sgemm.cpp 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176
  1. // Copyright 2024 Mozilla Foundation
  2. //
  3. // Permission is hereby granted, free of charge, to any person obtaining
  4. // a copy of this software and associated documentation files (the
  5. // "Software"), to deal in the Software without restriction, including
  6. // without limitation the rights to use, copy, modify, merge, publish,
  7. // distribute, sublicense, and/or sell copies of the Software, and to
  8. // permit persons to whom the Software is furnished to do so, subject to
  9. // the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be
  12. // included in all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  15. // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  16. // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  17. // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  18. // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  19. // ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  20. // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21. // SOFTWARE.
  22. //
  23. // _ _ ___ _ _ ___
  24. // | |_(_)_ _ _ _| _ ) | /_\ / __|
  25. // | _| | ' \ || | _ \ |__ / _ \\__ \.
  26. // \__|_|_||_\_, |___/____/_/ \_\___/
  27. // |__/
  28. //
  29. // BASIC LINEAR ALGEBRA SUBPROGRAMS
  30. //
  31. //
  32. // This file implements multithreaded CPU matrix multiplication for the
  33. // common contiguous use case C = Aᵀ * B. These kernels are designed to
  34. // have excellent performance[1] for matrices that fit in the CPU cache
  35. // without imposing any overhead such as cache filling or malloc calls.
  36. //
  37. // This implementation does not guarantee any upper bound with rounding
  38. // errors, which grow along with k. Our goal's to maximally exploit the
  39. // hardware for performance, and then use whatever resources remain for
  40. // improving numerical accuracy.
  41. //
  42. // [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online].
  43. // Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
  44. #if defined(__GNUC__)
  45. #pragma GCC diagnostic ignored "-Wpedantic"
  46. #pragma GCC diagnostic ignored "-Wignored-attributes"
  47. #endif
  48. #include "sgemm.h"
  49. #include "ggml-impl.h"
  50. #include "ggml-quants.h"
  51. #ifdef _MSC_VER
  52. #define NOINLINE __declspec(noinline)
  53. #else
  54. #define NOINLINE __attribute__((__noinline__))
  55. #endif
  56. #if defined(__ARM_NEON) || defined(__AVX512F__)
  57. #define VECTOR_REGISTERS 32
  58. #else
  59. #define VECTOR_REGISTERS 16
  60. #endif
  61. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  62. namespace {
  63. inline float unhalf(ggml_fp16_t d) {
  64. return GGML_FP16_TO_FP32(d);
  65. }
  66. ////////////////////////////////////////////////////////////////////////////////////////////////////
  67. // VECTORIZED ARITHMETIC OPERATIONS
  68. #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  69. inline __m128 add(__m128 x, __m128 y) { return _mm_add_ps(x, y); }
  70. inline __m128 sub(__m128 x, __m128 y) { return _mm_sub_ps(x, y); }
  71. inline __m128 mul(__m128 x, __m128 y) { return _mm_mul_ps(x, y); }
  72. #endif // __SSE__
  73. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  74. inline __m256 add(__m256 x, __m256 y) { return _mm256_add_ps(x, y); }
  75. inline __m256 sub(__m256 x, __m256 y) { return _mm256_sub_ps(x, y); }
  76. inline __m256 mul(__m256 x, __m256 y) { return _mm256_mul_ps(x, y); }
  77. #endif // __AVX__
  78. #if defined(__AVX512F__)
  79. inline __m512 add(__m512 x, __m512 y) { return _mm512_add_ps(x, y); }
  80. inline __m512 sub(__m512 x, __m512 y) { return _mm512_sub_ps(x, y); }
  81. inline __m512 mul(__m512 x, __m512 y) { return _mm512_mul_ps(x, y); }
  82. #endif // __AVX512F__
  83. #if defined(__ARM_NEON)
  84. inline float32x4_t add(float32x4_t x, float32x4_t y) { return vaddq_f32(x, y); }
  85. inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vsubq_f32(x, y); }
  86. inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vmulq_f32(x, y); }
  87. #endif // __ARM_NEON
  88. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  89. inline float16x8_t add(float16x8_t x, float16x8_t y) { return vaddq_f16(x, y); }
  90. inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); }
  91. inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); }
  92. #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  93. ////////////////////////////////////////////////////////////////////////////////////////////////////
  94. // VECTORIZED FUSED MULTIPLY ADD
  95. /**
  96. * Computes a * b + c.
