. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  568. __m256i v = __lasx_xvpackod_h(x, x);
  569. __m256i summed_pairs = __lasx_xvaddwev_w_h(x, v);
  570. return __lasx_xvffint_s_w(summed_pairs);
  571. }
  572. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  573. // Perform multiplication and create 16-bit values
  574. const __m256i dot = lasx_maddubs_h(ax, sy);
  575. return sum_i16_pairs_float(dot);
  576. }
  577. // multiply int8_t, add results pairwise twice and return as float vector
  578. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  579. // Get absolute values of x vectors
  580. const __m256i ax = __lasx_xvsigncov_b(x, x);
  581. // Sign the values of the y vectors
  582. const __m256i sy = __lasx_xvsigncov_b(x, y);
  583. return mul_sum_us8_pairs_float(ax, sy);
  584. }
  585. static inline __m128i packNibbles( __m256i bytes ) {
  586. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  587. const __m256i lowByte = __lasx_xvreplgr2vr_h(0xFF);
  588. __m256i high = __lasx_xvandn_v(lowByte, bytes);
  589. __m256i low = __lasx_xvand_v(lowByte, bytes);
  590. high = __lasx_xvsrli_h(high, 4);
  591. bytes = __lasx_xvor_v(low, high);
  592. // Compress uint16_t lanes into bytes
  593. __m128i *r0 = (__m128i *)&bytes;
  594. __m256i tmp_h128 = __lasx_xvpermi_q(bytes, bytes, 0x11);
  595. __m128i *r1 = (__m128i *)&tmp_h128;
  596. __m128i zero = __lsx_vldi(0);
  597. __m128i tmp, tmp2, tmp3;
  598. tmp = __lsx_vmax_h(zero, *r0);
  599. tmp2 = __lsx_vsat_hu(tmp, 7);
  600. tmp = __lsx_vmax_h(zero, *r1);
  601. tmp3 = __lsx_vsat_hu(tmp, 7);
  602. return __lsx_vpickev_b(tmp3, tmp2);
  603. }
  604. #endif //__loongarch_asx
  605. // reference implementation for deterministic creation of model files
  606. void quantize_row_q4_0_ref(const float * restrict x, block_q4_0 * restrict y, int64_t k) {
  607. static const int qk = QK4_0;
  608. assert(k % qk == 0);
  609. const int nb = k / qk;
  610. for (int i = 0; i < nb; i++) {
  611. float amax = 0.0f; // absolute max
  612. float max = 0.0f;
  613. for (int j = 0; j < qk; j++) {
  614. const float v = x[i*qk + j];
  615. if (amax < fabsf(v)) {
  616. amax = fabsf(v);
  617. max = v;
  618. }
  619. }
  620. const float d = max / -8;
  621. const float id = d ? 1.0f/d : 0.0f;
  622. y[i].d = GGML_FP32_TO_FP16(d);
  623. for (int j = 0; j < qk/2; ++j) {
  624. const float x0 = x[i*qk + 0 + j]*id;
  625. const float x1 = x[i*qk + qk/2 + j]*id;
  626. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  627. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  628. y[i].qs[j] = xi0;
  629. y[i].qs[j] |= xi1 << 4;
  630. }
  631. }
  632. }
  633. void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) {
  634. quantize_row_q4_0_ref(x, y, k);
  635. }
  636. void quantize_row_q4_1_ref(const float * restrict x, block_q4_1 * restrict y, int64_t k) {
  637. const int qk = QK4_1;
  638. assert(k % qk == 0);
  639. const int nb = k / qk;
  640. for (int i = 0; i < nb; i++) {
  641. float min = FLT_MAX;
  642. float max = -FLT_MAX;
  643. for (int j = 0; j < qk; j++) {
  644. const float v = x[i*qk + j];
  645. if (v < min) min = v;
  646. if (v > max) max = v;
  647. }
  648. const float d = (max - min) / ((1 << 4) - 1);
  649. const float id = d ? 1.0f/d : 0.0f;
  650. y[i].d = GGML_FP32_TO_FP16(d);
  651. y[i].m = GGML_FP32_TO_FP16(min);
  652. for (int j = 0; j < qk/2; ++j) {
  653. const float x0 = (x[i*qk + 0 + j] - min)*id;
  654. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  655. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  656. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  657. y[i].qs[j] = xi0;
  658. y[i].qs[j] |= xi1 << 4;
  659. }
  660. }
  661. }
  662. void quantize_row_q4_1(const float * restrict x, void * restrict y, int64_t k) {
  663. quantize_row_q4_1_ref(x, y, k);
  664. }
  665. void quantize_row_q5_0_ref(const float * restrict x, block_q5_0 * restrict y, int64_t k) {
  666. static const int qk = QK5_0;
  667. assert(k % qk == 0);
  668. const int nb = k / qk;
  669. for (int i = 0; i < nb; i++) {
  670. float amax = 0.0f; // absolute max
  671. float max = 0.0f;
  672. for (int j = 0; j < qk; j++) {
  673. const float v = x[i*qk + j];
  674. if (amax < fabsf(v)) {
  675. amax = fabsf(v);
  676. max = v;
  677. }
  678. }
  679. const float d = max / -16;
  680. const float id = d ? 1.0f/d : 0.0f;
  681. y[i].d = GGML_FP32_TO_FP16(d);
  682. uint32_t qh = 0;
  683. for (int j = 0; j < qk/2; ++j) {
  684. const float x0 = x[i*qk + 0 + j]*id;
  685. const float x1 = x[i*qk + qk/2 + j]*id;
  686. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  687. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  688. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  689. // get the 5-th bit and store it in qh at the right position
  690. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  691. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  692. }
  693. memcpy(&y[i].qh, &qh, sizeof(qh));
  694. }
  695. }
  696. void quantize_row_q5_0(const float * restrict x, void * restrict y, int64_t k) {
  697. quantize_row_q5_0_ref(x, y, k);
  698. }
  699. void quantize_row_q5_1_ref(const float * restrict x, block_q5_1 * restrict y, int64_t k) {
  700. const int qk = QK5_1;
  701. assert(k % qk == 0);
  702. const int nb = k / qk;
  703. for (int i = 0; i < nb; i++) {
  704. float min = FLT_MAX;
  705. float max = -FLT_MAX;
  706. for (int j = 0; j < qk; j++) {
  707. const float v = x[i*qk + j];
  708. if (v < min) min = v;
  709. if (v > max) max = v;
  710. }
  711. const float d = (max - min) / ((1 << 5) - 1);
  712. const float id = d ? 1.0f/d : 0.0f;
  713. y[i].d = GGML_FP32_TO_FP16(d);
  714. y[i].m = GGML_FP32_TO_FP16(min);
  715. uint32_t qh = 0;
  716. for (int j = 0; j < qk/2; ++j) {
  717. const float x0 = (x[i*qk + 0 + j] - min)*id;
  718. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  719. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  720. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  721. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  722. // get the 5-th bit and store it in qh at the right position
  723. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  724. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  725. }
  726. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  727. }
  728. }
  729. void quantize_row_q5_1(const float * restrict x, void * restrict y, int64_t k) {
  730. quantize_row_q5_1_ref(x, y, k);
  731. }
  732. // reference implementation for deterministic creation of model files
  733. void quantize_row_q8_0_ref(const float * restrict x, block_q8_0 * restrict y, int64_t k) {
  734. assert(k % QK8_0 == 0);
  735. const int nb = k / QK8_0;
  736. for (int i = 0; i < nb; i++) {
  737. float amax = 0.0f; // absolute max
  738. for (int j = 0; j < QK8_0; j++) {
  739. const float v = x[i*QK8_0 + j];
  740. amax = MAX(amax, fabsf(v));
  741. }
  742. const float d = amax / ((1 << 7) - 1);
  743. const float id = d ? 1.0f/d : 0.0f;
  744. y[i].d = GGML_FP32_TO_FP16(d);
  745. for (int j = 0; j < QK8_0; ++j) {
  746. const float x0 = x[i*QK8_0 + j]*id;
  747. y[i].qs[j] = roundf(x0);
  748. }
  749. }
  750. }
  751. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) {
  752. assert(QK8_0 == 32);
  753. assert(k % QK8_0 == 0);
  754. const int nb = k / QK8_0;
  755. block_q8_0 * restrict y = vy;
  756. #if defined(__ARM_NEON)
  757. for (int i = 0; i < nb; i++) {
  758. float32x4_t srcv [8];
  759. float32x4_t asrcv[8];
  760. float32x4_t amaxv[8];
  761. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  762. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  763. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  764. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  765. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  766. const float amax = vmaxvq_f32(amaxv[0]);
  767. const float d = amax / ((1 << 7) - 1);
  768. const float id = d ? 1.0f/d : 0.0f;
  769. y[i].d = GGML_FP32_TO_FP16(d);
  770. for (int j = 0; j < 8; j++) {
  771. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  772. const int32x4_t vi = vcvtnq_s32_f32(v);
  773. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  774. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  775. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  776. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  777. }
  778. }
  779. #elif defined(__wasm_simd128__)
  780. for (int i = 0; i < nb; i++) {
  781. v128_t srcv [8];
  782. v128_t asrcv[8];
  783. v128_t amaxv[8];
  784. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  785. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  786. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  787. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  788. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  789. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  790. wasm_f32x4_extract_lane(amaxv[0], 1)),
  791. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  792. wasm_f32x4_extract_lane(amaxv[0], 3)));
  793. const float d = amax / ((1 << 7) - 1);
  794. const float id = d ? 1.0f/d : 0.0f;
  795. y[i].d = GGML_FP32_TO_FP16(d);
  796. for (int j = 0; j < 8; j++) {
  797. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  798. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  799. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  800. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  801. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  802. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  803. }
  804. }
  805. #elif defined(__AVX2__) || defined(__AVX__)
  806. for (int i = 0; i < nb; i++) {
  807. // Load elements into 4 AVX vectors
  808. __m256 v0 = _mm256_loadu_ps( x );
  809. __m256 v1 = _mm256_loadu_ps( x + 8 );
  810. __m256 v2 = _mm256_loadu_ps( x + 16 );
  811. __m256 v3 = _mm256_loadu_ps( x + 24 );
  812. x += 32;
  813. // Compute max(abs(e)) for the block
  814. const __m256 signBit = _mm256_set1_ps( -0.0f );
  815. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  816. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  817. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  818. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  819. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  820. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  821. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  822. const float maxScalar = _mm_cvtss_f32( max4 );
  823. // Quantize these floats
  824. const float d = maxScalar / 127.f;
  825. y[i].d = GGML_FP32_TO_FP16(d);
  826. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  827. const __m256 mul = _mm256_set1_ps( id );
  828. // Apply the multiplier
  829. v0 = _mm256_mul_ps( v0, mul );
  830. v1 = _mm256_mul_ps( v1, mul );
  831. v2 = _mm256_mul_ps( v2, mul );
  832. v3 = _mm256_mul_ps( v3, mul );
  833. // Round to nearest integer
  834. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  835. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  836. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  837. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  838. // Convert floats to integers
  839. __m256i i0 = _mm256_cvtps_epi32( v0 );
  840. __m256i i1 = _mm256_cvtps_epi32( v1 );
  841. __m256i i2 = _mm256_cvtps_epi32( v2 );
  842. __m256i i3 = _mm256_cvtps_epi32( v3 );
  843. #if defined(__AVX2__)
  844. // Convert int32 to int16
  845. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  846. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  847. // Convert int16 to int8
  848. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  849. // We got our precious signed bytes, but the order is now wrong
  850. // These AVX2 pack instructions process 16-byte pieces independently
  851. // The following instruction is fixing the order
  852. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  853. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  854. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  855. #else
  856. // Since we don't have in AVX some necessary functions,
  857. // we split the registers in half and call AVX2 analogs from SSE
  858. __m128i ni0 = _mm256_castsi256_si128( i0 );
  859. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  860. __m128i ni2 = _mm256_castsi256_si128( i1 );
  861. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  862. __m128i ni4 = _mm256_castsi256_si128( i2 );
  863. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  864. __m128i ni6 = _mm256_castsi256_si128( i3 );
  865. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  866. // Convert int32 to int16
  867. ni0 = _mm_packs_epi32( ni0, ni1 );
  868. ni2 = _mm_packs_epi32( ni2, ni3 );
  869. ni4 = _mm_packs_epi32( ni4, ni5 );
  870. ni6 = _mm_packs_epi32( ni6, ni7 );
  871. // Convert int16 to int8
  872. ni0 = _mm_packs_epi16( ni0, ni2 );
  873. ni4 = _mm_packs_epi16( ni4, ni6 );
  874. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  875. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  876. #endif
  877. }
  878. #elif defined(__riscv_v_intrinsic)
  879. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  880. for (int i = 0; i < nb; i++) {
  881. // load elements
  882. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  883. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  884. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  885. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  886. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  887. const float d = amax / ((1 << 7) - 1);
  888. const float id = d ? 1.0f/d : 0.0f;
  889. y[i].d = GGML_FP32_TO_FP16(d);
  890. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  891. // convert to integer
  892. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  893. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  894. // store result
  895. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  896. }
  897. #elif defined(__POWER9_VECTOR__)
  898. for (int i = 0; i < nb; i++) {
  899. vector float srcv [8];
  900. vector float asrcv[8];
  901. vector float amaxv[8];
  902. vector signed int vi[8];
  903. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  904. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  905. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  906. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  907. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  908. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  909. vec_extract(amaxv[0], 1)),
  910. MAX(vec_extract(amaxv[0], 2),
  911. vec_extract(amaxv[0], 3)));
  912. const float d = amax / ((1 << 7) - 1);
  913. const float id = d ? 1.0f/d : 0.0f;
  914. const vector float vid = vec_splats(id);
  915. y[i].d = GGML_FP32_TO_FP16(d);
  916. for (int j = 0; j < 8; j++) {
  917. const vector float v = vec_round(vec_mul(srcv[j], vid));
  918. vi[j] = vec_cts(v, 0);
  919. }
  920. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  921. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  922. }
  923. #elif defined(__loongarch_asx)
  924. for (int i = 0; i < nb; i++) {
  925. ft_union fi;
  926. __m256 v0 = (__m256)__lasx_xvld( x , 0);
  927. __m256 v1 = (__m256)__lasx_xvld( x , 32);
  928. __m256 v2 = (__m256)__lasx_xvld( x , 64);
  929. __m256 v3 = (__m256)__lasx_xvld( x , 96);
  930. x += 32;
  931. // Compute max(abs(e)) for the block
  932. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  933. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  934. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  935. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  936. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  937. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs , 0) );
  938. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  939. __m128 tmp = max4;
  940. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vinsgr2vr_w(tmp, __lsx_vpickve2gr_w( max4, 1 ), 0 ));
  941. fi.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  942. const float max_scalar = fi.f;
  943. // Quantize these floats
  944. const float d = max_scalar / 127.f;
  945. y[i].d = GGML_FP32_TO_FP16(d);
  946. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  947. const __m256 mul = (__m256)__lasx_xvreplfr2vr_s( id );
  948. // Apply the multiplier
  949. v0 = __lasx_xvfmul_s( v0, mul );
  950. v1 = __lasx_xvfmul_s( v1, mul );
  951. v2 = __lasx_xvfmul_s( v2, mul );
  952. v3 = __lasx_xvfmul_s( v3, mul );
  953. // Round to nearest integer
  954. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  955. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  956. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  957. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  958. __m128i ni0 = lasx_extracti128( i0, 0 );
  959. __m128i ni1 = lasx_extracti128( i0, 1);
  960. __m128i ni2 = lasx_extracti128( i1, 0);
  961. __m128i ni3 = lasx_extracti128( i1, 1);
  962. __m128i ni4 = lasx_extracti128( i2, 0);
  963. __m128i ni5 = lasx_extracti128( i2, 1);
  964. __m128i ni6 = lasx_extracti128( i3, 0);
  965. __m128i ni7 = lasx_extracti128( i3, 1);
  966. // Convert int32 to int16
  967. ni0 = lsx_packs_w( ni0, ni1 );
  968. ni2 = lsx_packs_w( ni2, ni3 );
  969. ni4 = lsx_packs_w( ni4, ni5 );
  970. ni6 = lsx_packs_w( ni6, ni7 );
  971. // Convert int16 to int8
  972. ni0 = lsx_packs_h( ni0, ni2 );
  973. ni4 = lsx_packs_h( ni4, ni6 );
  974. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  975. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  976. }
  977. #else
  978. GGML_UNUSED(nb);
  979. // scalar
  980. quantize_row_q8_0_ref(x, y, k);
  981. #endif
  982. }
  983. // reference implementation for deterministic creation of model files
  984. void quantize_row_q8_1_ref(const float * restrict x, block_q8_1 * restrict y, int64_t k) {
  985. assert(QK8_1 == 32);
  986. assert(k % QK8_1 == 0);
  987. const int nb = k / QK8_1;
  988. for (int i = 0; i < nb; i++) {
  989. float amax = 0.0f; // absolute max
  990. for (int j = 0; j < QK8_1; j++) {
  991. const float v = x[i*QK8_1 + j];
  992. amax = MAX(amax, fabsf(v));
  993. }
  994. const float d = amax / ((1 << 7) - 1);
  995. const float id = d ? 1.0f/d : 0.0f;
  996. y[i].d = GGML_FP32_TO_FP16(d);
  997. int sum = 0;
  998. for (int j = 0; j < QK8_1/2; ++j) {
  999. const float v0 = x[i*QK8_1 + j]*id;
  1000. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1001. y[i].qs[ j] = roundf(v0);
  1002. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1003. sum += y[i].qs[ j];
  1004. sum += y[i].qs[QK8_1/2 + j];
  1005. }
  1006. y[i].s = GGML_FP32_TO_FP16(sum*d);
  1007. }
  1008. }
  1009. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) {
  1010. assert(k % QK8_1 == 0);
  1011. const int nb = k / QK8_1;
  1012. block_q8_1 * restrict y = vy;
  1013. #if defined(__ARM_NEON)
  1014. for (int i = 0; i < nb; i++) {
  1015. float32x4_t srcv [8];
  1016. float32x4_t asrcv[8];
  1017. float32x4_t amaxv[8];
  1018. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1019. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1020. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1021. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1022. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1023. const float amax = vmaxvq_f32(amaxv[0]);
  1024. const float d = amax / ((1 << 7) - 1);
  1025. const float id = d ? 1.0f/d : 0.0f;
  1026. y[i].d = GGML_FP32_TO_FP16(d);
  1027. int32x4_t accv = vdupq_n_s32(0);
  1028. for (int j = 0; j < 8; j++) {
  1029. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1030. const int32x4_t vi = vcvtnq_s32_f32(v);
  1031. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1032. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1033. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1034. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1035. accv = vaddq_s32(accv, vi);
  1036. }
  1037. y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv));
  1038. }
  1039. #elif defined(__wasm_simd128__)
  1040. for (int i = 0; i < nb; i++) {
  1041. v128_t srcv [8];
  1042. v128_t asrcv[8];
  1043. v128_t amaxv[8];
  1044. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1045. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1046. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1047. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1048. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1049. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1050. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1051. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1052. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1053. const float d = amax / ((1 << 7) - 1);
  1054. const float id = d ? 1.0f/d : 0.0f;
  1055. y[i].d = GGML_FP32_TO_FP16(d);
  1056. v128_t accv = wasm_i32x4_splat(0);
  1057. for (int j = 0; j < 8; j++) {
  1058. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1059. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1060. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1061. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1062. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1063. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1064. accv = wasm_i32x4_add(accv, vi);
  1065. }
  1066. y[i].s = GGML_FP32_TO_FP16(
  1067. d * (wasm_i32x4_extract_lane(accv, 0) +
  1068. wasm_i32x4_extract_lane(accv, 1) +
  1069. wasm_i32x4_extract_lane(accv, 2) +
  1070. wasm_i32x4_extract_lane(accv, 3)));
  1071. }
  1072. #elif defined(__AVX2__) || defined(__AVX__)
  1073. for (int i = 0; i < nb; i++) {
  1074. // Load elements into 4 AVX vectors
  1075. __m256 v0 = _mm256_loadu_ps( x );
  1076. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1077. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1078. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1079. x += 32;
  1080. // Compute max(abs(e)) for the block
  1081. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1082. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1083. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1084. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1085. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1086. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1087. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1088. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1089. const float max_scalar = _mm_cvtss_f32( max4 );
  1090. // Quantize these floats
  1091. const float d = max_scalar / 127.f;
  1092. y[i].d = GGML_FP32_TO_FP16(d);
  1093. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1094. const __m256 mul = _mm256_set1_ps( id );
  1095. // Apply the multiplier
  1096. v0 = _mm256_mul_ps( v0, mul );
  1097. v1 = _mm256_mul_ps( v1, mul );
  1098. v2 = _mm256_mul_ps( v2, mul );
  1099. v3 = _mm256_mul_ps( v3, mul );
  1100. // Round to nearest integer
  1101. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1102. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1103. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1104. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1105. // Convert floats to integers
  1106. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1107. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1108. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1109. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1110. #if defined(__AVX2__)
  1111. // Compute the sum of the quants and set y[i].s
  1112. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))));
  1113. // Convert int32 to int16
  1114. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1115. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1116. // Convert int16 to int8
  1117. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1118. // We got our precious signed bytes, but the order is now wrong
  1119. // These AVX2 pack instructions process 16-byte pieces independently
  1120. // The following instruction is fixing the order
  1121. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1122. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1123. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1124. #else
  1125. // Since we don't have in AVX some necessary functions,
  1126. // we split the registers in half and call AVX2 analogs from SSE
  1127. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1128. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1129. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1130. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1131. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1132. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1133. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1134. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1135. // Compute the sum of the quants and set y[i].s
  1136. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1137. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1138. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1)));
  1139. // Convert int32 to int16
  1140. ni0 = _mm_packs_epi32( ni0, ni1 );
  1141. ni2 = _mm_packs_epi32( ni2, ni3 );
  1142. ni4 = _mm_packs_epi32( ni4, ni5 );
  1143. ni6 = _mm_packs_epi32( ni6, ni7 );
  1144. // Convert int16 to int8
  1145. ni0 = _mm_packs_epi16( ni0, ni2 );
  1146. ni4 = _mm_packs_epi16( ni4, ni6 );
  1147. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1148. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1149. #endif
  1150. }
  1151. #elif defined(__riscv_v_intrinsic)
  1152. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  1153. for (int i = 0; i < nb; i++) {
  1154. // load elements
  1155. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  1156. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1157. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  1158. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1159. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1160. const float d = amax / ((1 << 7) - 1);
  1161. const float id = d ? 1.0f/d : 0.0f;
  1162. y[i].d = GGML_FP32_TO_FP16(d);
  1163. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1164. // convert to integer
  1165. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1166. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1167. // store result
  1168. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1169. // compute sum for y[i].s
  1170. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  1171. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  1172. // set y[i].s
  1173. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  1174. y[i].s = GGML_FP32_TO_FP16(sum*d);
  1175. }
  1176. #elif defined(__POWER9_VECTOR__)
  1177. for (int i = 0; i < nb; i++) {
  1178. vector float srcv [8];
  1179. vector float asrcv[8];
  1180. vector float amaxv[8];
  1181. vector signed int vi[8];
  1182. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  1183. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  1184. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  1185. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  1186. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  1187. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  1188. vec_extract(amaxv[0], 1)),
  1189. MAX(vec_extract(amaxv[0], 2),
  1190. vec_extract(amaxv[0], 3)));
  1191. const float d = amax / ((1 << 7) - 1);
  1192. const float id = d ? 1.0f/d : 0.0f;
  1193. const vector float vid = vec_splats(id);
  1194. y[i].d = GGML_FP32_TO_FP16(d);
  1195. vector int accv = vec_splats(0);
  1196. for (int j = 0; j < 8; j++) {
  1197. const vector float v = vec_round(vec_mul(srcv[j], vid));
  1198. vi[j] = vec_cts(v, 0);
  1199. accv = vec_add(accv, vi[j]);
  1200. }
  1201. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  1202. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  1203. accv = vec_add(accv, vec_sld(accv, accv, 4));
  1204. accv = vec_add(accv, vec_sld(accv, accv, 8));
  1205. y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0));
  1206. }
  1207. #elif defined(__loongarch_asx)
  1208. for (int i = 0; i < nb; i++) {
  1209. ft_union ft;
  1210. __m256 v0 = (__m256)__lasx_xvld( x , 0 );
  1211. __m256 v1 = (__m256)__lasx_xvld( x , 32 );
  1212. __m256 v2 = (__m256)__lasx_xvld( x , 64 );
  1213. __m256 v3 = (__m256)__lasx_xvld( x , 96 );
  1214. x += 32;
  1215. // Compute max(abs(e)) for the block
  1216. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  1217. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  1218. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  1219. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  1220. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  1221. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) );
  1222. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  1223. __m128 tmp = max4;
  1224. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 ));
  1225. ft.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  1226. const float max_scalar = ft.f;
  1227. // Quantize these floats
  1228. const float d = max_scalar / 127.f;
  1229. y[i].d = GGML_FP32_TO_FP16(d);
  1230. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1231. const __m256 mul = __lasx_xvreplfr2vr_s( id );
  1232. // Apply the multiplier
  1233. v0 = __lasx_xvfmul_s( v0, mul );
  1234. v1 = __lasx_xvfmul_s( v1, mul );
  1235. v2 = __lasx_xvfmul_s( v2, mul );
  1236. v3 = __lasx_xvfmul_s( v3, mul );
  1237. // Round to nearest integer
  1238. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  1239. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  1240. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  1241. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  1242. __m128i ni0 = lasx_extracti128(i0, 0);
  1243. __m128i ni1 = lasx_extracti128( i0, 1);
  1244. __m128i ni2 = lasx_extracti128( i1, 0);
  1245. __m128i ni3 = lasx_extracti128( i1, 1);
  1246. __m128i ni4 = lasx_extracti128( i2, 0 );
  1247. __m128i ni5 = lasx_extracti128( i2, 1);
  1248. __m128i ni6 = lasx_extracti128( i3, 0);
  1249. __m128i ni7 = lasx_extracti128( i3, 1);
  1250. // Compute the sum of the quants and set y[i].s
  1251. const __m128i s0 = __lsx_vadd_w(__lsx_vadd_w(ni0, ni1), __lsx_vadd_w(ni2, ni3));
  1252. const __m128i s1 = __lsx_vadd_w(__lsx_vadd_w(ni4, ni5), __lsx_vadd_w(ni6, ni7));
  1253. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1)));
  1254. // Convert int32 to int16
  1255. ni0 = lsx_packs_w( ni0, ni1 );
  1256. ni2 = lsx_packs_w( ni2, ni3 );
  1257. ni4 = lsx_packs_w( ni4, ni5 );
  1258. ni6 = lsx_packs_w( ni6, ni7 );
  1259. // Convert int16 to int8
  1260. ni0 = lsx_packs_h( ni0, ni2 );
  1261. ni4 = lsx_packs_h( ni4, ni6 );
  1262. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  1263. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  1264. }
  1265. #else
  1266. GGML_UNUSED(nb);
  1267. // scalar
  1268. quantize_row_q8_1_ref(x, y, k);
  1269. #endif
  1270. }
  1271. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int64_t k) {
  1272. static const int qk = QK4_0;
  1273. assert(k % qk == 0);
  1274. const int nb = k / qk;
  1275. for (int i = 0; i < nb; i++) {
  1276. const float d = GGML_FP16_TO_FP32(x[i].d);
  1277. for (int j = 0; j < qk/2; ++j) {
  1278. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1279. const int x1 = (x[i].qs[j] >> 4) - 8;
  1280. y[i*qk + j + 0 ] = x0*d;
  1281. y[i*qk + j + qk/2] = x1*d;
  1282. }
  1283. }
  1284. }
  1285. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int64_t k) {
  1286. static const int qk = QK4_1;
  1287. assert(k % qk == 0);
  1288. const int nb = k / qk;
  1289. for (int i = 0; i < nb; i++) {
  1290. const float d = GGML_FP16_TO_FP32(x[i].d);
  1291. const float m = GGML_FP16_TO_FP32(x[i].m);
  1292. for (int j = 0; j < qk/2; ++j) {
  1293. const int x0 = (x[i].qs[j] & 0x0F);
  1294. const int x1 = (x[i].qs[j] >> 4);
  1295. y[i*qk + j + 0 ] = x0*d + m;
  1296. y[i*qk + j + qk/2] = x1*d + m;
  1297. }
  1298. }
  1299. }
  1300. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int64_t k) {
  1301. static const int qk = QK5_0;
  1302. assert(k % qk == 0);
  1303. const int nb = k / qk;
  1304. for (int i = 0; i < nb; i++) {
  1305. const float d = GGML_FP16_TO_FP32(x[i].d);
  1306. uint32_t qh;
  1307. memcpy(&qh, x[i].qh, sizeof(qh));
  1308. for (int j = 0; j < qk/2; ++j) {
  1309. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1310. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1311. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1312. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1313. y[i*qk + j + 0 ] = x0*d;
  1314. y[i*qk + j + qk/2] = x1*d;
  1315. }
  1316. }
  1317. }
  1318. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int64_t k) {
  1319. static const int qk = QK5_1;
  1320. assert(k % qk == 0);
  1321. const int nb = k / qk;
  1322. for (int i = 0; i < nb; i++) {
  1323. const float d = GGML_FP16_TO_FP32(x[i].d);
  1324. const float m = GGML_FP16_TO_FP32(x[i].m);
  1325. uint32_t qh;
  1326. memcpy(&qh, x[i].qh, sizeof(qh));
  1327. for (int j = 0; j < qk/2; ++j) {
  1328. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1329. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1330. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1331. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1332. y[i*qk + j + 0 ] = x0*d + m;
  1333. y[i*qk + j + qk/2] = x1*d + m;
  1334. }
  1335. }
  1336. }
  1337. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int64_t k) {
  1338. static const int qk = QK8_0;
  1339. assert(k % qk == 0);
  1340. const int nb = k / qk;
  1341. for (int i = 0; i < nb; i++) {
  1342. const float d = GGML_FP16_TO_FP32(x[i].d);
  1343. for (int j = 0; j < qk; ++j) {
  1344. y[i*qk + j] = x[i].qs[j]*d;
  1345. }
  1346. }
  1347. }
  1348. //
  1349. // 2-6 bit quantization in super-blocks
  1350. //
  1351. //
  1352. // ===================== Helper functions
  1353. //
  1354. static inline int nearest_int(float fval) {
  1355. assert(fval <= 4194303.f);
  1356. float val = fval + 12582912.f;
  1357. int i; memcpy(&i, &val, sizeof(int));
  1358. return (i & 0x007fffff) - 0x00400000;
  1359. }
  1360. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1361. const float * restrict qw) {
  1362. float max = 0;
  1363. float amax = 0;
  1364. for (int i = 0; i < n; ++i) {
  1365. float ax = fabsf(x[i]);
  1366. if (ax > amax) { amax = ax; max = x[i]; }
  1367. }
  1368. if (amax < GROUP_MAX_EPS) { // all zero
  1369. for (int i = 0; i < n; ++i) {
  1370. L[i] = 0;
  1371. }
  1372. return 0.f;
  1373. }
  1374. float iscale = -nmax / max;
  1375. if (rmse_type == 0) {
  1376. for (int i = 0; i < n; ++i) {
  1377. int l = nearest_int(iscale * x[i]);
  1378. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1379. }
  1380. return 1/iscale;
  1381. }
  1382. bool return_early = false;
  1383. if (rmse_type < 0) {
  1384. rmse_type = -rmse_type;
  1385. return_early = true;
  1386. }
  1387. float sumlx = 0;
  1388. float suml2 = 0;
  1389. #ifdef HAVE_BUGGY_APPLE_LINKER
  1390. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1391. for (volatile int i = 0; i < n; ++i) {
  1392. #else
  1393. for (int i = 0; i < n; ++i) {
  1394. #endif
  1395. int l = nearest_int(iscale * x[i]);
  1396. l = MAX(-nmax, MIN(nmax-1, l));
  1397. L[i] = l + nmax;
  1398. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1399. sumlx += w*x[i]*l;
  1400. suml2 += w*l*l;
  1401. }
  1402. float scale = suml2 ? sumlx/suml2 : 0.0f;
  1403. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1404. float best = scale * sumlx;
  1405. for (int is = -9; is <= 9; ++is) {
  1406. if (is == 0) {
  1407. continue;
  1408. }
  1409. iscale = -(nmax + 0.1f*is) / max;
  1410. sumlx = suml2 = 0;
  1411. for (int i = 0; i < n; ++i) {
  1412. int l = nearest_int(iscale * x[i]);
  1413. l = MAX(-nmax, MIN(nmax-1, l));
  1414. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1415. sumlx += w*x[i]*l;
  1416. suml2 += w*l*l;
  1417. }
  1418. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1419. for (int i = 0; i < n; ++i) {
  1420. int l = nearest_int(iscale * x[i]);
  1421. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1422. }
  1423. scale = sumlx/suml2; best = scale*sumlx;
  1424. }
  1425. }
  1426. return scale;
  1427. }
  1428. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1429. float max = 0;
  1430. float amax = 0;
  1431. for (int i = 0; i < n; ++i) {
  1432. float ax = fabsf(x[i]);
  1433. if (ax > amax) { amax = ax; max = x[i]; }
  1434. }
  1435. if (amax < GROUP_MAX_EPS) { // all zero
  1436. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1437. return 0.f;
  1438. }
  1439. float iscale = -nmax / max;
  1440. if (do_rmse) {
  1441. float sumlx = 0;
  1442. float suml2 = 0;
  1443. for (int i = 0; i < n; ++i) {
  1444. int l = nearest_int(iscale * x[i]);
  1445. l = MAX(-nmax, MIN(nmax-1, l));
  1446. L[i] = l;
  1447. float w = x[i]*x[i];
  1448. sumlx += w*x[i]*l;
  1449. suml2 += w*l*l;
  1450. }
  1451. for (int itry = 0; itry < 5; ++itry) {
  1452. int n_changed = 0;
  1453. for (int i = 0; i < n; ++i) {
  1454. float w = x[i]*x[i];
  1455. float slx = sumlx - w*x[i]*L[i];
  1456. if (slx > 0) {
  1457. float sl2 = suml2 - w*L[i]*L[i];
  1458. int new_l = nearest_int(x[i] * sl2 / slx);
  1459. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1460. if (new_l != L[i]) {
  1461. slx += w*x[i]*new_l;
  1462. sl2 += w*new_l*new_l;
  1463. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1464. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1465. ++n_changed;
  1466. }
  1467. }
  1468. }
  1469. }
  1470. if (!n_changed) {
  1471. break;
  1472. }
  1473. }
  1474. for (int i = 0; i < n; ++i) {
  1475. L[i] += nmax;
  1476. }
  1477. return sumlx / suml2;
  1478. }
  1479. for (int i = 0; i < n; ++i) {
  1480. int l = nearest_int(iscale * x[i]);
  1481. l = MAX(-nmax, MIN(nmax-1, l));
  1482. L[i] = l + nmax;
  1483. }
  1484. return 1/iscale;
  1485. }
  1486. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1487. int ntry, float alpha) {
  1488. float min = x[0];
  1489. float max = x[0];
  1490. for (int i = 1; i < n; ++i) {
  1491. if (x[i] < min) min = x[i];
  1492. if (x[i] > max) max = x[i];
  1493. }
  1494. if (max == min) {
  1495. for (int i = 0; i < n; ++i) L[i] = 0;
  1496. *the_min = 0;
  1497. return 0.f;
  1498. }
  1499. if (min > 0) min = 0;
  1500. float iscale = nmax/(max - min);
  1501. float scale = 1/iscale;
  1502. for (int itry = 0; itry < ntry; ++itry) {
  1503. float sumlx = 0; int suml2 = 0;
  1504. bool did_change = false;
  1505. for (int i = 0; i < n; ++i) {
  1506. int l = nearest_int(iscale*(x[i] - min));
  1507. l = MAX(0, MIN(nmax, l));
  1508. if (l != L[i]) {
  1509. L[i] = l;
  1510. did_change = true;
  1511. }
  1512. sumlx += (x[i] - min)*l;
  1513. suml2 += l*l;
  1514. }
  1515. scale = sumlx/suml2;
  1516. float sum = 0;
  1517. for (int i = 0; i < n; ++i) {
  1518. sum += x[i] - scale*L[i];
  1519. }
  1520. min = alpha*min + (1 - alpha)*sum/n;
  1521. if (min > 0) min = 0;
  1522. iscale = 1/scale;
  1523. if (!did_change) break;
  1524. }
  1525. *the_min = -min;
  1526. return scale;
  1527. }
  1528. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1529. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1530. float rmin, float rdelta, int nstep, bool use_mad) {
  1531. float min = x[0];
  1532. float max = x[0];
  1533. float sum_w = weights[0];
  1534. float sum_x = sum_w * x[0];
  1535. #ifdef HAVE_BUGGY_APPLE_LINKER
  1536. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1537. for (volatile int i = 1; i < n; ++i) {
  1538. #else
  1539. for (int i = 1; i < n; ++i) {
  1540. #endif
  1541. if (x[i] < min) min = x[i];
  1542. if (x[i] > max) max = x[i];
  1543. float w = weights[i];
  1544. sum_w += w;
  1545. sum_x += w * x[i];
  1546. }
  1547. if (min > 0) min = 0;
  1548. if (max == min) {
  1549. for (int i = 0; i < n; ++i) L[i] = 0;
  1550. *the_min = -min;
  1551. return 0.f;
  1552. }
  1553. float iscale = nmax/(max - min);
  1554. float scale = 1/iscale;
  1555. float best_mad = 0;
  1556. for (int i = 0; i < n; ++i) {
  1557. int l = nearest_int(iscale*(x[i] - min));
  1558. L[i] = MAX(0, MIN(nmax, l));
  1559. float diff = scale * L[i] + min - x[i];
  1560. diff = use_mad ? fabsf(diff) : diff * diff;
  1561. float w = weights[i];
  1562. best_mad += w * diff;
  1563. }
  1564. if (nstep < 1) {
  1565. *the_min = -min;
  1566. return scale;
  1567. }
  1568. for (int is = 0; is <= nstep; ++is) {
  1569. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1570. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1571. for (int i = 0; i < n; ++i) {
  1572. int l = nearest_int(iscale*(x[i] - min));
  1573. l = MAX(0, MIN(nmax, l));
  1574. Laux[i] = l;
  1575. float w = weights[i];
  1576. sum_l += w*l;
  1577. sum_l2 += w*l*l;
  1578. sum_xl += w*l*x[i];
  1579. }
  1580. float D = sum_w * sum_l2 - sum_l * sum_l;
  1581. if (D > 0) {
  1582. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1583. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1584. if (this_min > 0) {
  1585. this_min = 0;
  1586. this_scale = sum_xl / sum_l2;
  1587. }
  1588. float mad = 0;
  1589. for (int i = 0; i < n; ++i) {
  1590. float diff = this_scale * Laux[i] + this_min - x[i];
  1591. diff = use_mad ? fabsf(diff) : diff * diff;
  1592. float w = weights[i];
  1593. mad += w * diff;
  1594. }
  1595. if (mad < best_mad) {
  1596. for (int i = 0; i < n; ++i) {
  1597. L[i] = Laux[i];
  1598. }
  1599. best_mad = mad;
  1600. scale = this_scale;
  1601. min = this_min;
  1602. }
  1603. }
  1604. }
  1605. *the_min = -min;
  1606. return scale;
  1607. }
  1608. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1609. if (j < 4) {
  1610. *d = q[j] & 63; *m = q[j + 4] & 63;
  1611. } else {
  1612. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1613. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1614. }
  1615. }
  1616. //========================- 2-bit (de)-quantization
  1617. void quantize_row_q2_K_ref(const float * restrict x, block_q2_K * restrict y, int64_t k) {
  1618. assert(k % QK_K == 0);
  1619. const int nb = k / QK_K;
  1620. uint8_t L[QK_K];
  1621. uint8_t Laux[16];
  1622. float weights[16];
  1623. float mins[QK_K/16];
  1624. float scales[QK_K/16];
  1625. const float q4scale = 15.f;
  1626. for (int i = 0; i < nb; i++) {
  1627. float max_scale = 0; // as we are deducting the min, scales are always positive
  1628. float max_min = 0;
  1629. for (int j = 0; j < QK_K/16; ++j) {
  1630. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1631. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1632. float scale = scales[j];
  1633. if (scale > max_scale) {
  1634. max_scale = scale;
  1635. }
  1636. float min = mins[j];
  1637. if (min > max_min) {
  1638. max_min = min;
  1639. }
  1640. }
  1641. if (max_scale > 0) {
  1642. float iscale = q4scale/max_scale;
  1643. for (int j = 0; j < QK_K/16; ++j) {
  1644. int l = nearest_int(iscale*scales[j]);
  1645. y[i].scales[j] = l;
  1646. }
  1647. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1648. } else {
  1649. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1650. y[i].d = GGML_FP32_TO_FP16(0.f);
  1651. }
  1652. if (max_min > 0) {
  1653. float iscale = q4scale/max_min;
  1654. for (int j = 0; j < QK_K/16; ++j) {
  1655. int l = nearest_int(iscale*mins[j]);
  1656. y[i].scales[j] |= (l << 4);
  1657. }
  1658. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1659. } else {
  1660. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1661. }
  1662. for (int j = 0; j < QK_K/16; ++j) {
  1663. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1664. if (!d) continue;
  1665. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1666. for (int ii = 0; ii < 16; ++ii) {
  1667. int l = nearest_int((x[16*j + ii] + dm)/d);
  1668. l = MAX(0, MIN(3, l));
  1669. L[16*j + ii] = l;
  1670. }
  1671. }
  1672. for (int j = 0; j < QK_K; j += 128) {
  1673. for (int l = 0; l < 32; ++l) {
  1674. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1675. }
  1676. }
  1677. x += QK_K;
  1678. }
  1679. }
  1680. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int64_t k) {
  1681. assert(k % QK_K == 0);
  1682. const int nb = k / QK_K;
  1683. for (int i = 0; i < nb; i++) {
  1684. const float d = GGML_FP16_TO_FP32(x[i].d);
  1685. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1686. const uint8_t * q = x[i].qs;
  1687. int is = 0;
  1688. float dl, ml;
  1689. for (int n = 0; n < QK_K; n += 128) {
  1690. int shift = 0;
  1691. for (int j = 0; j < 4; ++j) {
  1692. uint8_t sc = x[i].scales[is++];
  1693. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1694. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1695. sc = x[i].scales[is++];
  1696. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1697. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1698. shift += 2;
  1699. }
  1700. q += 32;
  1701. }
  1702. }
  1703. }
  1704. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int64_t k) {
  1705. quantize_row_q2_K_ref(x, vy, k);
  1706. }
  1707. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1708. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1709. float rmin, float rdelta, int nstep, bool use_mad) {
  1710. float min = x[0];
  1711. float max = x[0];
  1712. float sum_w = weights ? weights[0] : x[0]*x[0];
  1713. float sum_x = sum_w * x[0];
  1714. #ifdef HAVE_BUGGY_APPLE_LINKER
  1715. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1716. for (volatile int i = 1; i < n; ++i) {
  1717. #else
  1718. for (int i = 1; i < n; ++i) {
  1719. #endif
  1720. if (x[i] < min) min = x[i];
  1721. if (x[i] > max) max = x[i];
  1722. float w = weights ? weights[i] : x[i]*x[i];
  1723. sum_w += w;
  1724. sum_x += w * x[i];
  1725. }
  1726. if (min > 0) {
  1727. min = 0;
  1728. }
  1729. if (max <= min) {
  1730. memset(L, 0, n);
  1731. *the_min = -min;
  1732. return 0.f;
  1733. }
  1734. float iscale = nmax/(max - min);
  1735. float scale = 1/iscale;
  1736. float best_mad = 0;
  1737. for (int i = 0; i < n; ++i) {
  1738. int l = nearest_int(iscale*(x[i] - min));
  1739. L[i] = MAX(0, MIN(nmax, l));
  1740. float diff = scale * L[i] + min - x[i];
  1741. diff = use_mad ? fabsf(diff) : diff*diff;
  1742. float w = weights ? weights[i] : x[i]*x[i];
  1743. best_mad += w * diff;
  1744. }
  1745. if (nstep < 1) {
  1746. *the_min = -min;
  1747. return scale;
  1748. }
  1749. for (int is = 0; is <= nstep; ++is) {
  1750. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1751. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1752. for (int i = 0; i < n; ++i) {
  1753. int l = nearest_int(iscale*(x[i] - min));
  1754. l = MAX(0, MIN(nmax, l));
  1755. Laux[i] = l;
  1756. float w = weights ? weights[i] : x[i]*x[i];
  1757. sum_l += w*l;
  1758. sum_l2 += w*l*l;
  1759. sum_xl += w*l*x[i];
  1760. }
  1761. float D = sum_w * sum_l2 - sum_l * sum_l;
  1762. if (D > 0) {
  1763. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1764. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1765. if (this_min > 0) {
  1766. this_min = 0;
  1767. this_scale = sum_xl / sum_l2;
  1768. }
  1769. float mad = 0;
  1770. for (int i = 0; i < n; ++i) {
  1771. float diff = this_scale * Laux[i] + this_min - x[i];
  1772. diff = use_mad ? fabsf(diff) : diff*diff;
  1773. float w = weights ? weights[i] : x[i]*x[i];
  1774. mad += w * diff;
  1775. }
  1776. if (mad < best_mad) {
  1777. for (int i = 0; i < n; ++i) {
  1778. L[i] = Laux[i];
  1779. }
  1780. best_mad = mad;
  1781. scale = this_scale;
  1782. min = this_min;
  1783. }
  1784. }
  1785. }
  1786. *the_min = -min;
  1787. return scale;
  1788. }
  1789. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1790. float max = 0;
  1791. for (int i = 0; i < n; ++i) {
  1792. max = MAX(max, x[i]);
  1793. }
  1794. if (!max) { // all zero
  1795. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1796. return 0.f;
  1797. }
  1798. float iscale = nmax / max;
  1799. for (int i = 0; i < n; ++i) {
  1800. L[i] = nearest_int(iscale * x[i]);
  1801. }
  1802. float scale = 1/iscale;
  1803. float best_mse = 0;
  1804. for (int i = 0; i < n; ++i) {
  1805. float diff = x[i] - scale*L[i];
  1806. float w = quant_weights[i];
  1807. best_mse += w*diff*diff;
  1808. }
  1809. for (int is = -4; is <= 4; ++is) {
  1810. if (is == 0) continue;
  1811. float iscale_is = (0.1f*is + nmax)/max;
  1812. float scale_is = 1/iscale_is;
  1813. float mse = 0;
  1814. for (int i = 0; i < n; ++i) {
  1815. int l = nearest_int(iscale_is*x[i]);
  1816. l = MIN(nmax, l);
  1817. float diff = x[i] - scale_is*l;
  1818. float w = quant_weights[i];
  1819. mse += w*diff*diff;
  1820. }
  1821. if (mse < best_mse) {
  1822. best_mse = mse;
  1823. iscale = iscale_is;
  1824. }
  1825. }
  1826. float sumlx = 0;
  1827. float suml2 = 0;
  1828. for (int i = 0; i < n; ++i) {
  1829. int l = nearest_int(iscale * x[i]);
  1830. l = MIN(nmax, l);
  1831. L[i] = l;
  1832. float w = quant_weights[i];
  1833. sumlx += w*x[i]*l;
  1834. suml2 += w*l*l;
  1835. }
  1836. for (int itry = 0; itry < 5; ++itry) {
  1837. int n_changed = 0;
  1838. for (int i = 0; i < n; ++i) {
  1839. float w = quant_weights[i];
  1840. float slx = sumlx - w*x[i]*L[i];
  1841. float sl2 = suml2 - w*L[i]*L[i];
  1842. if (slx > 0 && sl2 > 0) {
  1843. int new_l = nearest_int(x[i] * sl2 / slx);
  1844. new_l = MIN(nmax, new_l);
  1845. if (new_l != L[i]) {
  1846. slx += w*x[i]*new_l;
  1847. sl2 += w*new_l*new_l;
  1848. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1849. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1850. ++n_changed;
  1851. }
  1852. }
  1853. }
  1854. }
  1855. if (!n_changed) {
  1856. break;
  1857. }
  1858. }
  1859. return sumlx/suml2;
  1860. }
  1861. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1862. GGML_ASSERT(quant_weights);
  1863. assert(k % QK_K == 0);
  1864. const int nb = k / QK_K;
  1865. const bool requantize = true;
  1866. uint8_t L[QK_K];
  1867. uint8_t Laux[16];
  1868. float mins[QK_K/16];
  1869. float scales[QK_K/16];
  1870. float sw[QK_K/16];
  1871. float weight[16];
  1872. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1873. for (int i = 0; i < nb; i++) {
  1874. memset(sw, 0, QK_K/16*sizeof(float));
  1875. float sumx2 = 0;
  1876. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1877. float sigma2 = sumx2/QK_K;
  1878. for (int j = 0; j < QK_K/16; ++j) {
  1879. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1880. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1881. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1882. scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1883. }
  1884. float dm, mm;
  1885. dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1886. mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1887. y[i].d = GGML_FP32_TO_FP16(dm);
  1888. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1889. dm = GGML_FP16_TO_FP32(y[i].d);
  1890. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1891. for (int j = 0; j < QK_K/16; ++j) {
  1892. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1893. }
  1894. if (requantize) {
  1895. for (int j = 0; j < QK_K/16; ++j) {
  1896. const float d = dm * (y[i].scales[j] & 0xF);
  1897. if (!d) continue;
  1898. const float m = mm * (y[i].scales[j] >> 4);
  1899. for (int ii = 0; ii < 16; ++ii) {
  1900. int l = nearest_int((x[16*j + ii] + m)/d);
  1901. l = MAX(0, MIN(3, l));
  1902. L[16*j + ii] = l;
  1903. }
  1904. }
  1905. }
  1906. for (int j = 0; j < QK_K; j += 128) {
  1907. for (int l = 0; l < 32; ++l) {
  1908. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1909. }
  1910. }
  1911. x += QK_K;
  1912. }
  1913. }
  1914. size_t quantize_q2_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  1915. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1916. if (!quant_weights) {
  1917. quantize_row_q2_K_ref(src, dst, (int64_t)nrow*n_per_row);
  1918. }
  1919. else {
  1920. char * qrow = (char *)dst;
  1921. for (int64_t row = 0; row < nrow; ++row) {
  1922. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1923. src += n_per_row;
  1924. qrow += row_size;
  1925. }
  1926. }
  1927. return nrow * row_size;
  1928. }
  1929. //========================= 3-bit (de)-quantization
  1930. void quantize_row_q3_K_ref(const float * restrict x, block_q3_K * restrict y, int64_t k) {
  1931. assert(k % QK_K == 0);
  1932. const int nb = k / QK_K;
  1933. int8_t L[QK_K];
  1934. float scales[QK_K / 16];
  1935. for (int i = 0; i < nb; i++) {
  1936. float max_scale = 0;
  1937. float amax = 0;
  1938. for (int j = 0; j < QK_K/16; ++j) {
  1939. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1940. float scale = fabsf(scales[j]);
  1941. if (scale > amax) {
  1942. amax = scale; max_scale = scales[j];
  1943. }
  1944. }
  1945. memset(y[i].scales, 0, 12);
  1946. if (max_scale) {
  1947. float iscale = -32.f/max_scale;
  1948. for (int j = 0; j < QK_K/16; ++j) {
  1949. int8_t l = nearest_int(iscale*scales[j]);
  1950. l = MAX(-32, MIN(31, l)) + 32;
  1951. if (j < 8) {
  1952. y[i].scales[j] = l & 0xF;
  1953. } else {
  1954. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1955. }
  1956. l >>= 4;
  1957. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1958. }
  1959. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1960. } else {
  1961. y[i].d = GGML_FP32_TO_FP16(0.f);
  1962. }
  1963. int8_t sc;
  1964. for (int j = 0; j < QK_K/16; ++j) {
  1965. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1966. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1967. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1968. if (!d) {
  1969. continue;
  1970. }
  1971. for (int ii = 0; ii < 16; ++ii) {
  1972. int l = nearest_int(x[16*j + ii]/d);
  1973. l = MAX(-4, MIN(3, l));
  1974. L[16*j + ii] = l + 4;
  1975. }
  1976. }
  1977. memset(y[i].hmask, 0, QK_K/8);
  1978. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1979. int m = 0;
  1980. uint8_t hm = 1;
  1981. for (int j = 0; j < QK_K; ++j) {
  1982. if (L[j] > 3) {
  1983. y[i].hmask[m] |= hm;
  1984. L[j] -= 4;
  1985. }
  1986. if (++m == QK_K/8) {
  1987. m = 0; hm <<= 1;
  1988. }
  1989. }
  1990. for (int j = 0; j < QK_K; j += 128) {
  1991. for (int l = 0; l < 32; ++l) {
  1992. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1993. }
  1994. }
  1995. x += QK_K;
  1996. }
  1997. }
  1998. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) {
  1999. assert(k % QK_K == 0);
  2000. const int nb = k / QK_K;
  2001. const uint32_t kmask1 = 0x03030303;
  2002. const uint32_t kmask2 = 0x0f0f0f0f;
  2003. uint32_t aux[4];
  2004. const int8_t * scales = (const int8_t*)aux;
  2005. for (int i = 0; i < nb; i++) {
  2006. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  2007. const uint8_t * restrict q = x[i].qs;
  2008. const uint8_t * restrict hm = x[i].hmask;
  2009. uint8_t m = 1;
  2010. memcpy(aux, x[i].scales, 12);
  2011. uint32_t tmp = aux[2];
  2012. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  2013. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  2014. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  2015. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  2016. int is = 0;
  2017. float dl;
  2018. for (int n = 0; n < QK_K; n += 128) {
  2019. int shift = 0;
  2020. for (int j = 0; j < 4; ++j) {
  2021. dl = d_all * (scales[is++] - 32);
  2022. for (int l = 0; l < 16; ++l) {
  2023. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  2024. }
  2025. dl = d_all * (scales[is++] - 32);
  2026. for (int l = 0; l < 16; ++l) {
  2027. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  2028. }
  2029. shift += 2;
  2030. m <<= 1;
  2031. }
  2032. q += 32;
  2033. }
  2034. }
  2035. }
  2036. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) {
  2037. quantize_row_q3_K_ref(x, vy, k);
  2038. }
  2039. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int64_t n_per_row, const float * restrict quant_weights) {
  2040. assert(n_per_row % QK_K == 0);
  2041. const int nb = n_per_row / QK_K;
  2042. int8_t L[QK_K];
  2043. float scales[QK_K / 16];
  2044. float weight[16];
  2045. float sw[QK_K / 16];
  2046. int8_t Ls[QK_K / 16];
  2047. for (int i = 0; i < nb; i++) {
  2048. float sumx2 = 0;
  2049. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  2050. float sigma2 = 2*sumx2/QK_K;
  2051. for (int j = 0; j < QK_K/16; ++j) {
  2052. if (quant_weights) {
  2053. const float * qw = quant_weights + QK_K * i + 16*j;
  2054. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  2055. } else {
  2056. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  2057. }
  2058. float sumw = 0;
  2059. for (int l = 0; l < 16; ++l) sumw += weight[l];
  2060. sw[j] = sumw;
  2061. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  2062. }
  2063. memset(y[i].scales, 0, 12);
  2064. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  2065. for (int j = 0; j < QK_K/16; ++j) {
  2066. int l = Ls[j];
  2067. if (j < 8) {
  2068. y[i].scales[j] = l & 0xF;
  2069. } else {
  2070. y[i].scales[j-8] |= ((l & 0xF) << 4);
  2071. }
  2072. l >>= 4;
  2073. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  2074. }
  2075. y[i].d = GGML_FP32_TO_FP16(d_block);
  2076. int8_t sc;
  2077. for (int j = 0; j < QK_K/16; ++j) {
  2078. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  2079. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  2080. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2081. if (!d) {
  2082. continue;
  2083. }
  2084. for (int ii = 0; ii < 16; ++ii) {
  2085. int l = nearest_int(x[16*j + ii]/d);
  2086. l = MAX(-4, MIN(3, l));
  2087. L[16*j + ii] = l + 4;
  2088. }
  2089. }
  2090. memset(y[i].hmask, 0, QK_K/8);
  2091. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  2092. int m = 0;
  2093. uint8_t hm = 1;
  2094. for (int j = 0; j < QK_K; ++j) {
  2095. if (L[j] > 3) {
  2096. y[i].hmask[m] |= hm;
  2097. L[j] -= 4;
  2098. }
  2099. if (++m == QK_K/8) {
  2100. m = 0; hm <<= 1;
  2101. }
  2102. }
  2103. for (int j = 0; j < QK_K; j += 128) {
  2104. for (int l = 0; l < 32; ++l) {
  2105. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  2106. }
  2107. }
  2108. x += QK_K;
  2109. }
  2110. }
  2111. size_t quantize_q3_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2112. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  2113. if (!quant_weights) {
  2114. quantize_row_q3_K_ref(src, dst, (int64_t)nrow*n_per_row);
  2115. }
  2116. else {
  2117. char * qrow = (char *)dst;
  2118. for (int64_t row = 0; row < nrow; ++row) {
  2119. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  2120. src += n_per_row;
  2121. qrow += row_size;
  2122. }
  2123. }
  2124. return nrow * row_size;
  2125. }
  2126. // ====================== 4-bit (de)-quantization
  2127. void quantize_row_q4_K_ref(const float * restrict x, block_q4_K * restrict y, int64_t k) {
  2128. assert(k % QK_K == 0);
  2129. const int nb = k / QK_K;
  2130. uint8_t L[QK_K];
  2131. uint8_t Laux[32];
  2132. float weights[32];
  2133. float mins[QK_K/32];
  2134. float scales[QK_K/32];
  2135. for (int i = 0; i < nb; i++) {
  2136. float max_scale = 0; // as we are deducting the min, scales are always positive
  2137. float max_min = 0;
  2138. for (int j = 0; j < QK_K/32; ++j) {
  2139. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2140. float sum_x2 = 0;
  2141. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2142. float av_x = sqrtf(sum_x2/32);
  2143. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2144. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  2145. float scale = scales[j];
  2146. if (scale > max_scale) {
  2147. max_scale = scale;
  2148. }
  2149. float min = mins[j];
  2150. if (min > max_min) {
  2151. max_min = min;
  2152. }
  2153. }
  2154. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2155. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2156. for (int j = 0; j < QK_K/32; ++j) {
  2157. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2158. uint8_t lm = nearest_int(inv_min*mins[j]);
  2159. ls = MIN(63, ls);
  2160. lm = MIN(63, lm);
  2161. if (j < 4) {
  2162. y[i].scales[j] = ls;
  2163. y[i].scales[j+4] = lm;
  2164. } else {
  2165. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2166. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2167. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2168. }
  2169. }
  2170. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2171. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2172. uint8_t sc, m;
  2173. for (int j = 0; j < QK_K/32; ++j) {
  2174. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2175. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2176. if (!d) continue;
  2177. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2178. for (int ii = 0; ii < 32; ++ii) {
  2179. int l = nearest_int((x[32*j + ii] + dm)/d);
  2180. l = MAX(0, MIN(15, l));
  2181. L[32*j + ii] = l;
  2182. }
  2183. }
  2184. uint8_t * q = y[i].qs;
  2185. for (int j = 0; j < QK_K; j += 64) {
  2186. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2187. q += 32;
  2188. }
  2189. x += QK_K;
  2190. }
  2191. }
  2192. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int64_t k) {
  2193. assert(k % QK_K == 0);
  2194. const int nb = k / QK_K;
  2195. for (int i = 0; i < nb; i++) {
  2196. const uint8_t * q = x[i].qs;
  2197. const float d = GGML_FP16_TO_FP32(x[i].d);
  2198. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2199. int is = 0;
  2200. uint8_t sc, m;
  2201. for (int j = 0; j < QK_K; j += 64) {
  2202. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2203. const float d1 = d * sc; const float m1 = min * m;
  2204. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2205. const float d2 = d * sc; const float m2 = min * m;
  2206. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  2207. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  2208. q += 32; is += 2;
  2209. }
  2210. }
  2211. }
  2212. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) {
  2213. assert(k % QK_K == 0);
  2214. block_q4_K * restrict y = vy;
  2215. quantize_row_q4_K_ref(x, y, k);
  2216. }
  2217. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2218. assert(n_per_row % QK_K == 0);
  2219. const int64_t nb = n_per_row / QK_K;
  2220. uint8_t L[QK_K];
  2221. uint8_t Laux[32];
  2222. uint8_t Ls[QK_K/32];
  2223. uint8_t Lm[QK_K/32];
  2224. float weights[32];
  2225. float sw[QK_K/32];
  2226. float mins[QK_K/32];
  2227. float scales[QK_K/32];
  2228. for (int i = 0; i < nb; i++) {
  2229. float sum_x2 = 0;
  2230. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2231. float sigma2 = 2*sum_x2/QK_K;
  2232. float av_x = sqrtf(sigma2);
  2233. for (int j = 0; j < QK_K/32; ++j) {
  2234. if (quant_weights) {
  2235. const float * qw = quant_weights + QK_K*i + 32*j;
  2236. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2237. } else {
  2238. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2239. }
  2240. float sumw = 0;
  2241. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2242. sw[j] = sumw;
  2243. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2244. }
  2245. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2246. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2247. for (int j = 0; j < QK_K/32; ++j) {
  2248. uint8_t ls = Ls[j];
  2249. uint8_t lm = Lm[j];
  2250. if (j < 4) {
  2251. y[i].scales[j] = ls;
  2252. y[i].scales[j+4] = lm;
  2253. } else {
  2254. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2255. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2256. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2257. }
  2258. }
  2259. y[i].d = GGML_FP32_TO_FP16(d_block);
  2260. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2261. uint8_t sc, m;
  2262. for (int j = 0; j < QK_K/32; ++j) {
  2263. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2264. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2265. if (!d) continue;
  2266. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2267. for (int ii = 0; ii < 32; ++ii) {
  2268. int l = nearest_int((x[32*j + ii] + dm)/d);
  2269. l = MAX(0, MIN(15, l));
  2270. L[32*j + ii] = l;
  2271. }
  2272. }
  2273. uint8_t * q = y[i].qs;
  2274. for (int j = 0; j < QK_K; j += 64) {
  2275. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2276. q += 32;
  2277. }
  2278. x += QK_K;
  2279. }
  2280. }
  2281. size_t quantize_q4_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2282. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2283. if (!quant_weights) {
  2284. quantize_row_q4_K_ref(src, dst, (int64_t)nrow*n_per_row);
  2285. }
  2286. else {
  2287. char * qrow = (char *)dst;
  2288. for (int64_t row = 0; row < nrow; ++row) {
  2289. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2290. src += n_per_row;
  2291. qrow += row_size;
  2292. }
  2293. }
  2294. return nrow * row_size;
  2295. }
  2296. // ====================== 5-bit (de)-quantization
  2297. void quantize_row_q5_K_ref(const float * restrict x, block_q5_K * restrict y, int64_t k) {
  2298. assert(k % QK_K == 0);
  2299. const int64_t nb = k / QK_K;
  2300. uint8_t L[QK_K];
  2301. float mins[QK_K/32];
  2302. float scales[QK_K/32];
  2303. float weights[32];
  2304. uint8_t Laux[32];
  2305. for (int i = 0; i < nb; i++) {
  2306. float max_scale = 0; // as we are deducting the min, scales are always positive
  2307. float max_min = 0;
  2308. for (int j = 0; j < QK_K/32; ++j) {
  2309. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2310. float sum_x2 = 0;
  2311. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2312. float av_x = sqrtf(sum_x2/32);
  2313. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2314. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2315. float scale = scales[j];
  2316. if (scale > max_scale) {
  2317. max_scale = scale;
  2318. }
  2319. float min = mins[j];
  2320. if (min > max_min) {
  2321. max_min = min;
  2322. }
  2323. }
  2324. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2325. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2326. for (int j = 0; j < QK_K/32; ++j) {
  2327. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2328. uint8_t lm = nearest_int(inv_min*mins[j]);
  2329. ls = MIN(63, ls);
  2330. lm = MIN(63, lm);
  2331. if (j < 4) {
  2332. y[i].scales[j] = ls;
  2333. y[i].scales[j+4] = lm;
  2334. } else {
  2335. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2336. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2337. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2338. }
  2339. }
  2340. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2341. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2342. uint8_t sc, m;
  2343. for (int j = 0; j < QK_K/32; ++j) {
  2344. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2345. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2346. if (!d) continue;
  2347. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2348. for (int ii = 0; ii < 32; ++ii) {
  2349. int l = nearest_int((x[32*j + ii] + dm)/d);
  2350. l = MAX(0, MIN(31, l));
  2351. L[32*j + ii] = l;
  2352. }
  2353. }
  2354. uint8_t * restrict qh = y[i].qh;
  2355. uint8_t * restrict ql = y[i].qs;
  2356. memset(qh, 0, QK_K/8);
  2357. uint8_t m1 = 1, m2 = 2;
  2358. for (int n = 0; n < QK_K; n += 64) {
  2359. for (int j = 0; j < 32; ++j) {
  2360. int l1 = L[n + j];
  2361. if (l1 > 15) {
  2362. l1 -= 16; qh[j] |= m1;
  2363. }
  2364. int l2 = L[n + j + 32];
  2365. if (l2 > 15) {
  2366. l2 -= 16; qh[j] |= m2;
  2367. }
  2368. ql[j] = l1 | (l2 << 4);
  2369. }
  2370. m1 <<= 2; m2 <<= 2;
  2371. ql += 32;
  2372. }
  2373. x += QK_K;
  2374. }
  2375. }
  2376. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int64_t k) {
  2377. assert(k % QK_K == 0);
  2378. const int64_t nb = k / QK_K;
  2379. for (int i = 0; i < nb; i++) {
  2380. const uint8_t * ql = x[i].qs;
  2381. const uint8_t * qh = x[i].qh;
  2382. const float d = GGML_FP16_TO_FP32(x[i].d);
  2383. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2384. int is = 0;
  2385. uint8_t sc, m;
  2386. uint8_t u1 = 1, u2 = 2;
  2387. for (int j = 0; j < QK_K; j += 64) {
  2388. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2389. const float d1 = d * sc; const float m1 = min * m;
  2390. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2391. const float d2 = d * sc; const float m2 = min * m;
  2392. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2393. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2394. ql += 32; is += 2;
  2395. u1 <<= 2; u2 <<= 2;
  2396. }
  2397. }
  2398. }
  2399. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) {
  2400. assert(k % QK_K == 0);
  2401. block_q5_K * restrict y = vy;
  2402. quantize_row_q5_K_ref(x, y, k);
  2403. }
  2404. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2405. assert(n_per_row % QK_K == 0);
  2406. const int64_t nb = n_per_row / QK_K;
  2407. uint8_t L[QK_K];
  2408. uint8_t Laux[32];
  2409. uint8_t Ls[QK_K/32];
  2410. uint8_t Lm[QK_K/32];
  2411. float mins[QK_K/32];
  2412. float scales[QK_K/32];
  2413. float sw[QK_K/32];
  2414. float weights[32];
  2415. for (int i = 0; i < nb; i++) {
  2416. float sum_x2 = 0;
  2417. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2418. float sigma2 = 2*sum_x2/QK_K;
  2419. float av_x = sqrtf(sigma2);
  2420. for (int j = 0; j < QK_K/32; ++j) {
  2421. if (quant_weights) {
  2422. const float * qw = quant_weights + QK_K*i + 32*j;
  2423. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2424. } else {
  2425. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2426. }
  2427. float sumw = 0;
  2428. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2429. sw[j] = sumw;
  2430. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2431. }
  2432. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2433. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2434. for (int j = 0; j < QK_K/32; ++j) {
  2435. uint8_t ls = Ls[j];
  2436. uint8_t lm = Lm[j];
  2437. ls = MIN(63, ls);
  2438. lm = MIN(63, lm);
  2439. if (j < 4) {
  2440. y[i].scales[j] = ls;
  2441. y[i].scales[j+4] = lm;
  2442. } else {
  2443. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2444. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2445. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2446. }
  2447. }
  2448. y[i].d = GGML_FP32_TO_FP16(d_block);
