llava.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. /**
  2. * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "clip.h"
  27. #include "common.h"
  28. #include "llama.h"
  29. #include "llava.h"
  30. #include "base64.hpp"
  31. #include <cstdio>
  32. #include <cstdlib>
  33. #include <vector>
  34. #include <numeric>
  35. // RGB uint8 image
  36. struct clip_image_u8 {
  37. int nx;
  38. int ny;
  39. std::vector<uint8_t> buf;
  40. };
  41. // RGB float32 image (NHWC)
  42. // Memory layout: RGBRGBRGB...
  43. struct clip_image_f32 {
  44. int nx;
  45. int ny;
  46. std::vector<float> buf;
  47. };
  48. struct clip_image_grid_shape {
  49. int first;
  50. int second;
  51. };
  52. /**
  53. * Selects the best resolution from a list of possible resolutions based on the original size.
  54. *
  55. * @param original_size The original size of the image in the format (width, height).
  56. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  57. * @return The best fit resolution in the format (width, height).
  58. */
  59. static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
  60. int original_width = original_size.first;
  61. int original_height = original_size.second;
  62. std::pair<int, int> best_fit;
  63. int max_effective_resolution = 0;
  64. int min_wasted_resolution = std::numeric_limits<int>::max();
  65. for (const auto& resolution : possible_resolutions) {
  66. int width = resolution.first;
  67. int height = resolution.second;
  68. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  69. int downscaled_width = static_cast<int>(original_width * scale);
  70. int downscaled_height = static_cast<int>(original_height * scale);
  71. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  72. int wasted_resolution = (width * height) - effective_resolution;
  73. // LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  74. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  75. max_effective_resolution = effective_resolution;
  76. min_wasted_resolution = wasted_resolution;
  77. best_fit = resolution;
  78. }
  79. }
  80. return best_fit;
  81. }
  82. /**
  83. * @brief Get the anyres image grid shape object
  84. *
  85. * @param image_size
  86. * @param grid_pinpoints
  87. * @param image_patch_size
  88. * @return <int, int>
  89. */
  90. static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
  91. /**
  92. Conversion from gguf flat array to vector:
  93. std::vector<std::pair<int, int>> possible_resolutions;
  94. for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
  95. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  96. }
  97. */
  98. auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
  99. return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
  100. }
  101. // Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
  102. static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
  103. struct {
  104. struct ggml_context * ctx;
  105. } model;
  106. const int32_t image_size = clip_image_size(ctx_clip);
  107. const int32_t patch_size = clip_patch_size(ctx_clip);
  108. int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
  109. int num_patches_width = grid_shape.first; // grid 1-4
  110. int num_patches_height = grid_shape.second; // grid 1-4
  111. const size_t num_images = num_patches_width * num_patches_height + 1;
  112. // TODO: size calculation is not calculated - it's only tens of MB
  113. size_t ctx_size = 0;
  114. {
  115. ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
  116. ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
  117. }
  118. struct ggml_init_params params {
  119. /*.mem_size =*/ ctx_size,
  120. /*.mem_buffer =*/ NULL,
  121. /*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API
  122. };
  123. // Python reference code for full unpad:
  124. /*
  125. base_image_feature = image_feature[0]
  126. image_feature = image_feature[1:]
  127. image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
  128. image_feature = image_feature.flatten(1, 2).flatten(2, 3)
  129. image_feature = unpad_image(image_feature, image_sizes[image_idx])
  130. image_feature = torch.cat((
  131. image_feature,
  132. self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
  133. ), dim=-1)
  134. image_feature = image_feature.flatten(1, 2).transpose(0, 1)
  135. image_feature = torch.cat((base_image_feature, image_feature), dim=0)
  136. */
  137. // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
  138. // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
  139. // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
  140. // Once all images are processed to prepended the base_image_features without any changes.
  141. // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
  142. /*
  143. image_feature = image_feature.view(2, 2, 24, 24, 4096)
  144. image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
  145. image_feature = image_feature.view(2, 24, 2, 24, 4096)
  146. image_feature = image_feature.flatten(0, 3)
  147. // Reshape to 4D tensor by merging the last two dimensions
  148. image_feature = image_feature.view(2, 2, 24, 24*4096)
  149. image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
  150. image_feature = image_feature.view(-1, 4096)
  151. */
  152. model.ctx = ggml_init(params);
  153. struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
  154. // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
  155. // fill it with the image embeddings, ignoring the base
  156. for (size_t i = 1; i < num_images; i++) {
  157. size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
  158. memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
  159. }
  160. struct ggml_cgraph * gf = ggml_new_graph(model.ctx);
  161. size_t size_ele = ggml_type_size(GGML_TYPE_F32);
  162. struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
  163. num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
  164. num_patches_per_side,
  165. num_patches_width,
  166. num_patches_height,
  167. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
  168. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
  169. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
  170. // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
  171. struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
  172. /**
  173. At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
  174. image_feature = torch.cat((
  175. image_feature,
  176. self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
  177. ), dim=-1)
  178. *
  179. */
  180. // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
  181. struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
  182. // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
  183. ggml_build_forward_expand(gf, flatten);
  184. ggml_graph_compute_with_ctx(model.ctx, gf, 1);
  185. struct ggml_tensor* result = gf->nodes[gf->n_nodes - 1];
  186. memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
  187. // append without newline tokens (default behavior in llava_arch when not using unpad ):
  188. memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
  189. *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
  190. // Debug: Test single segments
  191. // Current findings: sending base image, sending a segment embedding all works similar to python
  192. // However, permuted embeddings do not work yet (stride issue?)