  97. */
  98. template <typename T, typename U>
  99. inline U madd(T a, T b, U c) {
  100. return add(mul(a, b), c);
  101. }
  102. #if defined(__FMA__)
  103. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  104. template <>
  105. inline __m256 madd(__m256 a, __m256 b, __m256 c) {
  106. return _mm256_fmadd_ps(a, b, c);
  107. }
  108. #endif
  109. #if defined(__AVX512F__)
  110. template <>
  111. inline __m512 madd(__m512 a, __m512 b, __m512 c) {
  112. return _mm512_fmadd_ps(a, b, c);
  113. }
  114. #endif
  115. #endif
  116. #if defined(__ARM_FEATURE_FMA)
  117. template <>
  118. inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) {
  119. return vfmaq_f32(c, b, a);
  120. }
  121. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
  122. template <>
  123. inline float16x8_t madd(float16x8_t a, float16x8_t b, float16x8_t c) {
  124. return vfmaq_f16(c, b, a);
  125. }
  126. #endif
  127. #endif
  128. ////////////////////////////////////////////////////////////////////////////////////////////////////
  129. // VECTORIZED HORIZONTAL SUM
  130. #if defined(__ARM_NEON)
  131. inline float hsum(float32x4_t x) {
  132. return vaddvq_f32(x);
  133. }
  134. #endif // __ARM_NEON
  135. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
  136. inline float hsum(float16x8_t x) {
  137. return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)),
  138. vcvt_f32_f16(vget_high_f16(x))));
  139. }
  140. #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  141. #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  142. inline float hsum(__m128 x) {
  143. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  144. x = _mm_add_ps(x, _mm_movehl_ps(x, x));
  145. x = _mm_add_ss(x, _mm_movehdup_ps(x));
  146. #else
  147. __m128 t;
  148. t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1));
  149. x = _mm_add_ps(x, t);
  150. t = _mm_movehl_ps(t, x);
  151. x = _mm_add_ss(x, t);
  152. #endif
  153. return _mm_cvtss_f32(x);
  154. }
  155. #endif
  156. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  157. inline float hsum(__m256 x) {
  158. return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1),
  159. _mm256_castps256_ps128(x)));
  160. }
  161. #endif // __AVX__
  162. #if defined(__AVX512F__)
  163. inline float hsum(__m512 x) {
  164. return _mm512_reduce_add_ps(x);
  165. }
  166. #endif // __AVX512F__
  167. ////////////////////////////////////////////////////////////////////////////////////////////////////
  168. // VECTORIZED MEMORY LOADING
  169. template <typename T, typename U> T load(const U *);
  170. #if defined(__ARM_NEON)
  171. template <> inline float32x4_t load(const float *p) {
  172. return vld1q_f32(p);
  173. }
  174. #if !defined(_MSC_VER)
  175. template <> inline float16x8_t load(const ggml_fp16_t *p) {
  176. return vld1q_f16((const float16_t *)p);
  177. }
  178. template <> inline float32x4_t load(const ggml_fp16_t *p) {
  179. return vcvt_f32_f16(vld1_f16((const float16_t *)p));
  180. }
  181. #endif // _MSC_VER
  182. #endif // __ARM_NEON
  183. #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  184. template <> inline __m128 load(const float *p) {
  185. return _mm_loadu_ps(p);
  186. }
  187. #endif // __SSE__
  188. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  189. template <> inline __m256 load(const float *p) {
  190. return _mm256_loadu_ps(p);
  191. }
  192. #endif // __AVX__
  193. #if defined(__F16C__)
  194. template <> inline __m256 load(const ggml_fp16_t *p) {
  195. return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p));
  196. }
  197. #endif // __F16C__
  198. #if defined(__AVX512F__)
  199. template <> inline __m512 load(const float *p) {
  200. return _mm512_loadu_ps(p);
  201. }
  202. template <> inline __m512 load(const ggml_fp16_t *p) {
  203. return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p));
  204. }
  205. #endif // __AVX512F__
  206. ////////////////////////////////////////////////////////////////////////////////////////////////////
  207. // FLOATING POINT MATRIX MULTIPLICATION
  208. template <int KN, typename D, typename V, typename TA, typename TB, typename TC>
  209. class tinyBLAS {
  210. public:
  211. tinyBLAS(int64_t k,
  212. const TA *A, int64_t lda,