  2449. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2450. uint8_t sc, m;
  2451. for (int j = 0; j < QK_K/32; ++j) {
  2452. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2453. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2454. if (!d) continue;
  2455. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2456. for (int ii = 0; ii < 32; ++ii) {
  2457. int l = nearest_int((x[32*j + ii] + dm)/d);
  2458. l = MAX(0, MIN(31, l));
  2459. L[32*j + ii] = l;
  2460. }
  2461. }
  2462. uint8_t * restrict qh = y[i].qh;
  2463. uint8_t * restrict ql = y[i].qs;
  2464. memset(qh, 0, QK_K/8);
  2465. uint8_t m1 = 1, m2 = 2;
  2466. for (int n = 0; n < QK_K; n += 64) {
  2467. for (int j = 0; j < 32; ++j) {
  2468. int l1 = L[n + j];
  2469. if (l1 > 15) {
  2470. l1 -= 16; qh[j] |= m1;
  2471. }
  2472. int l2 = L[n + j + 32];
  2473. if (l2 > 15) {
  2474. l2 -= 16; qh[j] |= m2;
  2475. }
  2476. ql[j] = l1 | (l2 << 4);
  2477. }
  2478. m1 <<= 2; m2 <<= 2;
  2479. ql += 32;
  2480. }
  2481. x += QK_K;
  2482. }
  2483. }
  2484. size_t quantize_q5_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2485. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2486. if (!quant_weights) {
  2487. quantize_row_q5_K_ref(src, dst, (int64_t)nrow*n_per_row);
  2488. }
  2489. else {
  2490. char * qrow = (char *)dst;
  2491. for (int64_t row = 0; row < nrow; ++row) {
  2492. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2493. src += n_per_row;
  2494. qrow += row_size;
  2495. }
  2496. }
  2497. return nrow * row_size;
  2498. }
  2499. // ====================== 6-bit (de)-quantization
  2500. void quantize_row_q6_K_ref(const float * restrict x, block_q6_K * restrict y, int64_t k) {
  2501. assert(k % QK_K == 0);
  2502. const int64_t nb = k / QK_K;
  2503. int8_t L[QK_K];
  2504. float scales[QK_K/16];
  2505. for (int i = 0; i < nb; i++) {
  2506. float max_scale = 0;
  2507. float max_abs_scale = 0;
  2508. for (int ib = 0; ib < QK_K/16; ++ib) {
  2509. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2510. scales[ib] = scale;
  2511. const float abs_scale = fabsf(scale);
  2512. if (abs_scale > max_abs_scale) {
  2513. max_abs_scale = abs_scale;
  2514. max_scale = scale;
  2515. }
  2516. }
  2517. if (max_abs_scale < GROUP_MAX_EPS) {
  2518. memset(&y[i], 0, sizeof(block_q6_K));
  2519. y[i].d = GGML_FP32_TO_FP16(0.f);
  2520. x += QK_K;
  2521. continue;
  2522. }
  2523. float iscale = -128.f/max_scale;
  2524. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2525. for (int ib = 0; ib < QK_K/16; ++ib) {
  2526. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2527. }
  2528. for (int j = 0; j < QK_K/16; ++j) {
  2529. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2530. if (!d) {
  2531. continue;
  2532. }
  2533. for (int ii = 0; ii < 16; ++ii) {
  2534. int l = nearest_int(x[16*j + ii]/d);
  2535. l = MAX(-32, MIN(31, l));
  2536. L[16*j + ii] = l + 32;
  2537. }
  2538. }
  2539. uint8_t * restrict ql = y[i].ql;
  2540. uint8_t * restrict qh = y[i].qh;
  2541. for (int j = 0; j < QK_K; j += 128) {
  2542. for (int l = 0; l < 32; ++l) {
  2543. const uint8_t q1 = L[j + l + 0] & 0xF;
  2544. const uint8_t q2 = L[j + l + 32] & 0xF;
  2545. const uint8_t q3 = L[j + l + 64] & 0xF;
  2546. const uint8_t q4 = L[j + l + 96] & 0xF;
  2547. ql[l+ 0] = q1 | (q3 << 4);
  2548. ql[l+32] = q2 | (q4 << 4);
  2549. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2550. }
  2551. ql += 64;
  2552. qh += 32;
  2553. }
  2554. x += QK_K;
  2555. }
  2556. }
  2557. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int64_t k) {
  2558. assert(k % QK_K == 0);
  2559. const int64_t nb = k / QK_K;
  2560. for (int i = 0; i < nb; i++) {
  2561. const float d = GGML_FP16_TO_FP32(x[i].d);
  2562. const uint8_t * restrict ql = x[i].ql;
  2563. const uint8_t * restrict qh = x[i].qh;
  2564. const int8_t * restrict sc = x[i].scales;
  2565. for (int n = 0; n < QK_K; n += 128) {
  2566. for (int l = 0; l < 32; ++l) {
  2567. int is = l/16;
  2568. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2569. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2570. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2571. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2572. y[l + 0] = d * sc[is + 0] * q1;
  2573. y[l + 32] = d * sc[is + 2] * q2;
  2574. y[l + 64] = d * sc[is + 4] * q3;
  2575. y[l + 96] = d * sc[is + 6] * q4;
  2576. }
  2577. y += 128;
  2578. ql += 64;
  2579. qh += 32;
  2580. sc += 8;
  2581. }
  2582. }
  2583. }
  2584. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) {
  2585. assert(k % QK_K == 0);
  2586. block_q6_K * restrict y = vy;
  2587. quantize_row_q6_K_ref(x, y, k);
  2588. }
  2589. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2590. assert(n_per_row % QK_K == 0);
  2591. const int64_t nb = n_per_row / QK_K;
  2592. int8_t L[QK_K];
  2593. float scales[QK_K/16];
  2594. //float weights[16];
  2595. for (int i = 0; i < nb; i++) {
  2596. //float sum_x2 = 0;
  2597. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2598. //float sigma2 = sum_x2/QK_K;
  2599. float max_scale = 0;
  2600. float max_abs_scale = 0;
  2601. for (int ib = 0; ib < QK_K/16; ++ib) {
  2602. float scale;
  2603. if (quant_weights) {
  2604. const float * qw = quant_weights + QK_K*i + 16*ib;
  2605. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2606. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2607. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2608. } else {
  2609. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2610. }
  2611. scales[ib] = scale;
  2612. const float abs_scale = fabsf(scale);
  2613. if (abs_scale > max_abs_scale) {
  2614. max_abs_scale = abs_scale;
  2615. max_scale = scale;
  2616. }
  2617. }
  2618. if (max_abs_scale < GROUP_MAX_EPS) {
  2619. memset(&y[i], 0, sizeof(block_q6_K));
  2620. y[i].d = GGML_FP32_TO_FP16(0.f);
  2621. x += QK_K;
  2622. continue;
  2623. }
  2624. float iscale = -128.f/max_scale;
  2625. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2626. for (int ib = 0; ib < QK_K/16; ++ib) {
  2627. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2628. }
  2629. for (int j = 0; j < QK_K/16; ++j) {
  2630. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2631. if (!d) {
  2632. continue;
  2633. }
  2634. for (int ii = 0; ii < 16; ++ii) {
  2635. int l = nearest_int(x[16*j + ii]/d);
  2636. l = MAX(-32, MIN(31, l));
  2637. L[16*j + ii] = l + 32;
  2638. }
  2639. }
  2640. uint8_t * restrict ql = y[i].ql;
  2641. uint8_t * restrict qh = y[i].qh;
  2642. for (int j = 0; j < QK_K; j += 128) {
  2643. for (int l = 0; l < 32; ++l) {
  2644. const uint8_t q1 = L[j + l + 0] & 0xF;
  2645. const uint8_t q2 = L[j + l + 32] & 0xF;
  2646. const uint8_t q3 = L[j + l + 64] & 0xF;
  2647. const uint8_t q4 = L[j + l + 96] & 0xF;
  2648. ql[l+ 0] = q1 | (q3 << 4);
  2649. ql[l+32] = q2 | (q4 << 4);
  2650. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2651. }
  2652. ql += 64;
  2653. qh += 32;
  2654. }
  2655. x += QK_K;
  2656. }
  2657. }
  2658. size_t quantize_q6_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2659. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2660. if (!quant_weights) {
  2661. quantize_row_q6_K_ref(src, dst, (int64_t)nrow*n_per_row);
  2662. }
  2663. else {
  2664. char * qrow = (char *)dst;
  2665. for (int64_t row = 0; row < nrow; ++row) {
  2666. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2667. src += n_per_row;
  2668. qrow += row_size;
  2669. }
  2670. }
  2671. return nrow * row_size;
  2672. }
  2673. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2674. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2675. if (!quant_weights) {
  2676. quantize_row_q4_0_ref(x, y, n_per_row);
  2677. return;
  2678. }
  2679. float weight[QK4_0];
  2680. int8_t L[QK4_0];
  2681. float sum_x2 = 0;
  2682. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2683. float sigma2 = sum_x2/n_per_row;
  2684. const int64_t nb = n_per_row/QK4_0;
  2685. for (int ib = 0; ib < nb; ++ib) {
  2686. const float * xb = x + QK4_0 * ib;
  2687. const float * qw = quant_weights + QK4_0 * ib;
  2688. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2689. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2690. y[ib].d = GGML_FP32_TO_FP16(d);
  2691. for (int j = 0; j < 16; ++j) {
  2692. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2693. }
  2694. }
  2695. }
  2696. size_t quantize_q4_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2697. if (!quant_weights) {
  2698. quantize_row_q4_0_ref(src, dst, (int64_t)nrow*n_per_row);
  2699. return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2700. }
  2701. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2702. char * qrow = (char *)dst;
  2703. for (int64_t row = 0; row < nrow; ++row) {
  2704. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2705. src += n_per_row;
  2706. qrow += row_size;
  2707. }
  2708. return nrow * row_size;
  2709. }
  2710. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2711. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2712. if (!quant_weights) {
  2713. quantize_row_q4_1_ref(x, y, n_per_row);
  2714. return;
  2715. }
  2716. float weight[QK4_1];
  2717. uint8_t L[QK4_1], Laux[QK4_1];
  2718. float sum_x2 = 0;
  2719. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2720. float sigma2 = sum_x2/n_per_row;
  2721. const int64_t nb = n_per_row/QK4_1;
  2722. for (int ib = 0; ib < nb; ++ib) {
  2723. const float * xb = x + QK4_1 * ib;
  2724. const float * qw = quant_weights + QK4_1 * ib;
  2725. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2726. float min;
  2727. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2728. y[ib].d = GGML_FP32_TO_FP16(d);
  2729. y[ib].m = GGML_FP32_TO_FP16(-min);
  2730. for (int j = 0; j < 16; ++j) {
  2731. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2732. }
  2733. }
  2734. }
  2735. size_t quantize_q4_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2736. if (!quant_weights) {
  2737. quantize_row_q4_1_ref(src, dst, (int64_t)nrow*n_per_row);
  2738. return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2739. }
  2740. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2741. char * qrow = (char *)dst;
  2742. for (int64_t row = 0; row < nrow; ++row) {
  2743. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2744. src += n_per_row;
  2745. qrow += row_size;
  2746. }
  2747. return nrow * row_size;
  2748. }
  2749. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2750. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  2751. if (!quant_weights) {
  2752. quantize_row_q5_0_ref(x, y, n_per_row);
  2753. return;
  2754. }
  2755. float weight[QK5_0];
  2756. int8_t L[QK5_0];
  2757. float sum_x2 = 0;
  2758. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2759. float sigma2 = sum_x2/n_per_row;
  2760. const int64_t nb = n_per_row/QK5_0;
  2761. for (int ib = 0; ib < nb; ++ib) {
  2762. const float * xb = x + QK5_0 * ib;
  2763. const float * qw = quant_weights + QK5_0 * ib;
  2764. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2765. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  2766. y[ib].d = GGML_FP32_TO_FP16(d);
  2767. uint32_t qh = 0;
  2768. for (int j = 0; j < 16; ++j) {
  2769. const uint8_t xi0 = L[j];
  2770. const uint8_t xi1 = L[j+16];
  2771. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2772. // get the 5-th bit and store it in qh at the right position
  2773. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2774. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2775. }
  2776. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2777. }
  2778. }
  2779. size_t quantize_q5_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2780. if (!quant_weights) {
  2781. quantize_row_q5_0_ref(src, dst, (int64_t)nrow*n_per_row);
  2782. return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2783. }
  2784. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2785. char * qrow = (char *)dst;
  2786. for (int64_t row = 0; row < nrow; ++row) {
  2787. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  2788. src += n_per_row;
  2789. qrow += row_size;
  2790. }
  2791. return nrow * row_size;
  2792. }
  2793. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2794. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  2795. if (!quant_weights) {
  2796. quantize_row_q5_1_ref(x, y, n_per_row);
  2797. return;
  2798. }
  2799. float weight[QK5_1];
  2800. uint8_t L[QK5_1], Laux[QK5_1];
  2801. float sum_x2 = 0;
  2802. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2803. float sigma2 = sum_x2/n_per_row;
  2804. const int64_t nb = n_per_row/QK5_1;
  2805. for (int ib = 0; ib < nb; ++ib) {
  2806. const float * xb = x + QK5_1 * ib;
  2807. const float * qw = quant_weights + QK5_1 * ib;
  2808. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2809. float min;
  2810. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2811. y[ib].d = GGML_FP32_TO_FP16(d);
  2812. y[ib].m = GGML_FP32_TO_FP16(-min);
  2813. uint32_t qh = 0;
  2814. for (int j = 0; j < 16; ++j) {
  2815. const uint8_t xi0 = L[j];
  2816. const uint8_t xi1 = L[j+16];
  2817. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2818. // get the 5-th bit and store it in qh at the right position
  2819. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2820. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2821. }
  2822. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2823. }
  2824. }
  2825. size_t quantize_q5_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2826. if (!quant_weights) {
  2827. quantize_row_q5_1_ref(src, dst, (int64_t)nrow*n_per_row);
  2828. return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2829. }
  2830. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2831. char * qrow = (char *)dst;
  2832. for (int64_t row = 0; row < nrow; ++row) {
  2833. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  2834. src += n_per_row;
  2835. qrow += row_size;
  2836. }
  2837. return nrow * row_size;
  2838. }
  2839. size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2840. (void)quant_weights; // not used
  2841. const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
  2842. quantize_row_q8_0_ref(src, dst, (int64_t)nrow*n_per_row);
  2843. return nrow * row_size;
  2844. }
  2845. // ====================== "True" 2-bit (de)-quantization
  2846. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int64_t k) {
  2847. assert(k % QK_K == 0);
  2848. const int64_t nb = k / QK_K;
  2849. uint32_t aux32[2];
  2850. const uint8_t * aux8 = (const uint8_t *)aux32;
  2851. for (int i = 0; i < nb; i++) {
  2852. const float d = GGML_FP16_TO_FP32(x[i].d);
  2853. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2854. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  2855. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  2856. for (int l = 0; l < 4; ++l) {
  2857. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  2858. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  2859. for (int j = 0; j < 8; ++j) {
  2860. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2861. }
  2862. y += 8;
  2863. }
  2864. }
  2865. }
  2866. }
  2867. // ====================== 2.3125 bpw (de)-quantization
  2868. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int64_t k) {
  2869. assert(k % QK_K == 0);
  2870. const int64_t nb = k / QK_K;
  2871. float db[2];
  2872. for (int i = 0; i < nb; i++) {
  2873. const float d = GGML_FP16_TO_FP32(x[i].d);
  2874. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2875. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  2876. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  2877. for (int l = 0; l < 4; ++l) {
  2878. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  2879. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  2880. for (int j = 0; j < 8; ++j) {
  2881. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2882. }
  2883. y += 8;
  2884. }
  2885. }
  2886. }
  2887. }
  2888. // ====================== 2.5625 bpw (de)-quantization
  2889. void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int64_t k) {
  2890. assert(k % QK_K == 0);
  2891. const int64_t nb = k / QK_K;
  2892. float db[2];
  2893. for (int i = 0; i < nb; i++) {
  2894. const float d = GGML_FP16_TO_FP32(x[i].d);
  2895. const uint8_t * qs = x[i].qs;
  2896. const uint8_t * qh = x[i].qh;
  2897. const uint8_t * signs = qs + QK_K/8;
  2898. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2899. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  2900. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  2901. for (int l = 0; l < 4; ++l) {
  2902. const float dl = db[l/2];
  2903. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  2904. for (int j = 0; j < 8; ++j) {
  2905. y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
  2906. }
  2907. y += 8;
  2908. }
  2909. qs += 4;
  2910. signs += 4;
  2911. }
  2912. }
  2913. }
  2914. // ====================== 3.0625 bpw (de)-quantization
  2915. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int64_t k) {
  2916. assert(k % QK_K == 0);
  2917. const int64_t nb = k / QK_K;
  2918. uint32_t aux32;
  2919. for (int i = 0; i < nb; i++) {
  2920. const float d = GGML_FP16_TO_FP32(x[i].d);
  2921. const uint8_t * qs = x[i].qs;
  2922. const uint8_t * scales_and_signs = qs + QK_K/4;
  2923. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2924. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  2925. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  2926. for (int l = 0; l < 4; ++l) {
  2927. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  2928. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  2929. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  2930. for (int j = 0; j < 4; ++j) {
  2931. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2932. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2933. }
  2934. y += 8;
  2935. }
  2936. qs += 8;
  2937. }
  2938. }
  2939. }
  2940. // ====================== 3.3125 bpw (de)-quantization
  2941. void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int64_t k) {
  2942. assert(k % QK_K == 0);
  2943. const int64_t nb = k / QK_K;
  2944. for (int i = 0; i < nb; i++) {
  2945. const float d = GGML_FP16_TO_FP32(x[i].d);
  2946. const uint8_t * qs = x[i].qs;
  2947. const uint8_t * qh = x[i].qh;
  2948. const uint8_t * signs = x[i].signs;
  2949. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  2950. const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  2951. const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4));
  2952. for (int l = 0; l < 4; ++l) {
  2953. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
  2954. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
  2955. for (int j = 0; j < 4; ++j) {
  2956. y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2957. y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2958. }
  2959. y += 8;
  2960. }
  2961. qs += 8;
  2962. signs += 4;
  2963. for (int l = 0; l < 4; ++l) {
  2964. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
  2965. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
  2966. for (int j = 0; j < 4; ++j) {
  2967. y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2968. y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2969. }
  2970. y += 8;
  2971. }
  2972. qh += 2;
  2973. qs += 8;
  2974. signs += 4;
  2975. }
  2976. }
  2977. }
  2978. // ====================== 1.5625 bpw (de)-quantization
  2979. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int64_t k) {
  2980. assert(k % QK_K == 0);
  2981. const int64_t nb = k / QK_K;
  2982. for (int i = 0; i < nb; i++) {
  2983. const float d = GGML_FP16_TO_FP32(x[i].d);
  2984. const uint8_t * qs = x[i].qs;
  2985. const uint16_t * qh = x[i].qh;
  2986. for (int ib = 0; ib < QK_K/32; ++ib) {
  2987. const float dl = d * (2*((qh[ib] >> 12) & 7) + 1);
  2988. const float delta = qh[ib] & 0x8000 ? -IQ1S_DELTA : IQ1S_DELTA;
  2989. for (int l = 0; l < 4; ++l) {
  2990. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  2991. for (int j = 0; j < 8; ++j) {
  2992. y[j] = dl * (grid[j] + delta);
  2993. }
  2994. y += 8;
  2995. }
  2996. qs += 4;
  2997. }
  2998. }
  2999. }
  3000. void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int64_t k) {
  3001. assert(k % QK_K == 0);
  3002. const int64_t nb = k / QK_K;
  3003. float delta[4];
  3004. uint16_t idx[4];
  3005. iq1m_scale_t scale;
  3006. for (int i = 0; i < nb; i++) {
  3007. const uint16_t * sc = (const uint16_t *)x[i].scales;
  3008. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  3009. const float d = GGML_FP16_TO_FP32(scale.f16);
  3010. const uint8_t * qs = x[i].qs;
  3011. const uint8_t * qh = x[i].qh;
  3012. for (int ib = 0; ib < QK_K/32; ++ib) {
  3013. const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1);
  3014. const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1);
  3015. idx[0] = qs[0] | ((qh[0] << 8) & 0x700);
  3016. idx[1] = qs[1] | ((qh[0] << 4) & 0x700);
  3017. idx[2] = qs[2] | ((qh[1] << 8) & 0x700);
  3018. idx[3] = qs[3] | ((qh[1] << 4) & 0x700);
  3019. delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  3020. delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  3021. delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  3022. delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  3023. for (int l = 0; l < 2; ++l) {
  3024. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3025. for (int j = 0; j < 8; ++j) {
  3026. y[j] = dl1 * (grid[j] + delta[l]);
  3027. }
  3028. y += 8;
  3029. }
  3030. for (int l = 2; l < 4; ++l) {
  3031. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3032. for (int j = 0; j < 8; ++j) {
  3033. y[j] = dl2 * (grid[j] + delta[l]);
  3034. }
  3035. y += 8;
  3036. }
  3037. qs += 4;
  3038. qh += 2;
  3039. }
  3040. }
  3041. }
  3042. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  3043. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int64_t k) {
  3044. assert(k % QK4_NL == 0);
  3045. const int64_t nb = k / QK4_NL;
  3046. for (int i = 0; i < nb; i++) {
  3047. const uint8_t * qs = x[i].qs;
  3048. const float d = GGML_FP16_TO_FP32(x[i].d);
  3049. for (int j = 0; j < QK4_NL/2; ++j) {
  3050. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  3051. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  3052. }
  3053. y += QK4_NL;
  3054. qs += QK4_NL/2;
  3055. }
  3056. }
  3057. void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int64_t k) {
  3058. assert(k % QK_K == 0);
  3059. const int64_t nb = k / QK_K;
  3060. for (int i = 0; i < nb; i++) {
  3061. const uint8_t * qs = x[i].qs;
  3062. const float d = GGML_FP16_TO_FP32(x[i].d);
  3063. for (int ib = 0; ib < QK_K/32; ++ib) {
  3064. const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4);
  3065. const float dl = d * (ls - 32);
  3066. for (int j = 0; j < 16; ++j) {
  3067. y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf];
  3068. y[j+16] = dl * kvalues_iq4nl[qs[j] >> 4];
  3069. }
  3070. y += 32;
  3071. qs += 16;
  3072. }
  3073. }
  3074. }
  3075. //===================================== Q8_K ==============================================
  3076. void quantize_row_q8_K_ref(const float * restrict x, block_q8_K * restrict y, int64_t k) {
  3077. assert(k % QK_K == 0);
  3078. const int64_t nb = k / QK_K;
  3079. for (int i = 0; i < nb; i++) {
  3080. float max = 0;
  3081. float amax = 0;
  3082. for (int j = 0; j < QK_K; ++j) {
  3083. float ax = fabsf(x[j]);
  3084. if (ax > amax) {
  3085. amax = ax; max = x[j];
  3086. }
  3087. }
  3088. if (!amax) {
  3089. y[i].d = 0;
  3090. memset(y[i].qs, 0, QK_K);
  3091. x += QK_K;
  3092. continue;
  3093. }
  3094. //const float iscale = -128.f/max;
  3095. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  3096. const float iscale = -127.f/max;
  3097. for (int j = 0; j < QK_K; ++j) {
  3098. int v = nearest_int(iscale*x[j]);
  3099. y[i].qs[j] = MIN(127, v);
  3100. }
  3101. for (int j = 0; j < QK_K/16; ++j) {
  3102. int sum = 0;
  3103. for (int ii = 0; ii < 16; ++ii) {
  3104. sum += y[i].qs[j*16 + ii];
  3105. }
  3106. y[i].bsums[j] = sum;
  3107. }
  3108. y[i].d = 1/iscale;
  3109. x += QK_K;
  3110. }
  3111. }
  3112. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int64_t k) {
  3113. assert(k % QK_K == 0);
  3114. const int64_t nb = k / QK_K;
  3115. for (int i = 0; i < nb; i++) {
  3116. for (int j = 0; j < QK_K; ++j) {
  3117. *y++ = x[i].d * x[i].qs[j];
  3118. }
  3119. }
  3120. }
  3121. void quantize_row_q8_K(const float * restrict x, void * restrict y, int64_t k) {
  3122. quantize_row_q8_K_ref(x, y, k);
  3123. }
  3124. //===================================== Dot products =================================
  3125. //
  3126. // Helper functions
  3127. //
  3128. #if __AVX__ || __AVX2__ || __AVX512F__
  3129. // shuffles to pick the required scales in dot products
  3130. static inline __m256i get_scale_shuffle_q3k(int i) {
  3131. static const uint8_t k_shuffle[128] = {
  3132. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3133. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3134. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3135. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3136. };
  3137. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3138. }
  3139. static inline __m256i get_scale_shuffle_k4(int i) {
  3140. static const uint8_t k_shuffle[256] = {
  3141. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3142. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3143. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3144. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3145. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3146. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3147. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3148. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3149. };
  3150. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3151. }
  3152. static inline __m128i get_scale_shuffle(int i) {
  3153. static const uint8_t k_shuffle[128] = {
  3154. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3155. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3156. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3157. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3158. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3159. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3160. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3161. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3162. };
  3163. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3164. }
  3165. #elif defined(__loongarch_asx)
  3166. // shuffles to pick the required scales in dot products
  3167. static inline __m256i get_scale_shuffle_q3k(int i) {
  3168. static const uint8_t k_shuffle[128] = {
  3169. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3170. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3171. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3172. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3173. };
  3174. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3175. }
  3176. static inline __m256i get_scale_shuffle_k4(int i) {
  3177. static const uint8_t k_shuffle[256] = {
  3178. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3179. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3180. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3181. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3182. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3183. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3184. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3185. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3186. };
  3187. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3188. }
  3189. static inline __m128i get_scale_shuffle(int i) {
  3190. static const uint8_t k_shuffle[128] = {
  3191. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3192. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3193. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3194. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3195. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3196. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3197. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3198. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3199. };
  3200. return __lsx_vld((const __m128i*)k_shuffle + i, 0);
  3201. }
  3202. #endif
  3203. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3204. const int qk = QK8_0;
  3205. const int nb = n / qk;
  3206. assert(n % qk == 0);
  3207. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3208. assert((nrc == 2) || (nrc == 1));
  3209. #else
  3210. assert(nrc == 1);
  3211. #endif
  3212. UNUSED(nrc);
  3213. UNUSED(bx);
  3214. UNUSED(by);
  3215. UNUSED(bs);
  3216. const block_q4_0 * restrict x = vx;
  3217. const block_q8_0 * restrict y = vy;
  3218. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3219. if (nrc == 2) {
  3220. const block_q4_0 * restrict vx0 = vx;
  3221. const block_q4_0 * restrict vx1 = (const block_q4_0 *) ((const uint8_t*)vx + bx);
  3222. const block_q8_0 * restrict vy0 = vy;
  3223. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  3224. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3225. for (int i = 0; i < nb; i++) {
  3226. const block_q4_0 * restrict b_x0 = &vx0[i];
  3227. const block_q4_0 * restrict b_x1 = &vx1[i];
  3228. const block_q8_0 * restrict b_y0 = &vy0[i];
  3229. const block_q8_0 * restrict b_y1 = &vy1[i];
  3230. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3231. const int8x16_t s8b = vdupq_n_s8(0x8);
  3232. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3233. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3234. // 4-bit -> 8-bit
  3235. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3236. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3237. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3238. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3239. // sub 8
  3240. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3241. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3242. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3243. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3244. // load y
  3245. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3246. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3247. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3248. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3249. float32_t _scale[4] = { GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3250. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3251. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3252. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3253. float32x4_t scale = vld1q_f32(_scale);
  3254. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3255. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3256. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3257. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3258. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3259. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3260. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3261. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3262. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3263. l1, r1)), l2, r2)), l3, r3))), scale);
  3264. }
  3265. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3266. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3267. vst1_f32(s, vget_low_f32(sumv2));
  3268. vst1_f32(s + bs, vget_high_f32(sumv2));
  3269. return;
  3270. }
  3271. #endif
  3272. int ib = 0;
  3273. float sumf = 0;
  3274. #if defined(__ARM_FEATURE_SVE)
  3275. if (ggml_sve_cnt_b == QK8_0) {
  3276. const svbool_t ptrueh = svptrue_pat_b8(SV_VL16);
  3277. const svbool_t ptruel = svnot_b_z(svptrue_b8(), ptrueh);
  3278. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  3279. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  3280. for (; ib + 1 < nb; ib += 2) {
  3281. const block_q4_0 * restrict x0 = &x[ib + 0];
  3282. const block_q4_0 * restrict x1 = &x[ib + 1];
  3283. const block_q8_0 * restrict y0 = &y[ib + 0];
  3284. const block_q8_0 * restrict y1 = &y[ib + 1];
  3285. // load x
  3286. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  3287. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  3288. // 4-bit -> 8-bit
  3289. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(ptruel, svand_n_u8_m(ptrueh, qx0r, 0x0F), 0x04));
  3290. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(ptruel, svand_n_u8_m(ptrueh, qx1r, 0x0F), 0x04));
  3291. // sub 8
  3292. const svint8_t qx0s = svsub_n_s8_x(svptrue_b8(), qx0, 8);
  3293. const svint8_t qx1s = svsub_n_s8_x(svptrue_b8(), qx1, 8);
  3294. // load y
  3295. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  3296. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  3297. // dot product
  3298. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3299. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3300. }
  3301. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  3302. }
  3303. #elif defined(__ARM_NEON)
  3304. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3305. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3306. for (; ib + 1 < nb; ib += 2) {
  3307. const block_q4_0 * restrict x0 = &x[ib + 0];
  3308. const block_q4_0 * restrict x1 = &x[ib + 1];
  3309. const block_q8_0 * restrict y0 = &y[ib + 0];
  3310. const block_q8_0 * restrict y1 = &y[ib + 1];
  3311. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3312. const int8x16_t s8b = vdupq_n_s8(0x8);
  3313. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3314. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3315. // 4-bit -> 8-bit
  3316. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3317. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3318. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3319. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3320. // sub 8
  3321. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3322. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3323. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3324. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3325. // load y
  3326. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3327. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3328. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3329. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3330. // dot product into int32x4_t
  3331. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3332. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3333. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3334. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3335. }
  3336. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3337. #elif defined(__AVX2__)
  3338. // Initialize accumulator with zeros
  3339. __m256 acc = _mm256_setzero_ps();
  3340. // Main loop
  3341. for (; ib < nb; ++ib) {
  3342. /* Compute combined scale for the block */
  3343. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3344. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  3345. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3346. const __m256i off = _mm256_set1_epi8( 8 );
  3347. qx = _mm256_sub_epi8( qx, off );
  3348. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  3349. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3350. /* Multiply q with scale and accumulate */
  3351. acc = _mm256_fmadd_ps( d, q, acc );
  3352. }
  3353. sumf = hsum_float_8(acc);
  3354. #elif defined(__AVX__)
  3355. // Initialize accumulator with zeros
  3356. __m256 acc = _mm256_setzero_ps();
  3357. // Main loop
  3358. for (; ib < nb; ++ib) {
  3359. // Compute combined scale for the block
  3360. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3361. const __m128i lowMask = _mm_set1_epi8(0xF);
  3362. const __m128i off = _mm_set1_epi8(8);
  3363. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[ib].qs);
  3364. __m128i bx_0 = _mm_and_si128(lowMask, tmp);
  3365. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[ib].qs);
  3366. bx_0 = _mm_sub_epi8(bx_0, off);
  3367. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3368. bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  3369. by_0 = _mm_loadu_si128((const __m128i *)(y[ib].qs + 16));
  3370. bx_0 = _mm_sub_epi8(bx_0, off);
  3371. const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
  3372. // Convert int32_t to float
  3373. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  3374. // Apply the scale, and accumulate
  3375. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  3376. }
  3377. sumf = hsum_float_8(acc);
  3378. #elif defined(__SSSE3__)
  3379. // set constants
  3380. const __m128i lowMask = _mm_set1_epi8(0xF);
  3381. const __m128i off = _mm_set1_epi8(8);
  3382. // Initialize accumulator with zeros
  3383. __m128 acc_0 = _mm_setzero_ps();
  3384. __m128 acc_1 = _mm_setzero_ps();
  3385. __m128 acc_2 = _mm_setzero_ps();
  3386. __m128 acc_3 = _mm_setzero_ps();
  3387. for (; ib + 1 < nb; ib += 2) {
  3388. _mm_prefetch(&x[ib] + sizeof(block_q4_0), _MM_HINT_T0);
  3389. _mm_prefetch(&y[ib] + sizeof(block_q8_0), _MM_HINT_T0);
  3390. // Compute combined scale for the block 0 and 1
  3391. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3392. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[ib].qs);
  3393. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3394. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[ib].qs);
  3395. bx_0 = _mm_sub_epi8(bx_0, off);
  3396. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3397. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3398. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[ib].qs + 16));
  3399. bx_1 = _mm_sub_epi8(bx_1, off);
  3400. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3401. _mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3402. _mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3403. // Compute combined scale for the block 2 and 3
  3404. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
  3405. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  3406. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3407. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  3408. bx_2 = _mm_sub_epi8(bx_2, off);
  3409. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3410. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3411. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[ib + 1].qs + 16));
  3412. bx_3 = _mm_sub_epi8(bx_3, off);
  3413. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3414. // Convert int32_t to float
  3415. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3416. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3417. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3418. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3419. // Apply the scale
  3420. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  3421. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  3422. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  3423. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  3424. // Acummulate
  3425. acc_0 = _mm_add_ps(p0_d, acc_0);
  3426. acc_1 = _mm_add_ps(p1_d, acc_1);
  3427. acc_2 = _mm_add_ps(p2_d, acc_2);
  3428. acc_3 = _mm_add_ps(p3_d, acc_3);
  3429. }
  3430. sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3431. #elif defined(__riscv_v_intrinsic)
  3432. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3433. for (; ib < nb; ++ib) {
  3434. // load elements
  3435. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  3436. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  3437. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  3438. // mask and store lower part of x, and then upper part
  3439. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3440. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3441. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3442. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3443. // subtract offset
  3444. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  3445. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  3446. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3447. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3448. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3449. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3450. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3451. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3452. sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
  3453. }
  3454. #elif defined(__POWER9_VECTOR__)
  3455. const vector signed char lowMask = vec_splats((signed char)0xF);
  3456. const vector signed int v0 = vec_splats((int32_t)0);
  3457. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3458. const vector signed char v8 = vec_splats((signed char)0x8);
  3459. vector float vsumf0 = vec_splats(0.0f);
  3460. #pragma GCC unroll 8
  3461. for (; ib < nb; ++ib) {
  3462. __builtin_prefetch(x[ib].qs, 0, 1);
  3463. __builtin_prefetch(y[ib].qs, 0, 1);
  3464. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  3465. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  3466. vector float vd = vec_mul(vxd, vyd);
  3467. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  3468. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  3469. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  3470. vector signed char q4x0 = vec_and(qxs, lowMask);
  3471. vector signed char q4x1 = vec_sr(qxs, v4);
  3472. q4x0 = vec_sub(q4x0, v8);
  3473. q4x1 = vec_sub(q4x1, v8);
  3474. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  3475. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  3476. vector signed int vsumi0 = v0;
  3477. vsumi0 = vec_sum4s(qv0, vsumi0);
  3478. vsumi0 = vec_sum4s(qv1, vsumi0);
  3479. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3480. }
  3481. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3482. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3483. sumf = vec_extract(vsumf0, 0);
  3484. #elif defined(__loongarch_asx)
  3485. // Initialize accumulator with zeros
  3486. __m256 acc = (__m256)__lasx_xvldi(0);
  3487. // Main loop
  3488. for (; ib < nb; ++ib) {
  3489. /* Compute combined scale for the block */
  3490. const __m256 d = __lasx_xvreplfr2vr_s( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3491. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  3492. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3493. const __m256i off = __lasx_xvreplgr2vr_b( 8 );
  3494. qx = __lasx_xvsub_b( qx, off );
  3495. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  3496. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3497. /* Multiply q with scale and accumulate */
  3498. acc = __lasx_xvfmadd_s( d, q, acc );
  3499. }
  3500. sumf = hsum_float_8(acc);
  3501. #elif defined(__loongarch_sx)
  3502. // set constants
  3503. const __m128i low_mask = __lsx_vreplgr2vr_b(0xF);
  3504. const __m128i off = __lsx_vreplgr2vr_b(8);
  3505. // Initialize accumulator with zeros
  3506. __m128 acc_0 = __lsx_vldi(0);
  3507. __m128 acc_1 = __lsx_vldi(0);
  3508. __m128 acc_2 = __lsx_vldi(0);
  3509. __m128 acc_3 = __lsx_vldi(0);
  3510. for (; ib + 1 < nb; ib += 2) {
  3511. // Compute combined scale for the block 0 and 1
  3512. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3513. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[ib].qs, 0);
  3514. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  3515. __m128i by_0 = __lsx_vld((const __m128i *)y[ib].qs, 0);
  3516. bx_0 = __lsx_vsub_b(bx_0, off);
  3517. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3518. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  3519. __m128i by_1 = __lsx_vld((const __m128i *)(y[ib].qs + 16), 0);
  3520. bx_1 = __lsx_vsub_b(bx_1, off);
  3521. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3522. //_mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3523. //_mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3524. // Compute combined scale for the block 2 and 3
  3525. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
  3526. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[ib + 1].qs, 0);
  3527. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  3528. __m128i by_2 = __lsx_vld((const __m128i *)y[ib + 1].qs, 0);
  3529. bx_2 = __lsx_vsub_b(bx_2, off);
  3530. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3531. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  3532. __m128i by_3 = __lsx_vld((const __m128i *)(y[ib + 1].qs + 16), 0);
  3533. bx_3 = __lsx_vsub_b(bx_3, off);
  3534. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3535. // Convert int32_t to float
  3536. __m128 p0 = __lsx_vffint_s_w(i32_0);
  3537. __m128 p1 = __lsx_vffint_s_w(i32_1);
  3538. __m128 p2 = __lsx_vffint_s_w(i32_2);
  3539. __m128 p3 = __lsx_vffint_s_w(i32_3);
  3540. // Apply the scale
  3541. __m128 p0_d = __lsx_vfmul_s( d_0_1, p0 );
  3542. __m128 p1_d = __lsx_vfmul_s( d_0_1, p1 );
  3543. __m128 p2_d = __lsx_vfmul_s( d_2_3, p2 );
  3544. __m128 p3_d = __lsx_vfmul_s( d_2_3, p3 );
  3545. // Acummulate
  3546. acc_0 = __lsx_vfadd_s(p0_d, acc_0);
  3547. acc_1 = __lsx_vfadd_s(p1_d, acc_1);
  3548. acc_2 = __lsx_vfadd_s(p2_d, acc_2);
  3549. acc_3 = __lsx_vfadd_s(p3_d, acc_3);
  3550. }
  3551. sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3552. #endif
  3553. for (; ib < nb; ++ib) {
  3554. int sumi0 = 0;
  3555. int sumi1 = 0;
  3556. for (int j = 0; j < qk/2; ++j) {
  3557. const int v0 = (x[ib].qs[j] & 0x0F) - 8;
  3558. const int v1 = (x[ib].qs[j] >> 4) - 8;
  3559. sumi0 += (v0 * y[ib].qs[j]);
  3560. sumi1 += (v1 * y[ib].qs[j + qk/2]);
  3561. }
  3562. int sumi = sumi0 + sumi1;
  3563. sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
  3564. }
  3565. *s = sumf;
  3566. }
  3567. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3568. const int qk = QK8_1;
  3569. const int nb = n / qk;
  3570. assert(n % qk == 0);
  3571. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3572. assert((nrc == 2) || (nrc == 1));
  3573. #else
  3574. assert(nrc == 1);
  3575. #endif
  3576. UNUSED(nrc);
  3577. UNUSED(bx);
  3578. UNUSED(by);
  3579. UNUSED(bs);
  3580. const block_q4_1 * restrict x = vx;
  3581. const block_q8_1 * restrict y = vy;
  3582. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3583. if (nrc == 2) {
  3584. const block_q4_1 * restrict vx0 = vx;
  3585. const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx);
  3586. const block_q8_1 * restrict vy0 = vy;
  3587. const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by);
  3588. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3589. float32x4_t summs0 = vdupq_n_f32(0.0f);
  3590. for (int i = 0; i < nb; i++) {
  3591. const block_q4_1 * restrict b_x0 = &vx0[i];
  3592. const block_q4_1 * restrict b_x1 = &vx1[i];
  3593. const block_q8_1 * restrict b_y0 = &vy0[i];
  3594. const block_q8_1 * restrict b_y1 = &vy1[i];
  3595. float32_t summs_t[4] = {GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
  3596. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
  3597. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
  3598. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)};
  3599. summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
  3600. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3601. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3602. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3603. // 4-bit -> 8-bit
  3604. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3605. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3606. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3607. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3608. // load y
  3609. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3610. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3611. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3612. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3613. // mmla into int32x4_t
  3614. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*b_y0->d,
  3615. GGML_FP16_TO_FP32(b_x0->d)*b_y1->d,
  3616. GGML_FP16_TO_FP32(b_x1->d)*b_y0->d,
  3617. GGML_FP16_TO_FP32(b_x1->d)*b_y1->d};
  3618. float32x4_t scale = vld1q_f32(_scale);
  3619. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3620. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3621. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3622. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3623. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3624. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3625. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3626. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3627. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3628. l1, r1)), l2, r2)), l3, r3))), scale);
  3629. }
  3630. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3631. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3632. sumv2 = vaddq_f32(sumv2, summs0);
  3633. vst1_f32(s, vget_low_f32 (sumv2));
  3634. vst1_f32(s + bs, vget_high_f32(sumv2));
  3635. return;
  3636. }
  3637. #endif
  3638. int ib = 0;
  3639. float sumf = 0;
  3640. // TODO: add WASM SIMD
  3641. #if defined(__ARM_NEON)
  3642. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3643. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3644. float summs = 0;
  3645. for (; ib + 1 < nb; ib += 2) {
  3646. const block_q4_1 * restrict x0 = &x[ib + 0];
  3647. const block_q4_1 * restrict x1 = &x[ib + 1];
  3648. const block_q8_1 * restrict y0 = &y[ib + 0];
  3649. const block_q8_1 * restrict y1 = &y[ib + 1];
  3650. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  3651. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3652. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3653. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3654. // 4-bit -> 8-bit
  3655. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3656. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3657. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3658. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3659. // load y
  3660. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3661. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3662. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3663. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3664. // dot product into int32x4_t
  3665. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  3666. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  3667. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3668. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3669. }
  3670. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  3671. #elif defined(__AVX2__) || defined(__AVX__)
  3672. // Initialize accumulator with zeros
  3673. __m256 acc = _mm256_setzero_ps();
  3674. float summs = 0;
  3675. // Main loop
  3676. for (; ib < nb; ++ib) {
  3677. const float d0 = GGML_FP16_TO_FP32(x[ib].d);
  3678. const float d1 = GGML_FP16_TO_FP32(y[ib].d);
  3679. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  3680. const __m256 d0v = _mm256_set1_ps( d0 );
  3681. const __m256 d1v = _mm256_set1_ps( d1 );
  3682. // Compute combined scales
  3683. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  3684. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3685. const __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  3686. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[ib].qs );
  3687. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3688. // Accumulate d0*d1*x*y
  3689. #if defined(__AVX2__)
  3690. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  3691. #else
  3692. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  3693. #endif
  3694. }
  3695. sumf = hsum_float_8(acc) + summs;
  3696. #elif defined(__riscv_v_intrinsic)
  3697. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3698. for (; ib < nb; ++ib) {
  3699. // load elements
  3700. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  3701. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  3702. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  3703. // mask and store lower part of x, and then upper part
  3704. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3705. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3706. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3707. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3708. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3709. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3710. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3711. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3712. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3713. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3714. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  3715. }
  3716. #elif defined(__POWER9_VECTOR__)
  3717. const vector signed char lowMask = vec_splats((signed char)0xF);
  3718. const vector signed int v0 = vec_splats((int32_t)0);
  3719. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3720. vector float vsumf0 = vec_splats(0.0f);
  3721. #pragma GCC unroll 4
  3722. for (; ib < nb; ++ib) {
  3723. __builtin_prefetch(x[ib].qs, 0, 1);
  3724. __builtin_prefetch(y[ib].qs, 0, 1);
  3725. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  3726. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  3727. vector float vd = vec_mul(vxd, vyd);
  3728. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[ib].m));
  3729. vector float vys = {GGML_FP16_TO_FP32(y[ib].s), 0.0f, 0.0f, 0.0f};
  3730. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  3731. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  3732. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  3733. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  3734. vector unsigned char q4x0 = (vector unsigned char)vec_and(qxs, lowMask);
  3735. vector unsigned char q4x1 = (vector unsigned char)vec_sr(qxs, v4);
  3736. vector signed int vsumi0 = v0;
  3737. vsumi0 = vec_msum(q8y0, q4x0, vsumi0);
  3738. vsumi0 = vec_msum(q8y1, q4x1, vsumi0);
  3739. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3740. }
  3741. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3742. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3743. sumf = vec_extract(vsumf0, 0);
  3744. #elif defined(__loongarch_asx)
  3745. // Initialize accumulator with zeros
  3746. __m256 acc = (__m256)__lasx_xvldi(0);
  3747. float summs = 0;
  3748. // Main loop
  3749. for (; ib < nb; ++ib) {
  3750. const float d0 = GGML_FP16_TO_FP32(x[ib].d);
  3751. const float d1 = GGML_FP16_TO_FP32(y[ib].d);
  3752. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  3753. const __m256 d0v = __lasx_xvreplfr2vr_s( d0 );
  3754. const __m256 d1v = __lasx_xvreplfr2vr_s( d1 );
  3755. // Compute combined scales
  3756. const __m256 d0d1 = __lasx_xvfmul_s( d0v, d1v );
  3757. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3758. const __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  3759. const __m256i qy = __lasx_xvld( (const __m256i *)y[ib].qs, 0);
  3760. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3761. // Accumulate d0*d1*x*y
  3762. acc = __lasx_xvfmadd_s( d0d1, xy, acc );
  3763. }
  3764. sumf = hsum_float_8(acc) + summs;
  3765. #endif
  3766. for (; ib < nb; ++ib) {
  3767. int sumi0 = 0;
  3768. int sumi1 = 0;
  3769. for (int j = 0; j < qk/2; ++j) {
  3770. const int v0 = (x[ib].qs[j] & 0x0F);
  3771. const int v1 = (x[ib].qs[j] >> 4);
  3772. sumi0 += (v0 * y[ib].qs[j]);
  3773. sumi1 += (v1 * y[ib].qs[j + qk/2]);
  3774. }
  3775. int sumi = sumi0 + sumi1;
  3776. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  3777. }
  3778. *s = sumf;
  3779. }
  3780. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3781. const int qk = QK8_0;
  3782. const int nb = n / qk;
  3783. int ib = 0;
  3784. float sumf = 0;
  3785. assert(n % qk == 0);
  3786. assert(qk == QK5_0);
  3787. assert(nrc == 1);
  3788. UNUSED(nrc);
  3789. UNUSED(bx);
  3790. UNUSED(by);
  3791. UNUSED(bs);
  3792. const block_q5_0 * restrict x = vx;
  3793. const block_q8_0 * restrict y = vy;
  3794. #if defined(__ARM_NEON)
  3795. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3796. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3797. uint32_t qh0;
  3798. uint32_t qh1;
  3799. uint64_t tmp0[4];
  3800. uint64_t tmp1[4];
  3801. for (; ib + 1 < nb; ib += 2) {
  3802. const block_q5_0 * restrict x0 = &x[ib];
  3803. const block_q5_0 * restrict x1 = &x[ib + 1];
  3804. const block_q8_0 * restrict y0 = &y[ib];
  3805. const block_q8_0 * restrict y1 = &y[ib + 1];
  3806. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3807. // extract the 5th bit via lookup table ((!b) << 4)
  3808. memcpy(&qh0, x0->qh, sizeof(qh0));
  3809. memcpy(&qh1, x1->qh, sizeof(qh1));
  3810. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  3811. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  3812. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  3813. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  3814. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  3815. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  3816. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  3817. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  3818. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  3819. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  3820. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  3821. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  3822. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3823. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3824. // 4-bit -> 8-bit
  3825. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3826. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3827. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3828. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3829. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3830. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  3831. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  3832. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  3833. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  3834. // load y
  3835. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3836. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3837. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3838. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3839. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  3840. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  3841. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3842. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  3843. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  3844. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3845. }
  3846. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3847. #elif defined(__wasm_simd128__)
  3848. v128_t sumv = wasm_f32x4_splat(0.0f);
  3849. uint32_t qh;
  3850. uint64_t tmp[4];
  3851. // TODO: check if unrolling this is better
  3852. for (; ib < nb; ++ib) {
  3853. const block_q5_0 * restrict x0 = &x[ib];
  3854. const block_q8_0 * restrict y0 = &y[ib];
  3855. const v128_t m4b = wasm_i8x16_splat(0x0F);
  3856. // extract the 5th bit
  3857. memcpy(&qh, x0->qh, sizeof(qh));
  3858. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  3859. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  3860. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  3861. tmp[3] = table_b2b_1[(qh >> 24) ];
  3862. const v128_t qhl = wasm_v128_load(tmp + 0);
  3863. const v128_t qhh = wasm_v128_load(tmp + 2);
  3864. const v128_t v0 = wasm_v128_load(x0->qs);
  3865. // 4-bit -> 8-bit
  3866. const v128_t v0l = wasm_v128_and (v0, m4b);
  3867. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  3868. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3869. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  3870. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  3871. // load y
  3872. const v128_t v1l = wasm_v128_load(y0->qs);
  3873. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  3874. // int8x16 -> int16x8
  3875. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  3876. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  3877. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  3878. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  3879. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  3880. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  3881. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  3882. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  3883. // dot product
  3884. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  3885. wasm_i32x4_add(
  3886. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  3887. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  3888. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  3889. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  3890. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  3891. }
  3892. sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  3893. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  3894. #elif defined(__AVX2__)
  3895. // Initialize accumulator with zeros
  3896. __m256 acc = _mm256_setzero_ps();
  3897. // Main loop
  3898. for (; ib < nb; ++ib) {
  3899. /* Compute combined scale for the block */
  3900. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  3901. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  3902. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  3903. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  3904. qx = _mm256_or_si256(qx, bxhi);
  3905. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  3906. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3907. /* Multiply q with scale and accumulate */
  3908. acc = _mm256_fmadd_ps(d, q, acc);
  3909. }
  3910. sumf = hsum_float_8(acc);
  3911. #elif defined(__AVX__)
  3912. // Initialize accumulator with zeros
  3913. __m256 acc = _mm256_setzero_ps();
  3914. __m128i mask = _mm_set1_epi8((char)0xF0);
  3915. // Main loop
  3916. for (; ib < nb; ++ib) {
  3917. /* Compute combined scale for the block */
  3918. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  3919. __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs);
  3920. const __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  3921. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  3922. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  3923. bxhil = _mm_andnot_si128(bxhil, mask);
  3924. bxhih = _mm_andnot_si128(bxhih, mask);
  3925. __m128i bxl = _mm256_castsi256_si128(bx_0);
  3926. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  3927. bxl = _mm_or_si128(bxl, bxhil);
  3928. bxh = _mm_or_si128(bxh, bxhih);
  3929. bx_0 = MM256_SET_M128I(bxh, bxl);
  3930. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  3931. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  3932. /* Multiply q with scale and accumulate */
  3933. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  3934. }
  3935. sumf = hsum_float_8(acc);
  3936. #elif defined(__riscv_v_intrinsic)
  3937. uint32_t qh;
  3938. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3939. // These temporary registers are for masking and shift operations
  3940. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  3941. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  3942. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  3943. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  3944. for (; ib < nb; ++ib) {
  3945. memcpy(&qh, x[ib].qh, sizeof(uint32_t));
  3946. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  3947. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  3948. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  3949. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  3950. // ((qh & (1u << (j + 16))) >> (j + 12));
  3951. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  3952. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  3953. // narrowing
  3954. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  3955. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  3956. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  3957. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  3958. // load
  3959. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  3960. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  3961. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  3962. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3963. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3964. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  3965. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  3966. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3967. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3968. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  3969. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  3970. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3971. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3972. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3973. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3974. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3975. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3976. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
  3977. }
  3978. #elif defined(__POWER9_VECTOR__)
  3979. const vector signed char lowMask = vec_splats((signed char)0xF);
  3980. const vector unsigned char v4 = vec_splats((unsigned char)4);
  3981. vector float vsumf0 = vec_splats(0.0f);
  3982. #pragma GCC unroll 4
  3983. for (; ib < nb; ++ib) {
  3984. __builtin_prefetch(x[ib].qs, 0, 1);
  3985. __builtin_prefetch(y[ib].qs, 0, 1);
  3986. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  3987. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  3988. vector float vd = vec_mul(vxd, vyd);
  3989. vector signed long long aux64x2_0 = {(uint64_t)(table_b2b_1[x[ib].qh[0]]), (uint64_t)(table_b2b_1[x[ib].qh[1]])};
  3990. vector signed long long aux64x2_1 = {(uint64_t)(table_b2b_1[x[ib].qh[2]]), (uint64_t)(table_b2b_1[x[ib].qh[3]])};
  3991. vector signed char qh0 = (vector signed char)aux64x2_0;
  3992. vector signed char qh1 = (vector signed char)aux64x2_1;
  3993. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  3994. vector signed char q5x0 = vec_sub(vec_and (qxs, lowMask), qh0);
  3995. vector signed char q5x1 = vec_sub(vec_sr(qxs, v4), qh1);
  3996. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  3997. vector signed char q8y1 = vec_xl( 16, y[ib].qs);
  3998. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  3999. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  4000. qv0 = vec_add(qv0, qv1);
  4001. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  4002. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4003. }
  4004. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4005. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4006. sumf = vec_extract(vsumf0, 0);
  4007. #elif defined(__loongarch_asx)
  4008. // Initialize accumulator with zeros
  4009. __m256 acc = (__m256)__lasx_xvldi(0);
  4010. // Main loop
  4011. for (; ib < nb; ++ib) {
  4012. /* Compute combined scale for the block */
  4013. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d)); //FIXME
  4014. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  4015. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4016. bxhi = __lasx_xvandn_v(bxhi, __lasx_xvreplgr2vr_b((char)0xF0));
  4017. qx = __lasx_xvor_v(qx, bxhi);
  4018. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  4019. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4020. /* Multiply q with scale and accumulate */
  4021. acc = __lasx_xvfmadd_s(d, q, acc);
  4022. }
  4023. sumf = hsum_float_8(acc);
  4024. #endif
  4025. for (; ib < nb; ++ib) {
  4026. uint32_t qh;
  4027. memcpy(&qh, x[ib].qh, sizeof(qh));
  4028. int sumi0 = 0;
  4029. int sumi1 = 0;
  4030. for (int j = 0; j < qk/2; ++j) {
  4031. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4032. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  4033. const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
  4034. const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
  4035. sumi0 += (x0 * y[ib].qs[j]);
  4036. sumi1 += (x1 * y[ib].qs[j + qk/2]);
  4037. }
  4038. int sumi = sumi0 + sumi1;
  4039. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
  4040. }
  4041. *s = sumf;
  4042. }
  4043. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4044. const int qk = QK8_1;
  4045. const int nb = n / qk;
  4046. int ib = 0;
  4047. float sumf = 0;
  4048. assert(n % qk == 0);
  4049. assert(qk == QK5_1);
  4050. assert(nrc == 1);
  4051. UNUSED(nrc);
  4052. UNUSED(bx);
  4053. UNUSED(by);
  4054. UNUSED(bs);
  4055. const block_q5_1 * restrict x = vx;
  4056. const block_q8_1 * restrict y = vy;
  4057. #if defined(__ARM_NEON)
  4058. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4059. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4060. float summs0 = 0.0f;
  4061. float summs1 = 0.0f;
  4062. uint32_t qh0;
  4063. uint32_t qh1;
  4064. uint64_t tmp0[4];
  4065. uint64_t tmp1[4];
  4066. for (; ib + 1 < nb; ib += 2) {
  4067. const block_q5_1 * restrict x0 = &x[ib];
  4068. const block_q5_1 * restrict x1 = &x[ib + 1];
  4069. const block_q8_1 * restrict y0 = &y[ib];
  4070. const block_q8_1 * restrict y1 = &y[ib + 1];
  4071. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4072. summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4073. summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  4074. // extract the 5th bit via lookup table ((b) << 4)
  4075. memcpy(&qh0, x0->qh, sizeof(qh0));
  4076. memcpy(&qh1, x1->qh, sizeof(qh1));
  4077. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  4078. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  4079. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  4080. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  4081. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  4082. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  4083. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  4084. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  4085. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4086. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4087. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4088. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4089. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4090. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4091. // 4-bit -> 8-bit
