123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- /**
- * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #pragma once
- #include "llama.h"
- #include "grammar-parser.h"
- #include <random>
- #include <string>
- #include <unordered_map>
- #include <vector>
- // sampler types
- enum class llama_sampler_type : char {
- TOP_K = 'k',
- TOP_P = 'p',
- MIN_P = 'm',
- TFS_Z = 'f',
- TYPICAL_P = 'y',
- TEMPERATURE = 't'
- };
- // sampling parameters
- typedef struct llama_sampling_params {
- int32_t n_prev = 64; // number of previous tokens to remember
- int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
- int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
- int32_t top_k = 40; // <= 0 to use vocab size
- float top_p = 0.95f; // 1.0 = disabled
- float min_p = 0.05f; // 0.0 = disabled
- float tfs_z = 1.00f; // 1.0 = disabled
- float typical_p = 1.00f; // 1.0 = disabled
- float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
- float dynatemp_range = 0.00f; // 0.0 = disabled
- float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
- int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
- float penalty_repeat = 1.00f; // 1.0 = disabled
- float penalty_freq = 0.00f; // 0.0 = disabled
- float penalty_present = 0.00f; // 0.0 = disabled
- int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
- float mirostat_tau = 5.00f; // target entropy
- float mirostat_eta = 0.10f; // learning rate
- bool penalize_nl = false; // consider newlines as a repeatable token
- uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
- std::vector<llama_sampler_type> samplers_sequence = {
- llama_sampler_type::TOP_K,
- llama_sampler_type::TFS_Z,
- llama_sampler_type::TYPICAL_P,
- llama_sampler_type::TOP_P,
- llama_sampler_type::MIN_P,
- llama_sampler_type::TEMPERATURE
- };
- std::string grammar; // optional BNF-like grammar to constrain sampling
- // Classifier-Free Guidance
- // https://arxiv.org/abs/2306.17806
- std::string cfg_negative_prompt; // string to help guidance
- float cfg_scale = 1.f; // how strong is guidance
- std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
- std::vector<llama_token> penalty_prompt_tokens;
- bool use_penalty_prompt_tokens = false;
- } llama_sampling_params;
- // general sampler context
- // TODO: move to llama.h
- struct llama_sampling_context {
- // parameters that will be used for sampling
- llama_sampling_params params;
- // mirostat sampler state
- float mirostat_mu;
- llama_grammar * grammar;
- // internal
- grammar_parser::parse_state parsed_grammar;
- // TODO: replace with ring-buffer
- std::vector<llama_token> prev;
- std::vector<llama_token_data> cur;
- size_t n_valid; // Number of correct top tokens with correct probabilities.
- std::mt19937 rng;
- };
- #include "common.h"
- // Create a new sampling context instance.
- struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params);
- void llama_sampling_free(struct llama_sampling_context * ctx);
- // Reset the sampler context
- // - clear prev tokens
- // - reset grammar
- void llama_sampling_reset(llama_sampling_context * ctx);
- // Set the sampler seed
- void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed);
- // Copy the sampler context
- void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
- // Get the last sampled token
- llama_token llama_sampling_last(llama_sampling_context * ctx);
- // Get a string representation of the last sampled tokens
- std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n);
- // Print sampling parameters into a string
- std::string llama_sampling_print(const llama_sampling_params & params);
- // Print sampling order into a string
- std::string llama_sampling_order_print(const llama_sampling_params & params);
- std::string llama_sampling_type_to_str(llama_sampler_type sampler_type);
- std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
- std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string);
- // this is a common sampling function used across the examples for convenience
- // it can serve as a starting point for implementing your own sampling function
- // Note: When using multiple sequences, it is the caller's responsibility to call
- // llama_sampling_reset when a sequence ends
- //
- // required:
- // - ctx_main: context to use for sampling
- // - ctx_sampling: sampling-specific context
- //
- // optional:
- // - ctx_cfg: context to use for classifier-free guidance
- // - idx: sample from llama_get_logits_ith(ctx, idx)
- //
- // returns:
- // - token: sampled token
- // - candidates: vector of candidate tokens
- //
- llama_token llama_sampling_sample(
- struct llama_sampling_context * ctx_sampling,
- struct llama_context * ctx_main,
- struct llama_context * ctx_cfg,
- int idx = -1);
- // Prepares and adjusts the set of token candidates for sampling based on penalties, biases, and sampling parameters.
- llama_token_data_array llama_sampling_prepare(
- struct llama_sampling_context * ctx_sampling,
- struct llama_context * ctx_main,
- struct llama_context * ctx_cfg,
- int idx = 0,
- bool apply_grammar = true,
- std::vector<float> * original_logits = nullptr);
- void llama_sampling_accept(
- struct llama_sampling_context * ctx_sampling,
- struct llama_context * ctx_main,
- llama_token id,
- bool apply_grammar);
|