  213. const TB *B, int64_t ldb,
  214. TC *C, int64_t ldc,
  215. int ith, int nth)
  216. : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
  217. }
  218. void matmul(int64_t m, int64_t n) {
  219. mnpack(0, m, 0, n);
  220. }
  221. private:
  222. NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  223. int64_t mc, nc, mp, np;
  224. switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) {
  225. #if VECTOR_REGISTERS == 32
  226. case 0x55:
  227. mc = 5;
  228. nc = 5;
  229. gemm<5, 5>(m0, m, n0, n);
  230. break;
  231. case 0x45:
  232. mc = 4;
  233. nc = 5;
  234. gemm<4, 5>(m0, m, n0, n);
  235. break;
  236. case 0x54:
  237. mc = 5;
  238. nc = 4;
  239. gemm<5, 4>(m0, m, n0, n);
  240. break;
  241. case 0x44:
  242. mc = 4;
  243. nc = 4;
  244. gemm<4, 4>(m0, m, n0, n);
  245. break;
  246. case 0x53:
  247. mc = 5;
  248. nc = 3;
  249. gemm<5, 3>(m0, m, n0, n);
  250. break;
  251. case 0x35:
  252. mc = 3;
  253. nc = 5;
  254. gemm<3, 5>(m0, m, n0, n);
  255. break;
  256. case 0x43:
  257. mc = 4;
  258. nc = 3;
  259. gemm<4, 3>(m0, m, n0, n);
  260. break;
  261. #else
  262. case 0x55:
  263. case 0x54:
  264. case 0x53:
  265. case 0x45:
  266. case 0x44:
  267. case 0x43:
  268. mc = 4;
  269. nc = 3;
  270. gemm<4, 3>(m0, m, n0, n);
  271. break;
  272. case 0x35:
  273. #endif
  274. case 0x34:
  275. mc = 3;
  276. nc = 4;
  277. gemm<3, 4>(m0, m, n0, n);
  278. break;
  279. case 0x52:
  280. mc = 5;
  281. nc = 2;
  282. gemm<5, 2>(m0, m, n0, n);
  283. break;
  284. case 0x33:
  285. mc = 3;
  286. nc = 3;
  287. gemm<3, 3>(m0, m, n0, n);
  288. break;
  289. case 0x25:
  290. mc = 2;
  291. nc = 5;
  292. gemm<2, 5>(m0, m, n0, n);
  293. break;
  294. case 0x42:
  295. mc = 4;
  296. nc = 2;
  297. gemm<4, 2>(m0, m, n0, n);
  298. break;
  299. case 0x24:
  300. mc = 2;
  301. nc = 4;
  302. gemm<2, 4>(m0, m, n0, n);
  303. break;
  304. case 0x32:
  305. mc = 3;
  306. nc = 2;
  307. gemm<3, 2>(m0, m, n0, n);
  308. break;
  309. case 0x23:
  310. mc = 2;
  311. nc = 3;
  312. gemm<2, 3>(m0, m, n0, n);
  313. break;
  314. case 0x51:
  315. mc = 5;
  316. nc = 1;
  317. gemm<5, 1>(m0, m, n0, n);
  318. break;
  319. case 0x41:
  320. mc = 4;
  321. nc = 1;
  322. gemm<4, 1>(m0, m, n0, n);
  323. break;
  324. case 0x22:
  325. mc = 2;
  326. nc = 2;
  327. gemm<2, 2>(m0, m, n0, n);
  328. break;
  329. case 0x15:
  330. mc = 1;
  331. nc = 5;
  332. gemm<1, 5>(m0, m, n0, n);
  333. break;
  334. case 0x14:
  335. mc = 1;
  336. nc = 4;
  337. gemm<1, 4>(m0, m, n0, n);
  338. break;
  339. case 0x31:
  340. mc = 3;
  341. nc = 1;
  342. gemm<3, 1>(m0, m, n0, n);
  343. break;
  344. case 0x13:
  345. mc = 1;
  346. nc = 3;
  347. gemm<1, 3>(m0, m, n0, n);
  348. break;
  349. case 0x21:
  350. mc = 2;
  351. nc = 1;
  352. gemm<2, 1>(m0, m, n0, n);
  353. break;
  354. case 0x12:
  355. mc = 1;
  356. nc = 2;
  357. gemm<1, 2>(m0, m, n0, n);
  358. break;
  359. case 0x11:
  360. mc = 1;
  361. nc = 1;
  362. gemm<1, 1>(m0, m, n0, n);
  363. break;
  364. default:
  365. return;
  366. }
  367. mp = m0 + (m - m0) / mc * mc;
  368. np = n0 + (n - n0) / nc * nc;
  369. mnpack(mp, m, n0, np);
  370. mnpack(m0, m, np, n);
  371. }
  372. template <int RM, int RN>
  373. NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  374. int64_t ytiles = (m - m0) / RM;
  375. int64_t xtiles = (n - n0) / RN;
  376. int64_t tiles = xtiles * ytiles;
  377. int64_t duty = (tiles + nth - 1) / nth;
  378. int64_t start = duty * ith;
  379. int64_t end = start + duty;
  380. if (end > tiles)
  381. end = tiles;
  382. for (int64_t job = start; job < end; ++job) {
  383. int64_t ii = m0 + job / xtiles * RM;
  384. int64_t jj = n0 + job % xtiles * RN;
  385. D Cv[RN][RM] = {};
  386. for (int64_t l = 0; l < k; l += KN)
  387. for (int64_t j = 0; j < RN; ++j)
  388. for (int64_t i = 0; i < RM; ++i)
  389. Cv[j][i] = madd(load<V>(A + lda * (ii + i) + l),
  390. load<V>(B + ldb * (jj + j) + l),
  391. Cv[j][i]);
  392. for (int64_t j = 0; j < RN; ++j)
  393. for (int64_t i = 0; i < RM; ++i)
  394. C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
  395. }
  396. }
  397. const TA *const A;
  398. const TB *const B;
  399. TC *const C;
  400. const int64_t k;