  4092. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4093. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4094. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4095. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4096. // add high bit
  4097. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  4098. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  4099. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  4100. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  4101. // load y
  4102. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4103. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4104. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4105. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4106. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4107. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4108. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4109. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4110. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4111. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4112. }
  4113. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  4114. #elif defined(__wasm_simd128__)
  4115. v128_t sumv = wasm_f32x4_splat(0.0f);
  4116. float summs = 0.0f;
  4117. uint32_t qh;
  4118. uint64_t tmp[4];
  4119. // TODO: check if unrolling this is better
  4120. for (; ib < nb; ++ib) {
  4121. const block_q5_1 * restrict x0 = &x[ib];
  4122. const block_q8_1 * restrict y0 = &y[ib];
  4123. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4124. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4125. // extract the 5th bit
  4126. memcpy(&qh, x0->qh, sizeof(qh));
  4127. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  4128. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  4129. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  4130. tmp[3] = table_b2b_0[(qh >> 24) ];
  4131. const v128_t qhl = wasm_v128_load(tmp + 0);
  4132. const v128_t qhh = wasm_v128_load(tmp + 2);
  4133. const v128_t v0 = wasm_v128_load(x0->qs);
  4134. // 4-bit -> 8-bit
  4135. const v128_t v0l = wasm_v128_and (v0, m4b);
  4136. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4137. // add high bit
  4138. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  4139. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  4140. // load y
  4141. const v128_t v1l = wasm_v128_load(y0->qs);
  4142. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4143. // int8x16 -> int16x8
  4144. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4145. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4146. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4147. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4148. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4149. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4150. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4151. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4152. // dot product
  4153. sumv = wasm_f32x4_add(sumv,
  4154. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  4155. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4156. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4157. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4158. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4159. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4160. }
  4161. sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4162. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  4163. #elif defined(__AVX2__)
  4164. // Initialize accumulator with zeros
  4165. __m256 acc = _mm256_setzero_ps();
  4166. float summs = 0.0f;
  4167. // Main loop
  4168. for (; ib < nb; ++ib) {
  4169. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d));
  4170. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  4171. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  4172. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4173. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  4174. qx = _mm256_or_si256(qx, bxhi);
  4175. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[ib].d));
  4176. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4177. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4178. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  4179. }
  4180. sumf = hsum_float_8(acc) + summs;
  4181. #elif defined(__AVX__)
  4182. // Initialize accumulator with zeros
  4183. __m256 acc = _mm256_setzero_ps();
  4184. __m128i mask = _mm_set1_epi8(0x10);
  4185. float summs = 0.0f;
  4186. // Main loop
  4187. for (; ib < nb; ++ib) {
  4188. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d));
  4189. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  4190. __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs);
  4191. const __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4192. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4193. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4194. bxhil = _mm_and_si128(bxhil, mask);
  4195. bxhih = _mm_and_si128(bxhih, mask);
  4196. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4197. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4198. bxl = _mm_or_si128(bxl, bxhil);
  4199. bxh = _mm_or_si128(bxh, bxhih);
  4200. bx_0 = MM256_SET_M128I(bxh, bxl);
  4201. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[ib].d));
  4202. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4203. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  4204. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  4205. }
  4206. sumf = hsum_float_8(acc) + summs;
  4207. #elif defined(__riscv_v_intrinsic)
  4208. uint32_t qh;
  4209. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4210. // temporary registers for shift operations
  4211. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4212. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4213. for (; ib < nb; ++ib) {
  4214. memcpy(&qh, x[ib].qh, sizeof(uint32_t));
  4215. // load qh
  4216. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  4217. // ((qh >> (j + 0)) << 4) & 0x10;
  4218. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  4219. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4220. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  4221. // ((qh >> (j + 12)) ) & 0x10;
  4222. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  4223. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  4224. // narrowing
  4225. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  4226. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4227. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  4228. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4229. // load
  4230. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  4231. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  4232. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  4233. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4234. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4235. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4236. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4237. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4238. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4239. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4240. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4241. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4242. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4243. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4244. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4245. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  4246. }
  4247. #elif defined(__POWER9_VECTOR__)
  4248. const vector signed char lowMask = vec_splats((signed char)0xF);
  4249. const vector signed int v0 = vec_splats((int32_t)0);
  4250. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4251. vector float vsumf0 = vec_splats(0.0f);
  4252. #pragma GCC unroll 4
  4253. for (; ib < nb; ++ib) {
  4254. __builtin_prefetch(x[ib].qs, 0, 1);
  4255. __builtin_prefetch(y[ib].qs, 0, 1);
  4256. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  4257. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  4258. vector float vd = vec_mul(vxd, vyd);
  4259. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[ib].m));
  4260. vector float vys = {GGML_FP16_TO_FP32(y[ib].s), 0.f, 0.f, 0.f};
  4261. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  4262. vector unsigned long long aux64x2_0 = {(uint64_t)(table_b2b_0[x[ib].qh[0]]), (uint64_t)(table_b2b_0[x[ib].qh[1]])};
  4263. vector unsigned long long aux64x2_1 = {(uint64_t)(table_b2b_0[x[ib].qh[2]]), (uint64_t)(table_b2b_0[x[ib].qh[3]])};
  4264. vector signed char qh0 = (vector signed char)aux64x2_0;
  4265. vector signed char qh1 = (vector signed char)aux64x2_1;
  4266. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  4267. vector unsigned char q5x0 = (vector unsigned char)vec_or(vec_and(qxs, lowMask), qh0);
  4268. vector unsigned char q5x1 = (vector unsigned char)vec_or(vec_sr(qxs, v4), qh1);
  4269. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  4270. vector signed char q8y1 = vec_xl( 16, y[ib].qs);
  4271. vector signed int vsumi0 = v0;
  4272. vsumi0 = vec_msum(q8y0, q5x0, vsumi0);
  4273. vsumi0 = vec_msum(q8y1, q5x1, vsumi0);
  4274. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4275. }
  4276. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4277. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4278. sumf = vec_extract(vsumf0, 0);
  4279. #elif defined(__loongarch_asx)
  4280. // Initialize accumulator with zeros
  4281. __m256 acc = (__m256)__lasx_xvldi(0);
  4282. float summs = 0.0f;
  4283. // Main loop
  4284. for (; ib < nb; ++ib) {
  4285. const __m256 dx = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d));
  4286. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  4287. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  4288. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4289. bxhi = __lasx_xvand_v(bxhi, __lasx_xvreplgr2vr_b(0x10));
  4290. qx = __lasx_xvor_v(qx, bxhi);
  4291. const __m256 dy = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib].d));
  4292. const __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  4293. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4294. acc = __lasx_xvfmadd_s(q, __lasx_xvfmul_s(dx, dy), acc);
  4295. }
  4296. sumf = hsum_float_8(acc) + summs;
  4297. #endif
  4298. for (; ib < nb; ++ib) {
  4299. uint32_t qh;
  4300. memcpy(&qh, x[ib].qh, sizeof(qh));
  4301. int sumi0 = 0;
  4302. int sumi1 = 0;
  4303. for (int j = 0; j < qk/2; ++j) {
  4304. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  4305. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  4306. const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
  4307. const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
  4308. sumi0 += (x0 * y[ib].qs[j]);
  4309. sumi1 += (x1 * y[ib].qs[j + qk/2]);
  4310. }
  4311. int sumi = sumi0 + sumi1;
  4312. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  4313. }
  4314. *s = sumf;
  4315. }
  4316. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4317. const int qk = QK8_0;
  4318. const int nb = n / qk;
  4319. assert(n % qk == 0);
  4320. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4321. assert((nrc == 2) || (nrc == 1));
  4322. #else
  4323. assert(nrc == 1);
  4324. #endif
  4325. UNUSED(nrc);
  4326. UNUSED(bx);
  4327. UNUSED(by);
  4328. UNUSED(bs);
  4329. const block_q8_0 * restrict x = vx;
  4330. const block_q8_0 * restrict y = vy;
  4331. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4332. if (nrc == 2) {
  4333. const block_q8_0 * restrict vx0 = vx;
  4334. const block_q8_0 * restrict vx1 = (const block_q8_0 *) ((const uint8_t*)vx + bx);
  4335. const block_q8_0 * restrict vy0 = vy;
  4336. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  4337. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4338. for (int i = 0; i < nb; i++) {
  4339. const block_q8_0 * restrict b_x0 = &vx0[i];
  4340. const block_q8_0 * restrict b_y0 = &vy0[i];
  4341. const block_q8_0 * restrict b_x1 = &vx1[i];
  4342. const block_q8_0 * restrict b_y1 = &vy1[i];
  4343. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4344. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4345. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4346. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4347. // load y
  4348. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4349. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4350. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4351. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4352. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4353. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4354. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4355. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4356. float32x4_t scale = vld1q_f32(_scale);
  4357. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4358. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4359. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4360. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4361. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4362. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4363. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4364. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4365. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4366. l1, r1)), l2, r2)), l3, r3))), scale);
  4367. }
  4368. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4369. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4370. vst1_f32(s, vget_low_f32(sumv2));
  4371. vst1_f32(s + bs, vget_high_f32(sumv2));
  4372. return;
  4373. }
  4374. #endif
  4375. int ib = 0;
  4376. float sumf = 0;
  4377. #if defined(__ARM_FEATURE_SVE)
  4378. if (ggml_sve_cnt_b == QK8_0) {
  4379. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  4380. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  4381. for (; ib + 1 < nb; ib += 2) {
  4382. const block_q8_0 * restrict x0 = &x[ib + 0];
  4383. const block_q8_0 * restrict x1 = &x[ib + 1];
  4384. const block_q8_0 * restrict y0 = &y[ib + 0];
  4385. const block_q8_0 * restrict y1 = &y[ib + 1];
  4386. // load x
  4387. const svint8_t qx0 = svld1_s8(svptrue_b8(), x0->qs);
  4388. const svint8_t qx1 = svld1_s8(svptrue_b8(), x1->qs);
  4389. // load y
  4390. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  4391. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  4392. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx0, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4393. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx1, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4394. }
  4395. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  4396. }
  4397. #elif defined(__ARM_NEON)
  4398. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4399. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4400. for (; ib + 1 < nb; ib += 2) {
  4401. const block_q8_0 * restrict x0 = &x[ib + 0];
  4402. const block_q8_0 * restrict x1 = &x[ib + 1];
  4403. const block_q8_0 * restrict y0 = &y[ib + 0];
  4404. const block_q8_0 * restrict y1 = &y[ib + 1];
  4405. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4406. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4407. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4408. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4409. // load y
  4410. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4411. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4412. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4413. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4414. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4415. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4416. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4417. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4418. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4419. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4420. }
  4421. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4422. #elif defined(__AVX2__) || defined(__AVX__)
  4423. // Initialize accumulator with zeros
  4424. __m256 acc = _mm256_setzero_ps();
  4425. // Main loop
  4426. for (; ib < nb; ++ib) {
  4427. // Compute combined scale for the block
  4428. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  4429. __m256i qx = _mm256_loadu_si256((const __m256i *)x[ib].qs);
  4430. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4431. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4432. // Multiply q with scale and accumulate
  4433. #if defined(__AVX2__)
  4434. acc = _mm256_fmadd_ps( d, q, acc );
  4435. #else
  4436. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4437. #endif
  4438. }
  4439. sumf = hsum_float_8(acc);
  4440. #elif defined(__riscv_v_intrinsic)
  4441. size_t vl = __riscv_vsetvl_e8m1(qk);
  4442. for (; ib < nb; ++ib) {
  4443. // load elements
  4444. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[ib].qs, vl);
  4445. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[ib].qs, vl);
  4446. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4447. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4448. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4449. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4450. sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
  4451. }
  4452. #elif defined(__POWER9_VECTOR__)
  4453. const vector signed int v0 = vec_splats((int32_t)0);
  4454. vector float vsumf0 = vec_splats(0.0f);
  4455. #pragma GCC unroll 8
  4456. for (; ib < nb; ++ib) {
  4457. __builtin_prefetch(x[ib].qs, 0, 1);
  4458. __builtin_prefetch(y[ib].qs, 0, 1);
  4459. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  4460. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  4461. vector float vd = vec_mul(vxd, vyd);
  4462. vector signed char q8x0 = vec_xl( 0, x[ib].qs);
  4463. vector signed char q8x1 = vec_xl(16, x[ib].qs);
  4464. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  4465. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  4466. vector signed short qv0 = vec_mule(q8x0, q8y0);
  4467. vector signed short qv1 = vec_mulo(q8x0, q8y0);
  4468. vector signed short qv2 = vec_mule(q8x1, q8y1);
  4469. vector signed short qv3 = vec_mulo(q8x1, q8y1);
  4470. vector signed int vsumi0 = v0;
  4471. vector signed int vsumi1 = v0;
  4472. vsumi0 = vec_sum4s(qv0, vsumi0);
  4473. vsumi1 = vec_sum4s(qv1, vsumi1);
  4474. vsumi0 = vec_sum4s(qv2, vsumi0);
  4475. vsumi1 = vec_sum4s(qv3, vsumi1);
  4476. vsumi0 = vec_add(vsumi0, vsumi1);
  4477. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4478. }
  4479. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4480. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4481. sumf = vec_extract(vsumf0, 0);
  4482. #elif defined(__loongarch_asx)
  4483. // Initialize accumulator with zeros
  4484. __m256 acc = (__m256)__lasx_xvldi(0);
  4485. // Main loop
  4486. for (; ib < nb; ++ib) {
  4487. // Compute combined scale for the block
  4488. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  4489. __m256i qx = __lasx_xvld((const __m256i *)x[ib].qs, 0);
  4490. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  4491. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4492. // Multiply q with scale and accumulate
  4493. acc = __lasx_xvfmadd_s( d, q, acc );
  4494. }
  4495. sumf = hsum_float_8(acc);
  4496. #endif
  4497. for (; ib < nb; ++ib) {
  4498. int sumi = 0;
  4499. for (int j = 0; j < qk; j++) {
  4500. sumi += x[ib].qs[j]*y[ib].qs[j];
  4501. }
  4502. sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
  4503. }
  4504. *s = sumf;
  4505. }
  4506. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4507. assert(nrc == 1);
  4508. UNUSED(nrc);
  4509. UNUSED(bx);
  4510. UNUSED(by);
  4511. UNUSED(bs);
  4512. const block_q2_K * restrict x = vx;
  4513. const block_q8_K * restrict y = vy;
  4514. const int nb = n / QK_K;
  4515. #ifdef __ARM_NEON
  4516. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4517. const uint8x16_t m4 = vdupq_n_u8(0xF);
  4518. const int32x4_t vzero = vdupq_n_s32(0);
  4519. ggml_int8x16x2_t q2bytes;
  4520. uint8_t aux[16];
  4521. float sum = 0;
  4522. for (int i = 0; i < nb; ++i) {
  4523. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4524. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4525. const uint8_t * restrict q2 = x[i].qs;
  4526. const int8_t * restrict q8 = y[i].qs;
  4527. const uint8_t * restrict sc = x[i].scales;
  4528. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  4529. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  4530. vst1q_u8(aux, scales);
  4531. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  4532. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  4533. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  4534. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  4535. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  4536. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  4537. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  4538. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  4539. int isum = 0;
  4540. int is = 0;
  4541. // We use this macro instead of a function call because for some reason
  4542. // the code runs 2-3% slower, even if the function is declared inline
  4543. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  4544. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  4545. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  4546. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  4547. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  4548. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  4549. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  4550. MULTIPLY_ACCUM_WITH_SCALE((index));
  4551. for (int j = 0; j < QK_K/128; ++j) {
  4552. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  4553. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4554. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  4555. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  4556. MULTIPLY_ACCUM_WITH_SCALE(0);
  4557. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  4558. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  4559. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  4560. is += 8;
  4561. }
  4562. sum += d * isum;
  4563. }
  4564. *s = sum;
  4565. #elif defined __AVX2__
  4566. const __m256i m3 = _mm256_set1_epi8(3);
  4567. const __m128i m4 = _mm_set1_epi8(0xF);
  4568. __m256 acc = _mm256_setzero_ps();
  4569. for (int i = 0; i < nb; ++i) {
  4570. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4571. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4572. const uint8_t * restrict q2 = x[i].qs;
  4573. const int8_t * restrict q8 = y[i].qs;
  4574. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4575. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  4576. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4577. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  4578. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  4579. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  4580. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  4581. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4582. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4583. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4584. __m256i sumi = _mm256_setzero_si256();
  4585. for (int j = 0; j < QK_K/128; ++j) {
  4586. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  4587. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4588. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4589. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4590. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4591. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  4592. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  4593. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  4594. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  4595. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4596. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4597. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  4598. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  4599. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  4600. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  4601. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  4602. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  4603. p0 = _mm256_add_epi32(p0, p1);
  4604. p2 = _mm256_add_epi32(p2, p3);
  4605. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  4606. }
  4607. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4608. }
  4609. *s = hsum_float_8(acc);
  4610. #elif defined __AVX__
  4611. const __m128i m3 = _mm_set1_epi8(0x3);
  4612. const __m128i m4 = _mm_set1_epi8(0xF);
  4613. const __m128i m2 = _mm_set1_epi8(0x2);
  4614. __m256 acc = _mm256_setzero_ps();
  4615. for (int i = 0; i < nb; ++i) {
  4616. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4617. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4618. const uint8_t * restrict q2 = x[i].qs;
  4619. const int8_t * restrict q8 = y[i].qs;
  4620. // load mins and scales from block_q2_K.scales[QK_K/16]
  4621. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4622. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  4623. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4624. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  4625. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  4626. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  4627. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  4628. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  4629. // sumf += -dmin * summs in 32bits*8
  4630. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  4631. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  4632. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  4633. const __m128i scales[2] = { scales_0, scales_1 };
  4634. __m128i sumi_0 = _mm_setzero_si128();
  4635. __m128i sumi_1 = _mm_setzero_si128();
  4636. for (int j = 0; j < QK_K/128; ++j) {
  4637. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  4638. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4639. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4640. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4641. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4642. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4643. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4644. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4645. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4646. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  4647. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4648. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4649. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4650. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4651. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4652. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4653. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  4654. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4655. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4656. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4657. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  4658. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  4659. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  4660. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  4661. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  4662. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  4663. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  4664. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  4665. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  4666. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  4667. __m128i shuffle = _mm_set1_epi16(0x0100);
  4668. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  4669. shuffle = _mm_add_epi16(shuffle, m2);
  4670. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  4671. shuffle = _mm_add_epi16(shuffle, m2);
  4672. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  4673. shuffle = _mm_add_epi16(shuffle, m2);
  4674. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  4675. shuffle = _mm_add_epi16(shuffle, m2);
  4676. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  4677. shuffle = _mm_add_epi16(shuffle, m2);
  4678. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  4679. shuffle = _mm_add_epi16(shuffle, m2);
  4680. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  4681. shuffle = _mm_add_epi16(shuffle, m2);
  4682. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  4683. p0 = _mm_add_epi32(p0, p1);
  4684. p2 = _mm_add_epi32(p2, p3);
  4685. p4 = _mm_add_epi32(p4, p5);
  4686. p6 = _mm_add_epi32(p6, p7);
  4687. // isum in 32bits*4*2
  4688. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  4689. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  4690. }
  4691. // sumf += dall * isum - dmin * summs in 32bits
  4692. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4693. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  4694. }
  4695. *s = hsum_float_8(acc);
  4696. #elif defined __riscv_v_intrinsic
  4697. float sumf = 0;
  4698. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4699. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  4700. for (int i = 0; i < nb; ++i) {
  4701. const uint8_t * q2 = x[i].qs;
  4702. const int8_t * q8 = y[i].qs;
  4703. const uint8_t * sc = x[i].scales;
  4704. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4705. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4706. size_t vl = 16;
  4707. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  4708. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  4709. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  4710. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  4711. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  4712. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  4713. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  4714. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4715. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  4716. vl = 32;
  4717. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4718. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  4719. uint8_t is=0;
  4720. int isum=0;
  4721. for (int j = 0; j < QK_K/128; ++j) {
  4722. // load Q2
  4723. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  4724. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  4725. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  4726. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  4727. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  4728. // duplicate scale elements for product
  4729. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  4730. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  4731. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  4732. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  4733. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  4734. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  4735. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  4736. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  4737. // load Q8
  4738. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  4739. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  4740. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  4741. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  4742. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  4743. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  4744. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  4745. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  4746. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  4747. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  4748. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  4749. q2+=32; q8+=128; is=8;
  4750. }
  4751. sumf += dall * isum;
  4752. }
  4753. *s = sumf;
  4754. #elif defined(__POWER9_VECTOR__)
  4755. const vector signed char lowMask = vec_splats((signed char)0x3);
  4756. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  4757. const vector int v0 = vec_splats((int32_t)0);
  4758. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  4759. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  4760. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4761. vector float vsumf0 = vec_splats(0.0f);
  4762. vector float vsumf1 = vec_splats(0.0f);
  4763. vector float vsumf2 = vec_splats(0.0f);
  4764. vector float vsumf3 = vec_splats(0.0f);
  4765. for (int i = 0; i < nb; ++i) {
  4766. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4767. vector float vyd = vec_splats(y[i].d);
  4768. vector float vd = vec_mul(vxd, vyd);
  4769. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  4770. vector float vdmin = vec_mul(vxmin, vyd);
  4771. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  4772. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  4773. vector signed char q2xmins = (vector signed char)vec_xl( 0, x[i].scales);
  4774. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  4775. q2xmins = vec_sr(q2xmins, v4);
  4776. vector signed short q2xmins0 = vec_unpackh(q2xmins);
  4777. vector signed short q2xmins1 = vec_unpackl(q2xmins);
  4778. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  4779. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  4780. vector signed int prod2 = vec_mule(q2xmins1, q8ysums1);
  4781. vector signed int prod3 = vec_mulo(q2xmins1, q8ysums1);
  4782. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  4783. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  4784. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  4785. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  4786. vector signed int vsumi0 = v0;
  4787. vector signed int vsumi1 = v0;
  4788. vector signed int vsumi2 = v0;
  4789. vector signed int vsumi3 = v0;
  4790. vector signed int vsumi4 = v0;
  4791. vector signed int vsumi5 = v0;
  4792. vector signed int vsumi6 = v0;
  4793. vector signed int vsumi7 = v0;
  4794. const uint8_t * restrict q2 = x[i].qs;
  4795. const int8_t * restrict q8 = y[i].qs;
  4796. for (int j = 0; j < QK_K/128; ++j) {
  4797. __builtin_prefetch(q2, 0, 1);
  4798. __builtin_prefetch(q8, 0, 1);
  4799. vector signed char qxs0 = (vector signed char)vec_xl( 0, q2);
  4800. vector signed char qxs1 = (vector signed char)vec_xl(16, q2);
  4801. q2 += 32;
  4802. vector unsigned char q2x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  4803. vector unsigned char q2x01 = (vector unsigned char)vec_and(vec_sr(qxs0, v2), lowMask);
  4804. vector unsigned char q2x02 = (vector unsigned char)vec_and(vec_sr(qxs0, v4), lowMask);
  4805. vector unsigned char q2x03 = (vector unsigned char)vec_and(vec_sr(qxs0, v6), lowMask);
  4806. vector unsigned char q2x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  4807. vector unsigned char q2x11 = (vector unsigned char)vec_and(vec_sr(qxs1, v2), lowMask);
  4808. vector unsigned char q2x12 = (vector unsigned char)vec_and(vec_sr(qxs1, v4), lowMask);
  4809. vector unsigned char q2x13 = (vector unsigned char)vec_and(vec_sr(qxs1, v6), lowMask);
  4810. vector signed char q8y00 = vec_xl( 0, q8);
  4811. vector signed char q8y10 = vec_xl( 16, q8);
  4812. vector signed char q8y01 = vec_xl( 32, q8);
  4813. vector signed char q8y11 = vec_xl( 48, q8);
  4814. vector signed char q8y02 = vec_xl( 64, q8);
  4815. vector signed char q8y12 = vec_xl( 80, q8);
  4816. vector signed char q8y03 = vec_xl( 96, q8);
  4817. vector signed char q8y13 = vec_xl(112, q8);
  4818. q8 += 128;
  4819. vector signed int qv0 = vec_msum(q8y00, q2x00, v0);
  4820. vector signed int qv1 = vec_msum(q8y01, q2x01, v0);
  4821. vector signed int qv2 = vec_msum(q8y02, q2x02, v0);
  4822. vector signed int qv3 = vec_msum(q8y03, q2x03, v0);
  4823. vector signed int qv4 = vec_msum(q8y10, q2x10, v0);
  4824. vector signed int qv5 = vec_msum(q8y11, q2x11, v0);
  4825. vector signed int qv6 = vec_msum(q8y12, q2x12, v0);
  4826. vector signed int qv7 = vec_msum(q8y13, q2x13, v0);
  4827. vector signed short vscales_07 = vec_unpackh(vscales);
  4828. vector signed int vscales_03 = vec_unpackh(vscales_07);
  4829. vector signed int vscales_47 = vec_unpackl(vscales_07);
  4830. vector signed int vs0 = vec_splat(vscales_03, 0);
  4831. vector signed int vs1 = vec_splat(vscales_03, 1);
  4832. vector signed int vs2 = vec_splat(vscales_03, 2);
  4833. vector signed int vs3 = vec_splat(vscales_03, 3);
  4834. vector signed int vs4 = vec_splat(vscales_47, 0);
  4835. vector signed int vs5 = vec_splat(vscales_47, 1);
  4836. vector signed int vs6 = vec_splat(vscales_47, 2);
  4837. vector signed int vs7 = vec_splat(vscales_47, 3);
  4838. vscales = vec_sld(vscales, vscales, 8);
  4839. vsumi0 = vec_add(vec_mul(qv0, vs0), vsumi0);
  4840. vsumi1 = vec_add(vec_mul(qv1, vs2), vsumi1);
  4841. vsumi2 = vec_add(vec_mul(qv2, vs4), vsumi2);
  4842. vsumi3 = vec_add(vec_mul(qv3, vs6), vsumi3);
  4843. vsumi4 = vec_add(vec_mul(qv4, vs1), vsumi4);
  4844. vsumi5 = vec_add(vec_mul(qv5, vs3), vsumi5);
  4845. vsumi6 = vec_add(vec_mul(qv6, vs5), vsumi6);
  4846. vsumi7 = vec_add(vec_mul(qv7, vs7), vsumi7);
  4847. }
  4848. vsumi0 = vec_add(vsumi0, vsumi4);
  4849. vsumi1 = vec_add(vsumi1, vsumi5);
  4850. vsumi2 = vec_add(vsumi2, vsumi6);
  4851. vsumi3 = vec_add(vsumi3, vsumi7);
  4852. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4853. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  4854. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  4855. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  4856. }
  4857. vsumf0 = vec_add(vsumf0, vsumf2);
  4858. vsumf1 = vec_add(vsumf1, vsumf3);
  4859. vsumf0 = vec_add(vsumf0, vsumf1);
  4860. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4861. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4862. *s = vec_extract(vsumf0, 0);
  4863. #elif defined __loongarch_asx
  4864. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  4865. const __m128i m4 = __lsx_vreplgr2vr_b(0xF);
  4866. __m256 acc = (__m256)__lasx_xvldi(0);
  4867. for (int i = 0; i < nb; ++i) {
  4868. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4869. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4870. const uint8_t * restrict q2 = x[i].qs;
  4871. const int8_t * restrict q8 = y[i].qs;
  4872. const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  4873. const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4);
  4874. const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4);
  4875. const __m256i mins = lasx_ext8_16(mins8);
  4876. const __m256i prod = lasx_madd_h(mins, __lasx_xvld((const __m256i*)y[i].bsums, 0));
  4877. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(dmin), __lasx_xvffint_s_w(prod), acc);
  4878. const __m256i all_scales = lasx_ext8_16(scales8);
  4879. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  4880. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  4881. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  4882. __m256i sumi = __lasx_xvldi(0);
  4883. for (int j = 0; j < QK_K/128; ++j) {
  4884. const __m256i q2bits = __lasx_xvld((const __m256i*)q2, 0); q2 += 32;
  4885. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4886. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4887. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4888. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4889. const __m256i q2_0 = __lasx_xvand_v(q2bits, m3);
  4890. const __m256i q2_1 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 2), m3);
  4891. const __m256i q2_2 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 4), m3);
  4892. const __m256i q2_3 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 6), m3);
  4893. __m256i p0 = lasx_maddubs_h(q2_0, q8_0);
  4894. __m256i p1 = lasx_maddubs_h(q2_1, q8_1);
  4895. __m256i p2 = lasx_maddubs_h(q2_2, q8_2);
  4896. __m256i p3 = lasx_maddubs_h(q2_3, q8_3);
  4897. p0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(0)), p0);
  4898. p1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(1)), p1);
  4899. p2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(2)), p2);
  4900. p3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(3)), p3);
  4901. p0 = __lasx_xvadd_w(p0, p1);
  4902. p2 = __lasx_xvadd_w(p2, p3);
  4903. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p0, p2));
  4904. }
  4905. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  4906. }
  4907. *s = hsum_float_8(acc);
  4908. #else
  4909. float sumf = 0;
  4910. for (int i = 0; i < nb; ++i) {
  4911. const uint8_t * q2 = x[i].qs;
  4912. const int8_t * q8 = y[i].qs;
  4913. const uint8_t * sc = x[i].scales;
  4914. int summs = 0;
  4915. for (int j = 0; j < 16; ++j) {
  4916. summs += y[i].bsums[j] * (sc[j] >> 4);
  4917. }
  4918. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4919. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4920. int isum = 0;
  4921. int is = 0;
  4922. int d;
  4923. for (int k = 0; k < QK_K/128; ++k) {
  4924. int shift = 0;
  4925. for (int j = 0; j < 4; ++j) {
  4926. d = sc[is++] & 0xF;
  4927. int isuml = 0;
  4928. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4929. isum += d * isuml;
  4930. d = sc[is++] & 0xF;
  4931. isuml = 0;
  4932. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4933. isum += d * isuml;
  4934. shift += 2;
  4935. q8 += 32;
  4936. }
  4937. q2 += 32;
  4938. }
  4939. sumf += dall * isum - dmin * summs;
  4940. }
  4941. *s = sumf;
  4942. #endif
  4943. }
  4944. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4945. assert(n % QK_K == 0);
  4946. assert(nrc == 1);
  4947. UNUSED(nrc);
  4948. UNUSED(bx);
  4949. UNUSED(by);
  4950. UNUSED(bs);
  4951. const uint32_t kmask1 = 0x03030303;
  4952. const uint32_t kmask2 = 0x0f0f0f0f;
  4953. const block_q3_K * restrict x = vx;
  4954. const block_q8_K * restrict y = vy;
  4955. const int nb = n / QK_K;
  4956. #ifdef __ARM_NEON
  4957. uint32_t aux[3];
  4958. uint32_t utmp[4];
  4959. const uint8x16_t m3b = vdupq_n_u8(0x3);
  4960. const int32x4_t vzero = vdupq_n_s32(0);
  4961. const uint8x16_t m0 = vdupq_n_u8(1);
  4962. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  4963. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  4964. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  4965. const int8_t m32 = 32;
  4966. ggml_int8x16x4_t q3bytes;
  4967. float sum = 0;
  4968. for (int i = 0; i < nb; ++i) {
  4969. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4970. const uint8_t * restrict q3 = x[i].qs;
  4971. const uint8_t * restrict qh = x[i].hmask;
  4972. const int8_t * restrict q8 = y[i].qs;
  4973. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  4974. ggml_uint8x16x4_t q3h;
  4975. int32_t isum = 0;
  4976. // Set up scales
  4977. memcpy(aux, x[i].scales, 12);
  4978. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  4979. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  4980. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  4981. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  4982. int8_t * scale = (int8_t *)utmp;
  4983. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  4984. for (int j = 0; j < QK_K/128; ++j) {
  4985. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  4986. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  4987. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  4988. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  4989. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  4990. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  4991. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  4992. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  4993. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  4994. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  4995. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  4996. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  4997. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  4998. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  4999. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  5000. scale += 4;
  5001. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  5002. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  5003. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  5004. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  5005. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5006. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5007. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5008. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5009. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  5010. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  5011. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  5012. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  5013. scale += 4;
  5014. if (j == 0) {
  5015. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  5016. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  5017. }
  5018. }
  5019. sum += d * isum;
  5020. }
  5021. *s = sum;
  5022. #elif defined __AVX2__
  5023. const __m256i m3 = _mm256_set1_epi8(3);
  5024. const __m256i mone = _mm256_set1_epi8(1);
  5025. const __m128i m32 = _mm_set1_epi8(32);
  5026. __m256 acc = _mm256_setzero_ps();
  5027. uint32_t aux[3];
  5028. for (int i = 0; i < nb; ++i) {
  5029. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5030. const uint8_t * restrict q3 = x[i].qs;
  5031. const int8_t * restrict q8 = y[i].qs;
  5032. // Set up scales
  5033. memcpy(aux, x[i].scales, 12);
  5034. __m128i scales128 = _mm_set_epi32(
  5035. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5036. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5037. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5038. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5039. scales128 = _mm_sub_epi8(scales128, m32);
  5040. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  5041. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  5042. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  5043. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  5044. // high bit
  5045. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  5046. // integer accumulator
  5047. __m256i sumi = _mm256_setzero_si256();
  5048. int bit = 0;
  5049. int is = 0;
  5050. for (int j = 0; j < QK_K/128; ++j) {
  5051. // load low 2 bits
  5052. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  5053. // prepare low and high bits
  5054. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  5055. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5056. ++bit;
  5057. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  5058. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5059. ++bit;
  5060. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  5061. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5062. ++bit;
  5063. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  5064. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5065. ++bit;
  5066. // load Q8 quants
  5067. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5068. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5069. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5070. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5071. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5072. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5073. // and 2 if the high bit was set)
  5074. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5075. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5076. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  5077. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  5078. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5079. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5080. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  5081. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  5082. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5083. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5084. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5085. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5086. // multiply with scales
  5087. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5088. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5089. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5090. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5091. // accumulate
  5092. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5093. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  5094. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  5095. }
  5096. // multiply with block scale and accumulate
  5097. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5098. }
  5099. *s = hsum_float_8(acc);
  5100. #elif defined __AVX__
  5101. const __m128i m3 = _mm_set1_epi8(3);
  5102. const __m128i mone = _mm_set1_epi8(1);
  5103. const __m128i m32 = _mm_set1_epi8(32);
  5104. const __m128i m2 = _mm_set1_epi8(2);
  5105. __m256 acc = _mm256_setzero_ps();
  5106. const uint32_t *aux;
  5107. for (int i = 0; i < nb; ++i) {
  5108. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5109. const uint8_t * restrict q3 = x[i].qs;
  5110. const int8_t * restrict q8 = y[i].qs;
  5111. // Set up scales
  5112. aux = (const uint32_t *)x[i].scales;
  5113. __m128i scales128 = _mm_set_epi32(
  5114. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5115. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5116. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5117. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5118. scales128 = _mm_sub_epi8(scales128, m32);
  5119. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  5120. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  5121. const __m128i scales[2] = { scales_0, scales_1 };
  5122. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  5123. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  5124. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  5125. // integer accumulator
  5126. __m128i sumi_0 = _mm_setzero_si128();
  5127. __m128i sumi_1 = _mm_setzero_si128();
  5128. for (int j = 0; j < QK_K/128; ++j) {
  5129. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  5130. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5131. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5132. // prepare low and high bits
  5133. const int bit = j << 2;
  5134. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  5135. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  5136. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  5137. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  5138. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  5139. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  5140. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5141. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5142. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  5143. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  5144. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5145. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5146. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  5147. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  5148. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5149. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5150. // load Q8 quants from block_q8_K.qs[QK_K]
  5151. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5152. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5153. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5154. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5155. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5156. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5157. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5158. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5159. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5160. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5161. // and 2 if the high bit was set)
  5162. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  5163. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  5164. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  5165. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  5166. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  5167. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  5168. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  5169. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  5170. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  5171. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  5172. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  5173. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  5174. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  5175. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  5176. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  5177. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  5178. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5179. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5180. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5181. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5182. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  5183. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  5184. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  5185. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  5186. // multiply with scales
  5187. __m128i shuffle = _mm_set1_epi16(0x0100);
  5188. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  5189. shuffle = _mm_add_epi16(shuffle, m2);
  5190. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  5191. shuffle = _mm_add_epi16(shuffle, m2);
  5192. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  5193. shuffle = _mm_add_epi16(shuffle, m2);
  5194. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  5195. shuffle = _mm_add_epi16(shuffle, m2);
  5196. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  5197. shuffle = _mm_add_epi16(shuffle, m2);
  5198. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  5199. shuffle = _mm_add_epi16(shuffle, m2);
  5200. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  5201. shuffle = _mm_add_epi16(shuffle, m2);
  5202. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  5203. // accumulate
  5204. p16_0 = _mm_add_epi32(p16_0, p16_1);
  5205. p16_2 = _mm_add_epi32(p16_2, p16_3);
  5206. p16_4 = _mm_add_epi32(p16_4, p16_5);
  5207. p16_6 = _mm_add_epi32(p16_6, p16_7);
  5208. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5209. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  5210. }
  5211. // multiply with block scale and accumulate
  5212. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5213. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  5214. }
  5215. *s = hsum_float_8(acc);
  5216. #elif defined __riscv_v_intrinsic
  5217. uint32_t aux[3];
  5218. uint32_t utmp[4];
  5219. float sumf = 0;
  5220. for (int i = 0; i < nb; ++i) {
  5221. const uint8_t * restrict q3 = x[i].qs;
  5222. const uint8_t * restrict qh = x[i].hmask;
  5223. const int8_t * restrict q8 = y[i].qs;
  5224. memcpy(aux, x[i].scales, 12);
  5225. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5226. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5227. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5228. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5229. int8_t * scale = (int8_t *)utmp;
  5230. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  5231. size_t vl = 32;
  5232. uint8_t m = 1;
  5233. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5234. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  5235. int sum_t = 0;
  5236. for (int j = 0; j < QK_K; j += 128) {
  5237. vl = 32;
  5238. // load Q3
  5239. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  5240. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  5241. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  5242. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  5243. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  5244. // compute mask for subtraction
  5245. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5246. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  5247. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_mu(vmask_0, q3_0, q3_0, 0x4, vl);
  5248. m <<= 1;
  5249. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5250. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  5251. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_mu(vmask_1, q3_1, q3_1, 0x4, vl);
  5252. m <<= 1;
  5253. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5254. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  5255. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_mu(vmask_2, q3_2, q3_2, 0x4, vl);
  5256. m <<= 1;
  5257. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5258. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  5259. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_mu(vmask_3, q3_3, q3_3, 0x4, vl);
  5260. m <<= 1;
  5261. // load Q8 and take product with Q3
  5262. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5263. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5264. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5265. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5266. vl = 16;
  5267. // retrieve lane to multiply with scale
  5268. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  5269. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  5270. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  5271. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  5272. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  5273. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  5274. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  5275. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  5276. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  5277. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  5278. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  5279. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  5280. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5281. q3 += 32; q8 += 128; scale += 8;
  5282. }
  5283. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5284. sumf += d*sum_t;
  5285. }
  5286. *s = sumf;
  5287. #elif defined(__POWER9_VECTOR__)
  5288. const vector signed char lowMask = vec_splats((signed char)0x3);
  5289. const vector signed char lowMask1 = vec_splats((int8_t)0xf);
  5290. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  5291. const vector int v0 = vec_splats((int32_t)0);
  5292. const vector signed char v1 = vec_splats((signed char)0x1);
  5293. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5294. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  5295. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5296. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5297. const vector signed char off = vec_splats((signed char)0x20);
  5298. vector float vsumf0 = vec_splats(0.0f);
  5299. vector float vsumf1 = vec_splats(0.0f);
  5300. vector float vsumf2 = vec_splats(0.0f);
  5301. vector float vsumf3 = vec_splats(0.0f);
  5302. for (int i = 0; i < nb; ++i) {
  5303. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5304. vector float vyd = vec_splats(y[i].d);
  5305. vector float vd = vec_mul(vxd, vyd);
  5306. UNUSED(kmask1);
  5307. UNUSED(kmask2);
  5308. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  5309. vector signed char u1 = vec_and(u0, lowMask1);
  5310. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  5311. vector signed char u3 = (vector signed char)vec_mergeh((vector signed int)u2, (vector signed int)vec_sr(u2, v2));
  5312. vector signed char u30 = vec_sl(vec_and(u3, lowMask), v4);
  5313. vector signed char u31 = vec_and(u3, lowMask2);
  5314. u1 = vec_or(u1, u30);
  5315. u2 = vec_or(vec_sr(u0, v4), u31);
  5316. vector signed char vscales = (vector signed char)vec_mergeh((vector signed long long)u1, (vector signed long long)u2);
  5317. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].hmask);
  5318. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].hmask);
  5319. vscales = vec_sub(vscales, off);
  5320. vector signed int vsumi0 = v0;
  5321. vector signed int vsumi1 = v0;
  5322. vector signed int vsumi2 = v0;
  5323. vector signed int vsumi3 = v0;
  5324. vector signed int vsumi4 = v0;
  5325. vector signed int vsumi5 = v0;
  5326. vector signed int vsumi6 = v0;
  5327. vector signed int vsumi7 = v0;
  5328. const uint8_t * restrict q3 = x[i].qs;
  5329. const int8_t * restrict q8 = y[i].qs;
  5330. for (int j = 0; j < QK_K/128; ++j) {
  5331. __builtin_prefetch(q3, 0, 1);
  5332. __builtin_prefetch(q8, 0, 1);
  5333. vector signed char qxs0 = (vector signed char)vec_xl( 0, q3);
  5334. vector signed char qxs1 = (vector signed char)vec_xl(16, q3);
  5335. q3 += 32;
  5336. //the low 2 bits
  5337. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5338. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  5339. vector signed char qxs02 = vec_and(vec_sr(qxs0, v4), lowMask);
  5340. vector signed char qxs03 = vec_and(vec_sr(qxs0, v6), lowMask);
  5341. vector signed char qxs10 = vec_and(qxs1, lowMask);
  5342. vector signed char qxs11 = vec_and(vec_sr(qxs1, v2), lowMask);
  5343. vector signed char qxs12 = vec_and(vec_sr(qxs1, v4), lowMask);
  5344. vector signed char qxs13 = vec_and(vec_sr(qxs1, v6), lowMask);
  5345. //the 3rd bit
  5346. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  5347. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, (vector unsigned char)v1)), v2);
  5348. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  5349. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v3)), v2);
  5350. vector signed char qxh10 = vec_sl(vec_andc(v1, qxhs1), v2);
  5351. vector signed char qxh11 = vec_sl(vec_andc(v1, vec_sr(qxhs1, (vector unsigned char)v1)), v2);
  5352. vector signed char qxh12 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v2)), v2);
  5353. vector signed char qxh13 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v3)), v2);
  5354. qxhs0 = vec_sr(qxhs0, v4);
  5355. qxhs1 = vec_sr(qxhs1, v4);
  5356. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  5357. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  5358. vector signed char q3x02 = vec_sub(qxs02, qxh02);
  5359. vector signed char q3x03 = vec_sub(qxs03, qxh03);
  5360. vector signed char q3x10 = vec_sub(qxs10, qxh10);
  5361. vector signed char q3x11 = vec_sub(qxs11, qxh11);
  5362. vector signed char q3x12 = vec_sub(qxs12, qxh12);
  5363. vector signed char q3x13 = vec_sub(qxs13, qxh13);
  5364. vector signed char q8y00 = vec_xl( 0, q8);
  5365. vector signed char q8y10 = vec_xl( 16, q8);
  5366. vector signed char q8y01 = vec_xl( 32, q8);
  5367. vector signed char q8y11 = vec_xl( 48, q8);
  5368. vector signed char q8y02 = vec_xl( 64, q8);
  5369. vector signed char q8y12 = vec_xl( 80, q8);
  5370. vector signed char q8y03 = vec_xl( 96, q8);
  5371. vector signed char q8y13 = vec_xl(112, q8);
  5372. q8 += 128;
  5373. vector signed short vscales_h = vec_unpackh(vscales);
  5374. vector signed short vs0 = vec_splat(vscales_h, 0);
  5375. vector signed short vs1 = vec_splat(vscales_h, 1);
  5376. vector signed short vs2 = vec_splat(vscales_h, 2);
  5377. vector signed short vs3 = vec_splat(vscales_h, 3);
  5378. vector signed short vs4 = vec_splat(vscales_h, 4);
  5379. vector signed short vs5 = vec_splat(vscales_h, 5);
  5380. vector signed short vs6 = vec_splat(vscales_h, 6);
  5381. vector signed short vs7 = vec_splat(vscales_h, 7);
  5382. vscales = vec_sld(vscales, vscales, 8);
  5383. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  5384. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  5385. vector signed short qv02 = vec_add(vec_mule(q3x02, q8y02), vec_mulo(q3x02, q8y02));
  5386. vector signed short qv03 = vec_add(vec_mule(q3x03, q8y03), vec_mulo(q3x03, q8y03));
  5387. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  5388. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  5389. vector signed short qv12 = vec_add(vec_mule(q3x12, q8y12), vec_mulo(q3x12, q8y12));
  5390. vector signed short qv13 = vec_add(vec_mule(q3x13, q8y13), vec_mulo(q3x13, q8y13));
  5391. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  5392. vsumi1 = vec_msum(qv01, vs2, vsumi1);
  5393. vsumi2 = vec_msum(qv02, vs4, vsumi2);
  5394. vsumi3 = vec_msum(qv03, vs6, vsumi3);
  5395. vsumi4 = vec_msum(qv10, vs1, vsumi4);
  5396. vsumi5 = vec_msum(qv11, vs3, vsumi5);
  5397. vsumi6 = vec_msum(qv12, vs5, vsumi6);
  5398. vsumi7 = vec_msum(qv13, vs7, vsumi7);
  5399. }
  5400. vsumi0 = vec_add(vsumi0, vsumi4);
  5401. vsumi1 = vec_add(vsumi1, vsumi5);
  5402. vsumi2 = vec_add(vsumi2, vsumi6);
  5403. vsumi3 = vec_add(vsumi3, vsumi7);
  5404. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5405. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5406. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5407. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5408. }
  5409. vsumf0 = vec_add(vsumf0, vsumf2);
  5410. vsumf1 = vec_add(vsumf1, vsumf3);
  5411. vsumf0 = vec_add(vsumf0, vsumf1);
  5412. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5413. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5414. *s = vec_extract(vsumf0, 0);
  5415. #elif defined __loongarch_asx
  5416. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  5417. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  5418. const __m128i m32 = __lsx_vreplgr2vr_b(32);
  5419. __m256 acc = (__m256)__lasx_xvldi(0);
  5420. uint32_t aux[3];
  5421. for (int i = 0; i < nb; ++i) {
  5422. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5423. const uint8_t * restrict q3 = x[i].qs;
  5424. const int8_t * restrict q8 = y[i].qs;
  5425. // Set up scales
  5426. memcpy(aux, x[i].scales, 12);
  5427. __m128i scales128 = lsx_set_w(
  5428. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5429. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5430. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5431. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5432. scales128 = __lsx_vsub_b(scales128, m32);
  5433. const __m256i all_scales = lasx_ext8_16(scales128);
  5434. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  5435. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  5436. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  5437. // high bit
  5438. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].hmask, 0);
  5439. // integer accumulator
  5440. __m256i sumi = __lasx_xvldi(0);
  5441. int bit = 0;
  5442. int is = 0;
  5443. __m256i xvbit;
  5444. for (int j = 0; j < QK_K/128; ++j) {
  5445. // load low 2 bits
  5446. const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32;
  5447. xvbit = __lasx_xvreplgr2vr_h(bit);
  5448. // prepare low and high bits
  5449. const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3);
  5450. const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5451. ++bit;
  5452. xvbit = __lasx_xvreplgr2vr_h(bit);
  5453. const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3);
  5454. const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5455. ++bit;
  5456. xvbit = __lasx_xvreplgr2vr_h(bit);
  5457. const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3);
  5458. const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5459. ++bit;
  5460. xvbit = __lasx_xvreplgr2vr_h(bit);
  5461. const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3);
  5462. const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5463. ++bit;
  5464. // load Q8 quants
  5465. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5466. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5467. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5468. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5469. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h,
  5470. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5471. // and 2 if the high bit was set)
  5472. __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0);
  5473. __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1);
  5474. __m256i q8s_2 = lasx_maddubs_h(q3h_2, q8_2);
  5475. __m256i q8s_3 = lasx_maddubs_h(q3h_3, q8_3);
  5476. __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0);
  5477. __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1);
  5478. __m256i p16_2 = lasx_maddubs_h(q3l_2, q8_2);
  5479. __m256i p16_3 = lasx_maddubs_h(q3l_3, q8_3);
  5480. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  5481. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  5482. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  5483. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  5484. // multiply with scales
  5485. p16_0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5486. p16_1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5487. p16_2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5488. p16_3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5489. // accumulate
  5490. p16_0 = __lasx_xvadd_w(p16_0, p16_1);
  5491. p16_2 = __lasx_xvadd_w(p16_2, p16_3);
  5492. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_2));
  5493. }
  5494. // multiply with block scale and accumulate
  5495. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);//FIXME
  5496. }
  5497. *s = hsum_float_8(acc);
  5498. #else
  5499. // scalar version
  5500. // This function is written like this so the compiler can manage to vectorize most of it
  5501. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  5502. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  5503. // The ideal situation would be if we could just write the code once, and the compiler would
  5504. // automatically produce the best possible set of machine instructions, instead of us having to manually
  5505. // write vectorized versions for AVX, ARM_NEON, etc.