  193. // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
  194. // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
  195. // *n_img_pos_out=576;
  196. ggml_free(model.ctx);
  197. return true;
  198. }
  199. static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
  200. int width = image->nx;
  201. int height = image->ny;
  202. int num_patches = (height / patch_size) * (width / patch_size);
  203. clip_image_f32 * patch = clip_image_f32_init();
  204. patch->nx = patch_size * num_patches;
  205. patch->ny = patch_size;
  206. patch->buf.resize(3 * patch->nx * patch->ny);
  207. int patch_index = 0;
  208. for (int i = 0; i < height; i += patch_size) {
  209. for (int j = 0; j < width; j += patch_size) {
  210. for (int pi = 0; pi < patch_size; ++pi) {
  211. for (int pj = 0; pj < patch_size; ++pj) {
  212. int input_index = ((i + pi) * width + (j + pj)) * 3;
  213. int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
  214. patch->buf[output_index] = image->buf[input_index];
  215. patch->buf[output_index+1] = image->buf[input_index+1];
  216. patch->buf[output_index+2] = image->buf[input_index+2];
  217. }
  218. }
  219. patch_index++;
  220. }
  221. }
  222. return patch;
  223. }
  224. static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
  225. // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
  226. clip_image_f32_batch img_res_v;
  227. img_res_v.size = 0;
  228. img_res_v.data = nullptr;
  229. if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
  230. LOG_TEE("%s: unable to preprocess image\n", __func__);
  231. delete[] img_res_v.data;
  232. return false;
  233. }
  234. const int64_t t_img_enc_start_us = ggml_time_us();
  235. const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
  236. if (clip_is_minicpmv(ctx_clip)) {
  237. std::vector<float *> image_embd_v;
  238. image_embd_v.resize(img_res_v.size);
  239. struct clip_image_size * load_image_size = clip_image_size_init();
  240. for (size_t i = 0; i < img_res_v.size; i++) {
  241. const int64_t t_img_enc_step_start_us = ggml_time_us();
  242. image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
  243. int patch_size=14;
  244. load_image_size->width = img_res_v.data[i].nx;
  245. load_image_size->height = img_res_v.data[i].ny;
  246. clip_add_load_image_size(ctx_clip, load_image_size);
  247. bool encoded = false;
  248. int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
  249. if (has_minicpmv_projector == 2) {
  250. encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
  251. }
  252. else if (has_minicpmv_projector == 3) {
  253. encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
  254. }
  255. if (!encoded) {
  256. LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
  257. return false;
  258. }
  259. const int64_t t_img_enc_steop_batch_us = ggml_time_us();
  260. LOG_TEE("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
  261. }
  262. const int64_t t_img_enc_batch_us = ggml_time_us();
  263. LOG_TEE("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
  264. int n_img_pos_out = 0;
  265. for (size_t i = 0; i < image_embd_v.size(); i++) {
  266. std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
  267. n_img_pos_out += clip_n_patches(ctx_clip);
  268. }
  269. *n_img_pos = n_img_pos_out;
  270. for (size_t i = 0; i < image_embd_v.size(); i++) {
  271. free(image_embd_v[i]);
  272. }
  273. image_embd_v.clear();
  274. load_image_size->width = img->nx;
  275. load_image_size->height = img->ny;
  276. clip_add_load_image_size(ctx_clip, load_image_size);
  277. LOG_TEE("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
  278. }
  279. else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
  280. // flat / default llava-1.5 type embedding
  281. *n_img_pos = clip_n_patches(ctx_clip);
  282. bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
  283. delete[] img_res_v.data;
  284. if (!encoded) {
  285. LOG_TEE("Unable to encode image\n");
  286. return false;
  287. }
  288. }
  289. else {
  290. // spatial_unpad llava-1.6 type embedding
  291. // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
  292. std::vector<float *> image_embd_v;
  293. image_embd_v.resize(img_res_v.size);
  294. for (size_t i = 0; i < img_res_v.size; i++) {
  295. image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
  296. const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
  297. if (!encoded) {
  298. LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
  299. return false;
  300. }
  301. }
  302. const int64_t t_img_enc_batch_us = ggml_time_us();
  303. LOG_TEE("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
  304. const int32_t * image_grid = clip_image_grid(ctx_clip);
  305. std::vector<std::pair<int, int>> grid_pinpoints;
  306. for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
  307. grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
  308. }
  309. // free all img_res_v - not needed anymore