  401. const int64_t lda;
  402. const int64_t ldb;
  403. const int64_t ldc;
  404. const int ith;
  405. const int nth;
  406. };
  407. //////////////////////////////////////////////////////////////////////////////////////////
  408. // QUANT ZERO MATRIX MULTIPLICATION
  409. #if defined(__ARM_FEATURE_DOTPROD)
  410. template <typename TA>
  411. class tinyBLAS_Q0_ARM {
  412. public:
  413. tinyBLAS_Q0_ARM(int64_t k,
  414. const TA *A, int64_t lda,
  415. const block_q8_0 *B, int64_t ldb,
  416. float *C, int64_t ldc,
  417. int ith, int nth)
  418. : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
  419. }
  420. void matmul(int64_t m, int64_t n) {
  421. mnpack(0, m, 0, n);
  422. }
  423. private:
  424. NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  425. int64_t mc, nc, mp, np;
  426. switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3ll)) {
  427. case 0x33:
  428. mc = 3;
  429. nc = 3;
  430. gemm<3, 3>(m0, m, n0, n);
  431. break;
  432. case 0x32:
  433. mc = 3;
  434. nc = 2;
  435. gemm<3, 2>(m0, m, n0, n);
  436. break;
  437. case 0x23:
  438. mc = 2;
  439. nc = 3;
  440. gemm<2, 3>(m0, m, n0, n);
  441. break;
  442. case 0x22:
  443. mc = 2;
  444. nc = 2;
  445. gemm<2, 2>(m0, m, n0, n);
  446. break;
  447. case 0x31:
  448. mc = 3;
  449. nc = 1;
  450. gemm<3, 1>(m0, m, n0, n);
  451. break;
  452. case 0x13:
  453. mc = 1;
  454. nc = 3;
  455. gemm<1, 3>(m0, m, n0, n);
  456. break;
  457. case 0x21:
  458. mc = 2;
  459. nc = 1;
  460. gemm<2, 1>(m0, m, n0, n);
  461. break;
  462. case 0x12:
  463. mc = 1;
  464. nc = 2;
  465. gemm<1, 2>(m0, m, n0, n);
  466. break;
  467. case 0x11:
  468. mc = 1;
  469. nc = 1;
  470. gemm<1, 1>(m0, m, n0, n);
  471. break;
  472. default:
  473. return;
  474. }
  475. mp = m0 + (m - m0) / mc * mc;
  476. np = n0 + (n - n0) / nc * nc;
  477. mnpack(mp, m, n0, np);
  478. mnpack(m0, m, np, n);
  479. }
  480. template <int RM, int RN>
  481. NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  482. int64_t ytiles = (m - m0) / RM;
  483. int64_t xtiles = (n - n0) / RN;
  484. int64_t tiles = xtiles * ytiles;
  485. int64_t duty = (tiles + nth - 1) / nth;
  486. int64_t start = duty * ith;
  487. int64_t end = start + duty;
  488. if (end > tiles)
  489. end = tiles;
  490. for (int64_t job = start; job < end; ++job) {
  491. int64_t ii = m0 + job / xtiles * RM;
  492. int64_t jj = n0 + job % xtiles * RN;
  493. float32x4_t Cv[RN][RM] = {};
  494. for (int64_t l = 0; l < k; ++l)
  495. for (int64_t j = 0; j < RN; ++j)
  496. for (int64_t i = 0; i < RM; ++i)
  497. Cv[j][i] = vmlaq_n_f32(Cv[j][i],
  498. vcvtq_f32_s32(vdotq_s32(
  499. vdotq_s32(vdupq_n_s32(0),
  500. load_lo(A + lda * (ii + i) + l),
  501. load_lo(B + ldb * (jj + j) + l)),
  502. load_hi(A + lda * (ii + i) + l),
  503. load_hi(B + ldb * (jj + j) + l))),
  504. unhalf(A[lda * (ii + i) + l].d) *
  505. unhalf(B[ldb * (jj + j) + l].d));
  506. for (int64_t j = 0; j < RN; ++j)
  507. for (int64_t i = 0; i < RM; ++i)
  508. C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
  509. }
  510. }
  511. inline int8x16_t load_lo(const block_q8_0 *b) {
  512. return vld1q_s8(b->qs);
  513. }
  514. inline int8x16_t load_hi(const block_q8_0 *b) {
  515. return vld1q_s8(b->qs + 16);
  516. }
  517. inline int8x16_t load_lo(const block_q4_0 *b) {
  518. return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs),
  519. vdupq_n_u8(0x0f))),
  520. vdupq_n_s8(0x8));
  521. }
  522. inline int8x16_t load_hi(const block_q4_0 *b) {
  523. return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)),
  524. vdupq_n_s8(0x8));
  525. }
  526. const TA *const A;
  527. const block_q8_0 *const B;
  528. float *const C;
  529. const int64_t k;
  530. const int64_t lda;
  531. const int64_t ldb;
  532. const int64_t ldc;
  533. const int ith;
  534. const int nth;
  535. };
  536. #endif // __ARM_FEATURE_DOTPROD
  537. #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
  538. template <typename TA, typename TB, typename TC>
  539. class tinyBLAS_Q0_AVX {
  540. public:
  541. tinyBLAS_Q0_AVX(int64_t k,
  542. const TA *A, int64_t lda,
  543. const TB *B, int64_t ldb,
  544. TC *C, int64_t ldc,
  545. int ith, int nth)
  546. : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