  5506. int8_t aux8[QK_K];
  5507. int16_t aux16[8];
  5508. float sums [8];
  5509. int32_t aux32[8];
  5510. memset(sums, 0, 8*sizeof(float));
  5511. uint32_t auxs[4];
  5512. const int8_t * scales = (const int8_t*)auxs;
  5513. float sumf = 0;
  5514. for (int i = 0; i < nb; ++i) {
  5515. const uint8_t * restrict q3 = x[i].qs;
  5516. const uint8_t * restrict hm = x[i].hmask;
  5517. const int8_t * restrict q8 = y[i].qs;
  5518. memset(aux32, 0, 8*sizeof(int32_t));
  5519. int8_t * restrict a = aux8;
  5520. uint8_t m = 1;
  5521. for (int j = 0; j < QK_K; j += 128) {
  5522. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  5523. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5524. a += 32; m <<= 1;
  5525. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  5526. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5527. a += 32; m <<= 1;
  5528. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  5529. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5530. a += 32; m <<= 1;
  5531. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  5532. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5533. a += 32; m <<= 1;
  5534. q3 += 32;
  5535. }
  5536. a = aux8;
  5537. memcpy(auxs, x[i].scales, 12);
  5538. uint32_t tmp = auxs[2];
  5539. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  5540. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  5541. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  5542. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  5543. for (int j = 0; j < QK_K/16; ++j) {
  5544. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5545. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5546. q8 += 8; a += 8;
  5547. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5548. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5549. q8 += 8; a += 8;
  5550. }
  5551. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5552. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5553. }
  5554. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5555. *s = sumf;
  5556. #endif
  5557. }
  5558. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5559. assert(n % QK_K == 0);
  5560. assert(nrc == 1);
  5561. UNUSED(nrc);
  5562. UNUSED(bx);
  5563. UNUSED(by);
  5564. UNUSED(bs);
  5565. const block_q4_K * restrict x = vx;
  5566. const block_q8_K * restrict y = vy;
  5567. const int nb = n / QK_K;
  5568. static const uint32_t kmask1 = 0x3f3f3f3f;
  5569. static const uint32_t kmask2 = 0x0f0f0f0f;
  5570. static const uint32_t kmask3 = 0x03030303;
  5571. uint32_t utmp[4];
  5572. #ifdef __ARM_NEON
  5573. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5574. const int32x4_t mzero = vdupq_n_s32(0);
  5575. ggml_int8x16x2_t q4bytes;
  5576. ggml_int8x16x2_t q8bytes;
  5577. float sumf = 0;
  5578. for (int i = 0; i < nb; ++i) {
  5579. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5580. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5581. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  5582. memcpy(utmp, x[i].scales, 12);
  5583. uint32x2_t mins8 = { 0 };
  5584. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  5585. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  5586. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5587. utmp[0] &= kmask1;
  5588. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  5589. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  5590. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  5591. sumf -= dmin * vaddvq_s32(prod);
  5592. const uint8_t * scales = (const uint8_t *)utmp;
  5593. const uint8_t * restrict q4 = x[i].qs;
  5594. const int8_t * restrict q8 = y[i].qs;
  5595. int32_t sumi1 = 0;
  5596. int32_t sumi2 = 0;
  5597. for (int j = 0; j < QK_K/64; ++j) {
  5598. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  5599. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5600. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5601. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5602. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5603. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  5604. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5605. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5606. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5607. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5608. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  5609. }
  5610. sumf += d * (sumi1 + sumi2);
  5611. }
  5612. *s = sumf;
  5613. #elif defined __AVX2__
  5614. const __m256i m4 = _mm256_set1_epi8(0xF);
  5615. __m256 acc = _mm256_setzero_ps();
  5616. __m128 acc_m = _mm_setzero_ps();
  5617. for (int i = 0; i < nb; ++i) {
  5618. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5619. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5620. memcpy(utmp, x[i].scales, 12);
  5621. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5622. const uint32_t uaux = utmp[1] & kmask1;
  5623. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5624. utmp[2] = uaux;
  5625. utmp[0] &= kmask1;
  5626. const uint8_t * restrict q4 = x[i].qs;
  5627. const int8_t * restrict q8 = y[i].qs;
  5628. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  5629. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  5630. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  5631. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  5632. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  5633. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  5634. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  5635. __m256i sumi = _mm256_setzero_si256();
  5636. for (int j = 0; j < QK_K/64; ++j) {
  5637. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  5638. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  5639. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5640. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5641. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5642. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5643. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5644. p16l = _mm256_madd_epi16(scale_l, p16l);
  5645. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5646. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5647. p16h = _mm256_madd_epi16(scale_h, p16h);
  5648. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  5649. sumi = _mm256_add_epi32(sumi, sumj);
  5650. }
  5651. __m256 vd = _mm256_set1_ps(d);
  5652. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  5653. }
  5654. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5655. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5656. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5657. #elif defined __AVX__
  5658. const __m128i m4 = _mm_set1_epi8(0xF);
  5659. const __m128i m2 = _mm_set1_epi8(0x2);
  5660. __m256 acc = _mm256_setzero_ps();
  5661. __m128 acc_m = _mm_setzero_ps();
  5662. for (int i = 0; i < nb; ++i) {
  5663. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5664. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5665. const uint8_t * restrict q4 = x[i].qs;
  5666. const int8_t * restrict q8 = y[i].qs;
  5667. memcpy(utmp, x[i].scales, 12);
  5668. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5669. const uint32_t uaux = utmp[1] & kmask1;
  5670. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5671. utmp[2] = uaux;
  5672. utmp[0] &= kmask1;
  5673. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5674. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5675. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5676. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5677. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5678. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5679. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5680. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  5681. __m128i sumi_0 = _mm_setzero_si128();
  5682. __m128i sumi_1 = _mm_setzero_si128();
  5683. __m128i shuffle = _mm_set1_epi16(0x0100);
  5684. for (int j = 0; j < QK_K/64; ++j) {
  5685. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  5686. shuffle = _mm_add_epi16(shuffle, m2);
  5687. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  5688. shuffle = _mm_add_epi16(shuffle, m2);
  5689. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5690. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  5691. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5692. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5693. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  5694. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5695. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5696. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  5697. p16l = _mm_madd_epi16(scale_l, p16l);
  5698. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  5699. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5700. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  5701. p16l = _mm_madd_epi16(scale_l, p16l);
  5702. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  5703. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5704. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  5705. p16h = _mm_madd_epi16(scale_h, p16h);
  5706. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  5707. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5708. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  5709. p16h = _mm_madd_epi16(scale_h, p16h);
  5710. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  5711. }
  5712. __m256 vd = _mm256_set1_ps(d);
  5713. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5714. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5715. }
  5716. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5717. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5718. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5719. #elif defined __riscv_v_intrinsic
  5720. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5721. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5722. float sumf = 0;
  5723. for (int i = 0; i < nb; ++i) {
  5724. size_t vl = 8;
  5725. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5726. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5727. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5728. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5729. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5730. memcpy(utmp, x[i].scales, 12);
  5731. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5732. const uint32_t uaux = utmp[1] & kmask1;
  5733. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5734. utmp[2] = uaux;
  5735. utmp[0] &= kmask1;
  5736. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5737. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5738. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5739. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5740. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5741. const uint8_t * restrict q4 = x[i].qs;
  5742. const int8_t * restrict q8 = y[i].qs;
  5743. vl = 32;
  5744. int32_t sum_1 = 0;
  5745. int32_t sum_2 = 0;
  5746. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5747. for (int j = 0; j < QK_K/64; ++j) {
  5748. // load Q4
  5749. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  5750. // load Q8 and multiply it with lower Q4 nibble
  5751. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5752. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  5753. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  5754. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  5755. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  5756. // load Q8 and multiply it with upper Q4 nibble
  5757. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5758. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  5759. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  5760. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  5761. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  5762. q4 += 32; q8 += 64;
  5763. }
  5764. sumf += d*(sum_1 + sum_2);
  5765. }
  5766. *s = sumf;
  5767. #elif defined(__POWER9_VECTOR__)
  5768. const vector signed char lowMask = vec_splats((signed char)0xF);
  5769. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  5770. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  5771. const vector int v0 = vec_splats((int32_t)0);
  5772. const vector unsigned char v2 = vec_splats((uint8_t)2);
  5773. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5774. vector float vsumf0 = vec_splats(0.0f);
  5775. vector float vsumf1 = vec_splats(0.0f);
  5776. vector float vsumf2 = vec_splats(0.0f);
  5777. vector float vsumf3 = vec_splats(0.0f);
  5778. for (int i = 0; i < nb; ++i) {
  5779. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5780. vector float vyd = vec_splats(y[i].d);
  5781. vector float vd = vec_mul(vxd, vyd);
  5782. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  5783. vector float vdmin = vec_mul(vxmin, vyd);
  5784. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  5785. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  5786. UNUSED(kmask1);
  5787. UNUSED(kmask2);
  5788. UNUSED(kmask3);
  5789. UNUSED(utmp);
  5790. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  5791. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  5792. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  5793. vector signed char u3 = vec_sr(u2, v4);
  5794. vector signed char u30 = u1;
  5795. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  5796. u1 = vec_and(u0, lowMask1);
  5797. u2 = vec_or(u30, u31);
  5798. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  5799. vector signed short vscales = vec_unpackh(utmps);
  5800. vector signed short q4xmins = vec_unpackl(utmps);
  5801. vector signed short q4xmins0 = vec_mergeh(q4xmins, q4xmins);
  5802. vector signed short q4xmins1 = vec_mergel(q4xmins, q4xmins);
  5803. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  5804. vector signed int prod1 = vec_mule(q4xmins1, q8ysums1);
  5805. vector signed int prod2 = vec_mulo(q4xmins0, q8ysums0);
  5806. vector signed int prod3 = vec_mulo(q4xmins1, q8ysums1);
  5807. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  5808. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  5809. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  5810. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  5811. vector signed int vsumi0 = v0;
  5812. vector signed int vsumi1 = v0;
  5813. vector signed int vsumi2 = v0;
  5814. vector signed int vsumi3 = v0;
  5815. const uint8_t * restrict q4 = x[i].qs;
  5816. const int8_t * restrict q8 = y[i].qs;
  5817. for (int j = 0; j < QK_K/64; j+=2) {
  5818. __builtin_prefetch(q4, 0, 1);
  5819. __builtin_prefetch(q8, 0, 1);
  5820. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  5821. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  5822. vector signed char qxs2 = (vector signed char)vec_xl(32, q4);
  5823. vector signed char qxs3 = (vector signed char)vec_xl(48, q4);
  5824. q4 += 64;
  5825. vector unsigned char q4x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  5826. vector unsigned char q4x01 = (vector unsigned char)vec_sr(qxs0, v4);
  5827. vector unsigned char q4x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  5828. vector unsigned char q4x11 = (vector unsigned char)vec_sr(qxs1, v4);
  5829. vector unsigned char q4x20 = (vector unsigned char)vec_and(qxs2, lowMask);
  5830. vector unsigned char q4x21 = (vector unsigned char)vec_sr(qxs2, v4);
  5831. vector unsigned char q4x30 = (vector unsigned char)vec_and(qxs3, lowMask);
  5832. vector unsigned char q4x31 = (vector unsigned char)vec_sr(qxs3, v4);
  5833. vector signed char q8y00 = vec_xl( 0, q8);
  5834. vector signed char q8y10 = vec_xl( 16, q8);
  5835. vector signed char q8y01 = vec_xl( 32, q8);
  5836. vector signed char q8y11 = vec_xl( 48, q8);
  5837. vector signed char q8y20 = vec_xl( 64, q8);
  5838. vector signed char q8y30 = vec_xl( 80, q8);
  5839. vector signed char q8y21 = vec_xl( 96, q8);
  5840. vector signed char q8y31 = vec_xl(112, q8);
  5841. q8 += 128;
  5842. vector signed int qv00 = vec_msum(q8y00, q4x00, v0);
  5843. vector signed int qv01 = vec_msum(q8y01, q4x01, v0);
  5844. vector signed int qv10 = vec_msum(q8y10, q4x10, v0);
  5845. vector signed int qv11 = vec_msum(q8y11, q4x11, v0);
  5846. vector signed int qv20 = vec_msum(q8y20, q4x20, v0);
  5847. vector signed int qv21 = vec_msum(q8y21, q4x21, v0);
  5848. vector signed int qv30 = vec_msum(q8y30, q4x30, v0);
  5849. vector signed int qv31 = vec_msum(q8y31, q4x31, v0);
  5850. vector signed int vscales_h = vec_unpackh(vscales);
  5851. vector signed int vs0 = vec_splat(vscales_h, 0);
  5852. vector signed int vs1 = vec_splat(vscales_h, 1);
  5853. vector signed int vs2 = vec_splat(vscales_h, 2);
  5854. vector signed int vs3 = vec_splat(vscales_h, 3);
  5855. vscales = vec_sld(vscales, vscales, 8);
  5856. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  5857. vsumi1 = vec_add(vec_mul(qv01, vs1), vsumi1);
  5858. vsumi2 = vec_add(vec_mul(qv20, vs2), vsumi2);
  5859. vsumi3 = vec_add(vec_mul(qv21, vs3), vsumi3);
  5860. vsumi0 = vec_add(vec_mul(qv10, vs0), vsumi0);
  5861. vsumi1 = vec_add(vec_mul(qv11, vs1), vsumi1);
  5862. vsumi2 = vec_add(vec_mul(qv30, vs2), vsumi2);
  5863. vsumi3 = vec_add(vec_mul(qv31, vs3), vsumi3);
  5864. }
  5865. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5866. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5867. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5868. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5869. }
  5870. vsumf0 = vec_add(vsumf0, vsumf2);
  5871. vsumf1 = vec_add(vsumf1, vsumf3);
  5872. vsumf0 = vec_add(vsumf0, vsumf1);
  5873. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5874. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5875. *s = vec_extract(vsumf0, 0);
  5876. #elif defined __loongarch_asx
  5877. GGML_UNUSED(kmask1);
  5878. GGML_UNUSED(kmask2);
  5879. GGML_UNUSED(kmask3);
  5880. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  5881. __m256 acc = (__m256)__lasx_xvldi(0);
  5882. __m128 acc_m = (__m128)__lsx_vldi(0);
  5883. for (int i = 0; i < nb; ++i) {
  5884. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5885. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5886. memcpy(utmp, x[i].scales, 12);
  5887. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5888. const uint32_t uaux = utmp[1] & kmask1;
  5889. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5890. utmp[2] = uaux;
  5891. utmp[0] &= kmask1;
  5892. const uint8_t * restrict q4 = x[i].qs;
  5893. const int8_t * restrict q8 = y[i].qs;
  5894. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  5895. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  5896. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  5897. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  5898. acc_m = __lsx_vfmadd_s(__lsx_vreplfr2vr_s(dmin), __lsx_vffint_s_w(prod), acc_m);
  5899. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  5900. const __m256i scales = lasx_insertf128(sc128, sc128);
  5901. __m256i sumi = __lasx_xvldi(0);
  5902. for (int j = 0; j < QK_K/64; ++j) {
  5903. const __m256i scale_l = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  5904. const __m256i scale_h = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  5905. const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  5906. const __m256i q4l = __lasx_xvand_v(q4bits, m4);
  5907. const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4);
  5908. const __m256i q8l = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5909. __m256i p16l = lasx_maddubs_h(q4l, q8l);
  5910. p16l = lasx_madd_h(scale_l, p16l);
  5911. const __m256i q8h = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5912. __m256i p16h = lasx_maddubs_h(q4h, q8h);
  5913. p16h = lasx_madd_h(scale_h, p16h);
  5914. const __m256i sumj = __lasx_xvadd_w(p16l, p16h);
  5915. sumi = __lasx_xvadd_w(sumi, sumj);
  5916. }
  5917. __m256 vd = __lasx_xvreplfr2vr_s(d);
  5918. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  5919. }
  5920. acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee));
  5921. __m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0);
  5922. acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
  5923. ft_union fi;
  5924. fi.i = __lsx_vpickve2gr_w(acc_m, 0);
  5925. *s = hsum_float_8(acc) + fi.f ;
  5926. #else
  5927. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5928. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5929. int8_t aux8[QK_K];
  5930. int16_t aux16[8];
  5931. float sums [8];
  5932. int32_t aux32[8];
  5933. memset(sums, 0, 8*sizeof(float));
  5934. float sumf = 0;
  5935. for (int i = 0; i < nb; ++i) {
  5936. const uint8_t * restrict q4 = x[i].qs;
  5937. const int8_t * restrict q8 = y[i].qs;
  5938. memset(aux32, 0, 8*sizeof(int32_t));
  5939. int8_t * restrict a = aux8;
  5940. for (int j = 0; j < QK_K/64; ++j) {
  5941. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  5942. a += 32;
  5943. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  5944. a += 32; q4 += 32;
  5945. }
  5946. memcpy(utmp, x[i].scales, 12);
  5947. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5948. const uint32_t uaux = utmp[1] & kmask1;
  5949. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5950. utmp[2] = uaux;
  5951. utmp[0] &= kmask1;
  5952. int sumi = 0;
  5953. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  5954. a = aux8;
  5955. int is = 0;
  5956. for (int j = 0; j < QK_K/32; ++j) {
  5957. int32_t scale = scales[is++];
  5958. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5959. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5960. q8 += 8; a += 8;
  5961. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5962. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5963. q8 += 8; a += 8;
  5964. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5965. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5966. q8 += 8; a += 8;
  5967. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5968. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5969. q8 += 8; a += 8;
  5970. }
  5971. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5972. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5973. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5974. sumf -= dmin * sumi;
  5975. }
  5976. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5977. *s = sumf;
  5978. #endif
  5979. }
  5980. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5981. assert(n % QK_K == 0);
  5982. assert(nrc == 1);
  5983. UNUSED(nrc);
  5984. UNUSED(bx);
  5985. UNUSED(by);
  5986. UNUSED(bs);
  5987. const block_q5_K * restrict x = vx;
  5988. const block_q8_K * restrict y = vy;
  5989. const int nb = n / QK_K;
  5990. static const uint32_t kmask1 = 0x3f3f3f3f;
  5991. static const uint32_t kmask2 = 0x0f0f0f0f;
  5992. static const uint32_t kmask3 = 0x03030303;
  5993. uint32_t utmp[4];
  5994. #ifdef __ARM_NEON
  5995. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5996. const uint8x16_t mone = vdupq_n_u8(1);
  5997. const uint8x16_t mtwo = vdupq_n_u8(2);
  5998. const int32x4_t mzero = vdupq_n_s32(0);
  5999. ggml_int8x16x4_t q5bytes;
  6000. float sumf = 0;
  6001. for (int i = 0; i < nb; ++i) {
  6002. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6003. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6004. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6005. memcpy(utmp, x[i].scales, 12);
  6006. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6007. const uint32_t uaux = utmp[1] & kmask1;
  6008. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6009. utmp[2] = uaux;
  6010. utmp[0] &= kmask1;
  6011. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  6012. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  6013. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6014. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6015. int32_t sumi_mins = vaddvq_s32(prod);
  6016. const uint8_t * scales = (const uint8_t *)utmp;
  6017. const uint8_t * restrict q5 = x[i].qs;
  6018. const uint8_t * restrict qh = x[i].qh;
  6019. const int8_t * restrict q8 = y[i].qs;
  6020. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  6021. ggml_uint8x16x4_t q5h;
  6022. int32_t sumi = 0;
  6023. for (int j = 0; j < QK_K/64; ++j) {
  6024. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  6025. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6026. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6027. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6028. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  6029. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  6030. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  6031. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  6032. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  6033. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  6034. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  6035. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  6036. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  6037. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  6038. }
  6039. sumf += d * sumi - dmin * sumi_mins;
  6040. }
  6041. *s = sumf;
  6042. #elif defined __AVX2__
  6043. const __m256i m4 = _mm256_set1_epi8(0xF);
  6044. const __m128i mzero = _mm_setzero_si128();
  6045. const __m256i mone = _mm256_set1_epi8(1);
  6046. __m256 acc = _mm256_setzero_ps();
  6047. float summs = 0.f;
  6048. for (int i = 0; i < nb; ++i) {
  6049. const uint8_t * restrict q5 = x[i].qs;
  6050. const int8_t * restrict q8 = y[i].qs;
  6051. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6052. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6053. memcpy(utmp, x[i].scales, 12);
  6054. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6055. const uint32_t uaux = utmp[1] & kmask1;
  6056. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6057. utmp[2] = uaux;
  6058. utmp[0] &= kmask1;
  6059. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6060. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6061. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6062. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6063. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6064. summs += dmin * _mm_extract_epi32(hsum, 0);
  6065. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6066. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6067. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  6068. __m256i hmask = mone;
  6069. __m256i sumi = _mm256_setzero_si256();
  6070. int bit = 0;
  6071. for (int j = 0; j < QK_K/64; ++j) {
  6072. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6073. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6074. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  6075. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6076. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6077. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  6078. hmask = _mm256_slli_epi16(hmask, 1);
  6079. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6080. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6081. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  6082. hmask = _mm256_slli_epi16(hmask, 1);
  6083. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6084. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6085. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  6086. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  6087. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  6088. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  6089. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6090. }
  6091. __m256 vd = _mm256_set1_ps(d);
  6092. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6093. }
  6094. *s = hsum_float_8(acc) + summs;
  6095. #elif defined __AVX__
  6096. const __m128i m4 = _mm_set1_epi8(0xF);
  6097. const __m128i mzero = _mm_setzero_si128();
  6098. const __m128i mone = _mm_set1_epi8(1);
  6099. const __m128i m2 = _mm_set1_epi8(2);
  6100. __m256 acc = _mm256_setzero_ps();
  6101. float summs = 0.f;
  6102. for (int i = 0; i < nb; ++i) {
  6103. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6104. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6105. const uint8_t * restrict q5 = x[i].qs;
  6106. const int8_t * restrict q8 = y[i].qs;
  6107. memcpy(utmp, x[i].scales, 12);
  6108. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6109. const uint32_t uaux = utmp[1] & kmask1;
  6110. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6111. utmp[2] = uaux;
  6112. utmp[0] &= kmask1;
  6113. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6114. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6115. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6116. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6117. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6118. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6119. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6120. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6121. summs += dmin * _mm_extract_epi32(hsum, 0);
  6122. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  6123. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  6124. __m128i hmask = mone;
  6125. __m128i sumi_0 = _mm_setzero_si128();
  6126. __m128i sumi_1 = _mm_setzero_si128();
  6127. int bit = 0;
  6128. __m128i shuffle = _mm_set1_epi16(0x0100);
  6129. for (int j = 0; j < QK_K/64; ++j) {
  6130. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6131. shuffle = _mm_add_epi16(shuffle, m2);
  6132. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6133. shuffle = _mm_add_epi16(shuffle, m2);
  6134. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6135. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6136. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  6137. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  6138. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6139. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6140. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6141. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6142. hmask = _mm_slli_epi16(hmask, 1);
  6143. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6144. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6145. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  6146. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  6147. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  6148. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  6149. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  6150. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  6151. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6152. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6153. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6154. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6155. hmask = _mm_slli_epi16(hmask, 1);
  6156. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6157. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6158. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  6159. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  6160. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  6161. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  6162. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6163. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6164. }
  6165. __m256 vd = _mm256_set1_ps(d);
  6166. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6167. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6168. }
  6169. *s = hsum_float_8(acc) + summs;
  6170. #elif defined __riscv_v_intrinsic
  6171. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6172. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6173. float sumf = 0;
  6174. float sums = 0.0;
  6175. size_t vl;
  6176. for (int i = 0; i < nb; ++i) {
  6177. vl = 8;
  6178. const uint8_t * restrict q5 = x[i].qs;
  6179. const uint8_t * restrict hm = x[i].qh;
  6180. const int8_t * restrict q8 = y[i].qs;
  6181. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6182. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6183. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6184. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6185. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6186. memcpy(utmp, x[i].scales, 12);
  6187. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6188. const uint32_t uaux = utmp[1] & kmask1;
  6189. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6190. utmp[2] = uaux;
  6191. utmp[0] &= kmask1;
  6192. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6193. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6194. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6195. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6196. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6197. vl = 32;
  6198. int32_t aux32 = 0;
  6199. int is = 0;
  6200. uint8_t m = 1;
  6201. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6202. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  6203. for (int j = 0; j < QK_K/64; ++j) {
  6204. // load Q5 and Q8
  6205. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  6206. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  6207. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  6208. // compute mask for addition
  6209. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  6210. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6211. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  6212. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_mu(vmask_1, q5_a, q5_a, 16, vl);
  6213. m <<= 1;
  6214. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  6215. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6216. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  6217. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_mu(vmask_2, q5_l, q5_l, 16, vl);
  6218. m <<= 1;
  6219. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  6220. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  6221. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  6222. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  6223. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  6224. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  6225. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  6226. q5 += 32; q8 += 64;
  6227. }
  6228. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  6229. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  6230. }
  6231. *s = sumf+sums;
  6232. #elif defined(__POWER9_VECTOR__)
  6233. const vector signed char lowMask = vec_splats((signed char)0xF);
  6234. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  6235. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  6236. const vector int v0 = vec_splats((int32_t)0);
  6237. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  6238. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6239. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6240. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6241. vector float vsumf0 = vec_splats(0.0f);
  6242. vector float vsumf1 = vec_splats(0.0f);
  6243. vector float vsumf2 = vec_splats(0.0f);
  6244. vector float vsumf3 = vec_splats(0.0f);
  6245. for (int i = 0; i < nb; ++i) {
  6246. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6247. vector float vyd = vec_splats(y[i].d);
  6248. vector float vd = vec_mul(vxd, vyd);
  6249. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  6250. vector float vdmin = vec_mul(vxmin, vyd);
  6251. UNUSED(kmask1);
  6252. UNUSED(kmask2);
  6253. UNUSED(kmask3);
  6254. UNUSED(utmp);
  6255. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  6256. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  6257. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  6258. vector signed char u3 = vec_sr(u2, v4);
  6259. vector signed char u30 = u1;
  6260. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  6261. u1 = vec_and(u0, lowMask1);
  6262. u2 = vec_or(u30, u31);
  6263. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  6264. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  6265. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  6266. vector signed short vscales = vec_unpackh(utmps);
  6267. vector signed short q5xmins = vec_unpackl(utmps);
  6268. vector signed short q5xmins0 = vec_mergeh(q5xmins, q5xmins);
  6269. vector signed short q5xmins1 = vec_mergel(q5xmins, q5xmins);
  6270. vector signed int prod0 = vec_mule(q5xmins0, q8ysums0);
  6271. vector signed int prod1 = vec_mule(q5xmins1, q8ysums1);
  6272. vector signed int prod2 = vec_mulo(q5xmins0, q8ysums0);
  6273. vector signed int prod3 = vec_mulo(q5xmins1, q8ysums1);
  6274. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  6275. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  6276. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  6277. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  6278. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  6279. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].qh);
  6280. vector signed int vsumi0 = v0;
  6281. vector signed int vsumi1 = v0;
  6282. vector signed int vsumi2 = v0;
  6283. vector signed int vsumi3 = v0;
  6284. const uint8_t * restrict q5 = x[i].qs;
  6285. const int8_t * restrict q8 = y[i].qs;
  6286. for (int j = 0; j < QK_K/64; ++j) {
  6287. __builtin_prefetch(q5, 0, 1);
  6288. __builtin_prefetch(q8, 0, 1);
  6289. vector signed char qxs0 = (vector signed char)vec_xl( 0, q5);
  6290. vector signed char qxs1 = (vector signed char)vec_xl(16, q5);
  6291. q5 += 32;
  6292. vector signed char qxs00 = vec_and(qxs0, lowMask);
  6293. vector signed char qxs01 = vec_sr(qxs0, v4);
  6294. vector signed char qxs10 = vec_and(qxs1, lowMask);
  6295. vector signed char qxs11 = vec_sr(qxs1, v4);
  6296. vector signed char q5h00 = vec_sl(vec_and((vector signed char)v1, qxhs0), v4);
  6297. vector signed char q5h01 = vec_sl(vec_and((vector signed char)v2, qxhs0), v3);
  6298. vector signed char q5h10 = vec_sl(vec_and((vector signed char)v1, qxhs1), v4);
  6299. vector signed char q5h11 = vec_sl(vec_and((vector signed char)v2, qxhs1), v3);
  6300. qxhs0 = vec_sr(qxhs0, v2);
  6301. qxhs1 = vec_sr(qxhs1, v2);
  6302. vector unsigned char q5x00 = (vector unsigned char)vec_or(q5h00, qxs00);
  6303. vector unsigned char q5x01 = (vector unsigned char)vec_or(q5h01, qxs01);
  6304. vector unsigned char q5x10 = (vector unsigned char)vec_or(q5h10, qxs10);
  6305. vector unsigned char q5x11 = (vector unsigned char)vec_or(q5h11, qxs11);
  6306. vector signed char q8y00 = vec_xl( 0, q8);
  6307. vector signed char q8y10 = vec_xl(16, q8);
  6308. vector signed char q8y01 = vec_xl(32, q8);
  6309. vector signed char q8y11 = vec_xl(48, q8);
  6310. q8 += 64;
  6311. vector signed int qv00 = vec_msum(q8y00, q5x00, v0);
  6312. vector signed int qv01 = vec_msum(q8y01, q5x01, v0);
  6313. vector signed int qv10 = vec_msum(q8y10, q5x10, v0);
  6314. vector signed int qv11 = vec_msum(q8y11, q5x11, v0);
  6315. vector signed int vscales_h = vec_unpackh(vscales);
  6316. vector signed int vs0 = vec_splat(vscales_h, 0);
  6317. vector signed int vs1 = vec_splat(vscales_h, 1);
  6318. vscales = vec_sld(vscales, vscales, 12);
  6319. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  6320. vsumi1 = vec_add(vec_mul(qv10, vs0), vsumi1);
  6321. vsumi2 = vec_add(vec_mul(qv01, vs1), vsumi2);
  6322. vsumi3 = vec_add(vec_mul(qv11, vs1), vsumi3);
  6323. }
  6324. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6325. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6326. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6327. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6328. }
  6329. vsumf0 = vec_add(vsumf0, vsumf2);
  6330. vsumf1 = vec_add(vsumf1, vsumf3);
  6331. vsumf0 = vec_add(vsumf0, vsumf1);
  6332. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6333. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6334. *s = vec_extract(vsumf0, 0);
  6335. #elif defined __loongarch_asx
  6336. GGML_UNUSED(kmask1);
  6337. GGML_UNUSED(kmask2);
  6338. GGML_UNUSED(kmask3);
  6339. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  6340. const __m128i mzero = __lsx_vldi(0);
  6341. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  6342. __m256 acc = (__m256)__lasx_xvldi(0);
  6343. float summs = 0.f;
  6344. for (int i = 0; i < nb; ++i) {
  6345. const uint8_t * restrict q5 = x[i].qs;
  6346. const int8_t * restrict q8 = y[i].qs;
  6347. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6348. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6349. memcpy(utmp, x[i].scales, 12);
  6350. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6351. const uint32_t uaux = utmp[1] & kmask1;
  6352. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6353. utmp[2] = uaux;
  6354. utmp[0] &= kmask1;
  6355. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  6356. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  6357. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  6358. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  6359. const __m128i hsum = lsx_hadd_w(lsx_hadd_w(prod, mzero), mzero);
  6360. summs += dmin * __lsx_vpickve2gr_w(hsum, 0); //TODO check
  6361. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  6362. const __m256i scales = lasx_insertf128(sc128, sc128);
  6363. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].qh, 0);
  6364. __m256i hmask = mone;
  6365. __m256i sumi = __lasx_xvldi(0);
  6366. int bit = 0;
  6367. __m256i xvbit;
  6368. for (int j = 0; j < QK_K/64; ++j) {
  6369. const __m256i scale_0 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  6370. const __m256i scale_1 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  6371. const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32;
  6372. xvbit = __lasx_xvreplgr2vr_h(bit++);
  6373. const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4);
  6374. const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  6375. const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0);
  6376. hmask = __lasx_xvslli_h(hmask, 1);
  6377. xvbit = __lasx_xvreplgr2vr_h(bit++);
  6378. const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4);
  6379. const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  6380. const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1);
  6381. hmask = __lasx_xvslli_h(hmask, 1);
  6382. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6383. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6384. __m256i p16_0 = lasx_maddubs_h(q5_0, q8_0);
  6385. __m256i p16_1 = lasx_maddubs_h(q5_1, q8_1);
  6386. p16_0 = lasx_madd_h(scale_0, p16_0);
  6387. p16_1 = lasx_madd_h(scale_1, p16_1);
  6388. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  6389. }
  6390. __m256 vd = __lasx_xvreplfr2vr_s(d);
  6391. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  6392. }
  6393. *s = hsum_float_8(acc) + summs;
  6394. #else
  6395. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6396. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6397. int8_t aux8[QK_K];
  6398. int16_t aux16[8];
  6399. float sums [8];
  6400. int32_t aux32[8];
  6401. memset(sums, 0, 8*sizeof(float));
  6402. float sumf = 0;
  6403. for (int i = 0; i < nb; ++i) {
  6404. const uint8_t * restrict q4 = x[i].qs;
  6405. const uint8_t * restrict hm = x[i].qh;
  6406. const int8_t * restrict q8 = y[i].qs;
  6407. memset(aux32, 0, 8*sizeof(int32_t));
  6408. int8_t * restrict a = aux8;
  6409. uint8_t m = 1;
  6410. for (int j = 0; j < QK_K/64; ++j) {
  6411. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6412. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6413. a += 32; m <<= 1;
  6414. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6415. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6416. a += 32; m <<= 1;
  6417. q4 += 32;
  6418. }
  6419. memcpy(utmp, x[i].scales, 12);
  6420. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6421. const uint32_t uaux = utmp[1] & kmask1;
  6422. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6423. utmp[2] = uaux;
  6424. utmp[0] &= kmask1;
  6425. int sumi = 0;
  6426. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6427. a = aux8;
  6428. int is = 0;
  6429. for (int j = 0; j < QK_K/32; ++j) {
  6430. int32_t scale = scales[is++];
  6431. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6432. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6433. q8 += 8; a += 8;
  6434. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6435. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6436. q8 += 8; a += 8;
  6437. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6438. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6439. q8 += 8; a += 8;
  6440. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6441. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6442. q8 += 8; a += 8;
  6443. }
  6444. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6445. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6446. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6447. sumf -= dmin * sumi;
  6448. }
  6449. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6450. *s = sumf;
  6451. #endif
  6452. }
  6453. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6454. assert(n % QK_K == 0);
  6455. assert(nrc == 1);
  6456. UNUSED(nrc);
  6457. UNUSED(bx);
  6458. UNUSED(by);
  6459. UNUSED(bs);
  6460. const block_q6_K * restrict x = vx;
  6461. const block_q8_K * restrict y = vy;
  6462. const int nb = n / QK_K;
  6463. #ifdef __ARM_NEON
  6464. float sum = 0;
  6465. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6466. const int32x4_t vzero = vdupq_n_s32(0);
  6467. //const int8x16_t m32s = vdupq_n_s8(32);
  6468. const uint8x16_t mone = vdupq_n_u8(3);
  6469. ggml_int8x16x4_t q6bytes;
  6470. ggml_uint8x16x4_t q6h;
  6471. for (int i = 0; i < nb; ++i) {
  6472. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6473. const uint8_t * restrict q6 = x[i].ql;
  6474. const uint8_t * restrict qh = x[i].qh;
  6475. const int8_t * restrict q8 = y[i].qs;
  6476. const int8_t * restrict scale = x[i].scales;
  6477. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  6478. const int8x16_t scales = vld1q_s8(scale);
  6479. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  6480. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  6481. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  6482. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  6483. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  6484. int32_t isum_mins = vaddvq_s32(prod);
  6485. int32_t isum = 0;
  6486. for (int j = 0; j < QK_K/128; ++j) {
  6487. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  6488. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  6489. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6490. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6491. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6492. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  6493. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6494. shifted = vshrq_n_u8(qhbits.val[1], 2);
  6495. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6496. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6497. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6498. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  6499. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  6500. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  6501. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  6502. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  6503. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  6504. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6505. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6506. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6507. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6508. scale += 4;
  6509. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6510. shifted = vshrq_n_u8(qhbits.val[0], 4);
  6511. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6512. shifted = vshrq_n_u8(qhbits.val[1], 4);
  6513. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6514. shifted = vshrq_n_u8(qhbits.val[0], 6);
  6515. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6516. shifted = vshrq_n_u8(qhbits.val[1], 6);
  6517. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6518. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  6519. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  6520. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  6521. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  6522. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  6523. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  6524. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  6525. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  6526. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6527. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6528. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6529. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6530. scale += 4;
  6531. }
  6532. //sum += isum * d_all * y[i].d;
  6533. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  6534. }
  6535. *s = sum;
  6536. #elif defined __AVX2__
  6537. const __m256i m4 = _mm256_set1_epi8(0xF);
  6538. const __m256i m2 = _mm256_set1_epi8(3);
  6539. const __m256i m32s = _mm256_set1_epi8(32);
  6540. __m256 acc = _mm256_setzero_ps();
  6541. for (int i = 0; i < nb; ++i) {
  6542. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6543. const uint8_t * restrict q4 = x[i].ql;
  6544. const uint8_t * restrict qh = x[i].qh;
  6545. const int8_t * restrict q8 = y[i].qs;
  6546. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6547. __m256i sumi = _mm256_setzero_si256();
  6548. int is = 0;
  6549. for (int j = 0; j < QK_K/128; ++j) {
  6550. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  6551. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  6552. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  6553. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  6554. is += 4;
  6555. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6556. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6557. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  6558. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  6559. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  6560. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  6561. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  6562. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6563. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  6564. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  6565. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  6566. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6567. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6568. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6569. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6570. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6571. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6572. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  6573. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  6574. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6575. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6576. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  6577. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  6578. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6579. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6580. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  6581. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  6582. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6583. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6584. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  6585. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  6586. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6587. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  6588. }
  6589. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6590. }
  6591. *s = hsum_float_8(acc);
  6592. #elif defined __AVX__
  6593. const __m128i m4 = _mm_set1_epi8(0xF);
  6594. const __m128i m3 = _mm_set1_epi8(3);
  6595. const __m128i m32s = _mm_set1_epi8(32);
  6596. const __m128i m2 = _mm_set1_epi8(2);
  6597. __m256 acc = _mm256_setzero_ps();
  6598. for (int i = 0; i < nb; ++i) {
  6599. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6600. const uint8_t * restrict q4 = x[i].ql;
  6601. const uint8_t * restrict qh = x[i].qh;
  6602. const int8_t * restrict q8 = y[i].qs;
  6603. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6604. __m128i sumi_0 = _mm_setzero_si128();
  6605. __m128i sumi_1 = _mm_setzero_si128();
  6606. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  6607. for (int j = 0; j < QK_K/128; ++j) {
  6608. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6609. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6610. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  6611. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  6612. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  6613. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  6614. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  6615. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  6616. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  6617. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  6618. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6619. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6620. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6621. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6622. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  6623. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  6624. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  6625. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  6626. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  6627. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  6628. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  6629. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  6630. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6631. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6632. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6633. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6634. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6635. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6636. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6637. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6638. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  6639. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  6640. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  6641. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  6642. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  6643. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  6644. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  6645. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  6646. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  6647. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  6648. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  6649. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  6650. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  6651. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  6652. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  6653. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  6654. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  6655. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  6656. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  6657. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  6658. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  6659. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  6660. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  6661. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  6662. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6663. shuffle = _mm_add_epi8(shuffle, m2);
  6664. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6665. shuffle = _mm_add_epi8(shuffle, m2);
  6666. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  6667. shuffle = _mm_add_epi8(shuffle, m2);
  6668. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  6669. shuffle = _mm_add_epi8(shuffle, m2);
  6670. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  6671. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  6672. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  6673. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  6674. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  6675. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  6676. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  6677. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  6678. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6679. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6680. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  6681. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  6682. }
  6683. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6684. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  6685. }
  6686. *s = hsum_float_8(acc);
  6687. #elif defined __riscv_v_intrinsic
  6688. float sumf = 0;
  6689. for (int i = 0; i < nb; ++i) {
  6690. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6691. const uint8_t * restrict q6 = x[i].ql;
  6692. const uint8_t * restrict qh = x[i].qh;
  6693. const int8_t * restrict q8 = y[i].qs;
  6694. const int8_t * restrict scale = x[i].scales;
  6695. size_t vl;
  6696. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6697. int sum_t = 0;
  6698. int is = 0;
  6699. for (int j = 0; j < QK_K/128; ++j) {
  6700. vl = 32;
  6701. // load qh
  6702. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  6703. // load Q6
  6704. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  6705. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  6706. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  6707. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  6708. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  6709. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  6710. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  6711. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  6712. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  6713. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  6714. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  6715. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  6716. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  6717. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  6718. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  6719. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  6720. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  6721. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  6722. // load Q8 and take product
  6723. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  6724. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  6725. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  6726. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  6727. vl = 16;
  6728. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  6729. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  6730. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  6731. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  6732. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  6733. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  6734. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  6735. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  6736. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  6737. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  6738. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  6739. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  6740. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  6741. q6 += 64; qh += 32; q8 += 128; is=8;
  6742. }
  6743. sumf += d * sum_t;
  6744. }
  6745. *s = sumf;
  6746. #elif defined(__POWER9_VECTOR__)
  6747. const vector signed char lowMask = vec_splats((signed char)0xF);
  6748. const vector int v0 = vec_splats((int32_t)0);
  6749. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6750. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6751. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6752. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  6753. const vector signed char off = vec_splats((signed char)0x20);
  6754. vector float vsumf0 = vec_splats(0.0f);
  6755. vector float vsumf1 = vec_splats(0.0f);
  6756. vector float vsumf2 = vec_splats(0.0f);
  6757. vector float vsumf3 = vec_splats(0.0f);
  6758. for (int i = 0; i < nb; ++i) {
  6759. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6760. vector float vyd = vec_splats(y[i].d);
  6761. vector float vd = vec_mul(vxd, vyd);
  6762. vector signed int vsumi0 = v0;
  6763. vector signed int vsumi1 = v0;
  6764. vector signed int vsumi2 = v0;
  6765. vector signed int vsumi3 = v0;
  6766. vector signed int vsumi4 = v0;
  6767. vector signed int vsumi5 = v0;
  6768. vector signed int vsumi6 = v0;
  6769. vector signed int vsumi7 = v0;
  6770. const uint8_t * restrict q6 = x[i].ql;
  6771. const uint8_t * restrict qh = x[i].qh;
  6772. const int8_t * restrict qs = x[i].scales;
  6773. const int8_t * restrict q8 = y[i].qs;
  6774. for (int j = 0; j < QK_K/128; ++j) {
  6775. __builtin_prefetch(q6, 0, 0);
  6776. __builtin_prefetch(qh, 0, 0);
  6777. __builtin_prefetch(q8, 0, 0);
  6778. vector signed char qxs0 = (vector signed char)vec_xl( 0, q6);
  6779. vector signed char qxs1 = (vector signed char)vec_xl(16, q6);
  6780. vector signed char qxs2 = (vector signed char)vec_xl(32, q6);
  6781. vector signed char qxs3 = (vector signed char)vec_xl(48, q6);
  6782. q6 += 64;
  6783. vector signed char qxs00 = vec_and(qxs0, lowMask);
  6784. vector signed char qxs01 = vec_sr(qxs0, v4);
  6785. vector signed char qxs10 = vec_and(qxs1, lowMask);
  6786. vector signed char qxs11 = vec_sr(qxs1, v4);
  6787. vector signed char qxs20 = vec_and(qxs2, lowMask);
  6788. vector signed char qxs21 = vec_sr(qxs2, v4);
  6789. vector signed char qxs30 = vec_and(qxs3, lowMask);
  6790. vector signed char qxs31 = vec_sr(qxs3, v4);
  6791. vector signed char qxhs0 = (vector signed char)vec_xl( 0, qh);
  6792. vector signed char qxhs1 = (vector signed char)vec_xl(16, qh);
  6793. qh += 32;
  6794. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  6795. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  6796. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, qxhs1), v4);
  6797. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v4)), v4);
  6798. vector signed char qxh20 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  6799. vector signed char qxh21 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  6800. vector signed char qxh30 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v2)), v4);
  6801. vector signed char qxh31 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v6)), v4);
  6802. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  6803. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  6804. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  6805. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  6806. vector signed char q6x20 = vec_sub(vec_or(qxh20, qxs20), off);
  6807. vector signed char q6x21 = vec_sub(vec_or(qxh21, qxs21), off);
  6808. vector signed char q6x30 = vec_sub(vec_or(qxh30, qxs30), off);
  6809. vector signed char q6x31 = vec_sub(vec_or(qxh31, qxs31), off);
  6810. vector signed char q8y00 = vec_xl( 0, q8);
  6811. vector signed char q8y10 = vec_xl( 16, q8);
  6812. vector signed char q8y20 = vec_xl( 32, q8);
  6813. vector signed char q8y30 = vec_xl( 48, q8);
  6814. vector signed char q8y01 = vec_xl( 64, q8);
  6815. vector signed char q8y11 = vec_xl( 80, q8);
  6816. vector signed char q8y21 = vec_xl( 96, q8);
  6817. vector signed char q8y31 = vec_xl(112, q8);
  6818. q8 += 128;
  6819. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  6820. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  6821. vector signed short qv20 = vec_add(vec_mule(q6x20, q8y20), vec_mulo(q6x20, q8y20));
  6822. vector signed short qv30 = vec_add(vec_mule(q6x30, q8y30), vec_mulo(q6x30, q8y30));
  6823. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  6824. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  6825. vector signed short qv21 = vec_add(vec_mule(q6x21, q8y21), vec_mulo(q6x21, q8y21));
  6826. vector signed short qv31 = vec_add(vec_mule(q6x31, q8y31), vec_mulo(q6x31, q8y31));
  6827. vector signed short vscales = vec_unpackh(vec_xl_len(qs, 8));
  6828. qs += 8;
  6829. vector signed short vs0 = vec_splat(vscales, 0);
  6830. vector signed short vs1 = vec_splat(vscales, 1);
  6831. vector signed short vs2 = vec_splat(vscales, 2);
  6832. vector signed short vs3 = vec_splat(vscales, 3);
  6833. vector signed short vs4 = vec_splat(vscales, 4);
  6834. vector signed short vs5 = vec_splat(vscales, 5);
  6835. vector signed short vs6 = vec_splat(vscales, 6);
  6836. vector signed short vs7 = vec_splat(vscales, 7);
  6837. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  6838. vsumi1 = vec_msum(qv01, vs4, vsumi1);
  6839. vsumi2 = vec_msum(qv10, vs1, vsumi2);
  6840. vsumi3 = vec_msum(qv11, vs5, vsumi3);
  6841. vsumi4 = vec_msum(qv20, vs2, vsumi4);
  6842. vsumi5 = vec_msum(qv21, vs6, vsumi5);
  6843. vsumi6 = vec_msum(qv30, vs3, vsumi6);
  6844. vsumi7 = vec_msum(qv31, vs7, vsumi7);
  6845. }
  6846. vsumi0 = vec_add(vsumi0, vsumi4);
  6847. vsumi1 = vec_add(vsumi1, vsumi5);
  6848. vsumi2 = vec_add(vsumi2, vsumi6);
  6849. vsumi3 = vec_add(vsumi3, vsumi7);
  6850. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6851. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6852. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6853. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6854. }
  6855. vsumf0 = vec_add(vsumf0, vsumf2);
  6856. vsumf1 = vec_add(vsumf1, vsumf3);
  6857. vsumf0 = vec_add(vsumf0, vsumf1);
  6858. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6859. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6860. *s = vec_extract(vsumf0, 0);
  6861. #elif defined __loongarch_asx
  6862. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  6863. const __m256i m2 = __lasx_xvreplgr2vr_b(3);
  6864. const __m256i m32s = __lasx_xvreplgr2vr_b(32);
  6865. __m256 acc = (__m256)__lasx_xvldi(0);
  6866. for (int i = 0; i < nb; ++i) {
  6867. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6868. const uint8_t * restrict q4 = x[i].ql;
  6869. const uint8_t * restrict qh = x[i].qh;
  6870. const int8_t * restrict q8 = y[i].qs;
  6871. const __m128i scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  6872. __m256i sumi = __lasx_xvldi(0);
  6873. int is = 0;
  6874. for (int j = 0; j < QK_K/128; ++j) {
  6875. const __m128i scale_0 = lsx_shuffle_b(scales, get_scale_shuffle(is + 0));
  6876. const __m128i scale_1 = lsx_shuffle_b(scales, get_scale_shuffle(is + 1));
  6877. const __m128i scale_2 = lsx_shuffle_b(scales, get_scale_shuffle(is + 2));
  6878. const __m128i scale_3 = lsx_shuffle_b(scales, get_scale_shuffle(is + 3));
  6879. is += 4;