  310. delete[] img_res_v.data;
  311. img_res_v.size = 0;
  312. img_res_v.data = nullptr;
  313. const int32_t image_size = clip_image_size(ctx_clip);
  314. struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
  315. int n_img_pos_out;
  316. clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
  317. *n_img_pos = n_img_pos_out;
  318. for (size_t i = 0; i < image_embd_v.size(); i++) {
  319. free(image_embd_v[i]);
  320. }
  321. image_embd_v.clear();
  322. // debug image/segment/normalization content:
  323. // clip_image_u8 * tmp = clip_image_u8_init();
  324. // clip_image_convert_f32_to_u8(*image_feature, *tmp);
  325. // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
  326. }
  327. LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
  328. const int64_t t_img_enc_end_us = ggml_time_us();
  329. float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
  330. LOG_TEE("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
  331. return true;
  332. }
  333. bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
  334. // make sure that the correct mmproj was used, i.e., compare apples to apples
  335. int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
  336. auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
  337. if (n_image_embd != n_llama_embd) {
  338. LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
  339. return false;
  340. }
  341. return true;
  342. }
  343. bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
  344. int num_max_patches = 6;
  345. if (clip_is_minicpmv(ctx_clip)) {
  346. num_max_patches = 10;
  347. }
  348. float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
  349. if (!image_embd) {
  350. LOG_TEE("Unable to allocate memory for image embeddings\n");
  351. return false;
  352. }
  353. int n_img_pos;
  354. if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
  355. LOG_TEE("%s: cannot encode image, aborting\n", __func__);
  356. free(image_embd);
  357. return false;
  358. }
  359. *image_embd_out = image_embd;
  360. *n_img_pos_out = n_img_pos;
  361. return true;
  362. }
  363. bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
  364. int n_embd = llama_n_embd(llama_get_model(ctx_llama));
  365. for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
  366. int n_eval = image_embed->n_image_pos - i;
  367. if (n_eval > n_batch) {
  368. n_eval = n_batch;
  369. }
  370. llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
  371. if (llama_decode(ctx_llama, batch)) {
  372. LOG_TEE("%s : failed to eval\n", __func__);
  373. return false;
  374. }
  375. *n_past += n_eval;
  376. }
  377. return true;
  378. }
  379. struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
  380. clip_image_u8 * img = clip_image_u8_init();
  381. if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
  382. clip_image_u8_free(img);
  383. LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__);
  384. return NULL;
  385. }
  386. float* image_embed = NULL;
  387. int n_image_pos = 0;
  388. bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
  389. if (!image_embed_result) {
  390. clip_image_u8_free(img);
  391. LOG_TEE("%s: coulnd't embed the image\n", __func__);
  392. return NULL;
  393. }
  394. clip_image_u8_free(img);
  395. auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
  396. result->embed = image_embed;
  397. result->n_image_pos = n_image_pos;
  398. return result;
  399. }
  400. static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
  401. auto file = fopen(path, "rb");
  402. if (file == NULL) {
  403. LOG_TEE("%s: can't read file %s\n", __func__, path);
  404. return false;
  405. }
  406. fseek(file, 0, SEEK_END);
  407. auto fileSize = ftell(file);
  408. fseek(file, 0, SEEK_SET);
  409. auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
  410. if (buffer == NULL) {
  411. LOG_TEE("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
  412. perror("Memory allocation error");
  413. fclose(file);
  414. return false;
  415. }
  416. errno = 0;
  417. size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
  418. if (ferror(file)) {
  419. die_fmt("read error: %s", strerror(errno));
  420. }
  421. if (ret != (size_t) fileSize) {
  422. die("unexpectedly reached end of file");
  423. }
  424. fclose(file); // Close the file
  425. *bytesOut = buffer;
  426. *sizeOut = fileSize;
  427. return true;
  428. }
  429. struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
  430. unsigned char* image_bytes;
  431. long image_bytes_length;
  432. auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
  433. if (!loaded) {
  434. LOG_TEE("%s: failed to load %s\n", __func__, image_path);
  435. return NULL;
  436. }
  437. llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
  438. free(image_bytes);
  439. return embed;
  440. }
  441. void llava_image_embed_free(struct llava_image_embed * embed) {
  442. free(embed->embed);
  443. free(embed);
  444. }