  547. }
  548. void matmul(int64_t m, int64_t n) {
  549. mnpack(0, m, 0, n);
  550. }
  551. private:
  552. void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  553. int64_t mc, nc, mp, np;
  554. switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 4)) {
  555. #if VECTOR_REGISTERS == 32
  556. case 0x44:
  557. mc = 4;
  558. nc = 4;
  559. #if defined(__AVX2__) && defined(__F16C__)
  560. gemm4xN<4>(m0, m, n0, n);
  561. #else
  562. gemm<4, 4>(m0, m, n0, n);
  563. #endif
  564. break;
  565. case 0x43:
  566. mc = 4;
  567. nc = 3;
  568. #if defined(__AVX2__) && defined(__F16C__)
  569. gemm4xN<3>(m0, m, n0, n);
  570. #else
  571. gemm<4, 3>(m0, m, n0, n);
  572. #endif
  573. break;
  574. case 0x34:
  575. mc = 3;
  576. nc = 4;
  577. #if defined(__AVX2__) && defined(__F16C__)
  578. gemmMx4<3>(m0, m, n0, n);
  579. #else
  580. gemm<3, 4>(m0, m, n0, n);
  581. #endif
  582. break;
  583. case 0x33:
  584. mc = 3;
  585. nc = 3;
  586. gemm<3, 3>(m0, m, n0, n);
  587. break;
  588. case 0x42:
  589. mc = 4;
  590. nc = 2;
  591. #if defined(__AVX2__) && defined(__F16C__)
  592. gemm4xN<2>(m0, m, n0, n);
  593. #else
  594. gemm<4, 2>(m0, m, n0, n);
  595. #endif
  596. break;
  597. case 0x24:
  598. mc = 2;
  599. nc = 4;
  600. #if defined(__AVX2__) && defined(__F16C__)
  601. gemmMx4<2>(m0, m, n0, n);
  602. #else
  603. gemm<2, 4>(m0, m, n0, n);
  604. #endif
  605. break;
  606. #else
  607. case 0x44:
  608. case 0x43:
  609. case 0x42:
  610. mc = 4;
  611. nc = 2;
  612. #if defined(__AVX2__) && defined(__F16C__)
  613. gemm4xN<2>(m0, m, n0, n);
  614. #else
  615. gemm<4, 2>(m0, m, n0, n);
  616. #endif
  617. break;
  618. case 0x34:
  619. case 0x24:
  620. mc = 2;
  621. nc = 4;
  622. #if defined(__AVX2__) && defined(__F16C__)
  623. gemmMx4<2>(m0, m, n0, n);
  624. #else
  625. gemm<2, 4>(m0, m, n0, n);
  626. #endif
  627. break;
  628. case 0x33:
  629. #endif
  630. case 0x32:
  631. mc = 3;
  632. nc = 2;
  633. gemm<3, 2>(m0, m, n0, n);
  634. break;
  635. case 0x23:
  636. mc = 2;
  637. nc = 3;
  638. gemm<2, 3>(m0, m, n0, n);
  639. break;
  640. case 0x41:
  641. mc = 4;
  642. nc = 1;
  643. #if defined(__AVX2__) && defined(__F16C__)
  644. gemm4xN<1>(m0, m, n0, n);
  645. #else
  646. gemm<4, 1>(m0, m, n0, n);
  647. #endif
  648. break;
  649. case 0x22:
  650. mc = 2;
  651. nc = 2;
  652. gemm<2, 2>(m0, m, n0, n);
  653. break;
  654. case 0x14:
  655. mc = 1;
  656. nc = 4;
  657. #if defined(__AVX2__) && defined(__F16C__)
  658. gemmMx4<1>(m0, m, n0, n);
  659. #else
  660. gemm<1, 4>(m0, m, n0, n);
  661. #endif
  662. break;
  663. case 0x31:
  664. mc = 3;
  665. nc = 1;
  666. gemm<3, 1>(m0, m, n0, n);
  667. break;
  668. case 0x13:
  669. mc = 1;
  670. nc = 3;
  671. gemm<1, 3>(m0, m, n0, n);
  672. break;
  673. case 0x21:
  674. mc = 2;
  675. nc = 1;
  676. gemm<2, 1>(m0, m, n0, n);
  677. break;
  678. case 0x12:
  679. mc = 1;
  680. nc = 2;
  681. gemm<1, 2>(m0, m, n0, n);
  682. break;
  683. case 0x11:
  684. mc = 1;
  685. nc = 1;
  686. gemm<1, 1>(m0, m, n0, n);
  687. break;
  688. default:
  689. return;
  690. }
  691. mp = m0 + (m - m0) / mc * mc;
  692. np = n0 + (n - n0) / nc * nc;
  693. mnpack(mp, m, n0, np);
  694. mnpack(m0, m, np, n);
  695. }
  696. #if defined(__AVX2__) && defined(__F16C__)
  697. // Templated functions for gemm of dimensions 4xN
  698. template <int RN>
  699. NOINLINE void gemm4xN(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  700. int64_t ytiles = (m - m0) / 4;
  701. int64_t xtiles = (n - n0) / RN;
  702. int64_t tiles = xtiles * ytiles;
  703. int64_t duty = (tiles + nth - 1) / nth;
  704. int64_t start = duty * ith;
  705. int64_t end = start + duty;
  706. if (end > tiles)
  707. end = tiles;
  708. for (int64_t job = start; job < end; ++job) {
  709. int64_t ii = m0 + job / xtiles * 4;
  710. int64_t jj = n0 + job % xtiles * RN;
  711. __m256 Cv[RN][4] = {};
  712. for (int64_t l = 0; l < k; ++l) {
  713. uint64_t a_delta = ((uint64_t)A[lda * (ii + 3) + l].d << 48) | ((uint64_t)A[lda * (ii + 2) + l].d << 32) | ((uint64_t)A[lda * (ii + 1) + l].d << 16) | (A[lda * (ii + 0) + l].d);
  714. // Convert delta values for four blocks to float values