  6880. const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  6881. const __m256i q4bits2 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  6882. const __m256i q4bitsH = __lasx_xvld((const __m256i*)qh, 0); qh += 32;
  6883. const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(q4bitsH, m2), 4);
  6884. const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 2), m2), 4);
  6885. const __m256i q4h_2 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 4), m2), 4);
  6886. const __m256i q4h_3 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 6), m2), 4);
  6887. const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0);
  6888. const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(q4bits2, m4), q4h_1);
  6889. const __m256i q4_2 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_2);
  6890. const __m256i q4_3 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits2, 4), m4), q4h_3);
  6891. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6892. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6893. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6894. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6895. __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0);
  6896. __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1);
  6897. __m256i q8s_2 = lasx_maddubs_h(m32s, q8_2);
  6898. __m256i q8s_3 = lasx_maddubs_h(m32s, q8_3);
  6899. __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0);
  6900. __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1);
  6901. __m256i p16_2 = lasx_maddubs_h(q4_2, q8_2);
  6902. __m256i p16_3 = lasx_maddubs_h(q4_3, q8_3);
  6903. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  6904. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  6905. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  6906. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  6907. p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0);
  6908. p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1);
  6909. p16_2 = lasx_madd_h(lasx_ext8_16(scale_2), p16_2);
  6910. p16_3 = lasx_madd_h(lasx_ext8_16(scale_3), p16_3);
  6911. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  6912. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_2, p16_3));
  6913. }
  6914. acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  6915. }
  6916. *s = hsum_float_8(acc);
  6917. #else
  6918. int8_t aux8[QK_K];
  6919. int16_t aux16[8];
  6920. float sums [8];
  6921. int32_t aux32[8];
  6922. memset(sums, 0, 8*sizeof(float));
  6923. float sumf = 0;
  6924. for (int i = 0; i < nb; ++i) {
  6925. const uint8_t * restrict q4 = x[i].ql;
  6926. const uint8_t * restrict qh = x[i].qh;
  6927. const int8_t * restrict q8 = y[i].qs;
  6928. memset(aux32, 0, 8*sizeof(int32_t));
  6929. int8_t * restrict a = aux8;
  6930. for (int j = 0; j < QK_K; j += 128) {
  6931. for (int l = 0; l < 32; ++l) {
  6932. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  6933. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  6934. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  6935. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  6936. }
  6937. a += 128;
  6938. q4 += 64;
  6939. qh += 32;
  6940. }
  6941. a = aux8;
  6942. int is = 0;
  6943. for (int j = 0; j < QK_K/16; ++j) {
  6944. int scale = x[i].scales[is++];
  6945. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6946. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6947. q8 += 8; a += 8;
  6948. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6949. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6950. q8 += 8; a += 8;
  6951. }
  6952. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6953. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6954. }
  6955. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6956. *s = sumf;
  6957. #endif
  6958. }
  6959. #if defined (__AVX__) || defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx)
  6960. static const int8_t keven_signs_q2xs[1024] = {
  6961. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  6962. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  6963. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  6964. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  6965. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  6966. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  6967. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  6968. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  6969. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  6970. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  6971. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  6972. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  6973. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  6974. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  6975. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  6976. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  6977. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  6978. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  6979. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  6980. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  6981. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  6982. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  6983. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  6984. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  6985. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  6986. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  6987. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  6988. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  6989. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  6990. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  6991. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  6992. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  6993. };
  6994. #endif
  6995. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6996. assert(n % QK_K == 0);
  6997. assert(nrc == 1);
  6998. UNUSED(nrc);
  6999. UNUSED(bx);
  7000. UNUSED(by);
  7001. UNUSED(bs);
  7002. const block_iq2_xxs * restrict x = vx;
  7003. const block_q8_K * restrict y = vy;
  7004. const int nb = n / QK_K;
  7005. #if defined(__ARM_NEON)
  7006. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7007. uint32_t aux32[4];
  7008. const uint8_t * aux8 = (const uint8_t *)aux32;
  7009. ggml_int8x16x4_t q2u;
  7010. ggml_int8x16x4_t q2s;
  7011. ggml_int8x16x4_t q8b;
  7012. float sumf = 0;
  7013. for (int i = 0; i < nb; ++i) {
  7014. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7015. const uint16_t * restrict q2 = x[i].qs;
  7016. const int8_t * restrict q8 = y[i].qs;
  7017. float sumf1 = 0, sumf2 = 0;
  7018. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7019. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7020. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7021. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  7022. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  7023. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  7024. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  7025. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7026. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7027. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  7028. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  7029. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7030. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7031. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7032. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7033. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  7034. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  7035. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  7036. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  7037. }
  7038. sumf += d*(sumf1 + sumf2);
  7039. }
  7040. *s = 0.25f * sumf;
  7041. #elif defined(__AVX2__)
  7042. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7043. uint32_t aux32[4];
  7044. const uint8_t * aux8 = (const uint8_t *)aux32;
  7045. __m256 accumf = _mm256_setzero_ps();
  7046. for (int i = 0; i < nb; ++i) {
  7047. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7048. const uint16_t * restrict q2 = x[i].qs;
  7049. const int8_t * restrict q8 = y[i].qs;
  7050. __m256i sumi1 = _mm256_setzero_si256();
  7051. __m256i sumi2 = _mm256_setzero_si256();
  7052. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7053. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7054. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7055. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7056. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7057. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7058. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7059. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7060. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7061. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7062. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7063. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7064. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7065. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7066. const uint16_t ls1 = aux32[1] >> 28;
  7067. const uint16_t ls2 = aux32[3] >> 28;
  7068. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7069. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7070. sumi1 = _mm256_add_epi32(sumi1, p1);
  7071. sumi2 = _mm256_add_epi32(sumi2, p2);
  7072. }
  7073. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7074. }
  7075. *s = 0.125f * hsum_float_8(accumf);
  7076. #elif defined(__AVX__)
  7077. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7078. uint32_t aux32[4];
  7079. const uint8_t * aux8 = (const uint8_t *)aux32;
  7080. __m256 accumf = _mm256_setzero_ps();
  7081. for (int i = 0; i < nb; ++i) {
  7082. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7083. const uint16_t * restrict q2 = x[i].qs;
  7084. const int8_t * restrict q8 = y[i].qs;
  7085. __m128i sumi1_0 = _mm_setzero_si128();
  7086. __m128i sumi1_1 = _mm_setzero_si128();
  7087. __m128i sumi2_0 = _mm_setzero_si128();
  7088. __m128i sumi2_1 = _mm_setzero_si128();
  7089. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7090. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7091. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7092. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7093. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7094. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7095. const __m128i q2_1_0 = _mm_set_epi64x(iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7096. const __m128i q2_1_1 = _mm_set_epi64x(iq2xxs_grid[aux8[3]], iq2xxs_grid[aux8[2]]);
  7097. const __m128i q2_2_0 = _mm_set_epi64x(iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7098. const __m128i q2_2_1 = _mm_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]]);
  7099. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7100. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  7101. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7102. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127]);
  7103. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  7104. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  7105. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  7106. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  7107. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7108. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7109. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7110. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7111. const uint16_t ls1 = aux32[1] >> 28;
  7112. const uint16_t ls2 = aux32[3] >> 28;
  7113. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  7114. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  7115. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  7116. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  7117. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  7118. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  7119. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  7120. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  7121. }
  7122. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7123. }
  7124. *s = 0.125f * hsum_float_8(accumf);
  7125. #elif defined(__POWER9_VECTOR__)
  7126. const vector int v0 = vec_splats((int32_t)0);
  7127. vector float vsumf0 = vec_splats(0.0f);
  7128. vector float vsumf1 = vec_splats(0.0f);
  7129. vector float vsumf2 = vec_splats(0.0f);
  7130. vector float vsumf3 = vec_splats(0.0f);
  7131. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7132. for (int i = 0; i < nb; ++i) {
  7133. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7134. vector float vyd = vec_splats(y[i].d);
  7135. vector float vd = vec_mul(vxd, vyd);
  7136. vector signed int vsumi0 = v0;
  7137. vector signed int vsumi1 = v0;
  7138. vector signed int vsumi2 = v0;
  7139. vector signed int vsumi3 = v0;
  7140. const uint16_t * restrict q2 = x[i].qs;
  7141. const int8_t * restrict q8 = y[i].qs;
  7142. for (int j = 0; j < QK_K/32; j += 2) {
  7143. __builtin_prefetch(q2, 0, 1);
  7144. __builtin_prefetch(q8, 0, 1);
  7145. uint32_t aux32[4];
  7146. const uint8_t * aux8 = (const uint8_t *)aux32;
  7147. memcpy(aux32, q2, 4*sizeof(uint32_t));
  7148. q2 += 8;
  7149. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xxs_grid + aux8[ 0]), *(const int64_t *)(iq2xxs_grid + aux8[ 1])};
  7150. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xxs_grid + aux8[ 2]), *(const int64_t *)(iq2xxs_grid + aux8[ 3])};
  7151. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xxs_grid + aux8[ 8]), *(const int64_t *)(iq2xxs_grid + aux8[ 9])};
  7152. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xxs_grid + aux8[10]), *(const int64_t *)(iq2xxs_grid + aux8[11])};
  7153. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((aux32[1] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 7) & 127))};
  7154. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((aux32[1] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 21) & 127))};
  7155. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((aux32[3] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 7) & 127))};
  7156. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((aux32[3] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 21) & 127))};
  7157. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  7158. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  7159. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  7160. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  7161. vector signed char q8y0 = vec_xl( 0, q8);
  7162. vector signed char q8y1 = vec_xl(16, q8);
  7163. vector signed char q8y2 = vec_xl(32, q8);
  7164. vector signed char q8y3 = vec_xl(48, q8);
  7165. q8 += 64;
  7166. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7167. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7168. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7169. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7170. const uint16_t ls0 = aux32[1] >> 28;
  7171. const uint16_t ls1 = aux32[3] >> 28;
  7172. vector signed short vscales01 = vec_splats((int16_t)(2*ls0+1));
  7173. vector signed short vscales23 = vec_splats((int16_t)(2*ls1+1));
  7174. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7175. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7176. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7177. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7178. }
  7179. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7180. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7181. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7182. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7183. }
  7184. vsumf0 = vec_add(vsumf0, vsumf2);
  7185. vsumf1 = vec_add(vsumf1, vsumf3);
  7186. vsumf0 = vec_add(vsumf0, vsumf1);
  7187. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7188. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7189. *s = 0.125f * vec_extract(vsumf0, 0);
  7190. #elif defined(__loongarch_asx)
  7191. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7192. uint32_t aux32[4];
  7193. const uint8_t * aux8 = (const uint8_t *)aux32;
  7194. __m256 accumf = (__m256)__lasx_xvldi(0);
  7195. for (int i = 0; i < nb; ++i) {
  7196. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7197. const uint16_t * restrict q2 = x[i].qs;
  7198. const int8_t * restrict q8 = y[i].qs;
  7199. __m256i sumi1 = __lasx_xvldi(0);
  7200. __m256i sumi2 = __lasx_xvldi(0);
  7201. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7202. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7203. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7204. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7205. const __m256i q2_1 = lasx_set_d(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7206. const __m256i q2_2 = lasx_set_d(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7207. const __m256i s2_1 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7208. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7209. const __m256i s2_2 = lasx_set_d(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7210. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7211. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  7212. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  7213. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7214. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7215. const uint16_t ls1 = aux32[1] >> 28;
  7216. const uint16_t ls2 = aux32[3] >> 28;
  7217. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  7218. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  7219. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7220. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7221. }
  7222. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7223. }
  7224. *s = 0.125f * hsum_float_8(accumf);
  7225. #else
  7226. uint32_t aux32[2];
  7227. const uint8_t * aux8 = (const uint8_t *)aux32;
  7228. float sumf = 0.f;
  7229. for (int i = 0; i < nb; ++i) {
  7230. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7231. const uint16_t * restrict q2 = x[i].qs;
  7232. const int8_t * restrict q8 = y[i].qs;
  7233. int32_t bsum = 0;
  7234. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7235. memcpy(aux32, q2, 2*sizeof(uint32_t));
  7236. q2 += 4;
  7237. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  7238. int32_t sumi = 0;
  7239. for (int l = 0; l < 4; ++l) {
  7240. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  7241. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  7242. for (int j = 0; j < 8; ++j) {
  7243. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7244. }
  7245. q8 += 8;
  7246. }
  7247. bsum += sumi * ls;
  7248. }
  7249. sumf += d * bsum;
  7250. }
  7251. *s = 0.125f * sumf;
  7252. #endif
  7253. }
  7254. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7255. assert(n % QK_K == 0);
  7256. assert(nrc == 1);
  7257. UNUSED(nrc);
  7258. UNUSED(bx);
  7259. UNUSED(by);
  7260. UNUSED(bs);
  7261. const block_iq2_xs * restrict x = vx;
  7262. const block_q8_K * restrict y = vy;
  7263. const int nb = n / QK_K;
  7264. #if defined(__ARM_NEON)
  7265. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7266. ggml_int8x16x4_t q2u;
  7267. ggml_int8x16x4_t q2s;
  7268. ggml_int8x16x4_t q8b;
  7269. int32x4x4_t scales32;
  7270. float sumf = 0;
  7271. for (int i = 0; i < nb; ++i) {
  7272. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7273. const uint16_t * restrict q2 = x[i].qs;
  7274. const int8_t * restrict q8 = y[i].qs;
  7275. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  7276. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  7277. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  7278. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  7279. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  7280. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  7281. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  7282. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  7283. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  7284. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  7285. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  7286. int32x4_t sumi = vdupq_n_s32(0);
  7287. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  7288. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7289. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  7290. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  7291. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  7292. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  7293. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  7294. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  7295. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  7296. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  7297. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7298. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7299. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7300. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7301. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  7302. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  7303. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  7304. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  7305. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  7306. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  7307. q2 += 8;
  7308. }
  7309. sumf += d*vaddvq_s32(sumi);
  7310. }
  7311. *s = 0.125f * sumf;
  7312. #elif defined(__AVX2__)
  7313. const __m256i mone = _mm256_set1_epi8(1);
  7314. static const char block_sign_shuffle_mask_1[32] = {
  7315. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7316. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7317. };
  7318. static const char block_sign_shuffle_mask_2[32] = {
  7319. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7320. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7321. };
  7322. static const uint8_t bit_selector_mask_bytes[32] = {
  7323. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7324. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7325. };
  7326. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  7327. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  7328. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  7329. static const uint8_t k_bit_helper[32] = {
  7330. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7331. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7332. };
  7333. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  7334. const __m256i m511 = _mm256_set1_epi16(511);
  7335. const __m128i m4 = _mm_set1_epi8(0xf);
  7336. const __m128i m1 = _mm_set1_epi8(1);
  7337. uint64_t aux64;
  7338. // somewhat hacky, but gives a significant boost in performance
  7339. __m256i aux_gindex;
  7340. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7341. __m256 accumf = _mm256_setzero_ps();
  7342. for (int i = 0; i < nb; ++i) {
  7343. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7344. const uint16_t * restrict q2 = x[i].qs;
  7345. const int8_t * restrict q8 = y[i].qs;
  7346. memcpy(&aux64, x[i].scales, 8);
  7347. __m128i stmp = _mm_set1_epi64x(aux64);
  7348. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  7349. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  7350. __m256i sumi1 = _mm256_setzero_si256();
  7351. __m256i sumi2 = _mm256_setzero_si256();
  7352. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7353. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  7354. aux_gindex = _mm256_and_si256(q2_data, m511);
  7355. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  7356. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  7357. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  7358. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  7359. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  7360. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7361. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7362. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7363. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7364. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7365. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7366. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7367. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7368. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7369. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7370. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7371. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7372. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  7373. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  7374. const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
  7375. const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
  7376. __m256i signs;
  7377. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  7378. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7379. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  7380. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  7381. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7382. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  7383. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  7384. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7385. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  7386. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  7387. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7388. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  7389. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7390. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7391. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  7392. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  7393. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  7394. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  7395. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  7396. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  7397. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  7398. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  7399. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  7400. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  7401. }
  7402. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7403. }
  7404. *s = 0.125f * hsum_float_8(accumf);
  7405. #elif defined(__AVX__)
  7406. const __m128i mone = _mm_set1_epi8(1);
  7407. static const char block_sign_shuffle_mask_1[32] = {
  7408. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7409. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7410. };
  7411. static const char block_sign_shuffle_mask_2[32] = {
  7412. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7413. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7414. };
  7415. static const uint8_t bit_selector_mask_bytes[32] = {
  7416. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7417. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7418. };
  7419. const __m128i bit_selector_mask_0 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes);
  7420. const __m128i bit_selector_mask_1 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes + 1);
  7421. const __m128i block_sign_shuffle_1_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1);
  7422. const __m128i block_sign_shuffle_1_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1 + 1);
  7423. const __m128i block_sign_shuffle_2_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2);
  7424. const __m128i block_sign_shuffle_2_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2 + 1);
  7425. static const uint8_t k_bit_helper[32] = {
  7426. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7427. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7428. };
  7429. const __m128i bit_helper_0 = _mm_loadu_si128((const __m128i*)k_bit_helper);
  7430. const __m128i bit_helper_1 = _mm_loadu_si128((const __m128i*)k_bit_helper + 1);
  7431. const __m128i m511 = _mm_set1_epi16(511);
  7432. const __m128i m4 = _mm_set1_epi8(0xf);
  7433. const __m128i m1 = _mm_set1_epi8(1);
  7434. uint64_t aux64;
  7435. // somewhat hacky, but gives a significant boost in performance
  7436. __m256i aux_gindex;
  7437. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7438. __m256 accumf = _mm256_setzero_ps();
  7439. for (int i = 0; i < nb; ++i) {
  7440. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7441. const uint16_t * restrict q2 = x[i].qs;
  7442. const int8_t * restrict q8 = y[i].qs;
  7443. memcpy(&aux64, x[i].scales, 8);
  7444. __m128i stmp = _mm_set1_epi64x(aux64);
  7445. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  7446. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  7447. __m128i sumi1_0 = _mm_setzero_si128();
  7448. __m128i sumi1_1 = _mm_setzero_si128();
  7449. __m128i sumi2_0 = _mm_setzero_si128();
  7450. __m128i sumi2_1 = _mm_setzero_si128();
  7451. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7452. const __m128i q2_data_0 = _mm_loadu_si128((const __m128i*)q2);
  7453. const __m128i q2_data_1 = _mm_loadu_si128((const __m128i*)q2 + 1); q2 += 16;
  7454. aux_gindex = MM256_SET_M128I(_mm_and_si128(q2_data_1, m511), _mm_and_si128(q2_data_0, m511));
  7455. const __m128i partial_sign_bits_0 = _mm_srli_epi16(q2_data_0, 9);
  7456. const __m128i partial_sign_bits_1 = _mm_srli_epi16(q2_data_1, 9);
  7457. const __m128i partial_sign_bits_upper_0 = _mm_srli_epi16(q2_data_0, 13);
  7458. const __m128i partial_sign_bits_upper_1 = _mm_srli_epi16(q2_data_1, 13);
  7459. const __m128i partial_sign_bits_for_counting_0 = _mm_xor_si128(partial_sign_bits_0, partial_sign_bits_upper_0);
  7460. const __m128i partial_sign_bits_for_counting_1 = _mm_xor_si128(partial_sign_bits_1, partial_sign_bits_upper_1);
  7461. const __m128i odd_bits_0 = _mm_shuffle_epi8(bit_helper_0, partial_sign_bits_for_counting_0);
  7462. const __m128i odd_bits_1 = _mm_shuffle_epi8(bit_helper_1, partial_sign_bits_for_counting_1);
  7463. const __m128i full_sign_bits_0 = _mm_or_si128(partial_sign_bits_0, odd_bits_0);
  7464. const __m128i full_sign_bits_1 = _mm_or_si128(partial_sign_bits_1, odd_bits_1);
  7465. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7466. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7467. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7468. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7469. const __m128i q8_3_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7470. const __m128i q8_3_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7471. const __m128i q8_4_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7472. const __m128i q8_4_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7473. const __m128i q2_1_0 = _mm_set_epi64x(iq2xs_grid[gindex[1]], iq2xs_grid[gindex[0]]);
  7474. const __m128i q2_1_1 = _mm_set_epi64x(iq2xs_grid[gindex[3]], iq2xs_grid[gindex[2]]);
  7475. const __m128i q2_2_0 = _mm_set_epi64x(iq2xs_grid[gindex[5]], iq2xs_grid[gindex[4]]);
  7476. const __m128i q2_2_1 = _mm_set_epi64x(iq2xs_grid[gindex[7]], iq2xs_grid[gindex[6]]);
  7477. const __m128i q2_3_0 = _mm_set_epi64x(iq2xs_grid[gindex[9]], iq2xs_grid[gindex[8]]);
  7478. const __m128i q2_3_1 = _mm_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]]);
  7479. const __m128i q2_4_0 = _mm_set_epi64x(iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7480. const __m128i q2_4_1 = _mm_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]]);
  7481. // AVX2 full_signs_1 is full_sign_bits_0 here
  7482. // AVX2 full_signs_2 is full_sign_bits_1 here
  7483. __m128i signs_0, signs_1;
  7484. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_0);
  7485. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_1);
  7486. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  7487. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  7488. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, _mm_or_si128(signs_0, mone));
  7489. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, _mm_or_si128(signs_1, mone));
  7490. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_0);
  7491. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_1);
  7492. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  7493. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  7494. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, _mm_or_si128(signs_0, mone));
  7495. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, _mm_or_si128(signs_1, mone));
  7496. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_0);
  7497. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_1);
  7498. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  7499. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  7500. const __m128i q8s_3_0 = _mm_sign_epi8(q8_3_0, _mm_or_si128(signs_0, mone));
  7501. const __m128i q8s_3_1 = _mm_sign_epi8(q8_3_1, _mm_or_si128(signs_1, mone));
  7502. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_0);
  7503. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_1);
  7504. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  7505. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  7506. const __m128i q8s_4_0 = _mm_sign_epi8(q8_4_0, _mm_or_si128(signs_0, mone));
  7507. const __m128i q8s_4_1 = _mm_sign_epi8(q8_4_1, _mm_or_si128(signs_1, mone));
  7508. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7509. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7510. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7511. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7512. const __m128i dot3_0 = _mm_maddubs_epi16(q2_3_0, q8s_3_0);
  7513. const __m128i dot3_1 = _mm_maddubs_epi16(q2_3_1, q8s_3_1);
  7514. const __m128i dot4_0 = _mm_maddubs_epi16(q2_4_0, q8s_4_0);
  7515. const __m128i dot4_1 = _mm_maddubs_epi16(q2_4_1, q8s_4_1);
  7516. __m128i sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0));
  7517. const __m128i sc1_0 = _mm_cvtepi8_epi16(sc_tmp);
  7518. const __m128i sc1_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  7519. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1));
  7520. const __m128i sc2_0 = _mm_cvtepi8_epi16(sc_tmp);
  7521. const __m128i sc2_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  7522. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2));
  7523. const __m128i sc3_0 = _mm_cvtepi8_epi16(sc_tmp);
  7524. const __m128i sc3_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  7525. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3));
  7526. const __m128i sc4_0 = _mm_cvtepi8_epi16(sc_tmp);
  7527. const __m128i sc4_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  7528. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot1_0, sc1_0));
  7529. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot1_1, sc1_1));
  7530. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot2_0, sc2_0));
  7531. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot2_1, sc2_1));
  7532. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot3_0, sc3_0));
  7533. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot3_1, sc3_1));
  7534. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot4_0, sc4_0));
  7535. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot4_1, sc4_1));
  7536. }
  7537. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7538. }
  7539. *s = 0.125f * hsum_float_8(accumf);
  7540. #elif defined(__loongarch_asx)
  7541. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  7542. static const char block_sign_shuffle_mask_1[32] = {
  7543. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7544. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7545. };
  7546. static const char block_sign_shuffle_mask_2[32] = {
  7547. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7548. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7549. };
  7550. static const uint8_t bit_selector_mask_bytes[32] = {
  7551. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7552. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7553. };
  7554. const __m256i bit_selector_mask = __lasx_xvld((const __m256i*)bit_selector_mask_bytes, 0);
  7555. const __m256i block_sign_shuffle_1 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_1, 0);
  7556. const __m256i block_sign_shuffle_2 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_2, 0);
  7557. static const uint8_t k_bit_helper[32] = {
  7558. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7559. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7560. };
  7561. const __m256i bit_helper = __lasx_xvld((const __m256i*)k_bit_helper, 0);
  7562. const __m256i m511 = __lasx_xvreplgr2vr_h(511);
  7563. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  7564. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  7565. uint64_t aux64;
  7566. // somewhat hacky, but gives a significant boost in performance
  7567. __m256i aux_gindex;
  7568. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7569. __m256 accumf = (__m256)__lasx_xvldi(0);
  7570. for (int i = 0; i < nb; ++i) {
  7571. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7572. const uint16_t * restrict q2 = x[i].qs;
  7573. const int8_t * restrict q8 = y[i].qs;
  7574. memcpy(&aux64, x[i].scales, 8);
  7575. __m128i stmp = __lsx_vreplgr2vr_d(aux64);
  7576. stmp = __lsx_vilvl_b( __lsx_vand_v(__lsx_vsrli_h(stmp, 4), m4), __lsx_vand_v(stmp, m4));
  7577. const __m128i scales = __lsx_vadd_b(__lsx_vslli_h(stmp, 1), m1);
  7578. __m256i sumi1 = __lasx_xvldi(0);
  7579. __m256i sumi2 = __lasx_xvldi(0);
  7580. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7581. const __m256i q2_data = __lasx_xvld((const __m256i*)q2, 0); q2 += 16;
  7582. aux_gindex = __lasx_xvand_v(q2_data, m511);
  7583. const __m256i partial_sign_bits = __lasx_xvsrli_h(q2_data, 9);
  7584. const __m256i partial_sign_bits_upper = __lasx_xvsrli_h(q2_data, 13);
  7585. const __m256i partial_sign_bits_for_counting = __lasx_xvxor_v(partial_sign_bits, partial_sign_bits_upper);
  7586. const __m256i odd_bits = lasx_shuffle_b(bit_helper, partial_sign_bits_for_counting);
  7587. const __m256i full_sign_bits = __lasx_xvor_v(partial_sign_bits, odd_bits);
  7588. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7589. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7590. const __m256i q8_3 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7591. const __m256i q8_4 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7592. const __m256i q2_1 = lasx_set_d(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7593. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7594. const __m256i q2_2 = lasx_set_d(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7595. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7596. const __m256i q2_3 = lasx_set_d(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7597. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7598. const __m256i q2_4 = lasx_set_d(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7599. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7600. const __m128i full_signs_l = lasx_extracti128(full_sign_bits, 0);
  7601. const __m128i full_signs_h = lasx_extracti128(full_sign_bits, 1);
  7602. const __m256i full_signs_1 = lasx_insertf128(full_signs_l, full_signs_l);
  7603. const __m256i full_signs_2 = lasx_insertf128(full_signs_h, full_signs_h);
  7604. __m256i signs;
  7605. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_1);
  7606. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7607. const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1);
  7608. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_2);
  7609. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7610. const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2);
  7611. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_1);
  7612. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7613. const __m256i q8s_3 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_3);
  7614. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_2);
  7615. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7616. const __m256i q8s_4 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_4);
  7617. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7618. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7619. const __m256i dot3 = lasx_maddubs_h(q2_3, q8s_3);
  7620. const __m256i dot4 = lasx_maddubs_h(q2_4, q8s_4);
  7621. const __m256i sc1 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+0)));
  7622. const __m256i sc2 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+1)));
  7623. const __m256i sc3 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+2)));
  7624. const __m256i sc4 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+3)));
  7625. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot1, sc1));
  7626. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot2, sc2));
  7627. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot3, sc3));
  7628. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot4, sc4));
  7629. }
  7630. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7631. }
  7632. *s = 0.125f * hsum_float_8(accumf);
  7633. #elif defined(__POWER9_VECTOR__)
  7634. const vector int v0 = vec_splats((int32_t)0);
  7635. vector float vsumf0 = vec_splats(0.0f);
  7636. vector float vsumf1 = vec_splats(0.0f);
  7637. vector float vsumf2 = vec_splats(0.0f);
  7638. vector float vsumf3 = vec_splats(0.0f);
  7639. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7640. for (int i = 0; i < nb; ++i) {
  7641. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7642. vector float vyd = vec_splats(y[i].d);
  7643. vector float vd = vec_mul(vxd, vyd);
  7644. vector signed int vsumi0 = v0;
  7645. vector signed int vsumi1 = v0;
  7646. vector signed int vsumi2 = v0;
  7647. vector signed int vsumi3 = v0;
  7648. const uint16_t * restrict q2 = x[i].qs;
  7649. const uint8_t * restrict sc = x[i].scales;
  7650. const int8_t * restrict q8 = y[i].qs;
  7651. for (int j = 0; j < QK_K/64; ++j) {
  7652. __builtin_prefetch(q2, 0, 1);
  7653. __builtin_prefetch(q8, 0, 1);
  7654. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xs_grid + (q2[0] & 511)), *(const int64_t *)(iq2xs_grid + (q2[1] & 511))};
  7655. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xs_grid + (q2[2] & 511)), *(const int64_t *)(iq2xs_grid + (q2[3] & 511))};
  7656. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xs_grid + (q2[4] & 511)), *(const int64_t *)(iq2xs_grid + (q2[5] & 511))};
  7657. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xs_grid + (q2[6] & 511)), *(const int64_t *)(iq2xs_grid + (q2[7] & 511))};
  7658. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((q2[0] >> 9))), *(const int64_t *)(signs64 + ((q2[1] >> 9)))};
  7659. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((q2[2] >> 9))), *(const int64_t *)(signs64 + ((q2[3] >> 9)))};
  7660. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((q2[4] >> 9))), *(const int64_t *)(signs64 + ((q2[5] >> 9)))};
  7661. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((q2[6] >> 9))), *(const int64_t *)(signs64 + ((q2[7] >> 9)))};
  7662. q2 += 8;
  7663. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  7664. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  7665. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  7666. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  7667. vector signed char q8y0 = vec_xl( 0, q8);
  7668. vector signed char q8y1 = vec_xl(16, q8);
  7669. vector signed char q8y2 = vec_xl(32, q8);
  7670. vector signed char q8y3 = vec_xl(48, q8);
  7671. q8 += 64;
  7672. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7673. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7674. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7675. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7676. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  7677. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  7678. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  7679. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  7680. sc += 2;
  7681. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  7682. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  7683. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  7684. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  7685. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  7686. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  7687. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  7688. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  7689. }
  7690. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7691. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7692. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7693. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7694. }
  7695. vsumf0 = vec_add(vsumf0, vsumf2);
  7696. vsumf1 = vec_add(vsumf1, vsumf3);
  7697. vsumf0 = vec_add(vsumf0, vsumf1);
  7698. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7699. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7700. *s = 0.125f * vec_extract(vsumf0, 0);
  7701. #else
  7702. float sumf = 0.f;
  7703. for (int i = 0; i < nb; ++i) {
  7704. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7705. const uint16_t * restrict q2 = x[i].qs;
  7706. const uint8_t * restrict sc = x[i].scales;
  7707. const int8_t * restrict q8 = y[i].qs;
  7708. int32_t bsum = 0;
  7709. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7710. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  7711. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  7712. int32_t sumi = 0;
  7713. for (int l = 0; l < 2; ++l) {
  7714. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7715. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7716. for (int j = 0; j < 8; ++j) {
  7717. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7718. }
  7719. q8 += 8;
  7720. }
  7721. bsum += sumi * ls1;
  7722. sumi = 0;
  7723. for (int l = 2; l < 4; ++l) {
  7724. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7725. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7726. for (int j = 0; j < 8; ++j) {
  7727. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7728. }
  7729. q8 += 8;
  7730. }
  7731. bsum += sumi * ls2;
  7732. q2 += 4;
  7733. }
  7734. sumf += d * bsum;
  7735. }
  7736. *s = 0.125f * sumf;
  7737. #endif
  7738. }
  7739. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7740. assert(n % QK_K == 0);
  7741. assert(nrc == 1);
  7742. UNUSED(nrc);
  7743. UNUSED(bx);
  7744. UNUSED(by);
  7745. UNUSED(bs);
  7746. const block_iq2_s * restrict x = vx;
  7747. const block_q8_K * restrict y = vy;
  7748. const int nb = n / QK_K;
  7749. #if defined(__ARM_NEON)
  7750. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7751. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7752. };
  7753. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7754. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  7755. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  7756. const uint8x16_t m1 = vdupq_n_u8(1);
  7757. const int32x4_t vzero = vdupq_n_s32(0);
  7758. uint8x16x2_t vs;
  7759. ggml_int8x16x4_t q2s;
  7760. ggml_int8x16x4_t q8b;
  7761. float sumf = 0;
  7762. for (int i = 0; i < nb; ++i) {
  7763. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7764. const uint8_t * restrict qs = x[i].qs;
  7765. const uint8_t * restrict qh = x[i].qh;
  7766. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7767. const int8_t * restrict q8 = y[i].qs;
  7768. int sumi1 = 0, sumi2 = 0;
  7769. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7770. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7771. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  7772. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  7773. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  7774. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  7775. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  7776. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  7777. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  7778. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  7779. qs += 8;
  7780. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  7781. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7782. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7783. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7784. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7785. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  7786. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  7787. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  7788. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7789. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7790. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7791. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7792. signs += 4;
  7793. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  7794. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  7795. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  7796. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  7797. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  7798. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  7799. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  7800. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  7801. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  7802. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  7803. }
  7804. sumf += d*(sumi1 + sumi2);
  7805. }
  7806. *s = 0.125f * sumf;
  7807. #elif defined(__AVX2__)
  7808. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7809. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7810. };
  7811. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7812. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7813. };
  7814. const __m128i m4 = _mm_set1_epi8(0xf);
  7815. const __m128i m1 = _mm_set1_epi8(1);
  7816. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  7817. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  7818. uint64_t aux64;
  7819. __m256 accumf = _mm256_setzero_ps();
  7820. for (int i = 0; i < nb; ++i) {
  7821. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7822. const uint8_t * restrict qs = x[i].qs;
  7823. const uint8_t * restrict qh = x[i].qh;
  7824. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7825. const int8_t * restrict q8 = y[i].qs;
  7826. memcpy(&aux64, x[i].scales, 8);
  7827. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  7828. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  7829. __m256i sumi1 = _mm256_setzero_si256();
  7830. __m256i sumi2 = _mm256_setzero_si256();
  7831. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7832. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7833. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7834. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  7835. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  7836. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  7837. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  7838. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  7839. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  7840. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  7841. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  7842. qs += 8;
  7843. __m256i aux256 = _mm256_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  7844. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7845. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  7846. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  7847. aux256 = _mm256_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  7848. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7849. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  7850. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  7851. signs += 4;
  7852. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  7853. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  7854. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  7855. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  7856. sumi1 = _mm256_add_epi32(sumi1, p1);
  7857. sumi2 = _mm256_add_epi32(sumi2, p2);
  7858. }
  7859. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7860. }
  7861. *s = 0.125f * hsum_float_8(accumf);
  7862. #elif defined(__AVX__)
  7863. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7864. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7865. };
  7866. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7867. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7868. };
  7869. const __m128i m4 = _mm_set1_epi8(0xf);
  7870. const __m128i m1 = _mm_set1_epi8(1);
  7871. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  7872. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  7873. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  7874. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  7875. uint64_t aux64;
  7876. __m256 accumf = _mm256_setzero_ps();
  7877. for (int i = 0; i < nb; ++i) {
  7878. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7879. const uint8_t * restrict qs = x[i].qs;
  7880. const uint8_t * restrict qh = x[i].qh;
  7881. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7882. const int8_t * restrict q8 = y[i].qs;
  7883. memcpy(&aux64, x[i].scales, 8);
  7884. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  7885. const __m128i scales16_0 = _mm_cvtepi8_epi16(scales8);
  7886. const __m128i scales16_1 = _mm_cvtepi8_epi16(_mm_srli_si128(scales8, 8));
  7887. __m128i sumi1_0 = _mm_setzero_si128();
  7888. __m128i sumi1_1 = _mm_setzero_si128();
  7889. __m128i sumi2_0 = _mm_setzero_si128();
  7890. __m128i sumi2_1 = _mm_setzero_si128();
  7891. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7892. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7893. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7894. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7895. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7896. const __m128i q2_1_0 = _mm_set_epi64x(iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  7897. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  7898. const __m128i q2_1_1 = _mm_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  7899. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)]);
  7900. const __m128i q2_2_0 = _mm_set_epi64x(iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  7901. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  7902. const __m128i q2_2_1 = _mm_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  7903. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)]);
  7904. qs += 8;
  7905. __m128i aux128_0 = _mm_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  7906. __m128i aux128_1 = aux128_0;
  7907. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  7908. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  7909. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  7910. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  7911. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  7912. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  7913. aux128_0 = _mm_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  7914. aux128_1 = aux128_0;
  7915. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  7916. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  7917. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  7918. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  7919. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  7920. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  7921. signs += 4;
  7922. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7923. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7924. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7925. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7926. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 0)));
  7927. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 1)));
  7928. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 0)));
  7929. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 1)));
  7930. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  7931. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  7932. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  7933. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  7934. }
  7935. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7936. }
  7937. *s = 0.125f * hsum_float_8(accumf);
  7938. #elif defined(__POWER9_VECTOR__)
  7939. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7940. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7941. };
  7942. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7943. const vector int v0 = vec_splats((int32_t)0);
  7944. vector float vsumf0 = vec_splats(0.0f);
  7945. vector float vsumf1 = vec_splats(0.0f);
  7946. vector float vsumf2 = vec_splats(0.0f);
  7947. vector float vsumf3 = vec_splats(0.0f);
  7948. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  7949. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  7950. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  7951. for (int i = 0; i < nb; ++i) {
  7952. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7953. vector float vyd = vec_splats(y[i].d);
  7954. vector float vd = vec_mul(vxd, vyd);
  7955. vector signed int vsumi0 = v0;
  7956. vector signed int vsumi1 = v0;
  7957. vector signed int vsumi2 = v0;
  7958. vector signed int vsumi3 = v0;
  7959. const uint8_t * restrict q2 = x[i].qs;
  7960. const uint8_t * restrict qh = x[i].qh;
  7961. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7962. const uint8_t * restrict sc = x[i].scales;
  7963. const int8_t * restrict q8 = y[i].qs;
  7964. for (int j = 0; j < QK_K/32; j += 2) {
  7965. __builtin_prefetch(q2, 0, 1);
  7966. __builtin_prefetch(q8, 0, 1);
  7967. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2s_grid + (q2[0] | ((qh[0] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[1] | ((qh[0] << 6) & 0x300)))};
  7968. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2s_grid + (q2[2] | ((qh[0] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[3] | ((qh[0] << 2) & 0x300)))};
  7969. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2s_grid + (q2[4] | ((qh[1] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[5] | ((qh[1] << 6) & 0x300)))};
  7970. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2s_grid + (q2[6] | ((qh[1] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[7] | ((qh[1] << 2) & 0x300)))};
  7971. q2 += 8;
  7972. qh += 2;
  7973. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  7974. vector signed char vsigns23 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  7975. signs += 4;
  7976. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  7977. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  7978. vector signed char vsigns2 = vec_perm(vsigns23, vsigns23, mask0);
  7979. vector signed char vsigns3 = vec_perm(vsigns23, vsigns23, mask1);
  7980. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  7981. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  7982. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  7983. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  7984. vector signed char q2x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux64x2_0), vsigns0);
  7985. vector signed char q2x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux64x2_1), vsigns1);
  7986. vector signed char q2x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux64x2_2), vsigns2);
  7987. vector signed char q2x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux64x2_3), vsigns3);
  7988. vector signed char q8y0 = vec_xl( 0, q8);
  7989. vector signed char q8y1 = vec_xl(16, q8);
  7990. vector signed char q8y2 = vec_xl(32, q8);
  7991. vector signed char q8y3 = vec_xl(48, q8);
  7992. q8 += 64;
  7993. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7994. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7995. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7996. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7997. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  7998. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  7999. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  8000. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  8001. sc += 2;
  8002. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  8003. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  8004. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  8005. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  8006. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  8007. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  8008. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  8009. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  8010. }
  8011. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8012. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8013. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8014. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8015. }
  8016. vsumf0 = vec_add(vsumf0, vsumf2);
  8017. vsumf1 = vec_add(vsumf1, vsumf3);
  8018. vsumf0 = vec_add(vsumf0, vsumf1);
  8019. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8020. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8021. *s = 0.125f * vec_extract(vsumf0, 0);
  8022. #elif defined(__loongarch_asx)
  8023. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8024. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8025. };
  8026. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8027. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8028. };
  8029. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  8030. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  8031. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  8032. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  8033. uint64_t aux64;
  8034. __m256 accumf = (__m256)__lasx_xvldi(0);
  8035. for (int i = 0; i < nb; ++i) {
  8036. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8037. const uint8_t * restrict qs = x[i].qs;
  8038. const uint8_t * restrict qh = x[i].qh;
  8039. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8040. const int8_t * restrict q8 = y[i].qs;
  8041. __m128i tmp1;
  8042. memcpy(&aux64, x[i].scales, 8);
  8043. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64, 0);
  8044. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64 >> 4, 1);
  8045. const __m128i scales8 = __lsx_vadd_b(__lsx_vslli_h(__lsx_vand_v(tmp1, m4), 1), m1);
  8046. const __m256i scales16 = lasx_ext8_16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  8047. __m256i sumi1 = __lasx_xvldi(0);
  8048. __m256i sumi2 = __lasx_xvldi(0);
  8049. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8050. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8051. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8052. const __m256i q2_1 = lasx_set_d(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  8053. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  8054. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  8055. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  8056. const __m256i q2_2 = lasx_set_d(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  8057. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  8058. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  8059. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  8060. qs += 8;
  8061. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | ((uint32_t) signs[1] << 16));
  8062. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8063. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  8064. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  8065. aux256 = __lasx_xvreplgr2vr_w(signs[2] | ((uint32_t) signs[3] << 16));
  8066. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8067. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  8068. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  8069. signs += 4;
  8070. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  8071. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  8072. const __m256i p1 = lasx_madd_h(dot1, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+0)));
  8073. const __m256i p2 = lasx_madd_h(dot2, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+1)));
  8074. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8075. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8076. }
  8077. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8078. }
  8079. *s = 0.125f * hsum_float_8(accumf);
  8080. #else
  8081. float sumf = 0;
  8082. for (int i = 0; i < nb; i++) {
  8083. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8084. const int8_t * q8 = y[i].qs;
  8085. const uint8_t * qs = x[i].qs;
  8086. const uint8_t * qh = x[i].qh;
  8087. const uint8_t * signs = qs + QK_K/8;
  8088. int bsum = 0;
  8089. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8090. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  8091. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  8092. int sumi1 = 0, sumi2 = 0;
  8093. for (int l = 0; l < 2; ++l) {
  8094. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  8095. for (int j = 0; j < 8; ++j) {
  8096. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  8097. }
  8098. q8 += 8;
  8099. }
  8100. for (int l = 2; l < 4; ++l) {
  8101. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  8102. for (int j = 0; j < 8; ++j) {
  8103. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  8104. }
  8105. q8 += 8;
  8106. }
  8107. bsum += ls1 * sumi1 + ls2 * sumi2;
  8108. qs += 4;
  8109. signs += 4;
  8110. }
  8111. sumf += d * bsum;
  8112. }
  8113. *s = 0.125f * sumf;
  8114. #endif
  8115. }
  8116. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8117. assert(n % QK_K == 0);
  8118. assert(nrc == 1);
  8119. UNUSED(nrc);
  8120. UNUSED(bx);
  8121. UNUSED(by);
  8122. UNUSED(bs);
  8123. const block_iq3_xxs * restrict x = vx;
  8124. const block_q8_K * restrict y = vy;
  8125. const int nb = n / QK_K;
  8126. #if defined(__ARM_NEON)
  8127. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8128. uint32_t aux32[2];
  8129. ggml_int8x16x4_t q3s;
  8130. ggml_int8x16x4_t q8b;
  8131. float sumf = 0;
  8132. for (int i = 0; i < nb; ++i) {
  8133. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8134. const uint8_t * restrict q3 = x[i].qs;
  8135. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8136. const int8_t * restrict q8 = y[i].qs;
  8137. float sumf1 = 0, sumf2 = 0;
  8138. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8139. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8140. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  8141. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  8142. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  8143. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  8144. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  8145. q3 += 16;
  8146. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  8147. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  8148. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  8149. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  8150. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  8151. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  8152. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  8153. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  8154. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  8155. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  8156. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  8157. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  8158. }