  715. __m128 da = _mm_cvtph_ps(_mm_set_epi64x(0, a_delta));
  716. __m256i avec0 = load(A + lda * (ii + 0) + l);
  717. __m256i avec1 = load(A + lda * (ii + 1) + l);
  718. __m256i avec2 = load(A + lda * (ii + 2) + l);
  719. __m256i avec3 = load(A + lda * (ii + 3) + l);
  720. for (int64_t j = 0; j < RN; ++j) {
  721. __m128 db = _mm_set1_ps(unhalf(B[ldb * (jj + j) + l].d));
  722. // Computation of product of delta values for four blocks and replicate it across 256 bit lane
  723. __m256 dvec = _mm256_castps128_ps256(_mm_mul_ps(da, db));
  724. dvec = _mm256_permute2f128_ps(dvec ,dvec, 0);
  725. // Computation of dot product and multiplication with appropriate delta value products
  726. Cv[j][0] = madd(_mm256_shuffle_ps(dvec, dvec, 0),
  727. updot(_mm256_sign_epi8(avec0, avec0),
  728. _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec0)),
  729. Cv[j][0]);
  730. Cv[j][1] = madd(_mm256_shuffle_ps(dvec, dvec, 85),
  731. updot(_mm256_sign_epi8(avec1, avec1),
  732. _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec1)),
  733. Cv[j][1]);
  734. Cv[j][2] = madd(_mm256_shuffle_ps(dvec, dvec, 170),
  735. updot(_mm256_sign_epi8(avec2, avec2),
  736. _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec2)),
  737. Cv[j][2]);
  738. Cv[j][3] = madd(_mm256_shuffle_ps(dvec, dvec, 255),
  739. updot(_mm256_sign_epi8(avec3, avec3),
  740. _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec3)),
  741. Cv[j][3]);
  742. }
  743. }
  744. for (int64_t j = 0; j < RN; ++j)
  745. for (int64_t i = 0; i < 4; ++i)
  746. C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
  747. }
  748. }
  749. // Templated functions for gemm of dimensions Mx4
  750. template <int RM>
  751. NOINLINE void gemmMx4(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  752. int64_t ytiles = (m - m0) / RM;
  753. int64_t xtiles = (n - n0) / 4;
  754. int64_t tiles = xtiles * ytiles;
  755. int64_t duty = (tiles + nth - 1) / nth;
  756. int64_t start = duty * ith;
  757. int64_t end = start + duty;
  758. if (end > tiles)
  759. end = tiles;
  760. for (int64_t job = start; job < end; ++job) {
  761. int64_t ii = m0 + job / xtiles * RM;
  762. int64_t jj = n0 + job % xtiles * 4;
  763. __m256 Cv[4][RM] = {};
  764. for (int64_t l = 0; l < k; ++l) {
  765. uint64_t b_delta = ((uint64_t)B[ldb * (jj + 3) + l].d << 48) | ((uint64_t)B[ldb * (jj + 2) + l].d << 32) | ((uint64_t)B[ldb * (jj + 1) + l].d << 16) | (B[ldb * (jj + 0) + l].d);
  766. // Convert delta values for four blocks to float values
  767. __m128 db = _mm_cvtph_ps(_mm_set_epi64x(0, b_delta));
  768. __m256i bvec0 = load(B + ldb * (jj + 0) + l);
  769. __m256i bvec1 = load(B + ldb * (jj + 1) + l);
  770. __m256i bvec2 = load(B + ldb * (jj + 2) + l);
  771. __m256i bvec3 = load(B + ldb * (jj + 3) + l);
  772. for (int64_t i = 0; i < RM; ++i) {
  773. __m128 da = _mm_set1_ps(unhalf((A[lda * (ii + i) + l].d)));
  774. // Computation of product of delta values for four blocks and replicate it across 256 bit lane
  775. __m256 dvec = _mm256_castps128_ps256(_mm_mul_ps(da, db));
  776. dvec = _mm256_permute2f128_ps(dvec ,dvec, 0);
  777. // Computation of dot product and multiplication with appropriate delta value products
  778. Cv[0][i] = madd(_mm256_shuffle_ps(dvec, dvec, 0),
  779. updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
  780. load(A + lda * (ii + i) + l)),
  781. _mm256_sign_epi8(bvec0, load(A + lda * (ii + i) + l))),
  782. Cv[0][i]);
  783. Cv[1][i] = madd(_mm256_shuffle_ps(dvec, dvec, 85),
  784. updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
  785. load(A + lda * (ii + i) + l)),
  786. _mm256_sign_epi8(bvec1, load(A + lda * (ii + i) + l))),
  787. Cv[1][i]);
  788. Cv[2][i] = madd(_mm256_shuffle_ps(dvec, dvec, 170),
  789. updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
  790. load(A + lda * (ii + i) + l)),
  791. _mm256_sign_epi8(bvec2, load(A + lda * (ii + i) + l))),
  792. Cv[2][i]);
  793. Cv[3][i] = madd(_mm256_shuffle_ps(dvec, dvec, 255),
  794. updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
  795. load(A + lda * (ii + i) + l)),
  796. _mm256_sign_epi8(bvec3, load(A + lda * (ii + i) + l))),
  797. Cv[3][i]);
  798. }
  799. }
  800. for (int64_t j = 0; j < 4; ++j)
  801. for (int64_t i = 0; i < RM; ++i)
  802. C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
  803. }
  804. }
  805. #endif
  806. template <int RM, int RN>
  807. NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
  808. int64_t ytiles = (m - m0) / RM;
  809. int64_t xtiles = (n - n0) / RN;
  810. int64_t tiles = xtiles * ytiles;
  811. int64_t duty = (tiles + nth - 1) / nth;
  812. int64_t start = duty * ith;
  813. int64_t end = start + duty;
  814. if (end > tiles)
  815. end = tiles;
  816. for (int64_t job = start; job < end; ++job) {
  817. int64_t ii = m0 + job / xtiles * RM;
  818. int64_t jj = n0 + job % xtiles * RN;
  819. __m256 Cv[RN][RM] = {};
  820. for (int64_t l = 0; l < k; ++l)
  821. for (int64_t j = 0; j < RN; ++j)
  822. for (int64_t i = 0; i < RM; ++i) {
  823. #if defined(__AVX2__)
  824. __m256 udTmp = updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
  825. load(A + lda * (ii + i) + l)),
  826. _mm256_sign_epi8(load(B + ldb * (jj + j) + l),
  827. load(A + lda * (ii + i) + l)));
  828. #else
  829. __m128i ali0 = load0(A + lda * (ii + i) + l);
  830. __m128i ali1 = load1(A + lda * (ii + i) + l);
  831. __m128i blj0 = load0(B + ldb * (jj + j) + l);
  832. __m128i blj1 = load1(B + ldb * (jj + j) + l);
  833. __m128i sepAA0 = _mm_sign_epi8(ali0, ali0);
  834. __m128i sepAA1 = _mm_sign_epi8(ali1, ali1);
  835. __m128i sepBA0 = _mm_sign_epi8(blj0, ali0);
  836. __m128i sepBA1 = _mm_sign_epi8(blj1, ali1);
  837. // updot
  838. const __m128i oneFill = _mm_set1_epi16(1);
  839. __m128i mad0 = _mm_maddubs_epi16(sepAA0, sepBA0);
  840. __m128i mad1 = _mm_maddubs_epi16(sepAA1, sepBA1);
  841. __m256 udTmp = _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_madd_epi16(oneFill, mad1), _mm_madd_epi16(oneFill, mad0)));
  842. #endif
  843. Cv[j][i] = madd(_mm256_set1_ps(unhalf(A[lda * (ii + i) + l].d) *
  844. unhalf(B[ldb * (jj + j) + l].d)),
  845. udTmp,
  846. Cv[j][i]);
  847. }
  848. for (int64_t j = 0; j < RN; ++j)
  849. for (int64_t i = 0; i < RM; ++i)
  850. C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
  851. }
  852. }
  853. inline __m256i load(const block_q8_0 *b) {
  854. return _mm256_loadu_si256((const __m256i *)b->qs);
  855. }
  856. inline __m128i load0(const block_q8_0 *b) {
  857. return _mm_loadu_si128((const __m128i *)b->qs);
  858. }
  859. inline __m128i load1(const block_q8_0 *b) {
  860. return _mm_loadu_si128(((const __m128i *)b->qs) + 1);
  861. }
  862. inline __m256i load(const block_q4_0 *b) {
  863. return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8));
  864. }
  865. inline __m128i load0(const block_q4_0 *b) {
  866. const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
  867. return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), x), _mm_set1_epi8(8));
  868. }
  869. inline __m128i load1(const block_q4_0 *b) {
  870. const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
  871. return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)), _mm_set1_epi8(8));
  872. }
  873. inline __m256 updot(__m256i u, __m256i s) {
  874. __m256i res;
  875. #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
  876. res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s);
  877. #else
  878. res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s));
  879. #endif
  880. return _mm256_cvtepi32_ps(res);
  881. }
  882. static inline __m256i denibble(const uint8_t *p) {
  883. __m128i x = _mm_loadu_si128((const __m128i *)p);
  884. return _mm256_and_si256(_mm256_set1_epi8(15),
  885. _mm256_insertf128_si256(_mm256_castsi128_si256(x),
  886. _mm_srli_epi16(x, 4), 1));
  887. }
  888. const TA *const A;
  889. const TB *const B;
  890. TC *const C;
  891. const int64_t k;
  892. const int64_t lda;
  893. const int64_t ldb;
  894. const int64_t ldc;
  895. const int ith;
  896. const int nth;
  897. };
  898. #endif // __AVX__
  899. } // namespace
  900. /**
  901. * Performs optimized matrix multiplication on CPU.
  902. *
  903. * This subroutine may compute C = Aᵀ * B with column major ordering.
  904. * Despite its name, this isn't a generalized implementation. Work is
  905. * only performed when a handwritten kernel is written and available.
  906. * Otherwise the caller should fall back to a general matmul routine.