  8159. sumf += d*(sumf1 + sumf2);
  8160. }
  8161. *s = 0.5f * sumf;
  8162. #elif defined(__AVX2__)
  8163. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8164. uint32_t aux32[2];
  8165. __m256 accumf = _mm256_setzero_ps();
  8166. for (int i = 0; i < nb; ++i) {
  8167. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8168. const uint8_t * restrict q3 = x[i].qs;
  8169. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8170. const int8_t * restrict q8 = y[i].qs;
  8171. __m256i sumi1 = _mm256_setzero_si256();
  8172. __m256i sumi2 = _mm256_setzero_si256();
  8173. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8174. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8175. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8176. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8177. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8178. q3 += 8;
  8179. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8180. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8181. q3 += 8;
  8182. memcpy(aux32, gas, 8); gas += 8;
  8183. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  8184. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8185. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8186. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8187. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  8188. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  8189. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8190. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8191. const uint16_t ls1 = aux32[0] >> 28;
  8192. const uint16_t ls2 = aux32[1] >> 28;
  8193. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8194. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8195. sumi1 = _mm256_add_epi32(sumi1, p1);
  8196. sumi2 = _mm256_add_epi32(sumi2, p2);
  8197. }
  8198. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8199. }
  8200. *s = 0.25f * hsum_float_8(accumf);
  8201. #elif defined(__AVX__)
  8202. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8203. uint32_t aux32[2];
  8204. __m256 accumf = _mm256_setzero_ps();
  8205. for (int i = 0; i < nb; ++i) {
  8206. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8207. const uint8_t * restrict q3 = x[i].qs;
  8208. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8209. const int8_t * restrict q8 = y[i].qs;
  8210. __m128i sumi1_0 = _mm_setzero_si128();
  8211. __m128i sumi1_1 = _mm_setzero_si128();
  8212. __m128i sumi2_0 = _mm_setzero_si128();
  8213. __m128i sumi2_1 = _mm_setzero_si128();
  8214. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8215. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8216. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8217. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8218. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8219. const __m128i q2_1_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8220. const __m128i q2_1_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  8221. q3 += 8;
  8222. const __m128i q2_2_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8223. const __m128i q2_2_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  8224. q3 += 8;
  8225. memcpy(aux32, gas, 8); gas += 8;
  8226. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8227. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127]);
  8228. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8229. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  8230. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  8231. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  8232. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  8233. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  8234. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  8235. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  8236. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  8237. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  8238. const uint16_t ls1 = aux32[0] >> 28;
  8239. const uint16_t ls2 = aux32[1] >> 28;
  8240. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  8241. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  8242. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  8243. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  8244. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  8245. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  8246. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  8247. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  8248. }
  8249. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  8250. }
  8251. *s = 0.25f * hsum_float_8(accumf);
  8252. #elif defined(__POWER9_VECTOR__)
  8253. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8254. const vector int v0 = vec_splats((int32_t)0);
  8255. vector float vsumf0 = vec_splats(0.0f);
  8256. vector float vsumf1 = vec_splats(0.0f);
  8257. vector float vsumf2 = vec_splats(0.0f);
  8258. vector float vsumf3 = vec_splats(0.0f);
  8259. for (int i = 0; i < nb; ++i) {
  8260. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8261. vector float vyd = vec_splats(y[i].d);
  8262. vector float vd = vec_mul(vxd, vyd);
  8263. vector signed int vsumi0 = v0;
  8264. vector signed int vsumi1 = v0;
  8265. vector signed int vsumi2 = v0;
  8266. vector signed int vsumi3 = v0;
  8267. const uint8_t * restrict q3 = x[i].qs;
  8268. const uint32_t * restrict signs = (const uint32_t *)(x[i].qs + QK_K/4);
  8269. const int8_t * restrict q8 = y[i].qs;
  8270. #pragma GCC unroll 1
  8271. for (int j = 0; j < QK_K/32; j += 2) {
  8272. __builtin_prefetch(q3, 0, 1);
  8273. __builtin_prefetch(q8, 0, 1);
  8274. vector unsigned int aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
  8275. vector unsigned int aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
  8276. vector unsigned int aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
  8277. vector unsigned int aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
  8278. q3 += 16;
  8279. vector unsigned long long aux64x2_0 = {(uint64_t)(signs64[(signs[0] >> 0) & 127]), (uint64_t)(signs64[(signs[0] >> 7) & 127])};
  8280. vector unsigned long long aux64x2_1 = {(uint64_t)(signs64[(signs[0] >> 14) & 127]), (uint64_t)(signs64[(signs[0] >> 21) & 127])};
  8281. vector unsigned long long aux64x2_2 = {(uint64_t)(signs64[(signs[1] >> 0) & 127]), (uint64_t)(signs64[(signs[1] >> 7) & 127])};
  8282. vector unsigned long long aux64x2_3 = {(uint64_t)(signs64[(signs[1] >> 14) & 127]), (uint64_t)(signs64[(signs[1] >> 21) & 127])};
  8283. vector signed char q3x0 = vec_mul((vector signed char)aux64x2_0, (vector signed char)aux32x4_0);
  8284. vector signed char q3x1 = vec_mul((vector signed char)aux64x2_1, (vector signed char)aux32x4_1);
  8285. vector signed char q3x2 = vec_mul((vector signed char)aux64x2_2, (vector signed char)aux32x4_2);
  8286. vector signed char q3x3 = vec_mul((vector signed char)aux64x2_3, (vector signed char)aux32x4_3);
  8287. vector signed char q8y0 = vec_xl( 0, q8);
  8288. vector signed char q8y1 = vec_xl(16, q8);
  8289. vector signed char q8y2 = vec_xl(32, q8);
  8290. vector signed char q8y3 = vec_xl(48, q8);
  8291. q8 += 64;
  8292. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  8293. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  8294. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  8295. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  8296. const uint16_t ls0 = (uint16_t)(signs[0] >> 28);
  8297. const uint16_t ls1 = (uint16_t)(signs[1] >> 28);
  8298. signs += 2;
  8299. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8300. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  8301. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  8302. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  8303. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  8304. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  8305. }
  8306. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8307. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8308. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8309. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8310. }
  8311. vsumf0 = vec_add(vsumf0, vsumf2);
  8312. vsumf1 = vec_add(vsumf1, vsumf3);
  8313. vsumf0 = vec_add(vsumf0, vsumf1);
  8314. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8315. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8316. *s = 0.25f * vec_extract(vsumf0, 0);
  8317. #elif defined(__loongarch_asx)
  8318. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8319. uint32_t aux32[2];
  8320. __m256 accumf = (__m256)__lasx_xvldi(0);
  8321. for (int i = 0; i < nb; ++i) {
  8322. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8323. const uint8_t * restrict q3 = x[i].qs;
  8324. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8325. const int8_t * restrict q8 = y[i].qs;
  8326. __m256i sumi1 = __lasx_xvldi(0);
  8327. __m256i sumi2 = __lasx_xvldi(0);
  8328. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8329. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8330. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8331. const __m256i q2_1 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8332. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8333. q3 += 8;
  8334. const __m256i q2_2 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8335. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8336. q3 += 8;
  8337. memcpy(aux32, gas, 8); gas += 8;
  8338. const __m256i s2_1 = lasx_set_d(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  8339. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8340. const __m256i s2_2 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8341. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8342. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  8343. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  8344. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  8345. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  8346. const uint16_t ls1 = aux32[0] >> 28;
  8347. const uint16_t ls2 = aux32[1] >> 28;
  8348. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  8349. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  8350. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8351. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8352. }
  8353. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8354. }
  8355. *s = 0.25f * hsum_float_8(accumf);
  8356. #else
  8357. uint32_t aux32;
  8358. float sumf = 0.f;
  8359. for (int i = 0; i < nb; ++i) {
  8360. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8361. const uint8_t * restrict q3 = x[i].qs;
  8362. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8363. const int8_t * restrict q8 = y[i].qs;
  8364. int32_t bsum = 0;
  8365. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8366. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  8367. const uint32_t ls = 2*(aux32 >> 28) + 1;
  8368. int32_t sumi = 0;
  8369. for (int l = 0; l < 4; ++l) {
  8370. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  8371. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  8372. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  8373. for (int j = 0; j < 4; ++j) {
  8374. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  8375. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  8376. }
  8377. q8 += 8;
  8378. }
  8379. q3 += 8;
  8380. bsum += sumi * ls;
  8381. }
  8382. sumf += d * bsum;
  8383. }
  8384. *s = 0.25f * sumf;
  8385. #endif
  8386. }
  8387. void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8388. assert(n % QK_K == 0);
  8389. assert(nrc == 1);
  8390. UNUSED(nrc);
  8391. UNUSED(bx);
  8392. UNUSED(by);
  8393. UNUSED(bs);
  8394. const block_iq3_s * restrict x = vx;
  8395. const block_q8_K * restrict y = vy;
  8396. const int nb = n / QK_K;
  8397. #if defined(__ARM_NEON)
  8398. typedef union {
  8399. uint16x8_t vec_index;
  8400. uint16_t index[8];
  8401. } vec_index_t;
  8402. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8403. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8404. };
  8405. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8406. static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
  8407. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  8408. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  8409. const int16x8_t hshift = vld1q_s16(k_shift);
  8410. const uint16x8_t m256 = vdupq_n_u16(256);
  8411. const uint8x16_t m1 = vdupq_n_u8(1);
  8412. uint8x16x2_t vs;
  8413. ggml_int8x16x4_t q3s;
  8414. ggml_int8x16x4_t q8b;
  8415. vec_index_t idx;
  8416. uint32_t scales32[2];
  8417. const uint8_t * scales8 = (const uint8_t *)scales32;
  8418. float sumf = 0;
  8419. for (int i = 0; i < nb; ++i) {
  8420. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8421. const uint8_t * restrict qs = x[i].qs;
  8422. const uint8_t * restrict qh = x[i].qh;
  8423. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8424. const int8_t * restrict q8 = y[i].qs;
  8425. memcpy(scales32, x[i].scales, 4);
  8426. scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
  8427. scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
  8428. int sumi1 = 0, sumi2 = 0;
  8429. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8430. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8431. const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
  8432. idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
  8433. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  8434. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  8435. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  8436. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  8437. idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
  8438. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  8439. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  8440. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  8441. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  8442. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  8443. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8444. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8445. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  8446. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  8447. q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
  8448. q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
  8449. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  8450. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8451. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8452. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  8453. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  8454. signs += 4;
  8455. q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
  8456. q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
  8457. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  8458. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  8459. sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
  8460. sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
  8461. }
  8462. sumf += d*(sumi1 + sumi2);
  8463. }
  8464. *s = sumf;
  8465. #elif defined(__AVX2__)
  8466. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8467. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8468. };
  8469. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8470. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8471. };
  8472. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  8473. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  8474. const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
  8475. const __m256i idx_mask = _mm256_set1_epi32(256);
  8476. typedef union {
  8477. __m256i vec[2];
  8478. uint32_t index[16];
  8479. } index_t;
  8480. index_t idx;
  8481. __m256 accumf = _mm256_setzero_ps();
  8482. for (int i = 0; i < nb; ++i) {
  8483. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8484. const uint8_t * restrict qs = x[i].qs;
  8485. const uint8_t * restrict qh = x[i].qh;
  8486. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8487. const int8_t * restrict q8 = y[i].qs;
  8488. __m256i sumi1 = _mm256_setzero_si256();
  8489. __m256i sumi2 = _mm256_setzero_si256();
  8490. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8491. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8492. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8493. const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
  8494. idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
  8495. idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
  8496. idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
  8497. idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
  8498. idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
  8499. idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
  8500. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  8501. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  8502. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  8503. const __m256i q2_1 = _mm256_set_epi32(
  8504. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  8505. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  8506. );
  8507. const __m256i q2_2 = _mm256_set_epi32(
  8508. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  8509. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  8510. );
  8511. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  8512. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8513. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  8514. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  8515. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  8516. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8517. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  8518. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  8519. signs += 4;
  8520. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8521. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8522. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  8523. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  8524. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8525. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8526. sumi1 = _mm256_add_epi32(sumi1, p1);
  8527. sumi2 = _mm256_add_epi32(sumi2, p2);
  8528. }
  8529. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8530. }
  8531. *s = hsum_float_8(accumf);
  8532. #elif defined(__AVX__)
  8533. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8534. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8535. };
  8536. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8537. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8538. };
  8539. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  8540. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  8541. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  8542. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  8543. const __m128i idx_mul_0 = _mm_set_epi32(32, 64, 128, 256);
  8544. const __m128i idx_mul_1 = _mm_set_epi32(2, 4, 8, 16);
  8545. const __m128i idx_mask = _mm_set1_epi32(256);
  8546. typedef union {
  8547. __m128i vec[4];
  8548. uint32_t index[16];
  8549. } index_t;
  8550. index_t idx;
  8551. __m256 accumf = _mm256_setzero_ps();
  8552. for (int i = 0; i < nb; ++i) {
  8553. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8554. const uint8_t * restrict qs = x[i].qs;
  8555. const uint8_t * restrict qh = x[i].qh;
  8556. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8557. const int8_t * restrict q8 = y[i].qs;
  8558. __m128i sumi1_0 = _mm_setzero_si128();
  8559. __m128i sumi1_1 = _mm_setzero_si128();
  8560. __m128i sumi2_0 = _mm_setzero_si128();
  8561. __m128i sumi2_1 = _mm_setzero_si128();
  8562. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8563. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8564. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8565. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8566. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8567. const __m128i qs_tmp = _mm_loadu_si128((const __m128i *)qs);
  8568. const __m128i idx_l_0 = _mm_cvtepu8_epi16(qs_tmp);
  8569. const __m128i idx_l_1 = _mm_cvtepu8_epi16(_mm_srli_si128(qs_tmp, 8)); qs += 16;
  8570. idx.vec[0] = _mm_set1_epi32(qh[ib32+0]);
  8571. idx.vec[1] = idx.vec[0];
  8572. idx.vec[2] = _mm_set1_epi32(qh[ib32+1]);
  8573. idx.vec[3] = idx.vec[2];
  8574. idx.vec[0] = _mm_and_si128(_mm_mullo_epi32(idx.vec[0], idx_mul_0), idx_mask);
  8575. idx.vec[1] = _mm_and_si128(_mm_mullo_epi32(idx.vec[1], idx_mul_1), idx_mask);
  8576. idx.vec[2] = _mm_and_si128(_mm_mullo_epi32(idx.vec[2], idx_mul_0), idx_mask);
  8577. idx.vec[3] = _mm_and_si128(_mm_mullo_epi32(idx.vec[3], idx_mul_1), idx_mask);
  8578. idx.vec[0] = _mm_or_si128(idx.vec[0], _mm_cvtepi16_epi32(idx_l_0));
  8579. idx.vec[1] = _mm_or_si128(idx.vec[1], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_0, 8)));
  8580. idx.vec[2] = _mm_or_si128(idx.vec[2], _mm_cvtepi16_epi32(idx_l_1));
  8581. idx.vec[3] = _mm_or_si128(idx.vec[3], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_1, 8)));
  8582. const __m128i q2_1_0 = _mm_set_epi32(iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]);
  8583. const __m128i q2_1_1 = _mm_set_epi32(iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]]);
  8584. const __m128i q2_2_0 = _mm_set_epi32(iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[9]], iq3s_grid[idx.index[8]]);
  8585. const __m128i q2_2_1 = _mm_set_epi32(iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]]);
  8586. __m128i aux128_0 = _mm_set1_epi32(signs[0] | (signs[1] << 16));
  8587. __m128i aux128_1 = aux128_0;
  8588. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  8589. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  8590. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  8591. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  8592. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  8593. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  8594. aux128_0 = _mm_set1_epi32(signs[2] | (signs[3] << 16));
  8595. aux128_1 = aux128_0;
  8596. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  8597. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  8598. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  8599. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  8600. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  8601. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  8602. signs += 4;
  8603. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  8604. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  8605. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  8606. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  8607. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  8608. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  8609. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  8610. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  8611. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  8612. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  8613. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  8614. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  8615. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  8616. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  8617. }
  8618. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  8619. }
  8620. *s = hsum_float_8(accumf);
  8621. #elif defined(__POWER9_VECTOR__)
  8622. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8623. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8624. };
  8625. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8626. const vector int v0 = vec_splats((int32_t)0);
  8627. vector float vsumf0 = vec_splats(0.0f);
  8628. vector float vsumf1 = vec_splats(0.0f);
  8629. vector float vsumf2 = vec_splats(0.0f);
  8630. vector float vsumf3 = vec_splats(0.0f);
  8631. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  8632. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  8633. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  8634. for (int i = 0; i < nb; ++i) {
  8635. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8636. vector float vyd = vec_splats(y[i].d);
  8637. vector float vd = vec_mul(vxd, vyd);
  8638. const uint8_t * restrict q3 = x[i].qs;
  8639. const uint8_t * restrict qh = x[i].qh;
  8640. const uint16_t * restrict signs = (const uint16_t *)(x[i].signs);
  8641. const uint8_t * restrict sc = x[i].scales;
  8642. const int8_t * restrict q8 = y[i].qs;
  8643. vector signed int vsumi0 = v0;
  8644. vector signed int vsumi1 = v0;
  8645. vector signed int vsumi2 = v0;
  8646. vector signed int vsumi3 = v0;
  8647. for (int j = 0; j < QK_K/32; j += 2) {
  8648. __builtin_prefetch(q3, 0, 1);
  8649. __builtin_prefetch(q8, 0, 1);
  8650. vector unsigned int aux32x4_0 = {iq3s_grid[q3[ 0] | ((qh[0] << 8) & 256)], iq3s_grid[q3[ 1] | ((qh[0] << 7) & 256)],
  8651. iq3s_grid[q3[ 2] | ((qh[0] << 6) & 256)], iq3s_grid[q3[ 3] | ((qh[0] << 5) & 256)]};
  8652. vector unsigned int aux32x4_1 = {iq3s_grid[q3[ 4] | ((qh[0] << 4) & 256)], iq3s_grid[q3[ 5] | ((qh[0] << 3) & 256)],
  8653. iq3s_grid[q3[ 6] | ((qh[0] << 2) & 256)], iq3s_grid[q3[ 7] | ((qh[0] << 1) & 256)]};
  8654. vector unsigned int aux32x4_2 = {iq3s_grid[q3[ 8] | ((qh[1] << 8) & 256)], iq3s_grid[q3[ 9] | ((qh[1] << 7) & 256)],
  8655. iq3s_grid[q3[10] | ((qh[1] << 6) & 256)], iq3s_grid[q3[11] | ((qh[1] << 5) & 256)]};
  8656. vector unsigned int aux32x4_3 = {iq3s_grid[q3[12] | ((qh[1] << 4) & 256)], iq3s_grid[q3[13] | ((qh[1] << 3) & 256)],
  8657. iq3s_grid[q3[14] | ((qh[1] << 2) & 256)], iq3s_grid[q3[15] | ((qh[1] << 1) & 256)]};
  8658. q3 += 16;
  8659. qh += 2;
  8660. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  8661. vector signed char vsigns02 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  8662. signs += 4;
  8663. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  8664. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  8665. vector signed char vsigns2 = vec_perm(vsigns02, vsigns02, mask0);
  8666. vector signed char vsigns3 = vec_perm(vsigns02, vsigns02, mask1);
  8667. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  8668. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  8669. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  8670. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  8671. vector signed char q3x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux32x4_0), vsigns0);
  8672. vector signed char q3x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux32x4_1), vsigns1);
  8673. vector signed char q3x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux32x4_2), vsigns2);
  8674. vector signed char q3x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux32x4_3), vsigns3);
  8675. vector signed char q8y0 = vec_xl( 0, q8);
  8676. vector signed char q8y1 = vec_xl(16, q8);
  8677. vector signed char q8y2 = vec_xl(32, q8);
  8678. vector signed char q8y3 = vec_xl(48, q8);
  8679. q8 += 64;
  8680. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  8681. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  8682. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  8683. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  8684. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  8685. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  8686. sc ++;
  8687. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8688. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  8689. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  8690. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  8691. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  8692. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  8693. }
  8694. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8695. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8696. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8697. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8698. }
  8699. vsumf0 = vec_add(vsumf0, vsumf2);
  8700. vsumf1 = vec_add(vsumf1, vsumf3);
  8701. vsumf0 = vec_add(vsumf0, vsumf1);
  8702. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8703. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8704. *s = vec_extract(vsumf0, 0);
  8705. #elif defined(__loongarch_asx)
  8706. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8707. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8708. };
  8709. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8710. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8711. };
  8712. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  8713. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  8714. __m256i idx_shift = lasx_set_w(1, 2, 3, 4, 5, 6, 7, 8);
  8715. const __m256i idx_mask = __lasx_xvreplgr2vr_w(256);
  8716. typedef union {
  8717. __m256i vec[2];
  8718. uint32_t index[16];
  8719. } index_t;
  8720. index_t idx;
  8721. __m256 accumf = (__m256)__lasx_xvldi(0);
  8722. for (int i = 0; i < nb; ++i) {
  8723. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8724. const uint8_t * restrict qs = x[i].qs;
  8725. const uint8_t * restrict qh = x[i].qh;
  8726. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8727. const int8_t * restrict q8 = y[i].qs;
  8728. __m256i sumi1 = __lasx_xvldi(0);
  8729. __m256i sumi2 = __lasx_xvldi(0);
  8730. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8731. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8732. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8733. const __m256i idx_l = lasx_extu8_16(__lsx_vld(qs, 0)); qs += 16;
  8734. idx.vec[0] = __lasx_xvreplgr2vr_w(qh[ib32+0]);
  8735. idx.vec[1] = __lasx_xvreplgr2vr_w(qh[ib32+1]);
  8736. idx.vec[0] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[0], idx_shift), idx_mask);
  8737. idx.vec[1] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[1], idx_shift), idx_mask);
  8738. idx.vec[0] = __lasx_xvor_v(idx.vec[0], lasx_ext16_32(lasx_extracti128(idx_l, 0)));
  8739. idx.vec[1] = __lasx_xvor_v(idx.vec[1], lasx_ext16_32(lasx_extracti128(idx_l, 1)));
  8740. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  8741. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  8742. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  8743. const __m256i q2_1 = lasx_set_w(
  8744. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  8745. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  8746. );
  8747. const __m256i q2_2 = lasx_set_w(
  8748. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  8749. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  8750. );
  8751. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | (signs[1] << 16));
  8752. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8753. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  8754. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  8755. aux256 = __lasx_xvreplgr2vr_w(signs[2] | (signs[3] << 16));
  8756. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8757. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  8758. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  8759. signs += 4;
  8760. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  8761. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  8762. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  8763. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  8764. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  8765. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  8766. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8767. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8768. }
  8769. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8770. }
  8771. *s = hsum_float_8(accumf);
  8772. #else
  8773. float sumf = 0.f;
  8774. for (int i = 0; i < nb; ++i) {
  8775. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8776. const uint8_t * restrict qs = x[i].qs;
  8777. const uint8_t * restrict qh = x[i].qh;
  8778. const uint8_t * restrict signs = x[i].signs;
  8779. const int8_t * restrict q8 = y[i].qs;
  8780. int32_t bsum = 0;
  8781. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8782. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  8783. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  8784. int32_t sumi = 0;
  8785. for (int l = 0; l < 4; ++l) {
  8786. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  8787. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  8788. for (int j = 0; j < 4; ++j) {
  8789. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  8790. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  8791. }
  8792. q8 += 8;
  8793. }
  8794. qs += 8;
  8795. signs += 4;
  8796. bsum += sumi * ls1;
  8797. sumi = 0;
  8798. for (int l = 0; l < 4; ++l) {
  8799. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  8800. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  8801. for (int j = 0; j < 4; ++j) {
  8802. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  8803. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  8804. }
  8805. q8 += 8;
  8806. }
  8807. qs += 8;
  8808. signs += 4;
  8809. bsum += sumi * ls2;
  8810. }
  8811. sumf += d * bsum;
  8812. }
  8813. *s = sumf;
  8814. #endif
  8815. }
  8816. #if defined(__AVX__)
  8817. static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) {
  8818. const __m128i ax = _mm_sign_epi8(x, x);
  8819. const __m128i sy = _mm_sign_epi8(y, x);
  8820. return _mm_maddubs_epi16(ax, sy);
  8821. }
  8822. #endif
  8823. #if defined(__AVX2__)
  8824. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  8825. const __m256i ax = _mm256_sign_epi8(x, x);
  8826. const __m256i sy = _mm256_sign_epi8(y, x);
  8827. return _mm256_maddubs_epi16(ax, sy);
  8828. }
  8829. #elif defined(__loongarch_asx)
  8830. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  8831. const __m256i ax = __lasx_xvsigncov_b(x, x);
  8832. const __m256i sy = __lasx_xvsigncov_b(x, y);
  8833. __m256i tmp1, tmp2, tmp3;
  8834. tmp1 = __lasx_xvmulwev_h_bu_b(ax, sy);
  8835. tmp2 = __lasx_xvmulwod_h_bu_b(ax, sy);
  8836. tmp3 = __lasx_xvadd_h(tmp1, tmp2);
  8837. return __lasx_xvsat_h(tmp3, 15);
  8838. }
  8839. #endif
  8840. void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8841. assert(n % QK_K == 0);
  8842. assert(nrc == 1);
  8843. UNUSED(nrc);
  8844. UNUSED(bx);
  8845. UNUSED(by);
  8846. UNUSED(bs);
  8847. const block_iq1_s * restrict x = vx;
  8848. const block_q8_K * restrict y = vy;
  8849. const int nb = n / QK_K;
  8850. #if defined __ARM_NEON
  8851. ggml_int8x16x4_t q1b;
  8852. ggml_int8x16x4_t q8b;
  8853. float sumf = 0;
  8854. for (int i = 0; i < nb; ++i) {
  8855. const int8_t * q8 = y[i].qs;
  8856. const uint8_t * qs = x[i].qs;
  8857. const uint16_t * qh = x[i].qh;
  8858. int sumi1 = 0, sumi2 = 0, sumi3 = 0;
  8859. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8860. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))),
  8861. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700)))));
  8862. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))),
  8863. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700)))));
  8864. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))),
  8865. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700)))));
  8866. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))),
  8867. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700)))));
  8868. qs += 8;
  8869. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8870. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]);
  8871. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]);
  8872. const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  8873. const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  8874. sumi1 += vaddvq_s32(p1) * ls1;
  8875. sumi2 += vaddvq_s32(p2) * ls2;
  8876. sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1)
  8877. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1);
  8878. }
  8879. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
  8880. }
  8881. *s = sumf;
  8882. #elif defined __AVX2__
  8883. __m256 accum = _mm256_setzero_ps();
  8884. float accum1 = 0;
  8885. for (int i = 0; i < nb; ++i) {
  8886. const int8_t * q8 = y[i].qs;
  8887. const uint8_t * qs = x[i].qs;
  8888. const uint16_t * qh = x[i].qh;
  8889. __m256i sumi = _mm256_setzero_si256();
  8890. int sumi1 = 0;
  8891. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8892. const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)],
  8893. iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  8894. const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)],
  8895. iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  8896. qs += 8;
  8897. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8898. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8899. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  8900. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  8901. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  8902. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  8903. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1));
  8904. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2));
  8905. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2));
  8906. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  8907. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  8908. }
  8909. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8910. accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum);
  8911. accum1 += d * sumi1;
  8912. }
  8913. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  8914. #elif defined __AVX__
  8915. __m256 accum = _mm256_setzero_ps();
  8916. float accum1 = 0;
  8917. for (int i = 0; i < nb; ++i) {
  8918. const int8_t * q8 = y[i].qs;
  8919. const uint8_t * qs = x[i].qs;
  8920. const uint16_t * qh = x[i].qh;
  8921. __m128i sumi1_0 = _mm_setzero_si128();
  8922. __m128i sumi1_1 = _mm_setzero_si128();
  8923. int sumi1 = 0;
  8924. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8925. const __m128i q1b_1_0 = _mm_set_epi64x(iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  8926. const __m128i q1b_1_1 = _mm_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)]);
  8927. const __m128i q1b_2_0 = _mm_set_epi64x(iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  8928. const __m128i q1b_2_1 = _mm_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)]);
  8929. qs += 8;
  8930. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8931. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8932. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8933. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8934. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  8935. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  8936. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  8937. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  8938. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  8939. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  8940. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(ls1));
  8941. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(ls1));
  8942. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(ls2));
  8943. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(ls2));
  8944. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  8945. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  8946. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  8947. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  8948. }
  8949. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8950. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum);
  8951. accum1 += d * sumi1;
  8952. }
  8953. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  8954. #elif defined(__POWER9_VECTOR__)
  8955. const vector unsigned char v0 = vec_splats((unsigned char)0x0);
  8956. const vector unsigned short vsign = vec_splats((unsigned short)0x8000);
  8957. vector float vsumf0 = vec_splats(0.0f);
  8958. vector float vsumf1 = vec_splats(0.0f);
  8959. vector float vsumf2 = vec_splats(0.0f);
  8960. vector float vsumf3 = vec_splats(0.0f);
  8961. for (int i = 0; i < nb; ++i) {
  8962. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8963. vector float vyd = vec_splats(y[i].d);
  8964. vector float vd = vec_mul(vxd, vyd);
  8965. vector signed int vsumi0 = vec_splats((int32_t)0);
  8966. vector signed int vsumi1 = vec_splats((int32_t)0);
  8967. vector signed int vsumi2 = vec_splats((int32_t)0);
  8968. vector signed int vsumi3 = vec_splats((int32_t)0);
  8969. vector signed int vsumi8 = vec_splats((int32_t)0);
  8970. const uint8_t * restrict q1 = x[i].qs;
  8971. const uint16_t * restrict qh = x[i].qh;
  8972. const int8_t * restrict q8 = y[i].qs;
  8973. const int16_t * restrict qs = y[i].bsums;
  8974. for (int j = 0; j < QK_K/32; j += 2) {
  8975. __builtin_prefetch(q1, 0, 1);
  8976. __builtin_prefetch(qh, 0, 1);
  8977. __builtin_prefetch(q8, 0, 1);
  8978. vector signed long long aux64x2_0 = {*(const int64_t *)(iq1s_grid + (q1[0] | ((qh[0] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[1] | ((qh[0] << 5) & 0x700)))};
  8979. vector signed long long aux64x2_1 = {*(const int64_t *)(iq1s_grid + (q1[2] | ((qh[0] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[3] | ((qh[0] >> 1) & 0x700)))};
  8980. vector signed long long aux64x2_2 = {*(const int64_t *)(iq1s_grid + (q1[4] | ((qh[1] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[5] | ((qh[1] << 5) & 0x700)))};
  8981. vector signed long long aux64x2_3 = {*(const int64_t *)(iq1s_grid + (q1[6] | ((qh[1] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[7] | ((qh[1] >> 1) & 0x700)))};
  8982. q1 += 8;
  8983. vector signed char q1x0 = (vector signed char)aux64x2_0;
  8984. vector signed char q1x1 = (vector signed char)aux64x2_1;
  8985. vector signed char q1x2 = (vector signed char)aux64x2_2;
  8986. vector signed char q1x3 = (vector signed char)aux64x2_3;
  8987. vector signed char q8y0 = vec_xl( 0, q8);
  8988. vector signed char q8y1 = vec_xl(16, q8);
  8989. vector signed char q8y2 = vec_xl(32, q8);
  8990. vector signed char q8y3 = vec_xl(48, q8);
  8991. q8 += 64;
  8992. vector signed short qv0 = vec_add(vec_mule(q1x0, q8y0), vec_mulo(q1x0, q8y0));
  8993. vector signed short qv1 = vec_add(vec_mule(q1x1, q8y1), vec_mulo(q1x1, q8y1));
  8994. vector signed short qv2 = vec_add(vec_mule(q1x2, q8y2), vec_mulo(q1x2, q8y2));
  8995. vector signed short qv3 = vec_add(vec_mule(q1x3, q8y3), vec_mulo(q1x3, q8y3));
  8996. const uint16_t ls0 = (uint16_t)((qh[0] >> 12) & 7);
  8997. const uint16_t ls1 = (uint16_t)((qh[1] >> 12) & 7);
  8998. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8999. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  9000. vector signed short vscales = vec_sld(vscales23, vscales01, 8);
  9001. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  9002. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  9003. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  9004. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  9005. vector signed short q8ysums = vec_xl_len(qs, 8);
  9006. qs += 4;
  9007. q8ysums = vec_mergeh(q8ysums, (vector signed short)v0);
  9008. vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8);
  9009. qh += 2;
  9010. vector __bool short vsel = vec_cmpge(qxh, (vector signed short)v0);
  9011. vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel);
  9012. vsumi8 = vec_add(vec_mule(q8ysum, vscales), vsumi8);
  9013. }
  9014. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9015. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9016. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9017. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9018. vsumf0 = vec_madd(vec_ctf(vsumi8, 0), vec_mul(vd, vec_splats(IQ1S_DELTA)), vsumf0);
  9019. }
  9020. vsumf0 = vec_add(vsumf0, vsumf2);
  9021. vsumf1 = vec_add(vsumf1, vsumf3);
  9022. vsumf0 = vec_add(vsumf0, vsumf1);
  9023. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9024. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9025. *s = vec_extract(vsumf0, 0);
  9026. #elif defined(__loongarch_asx)
  9027. __m256 accum = (__m256)__lasx_xvldi(0);
  9028. float accum1 = 0;
  9029. for (int i = 0; i < nb; ++i) {
  9030. const int8_t * q8 = y[i].qs;
  9031. const uint8_t * qs = x[i].qs;
  9032. const uint16_t * qh = x[i].qh;
  9033. __m256i sumi = __lasx_xvldi(0);
  9034. int sumi1 = 0;
  9035. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9036. __m256i q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)], 0);
  9037. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], 1);
  9038. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], 2);
  9039. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], 3);
  9040. __m256i q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)], 0);
  9041. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], 1);
  9042. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], 2);
  9043. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], 3);
  9044. qs += 8;
  9045. const __m256i q8b_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  9046. const __m256i q8b_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  9047. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  9048. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  9049. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  9050. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  9051. __m256i tmp1, tmp5, tmp6;
  9052. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  9053. tmp5 = __lasx_xvmulwev_w_h(dot1, tmp1);
  9054. tmp6 = __lasx_xvmulwod_w_h(dot1, tmp1);
  9055. const __m256i p1 = __lasx_xvadd_w(tmp5, tmp6);
  9056. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  9057. tmp5 = __lasx_xvmulwev_w_h(dot2, tmp1);
  9058. tmp6 = __lasx_xvmulwod_w_h(dot2, tmp1);
  9059. const __m256i p2 = __lasx_xvadd_w(tmp5, tmp6);
  9060. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p1, p2));
  9061. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  9062. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  9063. }
  9064. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  9065. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), accum);
  9066. accum1 += d * sumi1;
  9067. }
  9068. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  9069. #else
  9070. float sumf = 0;
  9071. for (int i = 0; i < nb; i++) {
  9072. const int8_t * q8 = y[i].qs;
  9073. const uint8_t * qs = x[i].qs;
  9074. const uint16_t * qh = x[i].qh;
  9075. int sumi = 0, sumi1 = 0;
  9076. for (int ib = 0; ib < QK_K/32; ++ib) {
  9077. const int ls = 2*((qh[ib] >> 12) & 7) + 1;
  9078. const int delta = qh[ib] & 0x8000 ? -1 : 1;
  9079. int lsum = 0;
  9080. for (int l = 0; l < 4; ++l) {
  9081. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  9082. for (int j = 0; j < 8; ++j) {
  9083. lsum += q8[j] * grid[j];
  9084. }
  9085. q8 += 8;
  9086. }
  9087. sumi += ls * lsum;
  9088. sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
  9089. qs += 4;
  9090. }
  9091. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
  9092. }
  9093. *s = sumf;
  9094. #endif
  9095. }
  9096. void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9097. assert(n % QK_K == 0);
  9098. assert(nrc == 1);
  9099. UNUSED(nrc);
  9100. UNUSED(bx);
  9101. UNUSED(by);
  9102. UNUSED(bs);
  9103. const block_iq1_m * restrict x = vx;
  9104. const block_q8_K * restrict y = vy;
  9105. const int nb = n / QK_K;
  9106. iq1m_scale_t scale;
  9107. #if defined __ARM_NEON
  9108. const int32x4_t mask = vdupq_n_s32(0x7);
  9109. const int32x4_t mone = vdupq_n_s32(1);
  9110. const int32x4_t mzero = vdupq_n_s32(0);
  9111. ggml_int8x16x4_t deltas;
  9112. deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
  9113. deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
  9114. deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
  9115. deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
  9116. ggml_int8x16x4_t q1b;
  9117. ggml_int8x16x4_t q8b;
  9118. uint32_t aux32;
  9119. const uint8_t * aux8 = (const uint8_t *)&aux32;
  9120. float sumf = 0;
  9121. for (int i = 0; i < nb; ++i) {
  9122. const int8_t * q8 = y[i].qs;
  9123. const uint8_t * qs = x[i].qs;
  9124. const uint8_t * qh = x[i].qh;
  9125. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9126. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9127. int32x4_t sumi1 = mzero;
  9128. int32x4_t sumi2 = mzero;
  9129. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9130. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
  9131. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
  9132. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
  9133. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
  9134. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
  9135. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
  9136. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
  9137. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
  9138. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9139. const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
  9140. const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
  9141. const int32x4_t p12 = vpaddq_s32(p1, p2);
  9142. const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
  9143. aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
  9144. const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
  9145. const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
  9146. const int32x4_t p34 = vpaddq_s32(p3, p4);
  9147. int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
  9148. scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
  9149. sumi1 = vmlaq_s32(sumi1, scales_4, p12);
  9150. sumi2 = vmlaq_s32(sumi2, scales_4, p34);
  9151. qs += 8; qh += 4;
  9152. }
  9153. sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  9154. }
  9155. *s = sumf;
  9156. #elif defined __AVX2__
  9157. const __m256i mask = _mm256_set1_epi16(0x7);
  9158. const __m256i mone = _mm256_set1_epi16(1);
  9159. __m256 accum1 = _mm256_setzero_ps();
  9160. __m256 accum2 = _mm256_setzero_ps();
  9161. for (int i = 0; i < nb; ++i) {
  9162. const int8_t * q8 = y[i].qs;
  9163. const uint8_t * qs = x[i].qs;
  9164. const uint8_t * qh = x[i].qh;
  9165. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9166. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9167. __m256i sumi1 = _mm256_setzero_si256();
  9168. __m256i sumi2 = _mm256_setzero_si256();
  9169. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9170. const __m256i q1b_1 = _mm256_set_epi64x(
  9171. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
  9172. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
  9173. );
  9174. const __m256i q1b_2 = _mm256_set_epi64x(
  9175. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
  9176. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
  9177. );
  9178. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9179. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9180. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  9181. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  9182. const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9183. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  9184. qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9185. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9186. const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9187. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  9188. qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9189. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9190. const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
  9191. const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
  9192. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
  9193. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
  9194. scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
  9195. scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
  9196. const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
  9197. const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
  9198. const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
  9199. const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
  9200. sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
  9201. sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
  9202. qs += 8; qh += 4;
  9203. }
  9204. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  9205. accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
  9206. accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
  9207. }
  9208. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  9209. #elif defined __AVX__
  9210. const __m128i mask = _mm_set1_epi16(0x7);
  9211. const __m128i mone = _mm_set1_epi16(1);
  9212. __m256 accum1 = _mm256_setzero_ps();
  9213. __m256 accum2 = _mm256_setzero_ps();
  9214. for (int i = 0; i < nb; ++i) {
  9215. const int8_t * q8 = y[i].qs;
  9216. const uint8_t * qs = x[i].qs;
  9217. const uint8_t * qh = x[i].qh;
  9218. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9219. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9220. __m128i sumi1_0 = _mm_setzero_si128();
  9221. __m128i sumi1_1 = _mm_setzero_si128();
  9222. __m128i sumi2_0 = _mm_setzero_si128();
  9223. __m128i sumi2_1 = _mm_setzero_si128();
  9224. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9225. const __m128i q1b_1_0 = _mm_set_epi64x(
  9226. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]);
  9227. const __m128i q1b_1_1 = _mm_set_epi64x(
  9228. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)]);
  9229. const __m128i q1b_2_0 = _mm_set_epi64x(
  9230. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]);
  9231. const __m128i q1b_2_1 = _mm_set_epi64x(
  9232. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)]);
  9233. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9234. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9235. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9236. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9237. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  9238. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  9239. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  9240. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  9241. const __m128i delta1_0 = _mm_set_epi64x(qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9242. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9243. const __m128i delta1_1 = _mm_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9244. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9245. const __m128i delta2_0 = _mm_set_epi64x(qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9246. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9247. const __m128i delta2_1 = _mm_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9248. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9249. const __m128i dot3_0 = mul_add_epi8_sse(delta1_0, q8b_1_0);
  9250. const __m128i dot3_1 = mul_add_epi8_sse(delta1_1, q8b_1_1);
  9251. const __m128i dot4_0 = mul_add_epi8_sse(delta2_0, q8b_2_0);
  9252. const __m128i dot4_1 = mul_add_epi8_sse(delta2_1, q8b_2_1);
  9253. __m128i scale1_0 = _mm_set1_epi16(sc[ib/2] >> 0);
  9254. __m128i scale1_1 = _mm_set1_epi16(sc[ib/2] >> 3);
  9255. __m128i scale2_0 = _mm_set1_epi16(sc[ib/2] >> 6);
  9256. __m128i scale2_1 = _mm_set1_epi16(sc[ib/2] >> 9);
  9257. scale1_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_0, mask), 1), mone);
  9258. scale1_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_1, mask), 1), mone);
  9259. scale2_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_0, mask), 1), mone);
  9260. scale2_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_1, mask), 1), mone);
  9261. const __m128i p1_0 = _mm_madd_epi16(dot1_0, scale1_0);
  9262. const __m128i p1_1 = _mm_madd_epi16(dot1_1, scale1_1);
  9263. const __m128i p2_0 = _mm_madd_epi16(dot2_0, scale2_0);
  9264. const __m128i p2_1 = _mm_madd_epi16(dot2_1, scale2_1);
  9265. const __m128i p3_0 = _mm_madd_epi16(dot3_0, scale1_0);
  9266. const __m128i p3_1 = _mm_madd_epi16(dot3_1, scale1_1);
  9267. const __m128i p4_0 = _mm_madd_epi16(dot4_0, scale2_0);
  9268. const __m128i p4_1 = _mm_madd_epi16(dot4_1, scale2_1);
  9269. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  9270. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  9271. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_add_epi32(p3_0, p4_0));
  9272. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_add_epi32(p3_1, p4_1));
  9273. qs += 8; qh += 4;
  9274. }
  9275. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  9276. accum1 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum1);
  9277. accum2 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi2_1, sumi2_0))), accum2);
  9278. }
  9279. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  9280. #else
  9281. int sum1[2], sum2[2], delta[4];
  9282. float sumf = 0;
  9283. for (int i = 0; i < nb; i++) {
  9284. const int8_t * q8 = y[i].qs;
  9285. const uint8_t * qs = x[i].qs;
  9286. const uint8_t * qh = x[i].qh;
  9287. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9288. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9289. int sumi1 = 0, sumi2 = 0;
  9290. for (int ib = 0; ib < QK_K/32; ++ib) {
  9291. delta[0] = qh[0] & 0x08 ? -1 : 1;
  9292. delta[1] = qh[0] & 0x80 ? -1 : 1;
  9293. delta[2] = qh[1] & 0x08 ? -1 : 1;
  9294. delta[3] = qh[1] & 0x80 ? -1 : 1;
  9295. sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
  9296. for (int l = 0; l < 4; ++l) {
  9297. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
  9298. int lsum1 = 0, lsum2 = 0;
  9299. for (int j = 0; j < 8; ++j) {
  9300. lsum1 += q8[j] * grid[j];
  9301. lsum2 += q8[j];
  9302. }
  9303. q8 += 8;
  9304. sum1[l/2] += lsum1;
  9305. sum2[l/2] += lsum2*delta[l];
  9306. }
  9307. const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
  9308. const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
  9309. sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
  9310. sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
  9311. qs += 4;
  9312. qh += 2;
  9313. }
  9314. sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  9315. }
  9316. *s = sumf;
  9317. #endif
  9318. }
  9319. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9320. assert(nrc == 1);
  9321. UNUSED(nrc);
  9322. UNUSED(bx);
  9323. UNUSED(by);
  9324. UNUSED(bs);
  9325. assert(n % QK4_NL == 0);
  9326. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  9327. const block_iq4_nl * restrict x = vx;
  9328. const block_q8_0 * restrict y = vy;
  9329. const int nb = n / QK4_NL;
  9330. int ib = 0;
  9331. float sumf = 0;
  9332. #if defined __ARM_NEON
  9333. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  9334. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  9335. uint8x16x2_t q4bits;
  9336. int8x16x4_t q4b;
  9337. int8x16x4_t q8b;
  9338. int32x4_t prod_1, prod_2;
  9339. for (; ib + 1 < nb; ib += 2) {
  9340. q4bits.val[0] = vld1q_u8(x[ib + 0].qs);
  9341. q4bits.val[1] = vld1q_u8(x[ib + 1].qs);
  9342. q8b.val[0] = vld1q_s8(y[ib + 0].qs);
  9343. q8b.val[1] = vld1q_s8(y[ib + 0].qs + 16);
  9344. q8b.val[2] = vld1q_s8(y[ib + 1].qs);
  9345. q8b.val[3] = vld1q_s8(y[ib + 1].qs + 16);
  9346. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  9347. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  9348. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  9349. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  9350. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  9351. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  9352. sumf +=
  9353. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib + 0].d) * vaddvq_s32(prod_1) +
  9354. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) * vaddvq_s32(prod_2);
  9355. }
  9356. #elif defined __AVX2__
  9357. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  9358. const __m128i m4b = _mm_set1_epi8(0x0f);
  9359. const __m256i mone = _mm256_set1_epi16(1);
  9360. __m256 accum1 = _mm256_setzero_ps();
  9361. __m256 accum2 = _mm256_setzero_ps();
  9362. for (; ib + 1 < nb; ib += 2) {
  9363. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs);
  9364. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs);
  9365. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[ib + 0].qs);
  9366. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[ib + 1].qs);
  9367. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  9368. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  9369. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  9370. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  9371. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9372. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9373. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  9374. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  9375. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  9376. _mm256_cvtepi32_ps(p_1), accum1);
  9377. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  9378. _mm256_cvtepi32_ps(p_2), accum2);
  9379. }
  9380. sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
  9381. #elif defined __AVX__
  9382. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  9383. const __m128i m4b = _mm_set1_epi8(0x0f);
  9384. const __m128i mone = _mm_set1_epi16(1);
  9385. __m256 accum1 = _mm256_setzero_ps();
  9386. __m256 accum2 = _mm256_setzero_ps();
  9387. for (; ib + 1 < nb; ib += 2) {
  9388. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
  9389. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  9390. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
  9391. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
  9392. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  9393. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  9394. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  9395. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  9396. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  9397. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  9398. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  9399. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  9400. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  9401. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  9402. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
  9403. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
  9404. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
  9405. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
  9406. accum1 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  9407. _mm256_cvtepi32_ps(MM256_SET_M128I(p_1_1, p_1_0))), accum1);
  9408. accum2 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  9409. _mm256_cvtepi32_ps(MM256_SET_M128I(p_2_1, p_2_0))), accum2);
  9410. }
  9411. sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
  9412. #elif defined(__POWER9_VECTOR__)
  9413. const vector signed char lowMask = vec_splats((signed char)0xF);
  9414. const vector signed int v0 = vec_splats((int32_t)0);
  9415. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  9416. vector float vsumf0 = vec_splats(0.0f);
  9417. vector float vsumf1 = vec_splats(0.0f);
  9418. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  9419. #pragma GCC unroll 4
  9420. for (; ib < nb; ++ib) {
  9421. __builtin_prefetch(x[ib].qs, 0, 1);
  9422. __builtin_prefetch(y[ib].qs, 0, 1);
  9423. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  9424. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  9425. vector float vd = vec_mul(vxd, vyd);
  9426. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  9427. vector signed char q4x0 = vec_and(qxs, lowMask);
  9428. vector signed char q4x1 = vec_sr(qxs, v4);
  9429. q4x0 = vec_perm(values, values, (vector unsigned char)q4x0);
  9430. q4x1 = vec_perm(values, values, (vector unsigned char)q4x1);
  9431. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  9432. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  9433. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  9434. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  9435. vector signed int vsumi0 = v0;
  9436. vector signed int vsumi1 = v0;
  9437. vsumi0 = vec_sum4s(qv0, vsumi0);
  9438. vsumi1 = vec_sum4s(qv1, vsumi1);
  9439. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9440. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9441. }
  9442. vsumf0 = vec_add(vsumf0, vsumf1);
  9443. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9444. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9445. sumf = vec_extract(vsumf0, 0);
  9446. #elif defined (__loongarch_asx)
  9447. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  9448. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  9449. const __m256i mone = __lasx_xvreplgr2vr_h(1);
  9450. __m256 accum1 = (__m256)__lasx_xvldi(0);
  9451. __m256 accum2 = (__m256)__lasx_xvldi(0);
  9452. for (; ib + 1 < nb; ib += 2) {
  9453. const __m128i q4bits_1 = __lsx_vld((const __m128i*)x[ib + 0].qs, 0);
  9454. const __m128i q4bits_2 = __lsx_vld((const __m128i*)x[ib + 1].qs, 0);
  9455. const __m256i q8b_1 = __lasx_xvld((const __m256i *)y[ib + 0].qs, 0);
  9456. const __m256i q8b_2 = __lasx_xvld((const __m256i *)y[ib + 1].qs, 0);
  9457. const __m256i q4b_1 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b)),
  9458. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_1, m4b)));
  9459. const __m256i q4b_2 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b)),
  9460. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_2, m4b)));
  9461. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9462. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9463. const __m256i p_1 = lasx_madd_h(p16_1, mone);
  9464. const __m256i p_2 = lasx_madd_h(p16_2, mone);
  9465. accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  9466. __lasx_xvffint_s_w(p_1), accum1);
  9467. accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  9468. __lasx_xvffint_s_w(p_2), accum2);
  9469. }
  9470. sumf = hsum_float_8(__lasx_xvfadd_s(accum1, accum2));
  9471. #endif
  9472. for (; ib < nb; ++ib) {
  9473. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  9474. int sumi1 = 0, sumi2 = 0;
  9475. for (int j = 0; j < QK4_NL/2; ++j) {
  9476. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  9477. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  9478. }
  9479. sumf += d * (sumi1 + sumi2);
  9480. }
  9481. *s = sumf;
  9482. }
  9483. void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9484. assert(nrc == 1);
  9485. UNUSED(nrc);
  9486. UNUSED(bx);
  9487. UNUSED(by);
  9488. UNUSED(bs);
  9489. assert(n % QK_K == 0);
  9490. const block_iq4_xs * restrict x = vx;
  9491. const block_q8_K * restrict y = vy;
  9492. const int nb = n / QK_K;
  9493. #if defined __ARM_NEON
  9494. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  9495. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  9496. ggml_uint8x16x2_t q4bits;
  9497. ggml_int8x16x4_t q4b;
  9498. ggml_int8x16x4_t q8b;
  9499. int32x4_t prod_1, prod_2;
  9500. float sumf = 0;
  9501. for (int ibl = 0; ibl < nb; ++ibl) {
  9502. const int8_t * q8 = y[ibl].qs;
  9503. const uint8_t * q4 = x[ibl].qs;
  9504. uint16_t h = x[ibl].scales_h;