  907. *
  908. * For example, for single-threaded single-precision GEMM you can say
  909. *
  910. * llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
  911. * 0, 1,
  912. * GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
  913. *
  914. * @param m is rows in `A` and `C`
  915. * @param n is cols in `B` and `C`
  916. * @param k is cols in `A` and rows in `B`
  917. * @param A is first input matrix (always transposed)
  918. * @param lda is row stride of `A`
  919. * @param B is second input matrix (never transposed)
  920. * @param ldb is row stride of `B`
  921. * @param C is input/output array of output matrices
  922. * @param ldc is row stride of `C`
  923. * @param ith is thread id (must be less than `nth`)
  924. * @param nth is number of threads (must be greater than zero)
  925. * @param Atype is GGML data type of `A`
  926. * @param Btype is GGML data type of `B`
  927. * @param Ctype is GGML data type of `C`
  928. * @return true if this function was able to service the matmul request
  929. */
  930. bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
  931. int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) {
  932. assert(m >= 0);
  933. assert(n >= 0);
  934. assert(k >= 0);
  935. assert(lda >= k);
  936. assert(ldb >= k);
  937. assert(ldc >= m);
  938. assert(nth > 0);
  939. assert(ith < nth);
  940. if (Ctype != GGML_TYPE_F32)
  941. return false;
  942. switch (Atype) {
  943. case GGML_TYPE_F32: {
  944. if (Btype != GGML_TYPE_F32)
  945. return false;
  946. #if defined(__AVX512F__)
  947. if (k % 16)
  948. return false;
  949. tinyBLAS<16, __m512, __m512, float, float, float> tb{
  950. k, (const float *)A, lda,
  951. (const float *)B, ldb,
  952. (float *)C, ldc,
  953. ith, nth};
  954. tb.matmul(m, n);
  955. return true;
  956. #elif defined(__AVX__) || defined(__AVX2__)
  957. if (k % 8)
  958. return false;
  959. tinyBLAS<8, __m256, __m256, float, float, float> tb{
  960. k, (const float *)A, lda,
  961. (const float *)B, ldb,
  962. (float *)C, ldc,
  963. ith, nth};
  964. tb.matmul(m, n);
  965. return true;
  966. #elif defined(__ARM_NEON)
  967. if (n < 4)
  968. return false;
  969. if (k % 4)
  970. return false;
  971. tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{
  972. k, (const float *)A, lda,
  973. (const float *)B, ldb,
  974. (float *)C, ldc,
  975. ith, nth};
  976. tb.matmul(m, n);
  977. return true;
  978. #else
  979. return false;
  980. #endif
  981. }
  982. case GGML_TYPE_F16: {
  983. #if defined(__AVX512F__)
  984. if (k % 16)
  985. return false;
  986. if (Btype != GGML_TYPE_F32)
  987. return false;
  988. tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{
  989. k, (const ggml_fp16_t *)A, lda,
  990. (const float *)B, ldb,
  991. (float *)C, ldc,
  992. ith, nth};
  993. tb.matmul(m, n);
  994. return true;
  995. #elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
  996. if (k % 8)
  997. return false;
  998. if (Btype != GGML_TYPE_F32)
  999. return false;
  1000. tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{
  1001. k, (const ggml_fp16_t *)A, lda,
  1002. (const float *)B, ldb,
  1003. (float *)C, ldc,
  1004. ith, nth};
  1005. tb.matmul(m, n);
  1006. return true;
  1007. #elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
  1008. if (n < 8)
  1009. return false;
  1010. if (k % 8)
  1011. return false;
  1012. if (Btype != GGML_TYPE_F16)
  1013. return false;
  1014. tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{
  1015. k, (const ggml_fp16_t *)A, lda,
  1016. (const ggml_fp16_t *)B, ldb,
  1017. (float *)C, ldc,
  1018. ith, nth};
  1019. tb.matmul(m, n);
  1020. return true;
  1021. #elif defined(__ARM_NEON) && !defined(_MSC_VER)
  1022. if (k % 4)
  1023. return false;
  1024. if (Btype != GGML_TYPE_F32)
  1025. return false;
  1026. tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{
  1027. k, (const ggml_fp16_t *)A, lda,
  1028. (const float *)B, ldb,
  1029. (float *)C, ldc,
  1030. ith, nth};
  1031. tb.matmul(m, n);
  1032. return true;
  1033. #else
  1034. return false;
  1035. #endif
  1036. }
  1037. case GGML_TYPE_Q8_0: {
  1038. if (Btype != GGML_TYPE_Q8_0)
  1039. return false;
  1040. #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
  1041. tinyBLAS_Q0_AVX<block_q8_0, block_q8_0, float> tb{
  1042. k, (const block_q8_0 *)A, lda,
  1043. (const block_q8_0 *)B, ldb,
  1044. (float *)C, ldc,
  1045. ith, nth};
  1046. tb.matmul(m, n);
  1047. return true;
  1048. #elif defined(__ARM_FEATURE_DOTPROD)
  1049. tinyBLAS_Q0_ARM<block_q8_0> tb{
  1050. k, (const block_q8_0 *)A, lda,
  1051. (const block_q8_0 *)B, ldb,
  1052. (float *)C, ldc,
  1053. ith, nth};
  1054. tb.matmul(m, n);
  1055. return true;
  1056. #else
  1057. return false;
  1058. #endif
  1059. }
  1060. case GGML_TYPE_Q4_0: {
  1061. if (Btype != GGML_TYPE_Q8_0)
  1062. return false;
  1063. #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
  1064. tinyBLAS_Q0_AVX<block_q4_0, block_q8_0, float> tb{
  1065. k, (const block_q4_0 *)A, lda,
  1066. (const block_q8_0 *)B, ldb,
  1067. (float *)C, ldc,
  1068. ith, nth};
  1069. tb.matmul(m, n);
  1070. return true;
  1071. #elif defined(__ARM_FEATURE_DOTPROD)
  1072. tinyBLAS_Q0_ARM<block_q4_0> tb{
  1073. k, (const block_q4_0 *)A, lda,
  1074. (const block_q8_0 *)B, ldb,
  1075. (float *)C, ldc,
  1076. ith, nth};
  1077. tb.matmul(m, n);
  1078. return true;
  1079. #else
  1080. return false;
  1081. #endif
  1082. }
  1083. default:
  1084. return false;
  1085. }
  1086. (void)m;
  1087. (void)n;
  1088. (void)k;
  1089. (void)A;
  1090. (void)lda;
  1091. (void)B;
  1092. (void)ldb;
  1093. (void)C;
  1094. (void)ldc;
  1095. (void)ith;
  1096. (void)nth;
  1097. (void)Atype;
  1098. (void)Btype;
  1099. (void)Ctype;
  1100. }