  9505. int sumi1 = 0, sumi2 = 0;
  9506. for (int ib = 0; ib < QK_K/64; ++ib) {
  9507. q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  9508. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9509. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  9510. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  9511. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  9512. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  9513. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  9514. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  9515. int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
  9516. int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32;
  9517. h >>= 4;
  9518. sumi1 += vaddvq_s32(prod_1) * ls1;
  9519. sumi2 += vaddvq_s32(prod_2) * ls2;
  9520. }
  9521. sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
  9522. }
  9523. *s = sumf;
  9524. #elif defined __AVX2__
  9525. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  9526. const __m128i m4b = _mm_set1_epi8(0x0f);
  9527. __m256 accum = _mm256_setzero_ps();
  9528. for (int ibl = 0; ibl < nb; ++ibl) {
  9529. const uint8_t * qs = x[ibl].qs;
  9530. const int8_t * q8 = y[ibl].qs;
  9531. uint16_t sh = x[ibl].scales_h;
  9532. __m256i sumi1 = _mm256_setzero_si256();
  9533. __m256i sumi2 = _mm256_setzero_si256();
  9534. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9535. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  9536. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  9537. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9538. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9539. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  9540. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  9541. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  9542. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  9543. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9544. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9545. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  9546. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  9547. sh >>= 4;
  9548. const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
  9549. const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
  9550. sumi1 = _mm256_add_epi32(p_1, sumi1);
  9551. sumi2 = _mm256_add_epi32(p_2, sumi2);
  9552. }
  9553. accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  9554. _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
  9555. }
  9556. *s = hsum_float_8(accum);
  9557. #elif defined __AVX__
  9558. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  9559. const __m128i m4b = _mm_set1_epi8(0x0f);
  9560. __m256 accum = _mm256_setzero_ps();
  9561. for (int ibl = 0; ibl < nb; ++ibl) {
  9562. const uint8_t * qs = x[ibl].qs;
  9563. const int8_t * q8 = y[ibl].qs;
  9564. uint16_t sh = x[ibl].scales_h;
  9565. __m128i sumi1_0 = _mm_setzero_si128();
  9566. __m128i sumi1_1 = _mm_setzero_si128();
  9567. __m128i sumi2_0 = _mm_setzero_si128();
  9568. __m128i sumi2_1 = _mm_setzero_si128();
  9569. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9570. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  9571. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  9572. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9573. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9574. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9575. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9576. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  9577. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  9578. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  9579. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  9580. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  9581. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  9582. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  9583. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  9584. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  9585. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  9586. sh >>= 4;
  9587. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, _mm_set1_epi16(ls1));
  9588. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, _mm_set1_epi16(ls1));
  9589. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, _mm_set1_epi16(ls2));
  9590. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, _mm_set1_epi16(ls2));
  9591. sumi1_0 = _mm_add_epi32(p_1_0, sumi1_0);
  9592. sumi1_1 = _mm_add_epi32(p_1_1, sumi1_1);
  9593. sumi2_0 = _mm_add_epi32(p_2_0, sumi2_0);
  9594. sumi2_1 = _mm_add_epi32(p_2_1, sumi2_1);
  9595. }
  9596. __m128i sumi12_0 = _mm_add_epi32(sumi1_0, sumi2_0);
  9597. __m128i sumi12_1 = _mm_add_epi32(sumi1_1, sumi2_1);
  9598. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  9599. _mm256_cvtepi32_ps(MM256_SET_M128I(sumi12_1, sumi12_0))), accum);
  9600. }
  9601. *s = hsum_float_8(accum);
  9602. #elif defined(__POWER9_VECTOR__)
  9603. const vector signed char lowMask = vec_splats((signed char)0xF);
  9604. const vector int v0 = vec_splats((int32_t)0);
  9605. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  9606. vector float vsumf0 = vec_splats(0.0f);
  9607. vector float vsumf1 = vec_splats(0.0f);
  9608. vector float vsumf2 = vec_splats(0.0f);
  9609. vector float vsumf3 = vec_splats(0.0f);
  9610. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  9611. for (int ibl = 0; ibl < nb; ++ibl) {
  9612. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ibl].d));
  9613. vector float vyd = vec_splats(y[ibl].d);
  9614. vector float vd = vec_mul(vxd, vyd);
  9615. vector signed int vsumi0 = v0;
  9616. vector signed int vsumi1 = v0;
  9617. vector signed int vsumi2 = v0;
  9618. vector signed int vsumi3 = v0;
  9619. uint16_t h = x[ibl].scales_h;
  9620. const uint8_t * restrict q4 = x[ibl].qs;
  9621. const uint8_t * restrict sc = x[ibl].scales_l;
  9622. const int8_t * restrict q8 = y[ibl].qs;
  9623. for (int ib = 0; ib < QK_K/64; ib ++ ) {
  9624. __builtin_prefetch(q4, 0, 1);
  9625. __builtin_prefetch(q8, 0, 1);
  9626. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  9627. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  9628. q4 += 32;
  9629. vector signed char q4x00 = (vector signed char)vec_and(qxs0, lowMask);
  9630. vector signed char q4x01 = (vector signed char)vec_sr(qxs0, v4);
  9631. vector signed char q4x10 = (vector signed char)vec_and(qxs1, lowMask);
  9632. vector signed char q4x11 = (vector signed char)vec_sr(qxs1, v4);
  9633. q4x00 = vec_perm(values, values, (vector unsigned char)q4x00);
  9634. q4x01 = vec_perm(values, values, (vector unsigned char)q4x01);
  9635. q4x10 = vec_perm(values, values, (vector unsigned char)q4x10);
  9636. q4x11 = vec_perm(values, values, (vector unsigned char)q4x11);
  9637. vector signed char q8y0 = vec_xl( 0, q8);
  9638. vector signed char q8y1 = vec_xl(16, q8);
  9639. vector signed char q8y2 = vec_xl(32, q8);
  9640. vector signed char q8y3 = vec_xl(48, q8);
  9641. q8 += 64;
  9642. vector signed short qv0 = vec_add(vec_mule(q4x00, q8y0), vec_mulo(q4x00, q8y0));
  9643. vector signed short qv1 = vec_add(vec_mule(q4x01, q8y1), vec_mulo(q4x01, q8y1));
  9644. vector signed short qv2 = vec_add(vec_mule(q4x10, q8y2), vec_mulo(q4x10, q8y2));
  9645. vector signed short qv3 = vec_add(vec_mule(q4x11, q8y3), vec_mulo(q4x11, q8y3));
  9646. const uint16_t ls0 = (uint16_t)(((sc[0] & 0xf) | ((h << 4) & 0x30)) - 32);
  9647. const uint16_t ls1 = (uint16_t)(((sc[0] >> 4) | ((h << 2) & 0x30)) - 32);
  9648. h >>= 4;
  9649. sc ++;
  9650. vector signed short vscales01 = vec_splats((int16_t)ls0);
  9651. vector signed short vscales23 = vec_splats((int16_t)ls1);
  9652. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  9653. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  9654. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  9655. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  9656. }
  9657. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9658. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9659. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9660. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9661. }
  9662. vsumf0 = vec_add(vsumf0, vsumf2);
  9663. vsumf1 = vec_add(vsumf1, vsumf3);
  9664. vsumf0 = vec_add(vsumf0, vsumf1);
  9665. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9666. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9667. *s = vec_extract(vsumf0, 0);
  9668. #elif defined(__loongarch_asx)
  9669. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  9670. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  9671. __m256 accum = (__m256)__lasx_xvldi(0);
  9672. __m256i tmp1;
  9673. __m128i tmp0, tmp2, tmp3, tmp4, mask_8f, mask;
  9674. mask_8f = __lsx_vreplgr2vr_b(0x8f);
  9675. for (int ibl = 0; ibl < nb; ++ibl) {
  9676. const uint8_t * qs = x[ibl].qs;
  9677. const int8_t * q8 = y[ibl].qs;
  9678. uint16_t sh = x[ibl].scales_h;
  9679. __m256i sumi1 = __lasx_xvldi(0);
  9680. __m256i sumi2 = __lasx_xvldi(0);
  9681. __m128i zero = __lsx_vldi(0);
  9682. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9683. const __m128i q4bits_1 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  9684. const __m128i q4bits_2 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  9685. const __m256i q8b_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9686. const __m256i q8b_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9687. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b), mask_8f);
  9688. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9689. mask = __lsx_vsle_b(zero, tmp2);
  9690. tmp3 = __lsx_vand_v(tmp0, mask);
  9691. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  9692. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_1, m4b), mask_8f);
  9693. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9694. mask = __lsx_vsle_b(zero, tmp2);
  9695. tmp4 = __lsx_vand_v(tmp0, mask);
  9696. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  9697. const __m256i q4b_1 = lasx_insertf128(tmp3, tmp4);
  9698. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b), mask_8f);
  9699. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9700. mask = __lsx_vsle_b(zero, tmp2);
  9701. tmp3 = __lsx_vand_v(tmp0, mask);
  9702. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  9703. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_2, m4b), mask_8f);
  9704. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9705. mask = __lsx_vsle_b(zero, tmp2);
  9706. tmp4 = __lsx_vand_v(tmp0, mask);
  9707. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  9708. const __m256i q4b_2 = lasx_insertf128(tmp3, tmp4);
  9709. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9710. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9711. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  9712. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  9713. sh >>= 4;
  9714. __m256i tmp5, tmp6;
  9715. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  9716. tmp5 = __lasx_xvmulwev_w_h(p16_1, tmp1);
  9717. tmp6 = __lasx_xvmulwod_w_h(p16_1, tmp1);
  9718. const __m256i p_1 = __lasx_xvadd_w(tmp5, tmp6);
  9719. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  9720. tmp5 = __lasx_xvmulwev_w_h(p16_2, tmp1);
  9721. tmp6 = __lasx_xvmulwod_w_h(p16_2, tmp1);
  9722. const __m256i p_2 = __lasx_xvadd_w(tmp5, tmp6);
  9723. sumi1 = __lasx_xvadd_w(p_1, sumi1);
  9724. sumi2 = __lasx_xvadd_w(p_2, sumi2);
  9725. }
  9726. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  9727. __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accum);
  9728. }
  9729. *s = hsum_float_8(accum);
  9730. #else
  9731. float sumf = 0;
  9732. for (int ibl = 0; ibl < nb; ++ibl) {
  9733. const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
  9734. uint16_t h = x[ibl].scales_h;
  9735. const uint8_t * qs = x[ibl].qs;
  9736. const int8_t * q8 = y[ibl].qs;
  9737. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9738. const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
  9739. const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
  9740. h >>= 4;
  9741. const float d1 = d4d8*(ls1 - 32);
  9742. const float d2 = d4d8*(ls2 - 32);
  9743. int sumi1 = 0, sumi2 = 0;
  9744. for (int j = 0; j < 16; ++j) {
  9745. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  9746. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  9747. }
  9748. sumf += d1 * (sumi1 + sumi2);
  9749. qs += 16;
  9750. q8 += 32;
  9751. sumi1 = sumi2 = 0;
  9752. for (int j = 0; j < 16; ++j) {
  9753. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  9754. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  9755. }
  9756. sumf += d2 * (sumi1 + sumi2);
  9757. qs += 16;
  9758. q8 += 32;
  9759. }
  9760. }
  9761. *s = sumf;
  9762. #endif
  9763. }
  9764. // ================================ IQ2 quantization =============================================
  9765. typedef struct {
  9766. uint64_t * grid;
  9767. int * map;
  9768. uint16_t * neighbours;
  9769. } iq2_entry_t;
  9770. static iq2_entry_t iq2_data[4] = {
  9771. {NULL, NULL, NULL},
  9772. {NULL, NULL, NULL},
  9773. {NULL, NULL, NULL},
  9774. {NULL, NULL, NULL},
  9775. };
  9776. static inline int iq2_data_index(enum ggml_type type) {
  9777. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  9778. return type == GGML_TYPE_IQ2_XXS ? 0 :
  9779. type == GGML_TYPE_IQ2_XS ? 1 :
  9780. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3;
  9781. }
  9782. static inline int iq2_grid_size(enum ggml_type type) {
  9783. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  9784. return type == GGML_TYPE_IQ2_XXS ? 256 :
  9785. type == GGML_TYPE_IQ2_XS ? 512 :
  9786. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024;
  9787. }
  9788. static int iq2_compare_func(const void * left, const void * right) {
  9789. const int * l = (const int *)left;
  9790. const int * r = (const int *)right;
  9791. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  9792. }
  9793. void iq2xs_init_impl(enum ggml_type type) {
  9794. const int gindex = iq2_data_index(type);
  9795. const int grid_size = iq2_grid_size(type);
  9796. if (iq2_data[gindex].grid) {
  9797. return;
  9798. }
  9799. static const uint16_t kgrid_2bit_256[256] = {
  9800. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  9801. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  9802. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  9803. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  9804. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  9805. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  9806. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  9807. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  9808. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  9809. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  9810. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  9811. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  9812. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  9813. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  9814. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  9815. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  9816. };
  9817. static const uint16_t kgrid_2bit_512[512] = {
  9818. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  9819. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  9820. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  9821. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  9822. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  9823. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  9824. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  9825. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  9826. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  9827. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  9828. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  9829. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  9830. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  9831. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  9832. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  9833. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  9834. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  9835. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  9836. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  9837. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  9838. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  9839. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  9840. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  9841. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  9842. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  9843. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  9844. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  9845. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  9846. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  9847. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  9848. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  9849. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  9850. };
  9851. static const uint16_t kgrid_1bit_2048[NGRID_IQ1S] = {
  9852. 0, 2, 5, 8, 10, 17, 21, 32, 34, 40, 42, 69, 81, 84, 86, 101,
  9853. 128, 130, 136, 138, 149, 160, 162, 168, 170, 260, 261, 273, 276, 278, 281, 282,
  9854. 293, 321, 326, 329, 338, 341, 346, 353, 356, 358, 360, 389, 401, 404, 406, 421,
  9855. 512, 514, 520, 522, 533, 544, 546, 552, 554, 581, 593, 601, 612, 617, 640, 642,
  9856. 648, 650, 657, 661, 665, 672, 674, 680, 682, 1041, 1044, 1046, 1061, 1089, 1097, 1109,
  9857. 1114, 1124, 1125, 1169, 1177, 1189, 1281, 1284, 1285, 1286, 1301, 1304, 1306, 1321, 1344, 1349,
  9858. 1354, 1360, 1361, 1364, 1365, 1366, 1369, 1376, 1378, 1381, 1384, 1386, 1409, 1425, 1429, 1432,
  9859. 1434, 1441, 1444, 1445, 1446, 1449, 1556, 1561, 1601, 1604, 1616, 1618, 1621, 1624, 1632, 1633,
  9860. 1638, 1641, 1669, 1681, 1684, 1689, 2048, 2050, 2056, 2058, 2069, 2080, 2082, 2088, 2090, 2117,
  9861. 2129, 2134, 2149, 2176, 2178, 2184, 2186, 2197, 2208, 2210, 2216, 2218, 2309, 2321, 2324, 2329,
  9862. 2340, 2341, 2369, 2384, 2385, 2389, 2401, 2404, 2409, 2449, 2452, 2454, 2457, 2469, 2560, 2562,
  9863. 2568, 2570, 2581, 2592, 2594, 2600, 2602, 2629, 2641, 2649, 2657, 2661, 2688, 2690, 2693, 2696,
  9864. 2698, 2709, 2720, 2722, 2728, 2730, 4112, 4113, 4116, 4121, 4132, 4133, 4161, 4164, 4176, 4181,
  9865. 4184, 4193, 4196, 4197, 4201, 4241, 4244, 4246, 4257, 4261, 4353, 4356, 4358, 4361, 4368, 4370,
  9866. 4373, 4376, 4385, 4388, 4393, 4421, 4426, 4432, 4433, 4434, 4436, 4437, 4438, 4441, 4448, 4453,
  9867. 4484, 4498, 4501, 4513, 4516, 4625, 4628, 4630, 4645, 4672, 4678, 4681, 4690, 4693, 4696, 4698,
  9868. 4708, 4710, 4741, 4753, 4756, 4758, 4773, 5121, 5126, 5129, 5140, 5141, 5144, 5145, 5153, 5158,
  9869. 5185, 5189, 5190, 5192, 5194, 5201, 5204, 5205, 5206, 5209, 5218, 5221, 5224, 5252, 5257, 5264,
  9870. 5268, 5269, 5272, 5273, 5274, 5281, 5284, 5285, 5289, 5378, 5381, 5386, 5393, 5396, 5397, 5398,
  9871. 5401, 5408, 5410, 5413, 5416, 5418, 5441, 5444, 5445, 5446, 5457, 5458, 5460, 5461, 5462, 5465,
  9872. 5466, 5473, 5476, 5477, 5478, 5481, 5504, 5506, 5508, 5509, 5512, 5514, 5520, 5521, 5524, 5525,
  9873. 5526, 5529, 5530, 5536, 5538, 5541, 5633, 5636, 5637, 5638, 5653, 5654, 5656, 5658, 5665, 5670,
  9874. 5696, 5698, 5700, 5701, 5704, 5706, 5713, 5717, 5718, 5720, 5721, 5729, 5732, 5733, 5736, 5737,
  9875. 5738, 5766, 5770, 5778, 5781, 5796, 5801, 6161, 6166, 6181, 6209, 6212, 6214, 6217, 6224, 6229,
  9876. 6232, 6234, 6240, 6241, 6244, 6246, 6249, 6277, 6289, 6292, 6309, 6416, 6418, 6421, 6426, 6433,
  9877. 6437, 6466, 6468, 6469, 6472, 6481, 6484, 6485, 6486, 6489, 6490, 6496, 6501, 6506, 6537, 6545,
  9878. 6546, 6549, 6552, 6561, 6566, 6569, 6665, 6678, 6692, 6694, 6724, 6726, 6729, 6736, 6738, 6741,
  9879. 6744, 6753, 6758, 6761, 6789, 6801, 6806, 6810, 8192, 8194, 8200, 8202, 8213, 8224, 8226, 8229,
  9880. 8232, 8234, 8261, 8273, 8281, 8289, 8293, 8320, 8322, 8328, 8330, 8341, 8352, 8354, 8357, 8360,
  9881. 8362, 8453, 8465, 8468, 8473, 8485, 8514, 8516, 8521, 8533, 8536, 8538, 8545, 8548, 8549, 8550,
  9882. 8581, 8592, 8598, 8601, 8613, 8705, 8712, 8714, 8721, 8725, 8736, 8738, 8744, 8746, 8773, 8785,
  9883. 8790, 8793, 8805, 8833, 8840, 8842, 8849, 8853, 8864, 8866, 8872, 8874, 9221, 9236, 9238, 9241,
  9884. 9253, 9284, 9285, 9286, 9289, 9298, 9301, 9304, 9306, 9318, 9349, 9361, 9364, 9369, 9377, 9381,
  9885. 9481, 9493, 9505, 9513, 9536, 9541, 9544, 9553, 9556, 9557, 9561, 9570, 9573, 9576, 9609, 9616,
  9886. 9620, 9621, 9624, 9626, 9633, 9636, 9638, 9641, 9733, 9744, 9746, 9753, 9765, 9793, 9801, 9813,
  9887. 9824, 9825, 9833, 9860, 9862, 9872, 9882, 10240, 10242, 10248, 10250, 10261, 10272, 10274, 10280, 10282,
  9888. 10309, 10321, 10324, 10341, 10368, 10370, 10376, 10378, 10400, 10402, 10408, 10410, 10505, 10513, 10516, 10521,
  9889. 10533, 10566, 10569, 10578, 10581, 10593, 10596, 10598, 10601, 10629, 10640, 10646, 10649, 10660, 10661, 10752,
  9890. 10754, 10760, 10762, 10784, 10786, 10792, 10794, 10821, 10833, 10838, 10841, 10853, 10880, 10882, 10888, 10890,
  9891. 10901, 10912, 10914, 10920, 10922, 16389, 16401, 16406, 16421, 16457, 16466, 16469, 16472, 16474, 16481, 16484,
  9892. 16486, 16532, 16537, 16545, 16550, 16640, 16641, 16644, 16646, 16649, 16658, 16661, 16662, 16664, 16666, 16673,
  9893. 16678, 16681, 16709, 16712, 16714, 16721, 16724, 16725, 16726, 16729, 16730, 16741, 16744, 16746, 16769, 16772,
  9894. 16774, 16784, 16786, 16789, 16800, 16801, 16802, 16901, 16913, 16916, 16918, 16933, 16961, 16978, 16981, 16986,
  9895. 16996, 17001, 17033, 17044, 17061, 17409, 17429, 17433, 17449, 17477, 17480, 17482, 17489, 17492, 17493, 17494,
  9896. 17505, 17506, 17509, 17512, 17514, 17537, 17542, 17545, 17552, 17554, 17557, 17568, 17569, 17577, 17665, 17666,
  9897. 17669, 17674, 17681, 17684, 17685, 17686, 17689, 17696, 17701, 17706, 17729, 17732, 17733, 17734, 17737, 17744,
  9898. 17745, 17748, 17749, 17750, 17752, 17753, 17761, 17764, 17765, 17766, 17769, 17794, 17796, 17797, 17800, 17809,
  9899. 17812, 17813, 17814, 17817, 17818, 17829, 17832, 17834, 17921, 17925, 17929, 17940, 17941, 17944, 17946, 17953,
  9900. 17956, 17961, 17984, 17986, 17989, 17992, 18000, 18001, 18002, 18005, 18006, 18009, 18018, 18021, 18024, 18049,
  9901. 18053, 18058, 18068, 18069, 18081, 18084, 18086, 18437, 18449, 18453, 18458, 18469, 18498, 18505, 18512, 18517,
  9902. 18520, 18529, 18532, 18534, 18537, 18565, 18577, 18580, 18582, 18585, 18597, 18689, 18693, 18694, 18698, 18704,
  9903. 18708, 18709, 18712, 18721, 18724, 18726, 18752, 18757, 18762, 18769, 18770, 18772, 18773, 18774, 18777, 18784,
  9904. 18786, 18789, 18790, 18794, 18822, 18825, 18834, 18837, 18838, 18840, 18849, 18852, 18854, 18857, 18966, 19012,
  9905. 19014, 19017, 19029, 19032, 19034, 19044, 19049, 19092, 19109, 20481, 20484, 20485, 20486, 20489, 20498, 20501,
  9906. 20506, 20513, 20516, 20521, 20544, 20549, 20552, 20561, 20564, 20565, 20566, 20569, 20581, 20584, 20614, 20617,
  9907. 20629, 20632, 20640, 20641, 20646, 20649, 20741, 20744, 20745, 20746, 20753, 20756, 20757, 20758, 20760, 20761,
  9908. 20768, 20773, 20774, 20776, 20778, 20801, 20804, 20805, 20806, 20809, 20816, 20817, 20818, 20820, 20821, 20822,
  9909. 20824, 20825, 20826, 20833, 20836, 20837, 20838, 20841, 20866, 20869, 20881, 20884, 20885, 20886, 20889, 20896,
  9910. 20901, 20906, 20993, 20998, 21010, 21013, 21018, 21025, 21028, 21058, 21061, 21066, 21073, 21076, 21077, 21078,
  9911. 21081, 21090, 21093, 21125, 21136, 21138, 21141, 21145, 21146, 21156, 21508, 21509, 21521, 21524, 21525, 21526,
  9912. 21528, 21529, 21537, 21541, 21544, 21546, 21569, 21572, 21573, 21574, 21577, 21578, 21584, 21585, 21588, 21589,
  9913. 21590, 21592, 21593, 21594, 21601, 21602, 21604, 21605, 21606, 21609, 21632, 21640, 21642, 21649, 21652, 21653,
  9914. 21654, 21657, 21665, 21668, 21669, 21674, 21761, 21762, 21764, 21765, 21766, 21769, 21776, 21777, 21778, 21780,
  9915. 21781, 21782, 21785, 21786, 21793, 21796, 21797, 21798, 21801, 21824, 21825, 21826, 21828, 21829, 21830, 21832,
  9916. 21833, 21840, 21841, 21842, 21844, 21845, 21846, 21848, 21849, 21850, 21856, 21857, 21860, 21861, 21862, 21864,
  9917. 21865, 21866, 21889, 21892, 21893, 21897, 21898, 21904, 21905, 21908, 21909, 21910, 21912, 21913, 21921, 21924,
  9918. 21925, 21926, 21929, 22016, 22017, 22018, 22020, 22022, 22024, 22025, 22033, 22036, 22037, 22040, 22041, 22048,
  9919. 22049, 22050, 22052, 22053, 22054, 22056, 22057, 22081, 22085, 22086, 22088, 22089, 22090, 22096, 22097, 22098,
  9920. 22100, 22101, 22102, 22104, 22105, 22106, 22113, 22116, 22117, 22121, 22146, 22149, 22150, 22152, 22153, 22154,
  9921. 22161, 22165, 22170, 22178, 22181, 22182, 22184, 22185, 22532, 22533, 22534, 22537, 22544, 22549, 22552, 22561,
  9922. 22570, 22597, 22600, 22602, 22609, 22612, 22613, 22614, 22616, 22617, 22624, 22626, 22628, 22629, 22658, 22665,
  9923. 22672, 22674, 22677, 22680, 22689, 22697, 22785, 22786, 22789, 22794, 22801, 22804, 22805, 22806, 22809, 22821,
  9924. 22849, 22852, 22853, 22854, 22857, 22864, 22865, 22866, 22868, 22869, 22870, 22872, 22873, 22874, 22881, 22884,
  9925. 22885, 22886, 22889, 22913, 22917, 22921, 22929, 22932, 22933, 22934, 22936, 22937, 22949, 23044, 23048, 23061,
  9926. 23066, 23072, 23077, 23078, 23081, 23109, 23112, 23113, 23121, 23125, 23126, 23128, 23129, 23138, 23141, 23144,
  9927. 23146, 23169, 23178, 23186, 23189, 23190, 23192, 23194, 23201, 24581, 24596, 24598, 24601, 24613, 24644, 24656,
  9928. 24661, 24662, 24664, 24666, 24673, 24676, 24678, 24681, 24705, 24726, 24741, 24833, 24836, 24838, 24841, 24850,
  9929. 24853, 24865, 24866, 24870, 24873, 24901, 24905, 24913, 24917, 24918, 24921, 24933, 24934, 24938, 24964, 24970,
  9930. 24978, 24981, 24993, 24998, 25001, 25105, 25110, 25113, 25152, 25153, 25158, 25173, 25174, 25176, 25184, 25221,
  9931. 25233, 25238, 25253, 25617, 25618, 25621, 25622, 25626, 25633, 25638, 25641, 25664, 25666, 25669, 25672, 25674,
  9932. 25681, 25684, 25685, 25686, 25689, 25690, 25696, 25698, 25701, 25732, 25733, 25737, 25744, 25746, 25748, 25749,
  9933. 25750, 25752, 25754, 25761, 25764, 25769, 25861, 25864, 25866, 25873, 25877, 25878, 25881, 25924, 25925, 25926,
  9934. 25929, 25936, 25937, 25940, 25941, 25942, 25945, 25953, 25956, 25957, 25958, 25961, 25990, 25993, 25994, 26001,
  9935. 26005, 26006, 26009, 26010, 26018, 26021, 26022, 26024, 26114, 26121, 26133, 26144, 26150, 26152, 26153, 26176,
  9936. 26181, 26184, 26186, 26193, 26196, 26197, 26198, 26200, 26202, 26208, 26213, 26216, 26240, 26242, 26245, 26250,
  9937. 26260, 26262, 26264, 26265, 26272, 26276, 26278, 26282, 26646, 26649, 26661, 26689, 26706, 26709, 26714, 26721,
  9938. 26729, 26757, 26769, 26776, 26790, 26881, 26884, 26896, 26901, 26913, 26916, 26918, 26921, 26944, 26945, 26949,
  9939. 26950, 26952, 26961, 26964, 26965, 26966, 26969, 26976, 26981, 26986, 27010, 27012, 27018, 27029, 27041, 27044,
  9940. 27045, 27049, 27153, 27158, 27160, 27201, 27204, 27209, 27216, 27221, 27224, 27226, 27236, 27237, 27241, 27270,
  9941. 27284, 27288, 27290, 27302, 32768, 32770, 32776, 32778, 32800, 32802, 32808, 32810, 32837, 32848, 32849, 32852,
  9942. 32854, 32857, 32869, 32896, 32898, 32904, 32906, 32917, 32928, 32930, 32936, 32938, 33029, 33041, 33044, 33046,
  9943. 33049, 33061, 33089, 33092, 33097, 33104, 33106, 33109, 33110, 33112, 33113, 33124, 33126, 33129, 33157, 33161,
  9944. 33172, 33174, 33177, 33189, 33280, 33282, 33288, 33290, 33301, 33312, 33314, 33320, 33322, 33361, 33364, 33369,
  9945. 33381, 33408, 33410, 33416, 33418, 33429, 33440, 33442, 33448, 33450, 33812, 33817, 33857, 33860, 33873, 33877,
  9946. 33882, 33889, 33892, 33897, 33940, 33945, 34049, 34057, 34066, 34069, 34074, 34086, 34089, 34112, 34113, 34117,
  9947. 34120, 34129, 34132, 34133, 34134, 34137, 34138, 34149, 34150, 34152, 34154, 34177, 34180, 34182, 34185, 34192,
  9948. 34194, 34197, 34200, 34214, 34321, 34326, 34329, 34341, 34369, 34372, 34377, 34378, 34384, 34389, 34393, 34394,
  9949. 34401, 34406, 34410, 34437, 34449, 34458, 34468, 34816, 34818, 34824, 34826, 34837, 34848, 34850, 34856, 34858,
  9950. 34881, 34885, 34897, 34900, 34905, 34917, 34921, 34944, 34946, 34952, 34954, 34965, 34976, 34978, 34984, 34986,
  9951. 35077, 35078, 35089, 35092, 35094, 35109, 35137, 35140, 35142, 35145, 35152, 35154, 35157, 35162, 35169, 35172,
  9952. 35205, 35222, 35225, 35237, 35328, 35330, 35336, 35338, 35349, 35360, 35362, 35368, 35370, 35397, 35409, 35412,
  9953. 35414, 35456, 35458, 35464, 35466, 35477, 35488, 35490, 35496, 35498, 36869, 36881, 36886, 36888, 36889, 36901,
  9954. 36929, 36934, 36937, 36949, 36952, 36954, 36969, 36970, 36997, 37009, 37012, 37014, 37017, 37029, 37121, 37124,
  9955. 37126, 37129, 37136, 37141, 37144, 37146, 37153, 37156, 37158, 37161, 37184, 37189, 37200, 37201, 37204, 37205,
  9956. 37206, 37209, 37218, 37221, 37252, 37254, 37266, 37269, 37272, 37281, 37284, 37286, 37289, 37381, 37393, 37396,
  9957. 37401, 37413, 37444, 37446, 37449, 37456, 37458, 37461, 37464, 37478, 37481, 37509, 37524, 37526, 37545, 37889,
  9958. 37892, 37894, 37904, 37909, 37912, 37926, 37952, 37962, 37969, 37972, 37973, 37974, 37976, 37977, 37984, 37985,
  9959. 37986, 37989, 38020, 38022, 38034, 38036, 38037, 38040, 38049, 38057, 38144, 38149, 38152, 38154, 38160, 38161,
  9960. 38164, 38165, 38166, 38169, 38177, 38181, 38185, 38186, 38209, 38212, 38213, 38214, 38217, 38224, 38225, 38226,
  9961. 38228, 38229, 38230, 38232, 38233, 38234, 38241, 38244, 38245, 38246, 38249, 38273, 38277, 38280, 38289, 38290,
  9962. 38292, 38293, 38294, 38297, 38298, 38304, 38306, 38309, 38312, 38314, 38401, 38404, 38416, 38421, 38425, 38432,
  9963. 38438, 38441, 38469, 38472, 38473, 38481, 38482, 38485, 38486, 38489, 38501, 38504, 38530, 38532, 38537, 38538,
  9964. 38546, 38548, 38549, 38564, 38566, 38569, 38917, 38934, 38937, 38949, 38977, 38982, 38992, 38994, 38997, 38998,
  9965. 39002, 39012, 39013, 39045, 39057, 39062, 39065, 39077, 39172, 39174, 39177, 39184, 39186, 39189, 39192, 39194,
  9966. 39200, 39201, 39204, 39206, 39232, 39234, 39237, 39240, 39242, 39249, 39252, 39253, 39254, 39257, 39266, 39269,
  9967. 39270, 39274, 39297, 39300, 39312, 39314, 39317, 39322, 39329, 39334, 39429, 39445, 39461, 39492, 39494, 39497,
  9968. 39504, 39509, 39512, 39521, 39557, 39569, 39572, 39573, 39574, 40960, 40962, 40968, 40970, 40981, 40992, 40994,
  9969. 41000, 41002, 41029, 41041, 41044, 41046, 41049, 41088, 41090, 41096, 41098, 41109, 41120, 41122, 41128, 41130,
  9970. 41221, 41225, 41233, 41236, 41238, 41241, 41242, 41286, 41289, 41297, 41301, 41304, 41306, 41313, 41316, 41349,
  9971. 41360, 41362, 41366, 41369, 41474, 41480, 41482, 41488, 41497, 41506, 41512, 41514, 41541, 41553, 41558, 41561,
  9972. 41573, 41600, 41602, 41608, 41610, 41621, 41632, 41634, 41640, 41642, 42009, 42021, 42049, 42052, 42064, 42068,
  9973. 42069, 42072, 42074, 42081, 42085, 42086, 42088, 42089, 42117, 42246, 42249, 42256, 42258, 42261, 42264, 42278,
  9974. 42281, 42306, 42309, 42321, 42324, 42325, 42326, 42329, 42341, 42346, 42369, 42372, 42373, 42374, 42377, 42386,
  9975. 42389, 42392, 42501, 42513, 42518, 42522, 42529, 42533, 42564, 42566, 42570, 42578, 42581, 42582, 42584, 42592,
  9976. 42594, 42630, 42640, 42645, 42646, 42649, 42657, 42660, 42662, 43008, 43010, 43016, 43018, 43040, 43042, 43048,
  9977. 43050, 43089, 43092, 43094, 43097, 43136, 43138, 43144, 43146, 43157, 43168, 43170, 43176, 43178, 43269, 43284,
  9978. 43289, 43297, 43301, 43329, 43344, 43349, 43354, 43361, 43366, 43369, 43408, 43414, 43520, 43522, 43528, 43530,
  9979. 43552, 43554, 43560, 43562, 43601, 43604, 43606, 43648, 43650, 43656, 43658, 43669, 43680, 43682, 43688, 43690,
  9980. };
  9981. static const uint16_t kgrid_2bit_1024[1024] = {
  9982. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  9983. 73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160,
  9984. 165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328,
  9985. 337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514,
  9986. 517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660,
  9987. 674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093,
  9988. 1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176,
  9989. 1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348,
  9990. 1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537,
  9991. 1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050,
  9992. 2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133,
  9993. 2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373,
  9994. 2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100,
  9995. 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182,
  9996. 4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357,
  9997. 4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434,
  9998. 4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641,
  9999. 4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145,
  10000. 5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253,
  10001. 5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442,
  10002. 5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700,
  10003. 5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225,
  10004. 6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562,
  10005. 6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257,
  10006. 8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512,
  10007. 8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840,
  10008. 8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297,
  10009. 9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600,
  10010. 9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
  10011. 10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
  10012. 16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
  10013. 16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
  10014. 16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
  10015. 16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
  10016. 17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
  10017. 17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
  10018. 17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
  10019. 17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
  10020. 18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
  10021. 18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
  10022. 18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
  10023. 20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
  10024. 20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
  10025. 20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
  10026. 21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
  10027. 21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
  10028. 22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
  10029. 22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
  10030. 24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
  10031. 24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
  10032. 25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
  10033. 26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
  10034. 32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
  10035. 33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
  10036. 33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
  10037. 33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
  10038. 34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
  10039. 35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
  10040. 36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
  10041. 37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
  10042. 38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
  10043. 39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
  10044. 41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
  10045. 42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
  10046. };
  10047. const int kmap_size = 43692;
  10048. //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  10049. const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
  10050. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  10051. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
  10052. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024;
  10053. uint64_t * kgrid_q2xs;
  10054. int * kmap_q2xs;
  10055. uint16_t * kneighbors_q2xs;
  10056. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  10057. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  10058. for (int k = 0; k < grid_size; ++k) {
  10059. int8_t * pos = (int8_t *)(the_grid + k);
  10060. for (int i = 0; i < 8; ++i) {
  10061. int l = (kgrid[k] >> 2*i) & 0x3;
  10062. pos[i] = 2*l + 1;
  10063. }
  10064. }
  10065. kgrid_q2xs = the_grid;
  10066. iq2_data[gindex].grid = the_grid;
  10067. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  10068. iq2_data[gindex].map = kmap_q2xs;
  10069. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  10070. uint64_t aux64;
  10071. uint8_t * aux8 = (uint8_t *)&aux64;
  10072. for (int i = 0; i < grid_size; ++i) {
  10073. aux64 = kgrid_q2xs[i];
  10074. uint16_t index = 0;
  10075. for (int k=0; k<8; ++k) {
  10076. uint16_t q = (aux8[k] - 1)/2;
  10077. index |= (q << 2*k);
  10078. }
  10079. kmap_q2xs[index] = i;
  10080. }
  10081. int8_t pos[8];
  10082. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  10083. int num_neighbors = 0, num_not_in_map = 0;
  10084. for (int i = 0; i < kmap_size; ++i) {
  10085. if (kmap_q2xs[i] >= 0) continue;
  10086. ++num_not_in_map;
  10087. for (int k = 0; k < 8; ++k) {
  10088. int l = (i >> 2*k) & 0x3;
  10089. pos[k] = 2*l + 1;
  10090. }
  10091. for (int j = 0; j < grid_size; ++j) {
  10092. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  10093. int d2 = 0;
  10094. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10095. dist2[2*j+0] = d2;
  10096. dist2[2*j+1] = j;
  10097. }
  10098. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  10099. int n = 0; int d2 = dist2[0];
  10100. int nhave = 1;
  10101. for (int j = 0; j < grid_size; ++j) {
  10102. if (dist2[2*j] > d2) {
  10103. if (nhave == nwant) break;
  10104. d2 = dist2[2*j];
  10105. ++nhave;
  10106. }
  10107. ++n;
  10108. }
  10109. num_neighbors += n;
  10110. }
  10111. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  10112. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  10113. iq2_data[gindex].neighbours = kneighbors_q2xs;
  10114. int counter = 0;
  10115. for (int i = 0; i < kmap_size; ++i) {
  10116. if (kmap_q2xs[i] >= 0) continue;
  10117. for (int k = 0; k < 8; ++k) {
  10118. int l = (i >> 2*k) & 0x3;
  10119. pos[k] = 2*l + 1;
  10120. }
  10121. for (int j = 0; j < grid_size; ++j) {
  10122. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  10123. int d2 = 0;
  10124. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10125. dist2[2*j+0] = d2;
  10126. dist2[2*j+1] = j;
  10127. }
  10128. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  10129. kmap_q2xs[i] = -(counter + 1);
  10130. int d2 = dist2[0];
  10131. uint16_t * start = &kneighbors_q2xs[counter++];
  10132. int n = 0, nhave = 1;
  10133. for (int j = 0; j < grid_size; ++j) {
  10134. if (dist2[2*j] > d2) {
  10135. if (nhave == nwant) break;
  10136. d2 = dist2[2*j];
  10137. ++nhave;
  10138. }
  10139. kneighbors_q2xs[counter++] = dist2[2*j+1];
  10140. ++n;
  10141. }
  10142. *start = n;
  10143. }
  10144. free(dist2);
  10145. }
  10146. void iq2xs_free_impl(enum ggml_type type) {
  10147. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  10148. const int gindex = iq2_data_index(type);
  10149. if (iq2_data[gindex].grid) {
  10150. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  10151. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  10152. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  10153. }
  10154. }
  10155. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  10156. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  10157. int num_neighbors = neighbours[0];
  10158. GGML_ASSERT(num_neighbors > 0);
  10159. float best_d2 = FLT_MAX;
  10160. int grid_index = -1;
  10161. for (int j = 1; j <= num_neighbors; ++j) {
  10162. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10163. float d2 = 0;
  10164. for (int i = 0; i < 8; ++i) {
  10165. float q = pg[i];
  10166. float diff = scale*q - xval[i];
  10167. d2 += weight[i]*diff*diff;
  10168. }
  10169. if (d2 < best_d2) {
  10170. best_d2 = d2; grid_index = neighbours[j];
  10171. }
  10172. }
  10173. GGML_ASSERT(grid_index >= 0);
  10174. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10175. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  10176. return grid_index;
  10177. }
  10178. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  10179. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  10180. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  10181. const int * kmap_q2xs = iq2_data[gindex].map;
  10182. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  10183. GGML_ASSERT(quant_weights && "missing quantization weights");
  10184. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  10185. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  10186. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  10187. GGML_ASSERT(n%QK_K == 0);
  10188. const int kMaxQ = 3;
  10189. const int64_t nbl = n/QK_K;
  10190. block_iq2_xxs * y = vy;
  10191. float scales[QK_K/32];
  10192. float weight[32];
  10193. float xval[32];
  10194. int8_t L[32];
  10195. int8_t Laux[32];
  10196. float waux[32];
  10197. uint8_t block_signs[4];
  10198. uint32_t q2[2*(QK_K/32)];
  10199. for (int ibl = 0; ibl < nbl; ++ibl) {
  10200. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10201. memset(q2, 0, QK_K/4);
  10202. float max_scale = 0;
  10203. const float * xbl = x + QK_K*ibl;
  10204. float sumx2 = 0;
  10205. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10206. float sigma2 = sumx2/QK_K;
  10207. for (int ib = 0; ib < QK_K/32; ++ib) {
  10208. const float * xb = xbl + 32*ib;
  10209. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  10210. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10211. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  10212. for (int k = 0; k < 4; ++k) {
  10213. int nflip = 0;
  10214. uint8_t s = 0;
  10215. for (int i = 0; i < 8; ++i) {
  10216. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10217. else {
  10218. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10219. }
  10220. }
  10221. if (nflip%2) {
  10222. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10223. for (int i = 1; i < 8; ++i) {
  10224. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10225. if (ax < min) {
  10226. min = ax; imin = i;
  10227. }
  10228. }
  10229. xval[8*k+imin] = -xval[8*k+imin];
  10230. s ^= (1 << imin);
  10231. }
  10232. block_signs[k] = s & 127;
  10233. }
  10234. float max = xval[0];
  10235. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  10236. if (max < GROUP_MAX_EPS) {
  10237. scales[ib] = 0;
  10238. memset(L, 0, 32);
  10239. continue;
  10240. }
  10241. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  10242. float eff_max = scale*kMaxQ;
  10243. float best = 0;
  10244. for (int is = -6; is <= 6; ++is) {
  10245. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  10246. float this_scale = 1/id;
  10247. for (int k = 0; k < 4; ++k) {
  10248. for (int i = 0; i < 8; ++i) {
  10249. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10250. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10251. }
  10252. uint16_t u = 0;
  10253. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  10254. int grid_index = kmap_q2xs[u];
  10255. if (grid_index < 0) {
  10256. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10257. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  10258. }
  10259. }
  10260. float sumqx = 0, sumq2 = 0;
  10261. for (int i = 0; i < 32; ++i) {
  10262. float w = weight[i];
  10263. float q = 2*Laux[i] + 1;
  10264. sumqx += w*xval[i]*q;
  10265. sumq2 += w*q*q;
  10266. }
  10267. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10268. scale = sumqx/sumq2; best = scale*sumqx;
  10269. memcpy(L, Laux, 32);
  10270. }
  10271. }
  10272. if (scale > 0) {
  10273. float id = 1/scale;
  10274. for (int k = 0; k < 4; ++k) {
  10275. uint16_t u = 0;
  10276. for (int i = 0; i < 8; ++i) {
  10277. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10278. l = MAX(0, MIN(kMaxQ-1, l));
  10279. u |= (l << 2*i);
  10280. }
  10281. int grid_index = kmap_q2xs[u];
  10282. if (grid_index < 0) {
  10283. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10284. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  10285. }
  10286. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  10287. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  10288. }
  10289. float sumqx = 0, sumq2 = 0;
  10290. for (int i = 0; i < 32; ++i) {
  10291. float w = weight[i];
  10292. float q = 2*L[i] + 1;
  10293. sumqx += w*xval[i]*q;
  10294. sumq2 += w*q*q;
  10295. }
  10296. if (sumq2 > 0) scale = sumqx/sumq2;
  10297. }
  10298. if (scale < 0) {
  10299. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  10300. // and correspondingly flip quant signs.
  10301. scale = -scale;
  10302. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10303. }
  10304. for (int k = 0; k < 4; ++k) {
  10305. uint16_t u = 0;
  10306. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  10307. int grid_index = kmap_q2xs[u];
  10308. if (grid_index < 0) {
  10309. printf("Oops: found point %u not on grid:", u);
  10310. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  10311. printf("\n");
  10312. GGML_ABORT("fatal error");
  10313. }
  10314. q2[2*ib+0] |= ((uint32_t) grid_index << 8*k);
  10315. q2[2*ib+1] |= (block_signs[k] << 7*k);
  10316. }
  10317. GGML_ASSERT(scale >= 0);
  10318. scales[ib] = scale;
  10319. max_scale = MAX(max_scale, scale);
  10320. }
  10321. if (!max_scale) {
  10322. memset(y[ibl].qs, 0, QK_K/4);
  10323. continue;
  10324. }
  10325. float d = max_scale/31;
  10326. y[ibl].d = GGML_FP32_TO_FP16(d);
  10327. float id = 1/d;
  10328. for (int ib = 0; ib < QK_K/32; ++ib) {
  10329. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10330. l = MAX(0, MIN(15, l));
  10331. q2[2*ib+1] |= ((uint32_t)l << 28);
  10332. }
  10333. memcpy(y[ibl].qs, q2, QK_K/4);
  10334. }
  10335. }
  10336. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  10337. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  10338. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  10339. const int * kmap_q2xs = iq2_data[gindex].map;
  10340. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  10341. GGML_ASSERT(quant_weights && "missing quantization weights");
  10342. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  10343. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  10344. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  10345. GGML_ASSERT(n%QK_K == 0);
  10346. const int kMaxQ = 3;
  10347. const int64_t nbl = n/QK_K;
  10348. block_iq2_xs * y = vy;
  10349. float scales[QK_K/16];
  10350. float weight[16];
  10351. float xval[16];
  10352. int8_t L[16];
  10353. int8_t Laux[16];
  10354. float waux[16];
  10355. bool is_on_grid[2];
  10356. bool is_on_grid_aux[2];
  10357. uint8_t block_signs[2];
  10358. uint16_t q2[2*(QK_K/16)];
  10359. for (int ibl = 0; ibl < nbl; ++ibl) {
  10360. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10361. memset(q2, 0, QK_K/4);
  10362. memset(y[ibl].scales, 0, QK_K/32);
  10363. float max_scale = 0;
  10364. const float * xbl = x + QK_K*ibl;
  10365. float sumx2 = 0;
  10366. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10367. float sigma2 = sumx2/QK_K;
  10368. for (int ib = 0; ib < QK_K/16; ++ib) {
  10369. const float * xb = xbl + 16*ib;
  10370. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  10371. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10372. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  10373. for (int k = 0; k < 2; ++k) {
  10374. int nflip = 0;
  10375. uint8_t s = 0;
  10376. for (int i = 0; i < 8; ++i) {
  10377. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10378. else {
  10379. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10380. }
  10381. }
  10382. if (nflip%2) {
  10383. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10384. for (int i = 1; i < 8; ++i) {
  10385. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10386. if (ax < min) {
  10387. min = ax; imin = i;
  10388. }
  10389. }
  10390. xval[8*k+imin] = -xval[8*k+imin];
  10391. s ^= (1 << imin);
  10392. }
  10393. block_signs[k] = s & 127;
  10394. }
  10395. float max = xval[0];
  10396. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  10397. if (max < GROUP_MAX_EPS) {
  10398. scales[ib] = 0;
  10399. memset(L, 0, 16);
  10400. continue;
  10401. }
  10402. float best = 0;
  10403. float scale = max/(2*kMaxQ-1);
  10404. is_on_grid[0] = is_on_grid[1] = true;
  10405. for (int is = -9; is <= 9; ++is) {
  10406. float id = (2*kMaxQ-1+is*0.1f)/max;
  10407. float this_scale = 1/id;
  10408. for (int k = 0; k < 2; ++k) {
  10409. for (int i = 0; i < 8; ++i) {
  10410. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10411. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10412. }
  10413. uint16_t u = 0;
  10414. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  10415. int grid_index = kmap_q2xs[u];
  10416. is_on_grid_aux[k] = true;
  10417. if (grid_index < 0) {
  10418. is_on_grid_aux[k] = false;
  10419. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10420. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  10421. }
  10422. }
  10423. float sumqx = 0, sumq2 = 0;
  10424. for (int i = 0; i < 16; ++i) {
  10425. float w = weight[i];
  10426. float q = 2*Laux[i] + 1;
  10427. sumqx += w*xval[i]*q;
  10428. sumq2 += w*q*q;
  10429. }
  10430. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10431. scale = sumqx/sumq2; best = scale*sumqx;
  10432. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  10433. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  10434. }
  10435. }
  10436. int n_not_ongrid = 0;
  10437. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  10438. if (n_not_ongrid > 0 && scale > 0) {
  10439. float id = 1/scale;
  10440. for (int k = 0; k < 2; ++k) {
  10441. if (is_on_grid[k]) continue;
  10442. uint16_t u = 0;
  10443. for (int i = 0; i < 8; ++i) {
  10444. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10445. l = MAX(0, MIN(kMaxQ-1, l));
  10446. u |= (l << 2*i);
  10447. L[8*k + i] = l;
  10448. }
  10449. int grid_index = kmap_q2xs[u];
  10450. if (grid_index < 0) {
  10451. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10452. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  10453. }
  10454. }
  10455. float sumqx = 0, sumq2 = 0;
  10456. for (int i = 0; i < 16; ++i) {
  10457. float w = weight[i];
  10458. float q = 2*L[i] + 1;
  10459. sumqx += w*xval[i]*q;
  10460. sumq2 += w*q*q;
  10461. }
  10462. if (sumq2 > 0) scale = sumqx/sumq2;
  10463. }
  10464. if (scale < 0) {
  10465. scale = -scale;
  10466. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10467. }
  10468. for (int k = 0; k < 2; ++k) {
  10469. uint16_t u = 0;
  10470. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  10471. int grid_index = kmap_q2xs[u];
  10472. if (grid_index < 0) {
  10473. printf("Oops: found point %u not on grid:", u);
  10474. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  10475. printf("\n");
  10476. GGML_ABORT("fatal error");
  10477. }
  10478. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  10479. }
  10480. GGML_ASSERT(scale >= 0);
  10481. scales[ib] = scale;
  10482. max_scale = MAX(max_scale, scale);
  10483. }
  10484. if (!max_scale) {
  10485. memset(y[ibl].qs, 0, QK_K/4);
  10486. continue;
  10487. }
  10488. float d = max_scale/31;
  10489. y[ibl].d = GGML_FP32_TO_FP16(d);
  10490. float id = 1/d;
  10491. for (int ib = 0; ib < QK_K/16; ++ib) {
  10492. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10493. l = MAX(0, MIN(15, l));
  10494. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  10495. else y[ibl].scales[ib/2] |= (l << 4);
  10496. }
  10497. memcpy(y[ibl].qs, q2, QK_K/4);
  10498. }
  10499. }
  10500. size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10501. GGML_ASSERT(n_per_row%QK_K == 0);
  10502. int64_t nblock = n_per_row/QK_K;
  10503. char * qrow = (char *)dst;
  10504. for (int64_t row = 0; row < nrow; ++row) {
  10505. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  10506. src += n_per_row;
  10507. qrow += nblock*sizeof(block_iq2_xxs);
  10508. }
  10509. return nrow * nblock * sizeof(block_iq2_xxs);
  10510. }
  10511. size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10512. GGML_ASSERT(n_per_row%QK_K == 0);
  10513. int64_t nblock = n_per_row/QK_K;
  10514. char * qrow = (char *)dst;
  10515. for (int64_t row = 0; row < nrow; ++row) {
  10516. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  10517. src += n_per_row;
  10518. qrow += nblock*sizeof(block_iq2_xs);
  10519. }
  10520. return nrow * nblock * sizeof(block_iq2_xs);
  10521. }
  10522. //
  10523. // ============================================= 3-bit using D4 lattice
  10524. //
  10525. typedef struct {
  10526. uint32_t * grid;
  10527. int * map;
  10528. uint16_t * neighbours;
  10529. } iq3_entry_t;
  10530. static iq3_entry_t iq3_data[2] = {
  10531. {NULL, NULL, NULL},
  10532. {NULL, NULL, NULL},
  10533. };
  10534. static inline int iq3_data_index(int grid_size) {
  10535. (void)grid_size;
  10536. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  10537. return grid_size == 256 ? 0 : 1;
  10538. }
  10539. static int iq3_compare_func(const void * left, const void * right) {
  10540. const int * l = (const int *)left;
  10541. const int * r = (const int *)right;
  10542. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  10543. }
  10544. void iq3xs_init_impl(int grid_size) {
  10545. const int gindex = iq3_data_index(grid_size);
  10546. if (iq3_data[gindex].grid) {
  10547. return;
  10548. }
  10549. static const uint16_t kgrid_256[256] = {
  10550. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  10551. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  10552. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  10553. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  10554. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  10555. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  10556. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  10557. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  10558. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  10559. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  10560. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  10561. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  10562. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  10563. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  10564. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  10565. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  10566. };
  10567. static const uint16_t kgrid_512[512] = {
  10568. 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
  10569. 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
  10570. 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
  10571. 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
  10572. 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
  10573. 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
  10574. 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
  10575. 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
  10576. 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
  10577. 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
  10578. 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
  10579. 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
  10580. 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
  10581. 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
  10582. 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
  10583. 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
  10584. 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
  10585. 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
  10586. 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
  10587. 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
  10588. 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
  10589. 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
  10590. 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
  10591. 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
  10592. 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
  10593. 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
  10594. 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
  10595. 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
  10596. 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
  10597. 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
  10598. 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
  10599. 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
  10600. };
  10601. const int kmap_size = 4096;
  10602. const int nwant = grid_size == 256 ? 2 : 3;
  10603. const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
  10604. uint32_t * kgrid_q3xs;
  10605. int * kmap_q3xs;
  10606. uint16_t * kneighbors_q3xs;
  10607. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  10608. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  10609. for (int k = 0; k < grid_size; ++k) {
  10610. int8_t * pos = (int8_t *)(the_grid + k);
  10611. for (int i = 0; i < 4; ++i) {
  10612. int l = (kgrid[k] >> 3*i) & 0x7;
  10613. pos[i] = 2*l + 1;
  10614. }
  10615. }
  10616. kgrid_q3xs = the_grid;
  10617. iq3_data[gindex].grid = the_grid;
  10618. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  10619. iq3_data[gindex].map = kmap_q3xs;
  10620. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  10621. uint32_t aux32;
  10622. uint8_t * aux8 = (uint8_t *)&aux32;
  10623. for (int i = 0; i < grid_size; ++i) {
  10624. aux32 = kgrid_q3xs[i];
  10625. uint16_t index = 0;
  10626. for (int k=0; k<4; ++k) {
  10627. uint16_t q = (aux8[k] - 1)/2;
  10628. index |= (q << 3*k);
  10629. }
  10630. kmap_q3xs[index] = i;
  10631. }
  10632. int8_t pos[4];
  10633. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  10634. int num_neighbors = 0, num_not_in_map = 0;
  10635. for (int i = 0; i < kmap_size; ++i) {
  10636. if (kmap_q3xs[i] >= 0) continue;
  10637. ++num_not_in_map;
  10638. for (int k = 0; k < 4; ++k) {
  10639. int l = (i >> 3*k) & 0x7;
  10640. pos[k] = 2*l + 1;
  10641. }
  10642. for (int j = 0; j < grid_size; ++j) {
  10643. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  10644. int d2 = 0;
  10645. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10646. dist2[2*j+0] = d2;
  10647. dist2[2*j+1] = j;
  10648. }
  10649. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  10650. int n = 0; int d2 = dist2[0];
  10651. int nhave = 1;
  10652. for (int j = 0; j < grid_size; ++j) {
  10653. if (dist2[2*j] > d2) {
  10654. if (nhave == nwant) break;
  10655. d2 = dist2[2*j];
  10656. ++nhave;
  10657. }
  10658. ++n;
  10659. }
  10660. num_neighbors += n;
  10661. }
  10662. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  10663. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  10664. iq3_data[gindex].neighbours = kneighbors_q3xs;
  10665. int counter = 0;
  10666. for (int i = 0; i < kmap_size; ++i) {
  10667. if (kmap_q3xs[i] >= 0) continue;
  10668. for (int k = 0; k < 4; ++k) {
  10669. int l = (i >> 3*k) & 0x7;
  10670. pos[k] = 2*l + 1;
  10671. }
  10672. for (int j = 0; j < grid_size; ++j) {
  10673. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  10674. int d2 = 0;
  10675. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10676. dist2[2*j+0] = d2;
  10677. dist2[2*j+1] = j;
  10678. }
  10679. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  10680. kmap_q3xs[i] = -(counter + 1);
  10681. int d2 = dist2[0];
  10682. uint16_t * start = &kneighbors_q3xs[counter++];
  10683. int n = 0, nhave = 1;
  10684. for (int j = 0; j < grid_size; ++j) {
  10685. if (dist2[2*j] > d2) {
  10686. if (nhave == nwant) break;
  10687. d2 = dist2[2*j];
  10688. ++nhave;
  10689. }
  10690. kneighbors_q3xs[counter++] = dist2[2*j+1];
  10691. ++n;
  10692. }
  10693. *start = n;
  10694. }
  10695. free(dist2);
  10696. }
  10697. void iq3xs_free_impl(int grid_size) {
  10698. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  10699. const int gindex = iq3_data_index(grid_size);
  10700. if (iq3_data[gindex].grid) {
  10701. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  10702. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  10703. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  10704. }
  10705. }
  10706. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  10707. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  10708. int num_neighbors = neighbours[0];
  10709. GGML_ASSERT(num_neighbors > 0);
  10710. float best_d2 = FLT_MAX;
  10711. int grid_index = -1;
  10712. for (int j = 1; j <= num_neighbors; ++j) {
  10713. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10714. float d2 = 0;
  10715. for (int i = 0; i < 4; ++i) {
  10716. float q = pg[i];
  10717. float diff = scale*q - xval[i];
  10718. d2 += weight[i]*diff*diff;
  10719. }
  10720. if (d2 < best_d2) {
  10721. best_d2 = d2; grid_index = neighbours[j];
  10722. }
  10723. }
  10724. GGML_ASSERT(grid_index >= 0);
  10725. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10726. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  10727. return grid_index;
  10728. }
  10729. static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int64_t n,
  10730. const float * restrict quant_weights) {
  10731. const int gindex = iq3_data_index(grid_size);
  10732. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  10733. const int * kmap_q3xs = iq3_data[gindex].map;
  10734. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  10735. //GGML_ASSERT(quant_weights && "missing quantization weights");
  10736. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  10737. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  10738. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  10739. GGML_ASSERT(n%QK_K == 0);
  10740. const int kMaxQ = 8;
  10741. const int64_t nbl = n/QK_K;
  10742. ggml_fp16_t * dh;
  10743. uint8_t * qs;
  10744. int block_size;
  10745. if (grid_size == 256) {
  10746. block_iq3_xxs * y = vy;
  10747. dh = &y->d;
  10748. qs = y->qs;
  10749. block_size = sizeof(block_iq3_xxs);
  10750. } else {
  10751. block_iq3_s * y = vy;
  10752. dh = &y->d;
  10753. qs = y->qs;
  10754. block_size = sizeof(block_iq3_s);
  10755. }
  10756. int quant_size = block_size - sizeof(ggml_fp16_t);
  10757. float scales[QK_K/32];
  10758. float weight[32];
  10759. float xval[32];
  10760. int8_t L[32];
  10761. int8_t Laux[32];
  10762. float waux[32];
  10763. bool is_on_grid[8];
  10764. bool is_on_grid_aux[8];
  10765. uint8_t block_signs[8];
  10766. uint8_t q3[3*(QK_K/8)+QK_K/32];
  10767. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  10768. uint8_t * qh = q3 + 3*(QK_K/8);
  10769. for (int ibl = 0; ibl < nbl; ++ibl) {
  10770. dh[0] = GGML_FP32_TO_FP16(0.f);
  10771. memset(q3, 0, 3*QK_K/8+QK_K/32);
  10772. float max_scale = 0;
  10773. const float * xbl = x + QK_K*ibl;
  10774. float sumx2 = 0;
  10775. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10776. float sigma2 = 2*sumx2/QK_K;
  10777. for (int ib = 0; ib < QK_K/32; ++ib) {
  10778. const float * xb = xbl + 32*ib;
  10779. if (quant_weights) {
  10780. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  10781. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10782. } else {
  10783. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  10784. }
  10785. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  10786. for (int k = 0; k < 4; ++k) {
  10787. int nflip = 0;
  10788. uint8_t s = 0;
  10789. for (int i = 0; i < 8; ++i) {
  10790. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10791. else {
  10792. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10793. }
  10794. }
  10795. if (nflip%2) {
  10796. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10797. for (int i = 1; i < 8; ++i) {
  10798. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10799. if (ax < min) {
  10800. min = ax; imin = i;
  10801. }
  10802. }
  10803. xval[8*k+imin] = -xval[8*k+imin];
  10804. s ^= (1 << imin);
  10805. }
  10806. block_signs[k] = s & 127;
  10807. }
  10808. float max = xval[0];
  10809. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  10810. if (max < GROUP_MAX_EPS_IQ3_XXS) {
  10811. scales[ib] = 0;
  10812. memset(L, 0, 32);
  10813. continue;
  10814. }
  10815. float best = 0;
  10816. float scale = max/(2*kMaxQ-1);
  10817. for (int is = -15; is <= 15; ++is) {
  10818. float id = (2*kMaxQ-1+is*0.2f)/max;
  10819. float this_scale = 1/id;
  10820. for (int k = 0; k < 8; ++k) {
  10821. for (int i = 0; i < 4; ++i) {
  10822. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10823. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10824. }
  10825. uint16_t u = 0;
  10826. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  10827. int grid_index = kmap_q3xs[u];
  10828. is_on_grid_aux[k] = true;
  10829. if (grid_index < 0) {
  10830. is_on_grid_aux[k] = false;
  10831. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10832. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  10833. }
  10834. }
  10835. float sumqx = 0, sumq2 = 0;
  10836. for (int i = 0; i < 32; ++i) {
  10837. float w = weight[i];
  10838. float q = 2*Laux[i] + 1;
  10839. sumqx += w*xval[i]*q;
  10840. sumq2 += w*q*q;
  10841. }
  10842. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10843. scale = sumqx/sumq2; best = scale*sumqx;
  10844. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  10845. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  10846. }
  10847. }
  10848. int n_not_ongrid = 0;
  10849. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  10850. if (n_not_ongrid > 0 && scale > 0) {
  10851. float id = 1/scale;
  10852. for (int k = 0; k < 8; ++k) {
  10853. if (is_on_grid[k]) continue;
  10854. uint16_t u = 0;
  10855. for (int i = 0; i < 4; ++i) {
  10856. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10857. l = MAX(0, MIN(kMaxQ-1, l));
  10858. u |= (l << 3*i);
  10859. }
  10860. int grid_index = kmap_q3xs[u];
  10861. if (grid_index < 0) {
  10862. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10863. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  10864. }
  10865. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  10866. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  10867. }
  10868. float sumqx = 0, sumq2 = 0;
  10869. for (int i = 0; i < 32; ++i) {
  10870. float w = weight[i];
  10871. float q = 2*L[i] + 1;
  10872. sumqx += w*xval[i]*q;
  10873. sumq2 += w*q*q;
  10874. }
  10875. if (sumq2 > 0) scale = sumqx/sumq2;
  10876. }
  10877. if (scale < 0) {
  10878. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  10879. // and correspondingly flip quant signs.
  10880. scale = -scale;
  10881. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10882. }
  10883. for (int k = 0; k < 8; ++k) {
  10884. uint16_t u = 0;
  10885. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  10886. int grid_index = kmap_q3xs[u];
  10887. if (grid_index < 0) {
  10888. printf("Oops: found point %u not on grid:", u);
  10889. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  10890. printf("\n");
  10891. GGML_ABORT("fatal error");
  10892. }
  10893. if (grid_size == 256) {
  10894. q3[8*ib+k] = grid_index;
  10895. } else {
  10896. q3[8*ib+k] = grid_index & 255;
  10897. qh[ib] |= ((grid_index >> 8) << k);
  10898. }
  10899. }
  10900. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  10901. GGML_ASSERT(scale >= 0);
  10902. scales[ib] = scale;
  10903. max_scale = MAX(max_scale, scale);
  10904. }
  10905. if (!max_scale) {
  10906. memset(qs, 0, quant_size);
  10907. dh += block_size/sizeof(ggml_fp16_t);
  10908. qs += block_size;
  10909. continue;
  10910. }
  10911. float d = max_scale/31;
  10912. dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
  10913. float id = 1/d;
  10914. for (int ib = 0; ib < QK_K/32; ++ib) {
  10915. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10916. l = MAX(0, MIN(15, l));
  10917. scales_and_signs[ib] |= ((uint32_t)l << 28);
  10918. }
  10919. memcpy(qs, q3, quant_size);
  10920. dh += block_size/sizeof(ggml_fp16_t);
  10921. qs += block_size;
  10922. }
  10923. }
  10924. size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10925. GGML_ASSERT(n_per_row%QK_K == 0);
  10926. int64_t nblock = n_per_row/QK_K;
  10927. char * qrow = (char *)dst;
  10928. for (int64_t row = 0; row < nrow; ++row) {
  10929. quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
  10930. src += n_per_row;
  10931. qrow += nblock*sizeof(block_iq3_xxs);
  10932. }
  10933. return nrow * nblock * sizeof(block_iq3_xxs);
  10934. }
  10935. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int64_t k) {
  10936. assert(k % QK_K == 0);
  10937. block_iq3_xxs * restrict y = vy;
  10938. quantize_row_iq3_xxs_ref(x, y, k);
  10939. }
  10940. void quantize_row_iq3_xxs_ref(const float * restrict x, block_iq3_xxs * restrict y, int64_t k) {
  10941. assert(k % QK_K == 0);
  10942. quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
  10943. }
  10944. static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
  10945. const float * restrict quant_weights,
  10946. float * scales,
  10947. float * weight,
  10948. float * xval,
  10949. int8_t * L,
  10950. int8_t * Laux,
  10951. float * waux,
  10952. bool * is_on_grid,
  10953. bool * is_on_grid_aux,
  10954. uint8_t * block_signs) {
  10955. const int gindex = iq3_data_index(512);
  10956. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  10957. const int * kmap_q3xs = iq3_data[gindex].map;
  10958. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  10959. //GGML_ASSERT(quant_weights && "missing quantization weights");
  10960. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  10961. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  10962. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  10963. GGML_ASSERT(n%QK_K == 0);
  10964. const int kMaxQ = 8;
  10965. const int64_t nbl = n/QK_K;
  10966. block_iq3_s * y = vy;
  10967. const int bs4 = block_size/4;
  10968. const int bs8 = block_size/8;
  10969. for (int ibl = 0; ibl < nbl; ++ibl) {
  10970. memset(&y[ibl], 0, sizeof(block_iq3_s));
  10971. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10972. uint8_t * qs = y[ibl].qs;
  10973. uint8_t * qh = y[ibl].qh;
  10974. uint8_t * signs = y[ibl].signs;
  10975. float max_scale = 0;
  10976. const float * xbl = x + QK_K*ibl;
  10977. float sumx2 = 0;
  10978. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10979. float sigma2 = 2*sumx2/QK_K;
  10980. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  10981. const float * xb = xbl + block_size*ib;
  10982. if (quant_weights) {
  10983. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  10984. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10985. } else {
  10986. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  10987. }
  10988. for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
  10989. for (int k = 0; k < bs8; ++k) {
  10990. uint8_t s = 0;
  10991. for (int i = 0; i < 8; ++i) {
  10992. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10993. else {
  10994. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  10995. }
  10996. }
  10997. block_signs[k] = s;
  10998. }
  10999. float max = xval[0];
  11000. for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
  11001. if (!max) {
  11002. scales[ib] = 0;
  11003. continue;
  11004. }
  11005. float best = 0;
  11006. float scale = max/(2*kMaxQ-1);
  11007. for (int k = 0; k < bs4; ++k) is_on_grid[k] = false;
  11008. for (int is = -9; is <= 9; ++is) {
  11009. float id = (2*kMaxQ-1+is*0.2f)/max;
  11010. float this_scale = 1/id;
  11011. for (int k = 0; k < bs4; ++k) {
  11012. for (int i = 0; i < 4; ++i) {
  11013. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  11014. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11015. }
  11016. uint16_t u = 0;
  11017. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  11018. int grid_index = kmap_q3xs[u];
  11019. is_on_grid_aux[k] = true;
  11020. if (grid_index < 0) {
  11021. is_on_grid_aux[k] = false;
  11022. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  11023. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  11024. }
  11025. }
  11026. float sumqx = 0, sumq2 = 0;
  11027. for (int i = 0; i < block_size; ++i) {
  11028. float w = weight[i];
  11029. float q = 2*Laux[i] + 1;
  11030. sumqx += w*xval[i]*q;
  11031. sumq2 += w*q*q;
  11032. }
  11033. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11034. scale = sumqx/sumq2; best = scale*sumqx;
  11035. for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
  11036. for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11037. }
  11038. }
  11039. int n_not_ongrid = 0;
  11040. for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11041. if (n_not_ongrid > 0 && scale > 0) {
  11042. float id = 1/scale;
  11043. for (int k = 0; k < bs4; ++k) {
  11044. //if (is_on_grid[k]) continue;
  11045. uint16_t u = 0;
  11046. for (int i = 0; i < 4; ++i) {
  11047. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  11048. l = MAX(0, MIN(kMaxQ-1, l));
  11049. u |= (l << 3*i);
  11050. }
  11051. int grid_index = kmap_q3xs[u];
  11052. if (grid_index < 0) {
  11053. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  11054. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  11055. }
  11056. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  11057. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  11058. }
  11059. float sumqx = 0, sumq2 = 0;
  11060. for (int i = 0; i < block_size; ++i) {
  11061. float w = weight[i];
  11062. float q = 2*L[i] + 1;
  11063. sumqx += w*xval[i]*q;
  11064. sumq2 += w*q*q;
  11065. }
  11066. if (sumq2 > 0) scale = sumqx/sumq2;
  11067. }
  11068. if (scale < 0) {
  11069. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  11070. // and correspondingly flip quant signs.
  11071. scale = -scale;
  11072. for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
  11073. }
  11074. for (int k = 0; k < bs4; ++k) {
  11075. uint16_t u = 0;
  11076. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  11077. int grid_index = kmap_q3xs[u];
  11078. if (grid_index < 0) {
  11079. printf("Oops: found point %u not on grid:", u);
  11080. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  11081. printf("\n");
  11082. GGML_ABORT("fatal error");
  11083. }
  11084. qs[k] = grid_index & 255;
  11085. qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
  11086. }
  11087. qs += bs4;
  11088. for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
  11089. signs += bs8;
  11090. GGML_ASSERT(scale >= 0);
  11091. scales[ib] = scale;
  11092. max_scale = MAX(max_scale, scale);
  11093. }
  11094. if (!max_scale) {
  11095. continue;
  11096. }
  11097. float d = max_scale/31;
  11098. y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f);
  11099. float id = 1/d;
  11100. for (int ib = 0; ib < QK_K/block_size; ib += 2) {
  11101. int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
  11102. l1 = MAX(0, MIN(15, l1));
  11103. int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
  11104. l2 = MAX(0, MIN(15, l2));
  11105. y[ibl].scales[ib/2] = l1 | (l2 << 4);
  11106. }
  11107. }
  11108. }
  11109. #define IQ3S_BLOCK_SIZE 32
  11110. size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11111. GGML_ASSERT(n_per_row%QK_K == 0);
  11112. int64_t nblock = n_per_row/QK_K;
  11113. float scales[QK_K/IQ3S_BLOCK_SIZE];
  11114. float weight[IQ3S_BLOCK_SIZE];
  11115. float xval[IQ3S_BLOCK_SIZE];
  11116. int8_t L[IQ3S_BLOCK_SIZE];
  11117. int8_t Laux[IQ3S_BLOCK_SIZE];
  11118. float waux[IQ3S_BLOCK_SIZE];
  11119. bool is_on_grid[IQ3S_BLOCK_SIZE/4];
  11120. bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
  11121. uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
  11122. char * qrow = (char *)dst;
  11123. for (int64_t row = 0; row < nrow; ++row) {
  11124. quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
  11125. scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
  11126. src += n_per_row;
  11127. qrow += nblock*sizeof(block_iq3_s);
  11128. }
  11129. return nrow * nblock * sizeof(block_iq3_s);
  11130. }
  11131. void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int64_t k) {
  11132. assert(k % QK_K == 0);
  11133. block_iq3_s * restrict y = vy;
  11134. quantize_row_iq3_s_ref(x, y, k);
  11135. }
  11136. void quantize_row_iq3_s_ref(const float * restrict x, block_iq3_s * restrict y, int64_t k) {
  11137. assert(k % QK_K == 0);
  11138. quantize_iq3_s(x, y, 1, k, NULL);
  11139. }
  11140. // =================================== 1.5 bpw ===================================================
  11141. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  11142. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  11143. int num_neighbors = neighbours[0];
  11144. GGML_ASSERT(num_neighbors > 0);
  11145. float best_score = -FLT_MAX;
  11146. int grid_index = -1;
  11147. for (int j = 1; j <= num_neighbors; ++j) {
  11148. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11149. float sumqx = 0, sumq2 = 0;
  11150. for (int i = 0; i < 8; ++i) {
  11151. float q = (pg[i] - 3)/2;
  11152. float w = weight[i];
  11153. sumqx += w*q*xval[i];
  11154. sumq2 += w*q*q;
  11155. }
  11156. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11157. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  11158. grid_index = neighbours[j];
  11159. }
  11160. }
  11161. if (grid_index < 0) {
  11162. for (int i = 0; i < ngrid; ++i) {
  11163. const int8_t * grid_i = (const int8_t *)(grid + i);
  11164. float sumqx = 0, sumq2 = 0;
  11165. for (int j = 0; j < 8; ++j) {
  11166. float w = weight[j];
  11167. float q = (grid_i[j] - 3)/2;
  11168. sumqx += w*q*xval[j];
  11169. sumq2 += w*q*q;
  11170. }
  11171. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11172. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  11173. grid_index = i;
  11174. }
  11175. }
  11176. }
  11177. if (grid_index < 0) {
  11178. printf("Oops, did not find grid point\n");
  11179. printf("Have %d neighbours\n", num_neighbors);
  11180. for (int j = 1; j <= num_neighbors; ++j) {
  11181. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11182. float sumqx = 0, sumq2 = 0;
  11183. for (int i = 0; i < 8; ++i) {
  11184. float q = (pg[i] - 3)/2;
  11185. float w = weight[i];
  11186. sumqx += w*q*xval[i];
  11187. sumq2 += w*q*q;
  11188. }
  11189. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  11190. }
  11191. }
  11192. GGML_ASSERT(grid_index >= 0);
  11193. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  11194. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  11195. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  11196. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11197. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  11198. return grid_index;
  11199. }
  11200. static int iq1_find_best_neighbour2(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  11201. const float * restrict xval, const float * restrict weight, float scale, const float * restrict xg, int8_t * restrict L, int ngrid) {
  11202. int num_neighbors = neighbours[0];
  11203. GGML_ASSERT(num_neighbors > 0);
  11204. float best_score = FLT_MAX;
  11205. int grid_index = -1;
  11206. for (int j = 1; j <= num_neighbors; ++j) {
  11207. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11208. float d2 = 0;
  11209. for (int i = 0; i < 8; ++i) {
  11210. float q = xg[(pg[i] - 1)/2];
  11211. float w = weight[i];
  11212. float diff = scale*q - xval[i];
  11213. d2 += w*diff*diff;
  11214. }
  11215. if (d2 < best_score) {
  11216. best_score = d2;
  11217. grid_index = neighbours[j];
  11218. }
  11219. }
  11220. if (grid_index < 0) {
  11221. for (int i = 0; i < ngrid; ++i) {
  11222. const int8_t * grid_i = (const int8_t *)(grid + i);
  11223. float d2 = 0;
  11224. for (int j = 0; j < 8; ++j) {
  11225. float w = weight[j];
  11226. float q = xg[(grid_i[j] - 1)/2];
  11227. float diff = scale*q - xval[i];
  11228. d2 += w*diff*diff;
  11229. }
  11230. if (d2 < best_score) {
  11231. best_score = d2;
  11232. grid_index = i;
  11233. }
  11234. }
  11235. }
  11236. if (grid_index < 0) {
  11237. printf("Oops, did not find grid point\n");
  11238. printf("Have %d neighbours\n", num_neighbors);
  11239. for (int j = 1; j <= num_neighbors; ++j) {
  11240. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11241. float sumqx = 0, sumq2 = 0;
  11242. for (int i = 0; i < 8; ++i) {
  11243. float q = xg[(pg[i] - 1)/2];
  11244. float w = weight[i];
  11245. sumqx += w*q*xval[i];
  11246. sumq2 += w*q*q;
  11247. }
  11248. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  11249. }
  11250. }
  11251. GGML_ASSERT(grid_index >= 0);
  11252. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11253. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  11254. return grid_index;
  11255. }
  11256. static int iq1_sort_helper(const void * left, const void * right) {
  11257. const float * l = left;
  11258. const float * r = right;
  11259. return *l < *r ? -1 : *l > *r ? 1 : 0;
  11260. }
  11261. #define IQ1S_BLOCK_SIZE 32
  11262. #define IQ1M_BLOCK_SIZE 16
  11263. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  11264. float * scales,
  11265. float * weight,
  11266. float * sumx,
  11267. float * sumw,
  11268. float * pairs,
  11269. int8_t * L,
  11270. uint16_t * index,
  11271. int8_t * shifts) {
  11272. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  11273. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11274. const int * kmap_q2xs = iq2_data[gindex].map;
  11275. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11276. GGML_ASSERT(quant_weights && "missing quantization weights");
  11277. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11278. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11279. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11280. GGML_ASSERT(n%QK_K == 0);
  11281. block_iq1_s * y = vy;
  11282. const int64_t nbl = n/QK_K;
  11283. const int block_size = IQ1S_BLOCK_SIZE;
  11284. const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA};
  11285. const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
  11286. int * idx = (int *)(pairs + 1);
  11287. for (int ibl = 0; ibl < nbl; ++ibl) {
  11288. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11289. memset(y[ibl].qs, 0, QK_K/8);
  11290. memset(y[ibl].qh, 0, QK_K/16);
  11291. float max_scale = 0;
  11292. const float * xbl = x + QK_K*ibl;
  11293. float sumx2 = 0;
  11294. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11295. float sigma2 = 2*sumx2/QK_K;
  11296. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11297. const float * xb = xbl + block_size*ib;
  11298. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11299. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11300. float max = fabsf(xb[0]);
  11301. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  11302. if (max < GROUP_MAX_EPS_IQ1_S) {
  11303. scales[ib] = 0;
  11304. memset(L, 1, block_size);
  11305. continue;
  11306. }
  11307. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  11308. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  11309. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  11310. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  11311. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  11312. // for each possible and score for each split.
  11313. for (int j = 0; j < block_size; ++j) {
  11314. pairs[2*j] = xb[j];
  11315. idx[2*j] = j;
  11316. }
  11317. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  11318. {
  11319. sumx[0] = sumw[0] = 0;
  11320. for (int j = 0; j < block_size; ++j) {
  11321. int i = idx[2*j];
  11322. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  11323. sumw[j+1] = sumw[j] + weight[i];
  11324. }
  11325. }
  11326. float best_score = -FLT_MIN, scale = max;
  11327. int besti1 = -1, besti2 = -1, best_shift = 0;
  11328. for (int i1 = 0; i1 <= block_size; ++i1) {
  11329. for (int i2 = i1; i2 <= block_size; ++i2) {
  11330. float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2];
  11331. float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2];
  11332. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11333. scale = sumqx/sumq2; best_score = scale*sumqx;
  11334. besti1 = i1; besti2 = i2; best_shift = 1;
  11335. }
  11336. sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2];
  11337. sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2];
  11338. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11339. scale = sumqx/sumq2; best_score = scale*sumqx;
  11340. besti1 = i1; besti2 = i2; best_shift = -1;
  11341. }
  11342. }
  11343. }
  11344. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
  11345. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  11346. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  11347. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  11348. if (scale < 0) {
  11349. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  11350. scale = -scale; best_shift = -best_shift;
  11351. }
  11352. bool all_on_grid = true;
  11353. const float * xx = best_shift == 1 ? x_p : x_m;
  11354. for (int k = 0; k < block_size/8; ++k) {
  11355. uint16_t u = 0;
  11356. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  11357. int grid_index = kmap_q2xs[u];
  11358. if (grid_index < 0) {
  11359. all_on_grid = false;
  11360. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11361. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  11362. GGML_ASSERT(grid_index >= 0);
  11363. }
  11364. index[k] = grid_index;
  11365. }
  11366. if (!all_on_grid) {
  11367. float sumqx = 0, sumq2 = 0;
  11368. for (int k = 0; k < block_size/8; ++k) {
  11369. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  11370. for (int j = 0; j < 8; ++j) {
  11371. float w = weight[8*k + j];
  11372. float q = xx[(pg[j] - 1)/2];
  11373. sumqx += w*q*xb[8*k+j];
  11374. sumq2 += w*q*q;
  11375. }
  11376. }
  11377. if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
  11378. }
  11379. uint16_t h = 0;
  11380. for (int k = 0; k < block_size/8; ++k) {
  11381. y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255;
  11382. h |= (index[k] >> 8) << 3*k;
  11383. }
  11384. y[ibl].qh[ib] = h;
  11385. GGML_ASSERT(scale >= 0);
  11386. scales[ib] = scale;
  11387. shifts[ib] = best_shift;
  11388. max_scale = MAX(max_scale, scale);
  11389. }
  11390. if (!max_scale) {
  11391. continue;
  11392. }
  11393. float d = max_scale/15;
  11394. y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
  11395. float id = 1/d;
  11396. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11397. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11398. l = MAX(0, MIN(7, l));
  11399. if (shifts[ib] == -1) l |= 8;
  11400. y[ibl].qh[ib] |= (l << 12);
  11401. }
  11402. }
  11403. }
  11404. size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11405. GGML_ASSERT(n_per_row%QK_K == 0);
  11406. float scales[QK_K/IQ1S_BLOCK_SIZE];
  11407. float weight[IQ1S_BLOCK_SIZE];
  11408. int8_t L[IQ1S_BLOCK_SIZE];
  11409. float sumx[IQ1S_BLOCK_SIZE+1];
  11410. float sumw[IQ1S_BLOCK_SIZE+1];
  11411. float pairs[2*IQ1S_BLOCK_SIZE];
  11412. uint16_t index[IQ1S_BLOCK_SIZE/8];
  11413. int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
  11414. int64_t nblock = n_per_row/QK_K;
  11415. char * qrow = (char *)dst;
  11416. for (int64_t row = 0; row < nrow; ++row) {
  11417. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
  11418. src += n_per_row;
  11419. qrow += nblock*sizeof(block_iq1_s);
  11420. }
  11421. return nrow * nblock * sizeof(block_iq1_s);
  11422. }
  11423. static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  11424. float * scales,
  11425. float * weight,
  11426. float * pairs,
  11427. int8_t * L,
  11428. uint16_t * index,
  11429. int8_t * shifts) {
  11430. const int gindex = iq2_data_index(GGML_TYPE_IQ1_M);
  11431. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11432. const int * kmap_q2xs = iq2_data[gindex].map;
  11433. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11434. //GGML_ASSERT(quant_weights && "missing quantization weights");
  11435. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11436. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11437. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11438. GGML_ASSERT(n%QK_K == 0);
  11439. block_iq1_m * y = vy;
  11440. const int64_t nbl = n/QK_K;
  11441. const int block_size = IQ1M_BLOCK_SIZE;
  11442. const float x_p[3] = {-1 + IQ1M_DELTA, IQ1M_DELTA, 1 + IQ1M_DELTA};
  11443. const float x_m[3] = {-1 - IQ1M_DELTA, -IQ1M_DELTA, 1 - IQ1M_DELTA};
  11444. const uint8_t masks[4] = {0x00, 0x80, 0x08, 0x88};
  11445. int * idx = (int *)(pairs + 1);
  11446. float sumqx[4], sumq2[4];
  11447. iq1m_scale_t s;
  11448. const float * xx;
  11449. for (int ibl = 0; ibl < nbl; ++ibl) {
  11450. memset(y[ibl].qs, 0, QK_K/8);
  11451. memset(y[ibl].qh, 0, QK_K/16);
  11452. memset(y[ibl].scales, 0, QK_K/32);
  11453. float max_scale = 0;
  11454. const float * xbl = x + QK_K*ibl;
  11455. float sumx2 = 0;
  11456. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11457. float sigma2 = 2*sumx2/QK_K;
  11458. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11459. const float * xb = xbl + block_size*ib;
  11460. if (quant_weights) {
  11461. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11462. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11463. } else {
  11464. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11465. }
  11466. float max = fabsf(xb[0]);
  11467. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  11468. if (max < GROUP_MAX_EPS_IQ1_M) {
  11469. scales[ib] = 0;
  11470. memset(L, 1, block_size);
  11471. continue;
  11472. }
  11473. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  11474. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  11475. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  11476. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  11477. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  11478. // for each possible and score for each split.
  11479. for (int j = 0; j < block_size; ++j) {
  11480. pairs[2*j] = xb[j];
  11481. idx[2*j] = j;
  11482. }
  11483. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  11484. float best_score = -FLT_MIN, scale = max;
  11485. int besti1 = -1, besti2 = -1, best_k = -1;
  11486. // 0: +, +
  11487. // 1: +, -
  11488. // 2: -, +
  11489. // 3: -, -
  11490. for (int i1 = 0; i1 <= block_size; ++i1) {
  11491. for (int i2 = i1; i2 <= block_size; ++i2) {
  11492. memset(sumqx, 0, 4*sizeof(float));
  11493. memset(sumq2, 0, 4*sizeof(float));
  11494. for (int j = 0; j < i1; ++j) {
  11495. int i = idx[2*j];
  11496. if (i < block_size/2) {
  11497. sumqx[0] += weight[i]*x_p[0]*xb[i];
  11498. sumqx[1] += weight[i]*x_p[0]*xb[i];
  11499. sumqx[2] += weight[i]*x_m[0]*xb[i];
  11500. sumqx[3] += weight[i]*x_m[0]*xb[i];
  11501. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  11502. sumq2[1] += weight[i]*x_p[0]*x_p[0];
  11503. sumq2[2] += weight[i]*x_m[0]*x_m[0];
  11504. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  11505. } else {
  11506. sumqx[0] += weight[i]*x_p[0]*xb[i];
  11507. sumqx[2] += weight[i]*x_p[0]*xb[i];
  11508. sumqx[1] += weight[i]*x_m[0]*xb[i];
  11509. sumqx[3] += weight[i]*x_m[0]*xb[i];
  11510. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  11511. sumq2[2] += weight[i]*x_p[0]*x_p[0];
  11512. sumq2[1] += weight[i]*x_m[0]*x_m[0];
  11513. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  11514. }
  11515. }
  11516. for (int j = i1; j < i2; ++j) {
  11517. int i = idx[2*j];
  11518. if (i < block_size/2) {
  11519. sumqx[0] += weight[i]*x_p[1]*xb[i];
  11520. sumqx[1] += weight[i]*x_p[1]*xb[i];
  11521. sumqx[2] += weight[i]*x_m[1]*xb[i];
  11522. sumqx[3] += weight[i]*x_m[1]*xb[i];
  11523. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  11524. sumq2[1] += weight[i]*x_p[1]*x_p[1];
  11525. sumq2[2] += weight[i]*x_m[1]*x_m[1];
  11526. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  11527. } else {
  11528. sumqx[0] += weight[i]*x_p[1]*xb[i];
  11529. sumqx[2] += weight[i]*x_p[1]*xb[i];
  11530. sumqx[1] += weight[i]*x_m[1]*xb[i];
  11531. sumqx[3] += weight[i]*x_m[1]*xb[i];
  11532. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  11533. sumq2[2] += weight[i]*x_p[1]*x_p[1];
  11534. sumq2[1] += weight[i]*x_m[1]*x_m[1];
  11535. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  11536. }
  11537. }
  11538. for (int j = i2; j < block_size; ++j) {
  11539. int i = idx[2*j];
  11540. if (i < block_size/2) {
  11541. sumqx[0] += weight[i]*x_p[2]*xb[i];
  11542. sumqx[1] += weight[i]*x_p[2]*xb[i];
  11543. sumqx[2] += weight[i]*x_m[2]*xb[i];
  11544. sumqx[3] += weight[i]*x_m[2]*xb[i];
  11545. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  11546. sumq2[1] += weight[i]*x_p[2]*x_p[2];
  11547. sumq2[2] += weight[i]*x_m[2]*x_m[2];
  11548. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  11549. } else {
  11550. sumqx[0] += weight[i]*x_p[2]*xb[i];
  11551. sumqx[2] += weight[i]*x_p[2]*xb[i];
  11552. sumqx[1] += weight[i]*x_m[2]*xb[i];
  11553. sumqx[3] += weight[i]*x_m[2]*xb[i];
  11554. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  11555. sumq2[2] += weight[i]*x_p[2]*x_p[2];
  11556. sumq2[1] += weight[i]*x_m[2]*x_m[2];
  11557. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  11558. }
  11559. }
  11560. for (int k = 0; k < 4; ++k) {
  11561. if (sumq2[k] > 0 && sumqx[k]*sumqx[k] > best_score*sumq2[k]) {
  11562. scale = sumqx[k]/sumq2[k]; best_score = scale*sumqx[k];
  11563. besti1 = i1; besti2 = i2; best_k = k;
  11564. }
  11565. }
  11566. }
  11567. }
  11568. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0);
  11569. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  11570. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  11571. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  11572. if (scale < 0) {
  11573. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  11574. scale = -scale;
  11575. best_k = best_k == 0 ? 3 : best_k == 1 ? 2 : best_k == 2 ? 1 : 0;
  11576. }
  11577. bool all_on_grid = true;
  11578. for (int k = 0; k < block_size/8; ++k) {
  11579. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  11580. else xx = best_k%2 == 0 ? x_p : x_m;
  11581. uint16_t u = 0;
  11582. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  11583. int grid_index = kmap_q2xs[u];
  11584. if (grid_index < 0) {
  11585. all_on_grid = false;
  11586. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11587. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  11588. GGML_ASSERT(grid_index >= 0);
  11589. }
  11590. index[k] = grid_index;
  11591. }
  11592. if (!all_on_grid) {
  11593. float sumqx_f = 0, sumq2_f = 0;
  11594. for (int k = 0; k < block_size/8; ++k) {
  11595. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  11596. else xx = best_k%2 == 0 ? x_p : x_m;
  11597. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  11598. for (int j = 0; j < 8; ++j) {
  11599. float w = weight[8*k + j];
  11600. float q = xx[(pg[j] - 1)/2];
  11601. sumqx_f += w*q*xb[8*k+j];
  11602. sumq2_f += w*q*q;
  11603. }
  11604. }
  11605. if (sumqx_f > 0 && sumq2_f > 0) scale = sumqx_f/sumq2_f;
  11606. }
  11607. y[ibl].qs[2*ib + 0] = index[0] & 255;
  11608. y[ibl].qs[2*ib + 1] = index[1] & 255;
  11609. y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4);
  11610. GGML_ASSERT(scale >= 0);
  11611. scales[ib] = scale;
  11612. shifts[ib] = best_k;
  11613. max_scale = MAX(max_scale, scale);
  11614. }
  11615. if (!max_scale) {
  11616. continue;
  11617. }
  11618. uint16_t * sc = (uint16_t *)y[ibl].scales;
  11619. float d = max_scale/15;
  11620. float id = 1/d;
  11621. float sumqx_f = 0, sumq2_f = 0;
  11622. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11623. int l = nearest_int(0.5f*(id*scales[ib+0]-1));
  11624. l = MAX(0, MIN(7, l));
  11625. sc[ib/4] |= (l << 3*(ib%4));
  11626. y[ibl].qh[ib] |= masks[shifts[ib]];
  11627. const float * xb = xbl + block_size*ib;
  11628. if (quant_weights) {
  11629. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11630. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11631. } else {
  11632. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11633. }
  11634. for (int k = 0; k < block_size/8; ++k) {
  11635. if (k == 0) xx = shifts[ib] < 2 ? x_p : x_m;
  11636. else xx = shifts[ib]%2 == 0 ? x_p : x_m;
  11637. const int8_t * pg = (const int8_t *)(kgrid_q2xs + y[ibl].qs[2*ib+k] + ((y[ibl].qh[ib] << (8 - 4*k)) & 0x700));
  11638. for (int j = 0; j < 8; ++j) {
  11639. float w = weight[8*k + j];
  11640. float q = xx[(pg[j] - 1)/2]*(2*l+1);
  11641. sumqx_f += w*q*xb[8*k+j];
  11642. sumq2_f += w*q*q;
  11643. }
  11644. }
  11645. }
  11646. if (sumq2_f > 0) d = sumqx_f/sumq2_f;
  11647. s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed.
  11648. sc[0] |= ((s.u16 & 0x000f) << 12);
  11649. sc[1] |= ((s.u16 & 0x00f0) << 8);
  11650. sc[2] |= ((s.u16 & 0x0f00) << 4);
  11651. sc[3] |= ((s.u16 & 0xf000) << 0);
  11652. }
  11653. }
  11654. size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11655. GGML_ASSERT(n_per_row%QK_K == 0);
  11656. float scales[QK_K/IQ1M_BLOCK_SIZE];
  11657. float weight[IQ1M_BLOCK_SIZE];
  11658. int8_t L[IQ1M_BLOCK_SIZE];
  11659. float pairs[2*IQ1M_BLOCK_SIZE];
  11660. uint16_t index[IQ1M_BLOCK_SIZE/8];
  11661. int8_t shifts[QK_K/IQ1M_BLOCK_SIZE];
  11662. int64_t nblock = n_per_row/QK_K;
  11663. char * qrow = (char *)dst;
  11664. for (int64_t row = 0; row < nrow; ++row) {
  11665. quantize_row_iq1_m_impl(src, qrow, n_per_row, quant_weights, scales, weight, pairs, L, index, shifts);
  11666. src += n_per_row;
  11667. qrow += nblock*sizeof(block_iq1_m);
  11668. }
  11669. return nrow * nblock * sizeof(block_iq1_m);
  11670. }
  11671. // ============================ 4-bit non-linear quants
  11672. static inline int best_index_int8(int n, const int8_t * val, float x) {
  11673. if (x <= val[0]) return 0;
  11674. if (x >= val[n-1]) return n-1;
  11675. int ml = 0, mu = n-1;
  11676. while (mu-ml > 1) {
  11677. int mav = (ml+mu)/2;
  11678. if (x < val[mav]) mu = mav; else ml = mav;
  11679. }
  11680. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  11681. }
  11682. static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x,
  11683. ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
  11684. float * scales, float * weight, uint8_t * L,
  11685. const int8_t * values,
  11686. const float * quant_weights,
  11687. const int ntry) {
  11688. float sigma2 = 0;
  11689. for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
  11690. sigma2 *= 2.f/super_block_size;
  11691. memset(q4, 0, super_block_size/2);
  11692. dh[0] = GGML_FP32_TO_FP16(0.f);
  11693. float max_scale = 0, amax_scale = 0;
  11694. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  11695. const float * xb = x + ib*block_size;
  11696. uint8_t * Lb = L + ib*block_size;
  11697. if (quant_weights) {
  11698. const float * qw = quant_weights + ib*block_size;
  11699. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  11700. } else {
  11701. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  11702. }
  11703. float amax = 0, max = 0;
  11704. for (int j = 0; j < block_size; ++j) {
  11705. float ax = fabsf(xb[j]);
  11706. if (ax > amax) {
  11707. amax = ax; max = xb[j];
  11708. }
  11709. }
  11710. if (amax < GROUP_MAX_EPS) {
  11711. scales[ib] = 0;
  11712. continue;
  11713. }
  11714. float d = ntry > 0 ? -max/values[0] : max/values[0];
  11715. float id = 1/d;
  11716. float sumqx = 0, sumq2 = 0;
  11717. for (int j = 0; j < block_size; ++j) {
  11718. float al = id*xb[j];
  11719. int l = best_index_int8(16, values, al);
  11720. Lb[j] = l;
  11721. float q = values[l];
  11722. float w = weight[j];
  11723. sumqx += w*q*xb[j];
  11724. sumq2 += w*q*q;
  11725. }
  11726. d = sumqx/sumq2;
  11727. float best = d*sumqx;
  11728. for (int itry = -ntry; itry <= ntry; ++itry) {
  11729. id = (itry + values[0])/max;
  11730. sumqx = sumq2 = 0;
  11731. for (int j = 0; j < block_size; ++j) {
  11732. float al = id*xb[j];
  11733. int l = best_index_int8(16, values, al);
  11734. float q = values[l];
  11735. float w = weight[j];
  11736. sumqx += w*q*xb[j];
  11737. sumq2 += w*q*q;
  11738. }
  11739. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11740. d = sumqx/sumq2; best = d * sumqx;
  11741. }
  11742. }
  11743. scales[ib] = d;
  11744. float abs_d = fabsf(d);
  11745. if (abs_d > amax_scale) {
  11746. amax_scale = abs_d; max_scale = d;
  11747. }
  11748. }
  11749. if (super_block_size/block_size > 1) {
  11750. int nb = super_block_size/block_size;
  11751. memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t));
  11752. float d = -max_scale/32;
  11753. dh[0] = GGML_FP32_TO_FP16(d);
  11754. float id = d ? 1/d : 0.f;
  11755. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  11756. int l = nearest_int(id*scales[ib]);
  11757. l = MAX(-32, MIN(31, l));
  11758. float dl = d * l;
  11759. float idl = dl ? 1/dl : 0.f;
  11760. uint8_t * Lb = L + ib*block_size;
  11761. const float * xb = x + ib*block_size;
  11762. for (int j = 0; j < block_size; ++j) {
  11763. Lb[j] = best_index_int8(16, values, idl*xb[j]);
  11764. }
  11765. l += 32;
  11766. uint8_t l_l = l & 0xf;
  11767. uint8_t l_h = l >> 4;
  11768. if (ib%2 == 0) scales_l[ib/2] = l_l;
  11769. else scales_l[ib/2] |= (l_l << 4);
  11770. scales_h[ib/8] |= (l_h << 2*(ib%8));
  11771. }
  11772. } else {
  11773. dh[0] = GGML_FP32_TO_FP16(scales[0]);
  11774. if (ntry > 0) {
  11775. float id = scales[0] ? 1/scales[0] : 0;
  11776. for (int j = 0; j < super_block_size; ++j) {
  11777. L[j] = best_index_int8(16, values, id*x[j]);
  11778. }
  11779. }
  11780. }
  11781. for (int i = 0; i < super_block_size/32; ++i) {
  11782. for (int j = 0; j < 16; ++j) {
  11783. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  11784. }
  11785. }
  11786. }
  11787. size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11788. GGML_ASSERT(n_per_row%QK4_NL == 0);
  11789. int64_t nblock = n_per_row/QK4_NL;
  11790. char * qrow = (char *)dst;
  11791. uint8_t L[QK4_NL];
  11792. float weight[QK4_NL];
  11793. uint16_t unused_h;
  11794. uint8_t * unused_l = NULL;
  11795. float scale;
  11796. for (int64_t row = 0; row < nrow; ++row) {
  11797. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  11798. for (int ibl = 0; ibl < nblock; ++ibl) {
  11799. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  11800. quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  11801. &scale, weight, L, kvalues_iq4nl, qw, 7);
  11802. }
  11803. src += n_per_row;
  11804. qrow += nblock*sizeof(block_iq4_nl);
  11805. }
  11806. return nrow * nblock * sizeof(block_iq4_nl);
  11807. }
  11808. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int64_t k) {
  11809. GGML_ASSERT(k%QK4_NL == 0);
  11810. int64_t nblock = k/QK4_NL;
  11811. uint8_t L[QK4_NL];
  11812. float weight[QK4_NL];
  11813. uint16_t unused_h;
  11814. uint8_t * unused_l = NULL;
  11815. float scale;
  11816. block_iq4_nl * iq4 = (block_iq4_nl *)vy;
  11817. for (int ibl = 0; ibl < nblock; ++ibl) {
  11818. quantize_row_iq4_nl_impl(QK4_NL, 32, x + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  11819. &scale, weight, L, kvalues_iq4nl, NULL, -1);
  11820. }
  11821. }
  11822. void quantize_row_iq4_nl_ref(const float * restrict x, block_iq4_nl * restrict y, int64_t k) {
  11823. assert(k % QK4_NL == 0);
  11824. quantize_row_iq4_nl(x, y, k);
  11825. }
  11826. size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11827. GGML_ASSERT(n_per_row%QK_K == 0);
  11828. int64_t nblock = n_per_row/QK_K;
  11829. char * qrow = (char *)dst;
  11830. uint8_t L[QK_K];
  11831. float weight[32];
  11832. float scales[QK_K/32];
  11833. for (int64_t row = 0; row < nrow; ++row) {
  11834. block_iq4_xs * iq4 = (block_iq4_xs *)qrow;
  11835. for (int ibl = 0; ibl < nblock; ++ibl) {
  11836. const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
  11837. quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
  11838. scales, weight, L, kvalues_iq4nl, qw, 7);
  11839. }
  11840. src += n_per_row;
  11841. qrow += nblock*sizeof(block_iq4_xs);
  11842. }
  11843. return nrow * nblock * sizeof(block_iq4_xs);
  11844. }
  11845. void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int64_t k) {
  11846. assert(k % QK_K == 0);
  11847. block_iq4_xs * restrict y = vy;
  11848. quantize_row_iq4_xs_ref(x, y, k);
  11849. }
  11850. void quantize_row_iq4_xs_ref(const float * restrict x, block_iq4_xs * restrict y, int64_t k) {
  11851. assert(k % QK_K == 0);
  11852. quantize_iq4_xs(x, y, 1, k, NULL);
  11853. }
  11854. // =============================== 2.5625 bpw
  11855. static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  11856. const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);
  11857. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11858. const int * kmap_q2xs = iq2_data[gindex].map;
  11859. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11860. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11861. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11862. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11863. GGML_ASSERT(n%QK_K == 0);
  11864. const int kMaxQ = 3;
  11865. const int64_t nbl = n/QK_K;
  11866. block_iq2_s * y = vy;
  11867. float scales[QK_K/16];
  11868. float weight[16];
  11869. float xval[16];
  11870. int8_t L[16];
  11871. int8_t Laux[16];
  11872. float waux[16];
  11873. bool is_on_grid[2];
  11874. bool is_on_grid_aux[2];
  11875. uint8_t block_signs[2];
  11876. for (int ibl = 0; ibl < nbl; ++ibl) {
  11877. memset(&y[ibl], 0, sizeof(block_iq2_s));
  11878. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11879. float max_scale = 0;
  11880. const float * xbl = x + QK_K*ibl;
  11881. float sumx2 = 0;
  11882. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11883. float sigma2 = 2*sumx2/QK_K;
  11884. for (int ib = 0; ib < QK_K/16; ++ib) {
  11885. const float * xb = xbl + 16*ib;
  11886. if (quant_weights) {
  11887. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  11888. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11889. } else {
  11890. for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
  11891. }
  11892. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  11893. for (int k = 0; k < 2; ++k) {
  11894. uint8_t s = 0;
  11895. for (int i = 0; i < 8; ++i) {
  11896. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11897. else {
  11898. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  11899. }
  11900. }
  11901. block_signs[k] = s;
  11902. }
  11903. float max = xval[0];
  11904. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  11905. if (max < GROUP_MAX_EPS_IQ2_S) {
  11906. scales[ib] = 0;
  11907. continue;
  11908. }
  11909. float best = 0;
  11910. float scale = max/(2*kMaxQ-1);
  11911. is_on_grid[0] = is_on_grid[1] = true;
  11912. for (int is = -9; is <= 9; ++is) {
  11913. float id = (2*kMaxQ-1+is*0.1f)/max;
  11914. float this_scale = 1/id;
  11915. for (int k = 0; k < 2; ++k) {
  11916. for (int i = 0; i < 8; ++i) {
  11917. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11918. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11919. }
  11920. uint16_t u = 0;
  11921. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  11922. int grid_index = kmap_q2xs[u];
  11923. is_on_grid_aux[k] = true;
  11924. if (grid_index < 0) {
  11925. is_on_grid_aux[k] = false;
  11926. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11927. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  11928. }
  11929. }
  11930. float sumqx = 0, sumq2 = 0;
  11931. for (int i = 0; i < 16; ++i) {
  11932. float w = weight[i];
  11933. float q = 2*Laux[i] + 1;
  11934. sumqx += w*xval[i]*q;
  11935. sumq2 += w*q*q;
  11936. }
  11937. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11938. scale = sumqx/sumq2; best = scale*sumqx;
  11939. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  11940. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11941. }
  11942. }
  11943. int n_not_ongrid = 0;
  11944. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11945. if (n_not_ongrid > 0 && scale > 0) {
  11946. float id = 1/scale;
  11947. for (int k = 0; k < 2; ++k) {
  11948. if (is_on_grid[k]) continue;
  11949. uint16_t u = 0;
  11950. for (int i = 0; i < 8; ++i) {
  11951. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11952. l = MAX(0, MIN(kMaxQ-1, l));
  11953. u |= (l << 2*i);
  11954. L[8*k + i] = l;
  11955. }
  11956. int grid_index = kmap_q2xs[u];
  11957. if (grid_index < 0) {
  11958. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11959. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  11960. }
  11961. }
  11962. float sumqx = 0, sumq2 = 0;
  11963. for (int i = 0; i < 16; ++i) {
  11964. float w = weight[i];
  11965. float q = 2*L[i] + 1;
  11966. sumqx += w*xval[i]*q;
  11967. sumq2 += w*q*q;
  11968. }
  11969. if (sumq2 > 0) scale = sumqx/sumq2;
  11970. }
  11971. if (scale < 0) {
  11972. scale = -scale;
  11973. for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
  11974. }
  11975. for (int k = 0; k < 2; ++k) {
  11976. uint16_t u = 0;
  11977. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  11978. int grid_index = kmap_q2xs[u];
  11979. if (grid_index < 0) {
  11980. printf("Oops: found point %u not on grid:", u);
  11981. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  11982. printf("\n");
  11983. GGML_ABORT("fatal error");
  11984. }
  11985. const int i8 = 2*ib + k;
  11986. y[ibl].qs[i8] = grid_index & 255;
  11987. y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
  11988. y[ibl].qs[QK_K/8 + i8] = block_signs[k];
  11989. }
  11990. GGML_ASSERT(scale >= 0);
  11991. scales[ib] = scale;
  11992. max_scale = MAX(max_scale, scale);
  11993. }
  11994. if (!max_scale) {
  11995. continue;
  11996. }
  11997. float d = max_scale/31;
  11998. y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
  11999. float id = 1/d;
  12000. for (int ib = 0; ib < QK_K/16; ++ib) {
  12001. int l = nearest_int(0.5f*(id*scales[ib]-1));
  12002. l = MAX(0, MIN(15, l));
  12003. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  12004. else y[ibl].scales[ib/2] |= (l << 4);
  12005. }
  12006. }
  12007. }
  12008. size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12009. GGML_ASSERT(n_per_row%QK_K == 0);
  12010. int64_t nblock = n_per_row/QK_K;
  12011. char * qrow = (char *)dst;
  12012. for (int64_t row = 0; row < nrow; ++row) {
  12013. quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
  12014. src += n_per_row;
  12015. qrow += nblock*sizeof(block_iq2_s);
  12016. }
  12017. return nrow * nblock * sizeof(block_iq2_s);
  12018. }
  12019. void quantize_row_iq2_s_ref(const float * restrict x, block_iq2_s * restrict y, int64_t k) {
  12020. assert(k % QK_K == 0);
  12021. quantize_iq2_s(x, y, 1, k, NULL);
  12022. }
  12023. void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k) {
  12024. assert(k % QK_K == 0);
  12025. block_iq2_s * restrict y = vy;
  12026. quantize_row_iq2_s_ref(x, y, k);
  12027. }
  12028. static bool validate_float(float f, size_t i) {
  12029. if (isinf(f)) {
  12030. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  12031. return false;
  12032. }
  12033. if (isnan(f)) {
  12034. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  12035. return false;
  12036. }
  12037. return true;
  12038. }
  12039. static bool isinf_fp16(ggml_fp16_t f) {
  12040. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
  12041. }
  12042. static bool isnan_fp16(ggml_fp16_t f) {
  12043. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
  12044. }
  12045. static bool validate_fp16(ggml_fp16_t f, size_t i) {
  12046. if (isinf_fp16(f)) {
  12047. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  12048. return false;
  12049. }
  12050. if (isnan_fp16(f)) {
  12051. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  12052. return false;
  12053. }
  12054. return true;
  12055. }
  12056. #define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
  12057. const type * q = (const type *) (data); \
  12058. for (size_t i = 0; i < (nb); ++i) { \
  12059. if (!validate_fp16(q[i].d, i)) { \
  12060. return false; \
  12061. } \
  12062. }
  12063. #define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
  12064. const type * q = (const type *) (data); \
  12065. for (size_t i = 0; i < (nb); ++i) { \
  12066. if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
  12067. return false; \
  12068. } \
  12069. }
  12070. #define VALIDATE_ROW_DATA_DVEC_F16_IMPL(type, data, nb, nr) \
  12071. const type * q = (const type *) (data); \
  12072. for (size_t i = 0; i < (nb); ++i) { \
  12073. for (size_t j = 0; j < (nr); ++j) { \
  12074. if (!validate_fp16(q[i].d[j], i)) { \
  12075. return false; \
  12076. } \
  12077. } \
  12078. }
  12079. bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
  12080. if (type < 0 || type >= GGML_TYPE_COUNT) {
  12081. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  12082. return false;
  12083. }
  12084. if (nbytes % ggml_type_size(type) != 0) {
  12085. fprintf(stderr, "%s: invalid size %zu for type %s (type size = %zu)\n", __func__, nbytes, ggml_type_name(type), ggml_type_size(type));
  12086. return false;
  12087. }
  12088. const size_t nb = nbytes/ggml_type_size(type);
  12089. switch (type) {
  12090. case GGML_TYPE_BF16:
  12091. {
  12092. int nans = 0;
  12093. int infs = 0;
  12094. const unsigned short * f = (const unsigned short *) data;
  12095. for (size_t i = 0; i < nb; ++i) {
  12096. nans += (f[i] & 0x7fff) > 0x7f80;
  12097. infs += (f[i] & 0x7fff) == 0x7f80;
  12098. }
  12099. if (nans) {
  12100. fprintf(stderr, "%s: found %d NaNs in row of %zu BF16 values\n", __func__, nans, nb);
  12101. return false;
  12102. }
  12103. if (infs) {
  12104. fprintf(stderr, "%s: found %d infinities in row of %zu BF16 values\n", __func__, infs, nb);
  12105. return false;
  12106. }
  12107. } break;
  12108. case GGML_TYPE_F16:
  12109. {
  12110. const ggml_fp16_t * f = (const ggml_fp16_t *) data;
  12111. size_t i = 0;
  12112. #if defined(__AVX2__)
  12113. for (; i + 15 < nb; i += 16) {
  12114. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  12115. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
  12116. __m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
  12117. int mask = _mm256_movemask_epi8(cmp);
  12118. if (mask) {
  12119. for (size_t j = 0; j < 16; ++j) {
  12120. if (!validate_fp16(f[i + j], i + j)) {
  12121. return false;
  12122. }
  12123. }
  12124. GGML_UNREACHABLE();
  12125. }
  12126. }
  12127. #elif defined(__ARM_NEON)
  12128. for (; i + 7 < nb; i += 8) {
  12129. uint16x8_t v = vld1q_u16(f + i);
  12130. uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
  12131. uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
  12132. uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
  12133. if (mask) {
  12134. for (size_t j = 0; j < 8; ++j) {
  12135. if (!validate_fp16(f[i + j], i + j)) {
  12136. return false;
  12137. }
  12138. }
  12139. GGML_UNREACHABLE();
  12140. }
  12141. }
  12142. #endif
  12143. for (; i < nb; ++i) {
  12144. if (!validate_fp16(f[i], i)) {
  12145. return false;
  12146. }
  12147. }
  12148. } break;
  12149. case GGML_TYPE_F32:
  12150. {
  12151. const float * f = (const float *) data;
  12152. size_t i = 0;
  12153. #if defined(__AVX2__)
  12154. for (; i + 7 < nb; i += 8) {
  12155. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  12156. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
  12157. __m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
  12158. int mask = _mm256_movemask_epi8(cmp);
  12159. if (mask) {
  12160. for (size_t j = 0; j < 8; ++j) {
  12161. if (!validate_float(f[i + j], i + j)) {
  12162. return false;
  12163. }
  12164. }
  12165. GGML_UNREACHABLE();
  12166. }
  12167. }
  12168. #elif defined(__ARM_NEON)
  12169. for (; i + 3 < nb; i += 4) {
  12170. uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
  12171. uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
  12172. uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
  12173. uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
  12174. if (mask) {
  12175. for (size_t j = 0; j < 4; ++j) {
  12176. if (!validate_float(f[i + j], i + j)) {
  12177. return false;
  12178. }
  12179. }
  12180. GGML_UNREACHABLE();
  12181. }
  12182. }
  12183. #endif
  12184. for (; i < nb; ++i) {
  12185. if (!validate_float(f[i], i)) {
  12186. return false;
  12187. }
  12188. }
  12189. } break;
  12190. case GGML_TYPE_F64:
  12191. {
  12192. const double * f = (const double *) data;
  12193. for (size_t i = 0; i < nb; ++i) {
  12194. if (!validate_float(f[i], i)) {
  12195. return false;
  12196. }
  12197. }
  12198. } break;
  12199. case GGML_TYPE_Q4_0:
  12200. {
  12201. VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
  12202. } break;
  12203. case GGML_TYPE_Q4_1:
  12204. {
  12205. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
  12206. } break;
  12207. case GGML_TYPE_Q5_0:
  12208. {
  12209. VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
  12210. } break;
  12211. case GGML_TYPE_Q5_1:
  12212. {
  12213. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
  12214. } break;
  12215. case GGML_TYPE_Q8_0:
  12216. {
  12217. VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
  12218. } break;
  12219. case GGML_TYPE_Q2_K:
  12220. {
  12221. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
  12222. } break;
  12223. case GGML_TYPE_Q3_K:
  12224. {
  12225. VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
  12226. } break;
  12227. case GGML_TYPE_Q4_K:
  12228. {
  12229. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
  12230. } break;
  12231. case GGML_TYPE_Q5_K:
  12232. {
  12233. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
  12234. } break;
  12235. case GGML_TYPE_Q6_K:
  12236. {
  12237. VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
  12238. } break;
  12239. case GGML_TYPE_Q8_K:
  12240. {
  12241. const block_q8_K * q = (const block_q8_K *) data;
  12242. for (size_t i = 0; i < nb; ++i) {
  12243. if (!validate_float(q[i].d, i)) {
  12244. return false;
  12245. }
  12246. }
  12247. } break;
  12248. case GGML_TYPE_IQ1_S:
  12249. {
  12250. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
  12251. } break;
  12252. case GGML_TYPE_IQ1_M:
  12253. {
  12254. const block_iq1_m * q = (const block_iq1_m *) data;
  12255. for (size_t i = 0; i < nb; ++i) {
  12256. iq1m_scale_t scale;
  12257. const uint16_t * sc = (const uint16_t *)q[i].scales;
  12258. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  12259. if (!validate_fp16(scale.f16, i)) {
  12260. return false;
  12261. }
  12262. }
  12263. } break;
  12264. case GGML_TYPE_IQ2_XXS:
  12265. {
  12266. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
  12267. } break;
  12268. case GGML_TYPE_IQ2_XS:
  12269. {
  12270. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
  12271. } break;
  12272. case GGML_TYPE_IQ2_S:
  12273. {
  12274. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
  12275. } break;
  12276. case GGML_TYPE_IQ3_XXS:
  12277. {
  12278. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
  12279. } break;
  12280. case GGML_TYPE_IQ3_S:
  12281. {
  12282. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
  12283. } break;
  12284. case GGML_TYPE_IQ4_XS:
  12285. {
  12286. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
  12287. } break;
  12288. case GGML_TYPE_IQ4_NL:
  12289. {
  12290. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
  12291. } break;
  12292. case GGML_TYPE_Q4_0_4_4:
  12293. case GGML_TYPE_Q4_0_4_8:
  12294. {
  12295. VALIDATE_ROW_DATA_DVEC_F16_IMPL(block_q4_0x4, data, nbytes / sizeof(block_q4_0x4), 4);
  12296. } break;
  12297. case GGML_TYPE_Q4_0_8_8:
  12298. {
  12299. VALIDATE_ROW_DATA_DVEC_F16_IMPL(block_q4_0x8, data, nbytes / sizeof(block_q4_0x8), 8);
  12300. } break;
  12301. case GGML_TYPE_I8:
  12302. case GGML_TYPE_I16:
  12303. case GGML_TYPE_I32:
  12304. case GGML_TYPE_I64:
  12305. // nothing to validate
  12306. break;
  12307. default:
  12308. {
  12309. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  12310. return false;
  12311. }
  12312. }
  12313. return true;
  12314. }