Ingen beskrivning

jmorganca b54dcc750c update .gitattributes with proper linguist-vendored entry 6 månader sedan
.github 96efd9052f Re-introduce the `llama` package (#5034) 6 månader sedan
api 8e6da3cbc5 update deprecated warnings 8 månader sedan
app 55ea963c9e update default model to llama3.2 (#6959) 7 månader sedan
auth b732beba6a lint 9 månader sedan
build cd5c8f6471 Optimize container images for startup (#6547) 7 månader sedan
cmd f40bb398f6 Stop model before deletion if loaded (fixed #6957) (#7050) 7 månader sedan
convert 84b84ce2db catch when model vocab size is set correctly (#6714) 7 månader sedan
docs 96efd9052f Re-introduce the `llama` package (#5034) 6 månader sedan
envconfig 96efd9052f Re-introduce the `llama` package (#5034) 6 månader sedan
examples 55ea963c9e update default model to llama3.2 (#6959) 7 månader sedan
format b732beba6a lint 9 månader sedan
gpu 6c2eb73a70 Fix missing dep path on windows CPU runners (#6884) 7 månader sedan
integration 96efd9052f Re-introduce the `llama` package (#5034) 6 månader sedan
llama f9584deba5 Fix build leakages (#7141) 6 månader sedan
llm f9584deba5 Fix build leakages (#7141) 6 månader sedan
macapp 55ea963c9e update default model to llama3.2 (#6959) 7 månader sedan
openai 06d4fba851 openai: align chat temperature and frequency_penalty options with completion (#6688) 7 månader sedan
parser b732beba6a lint 9 månader sedan
progress f7e3b9190f cmd: spinner progress for transfer model data (#6100) 8 månader sedan
readline 2697d7f5aa lint 8 månader sedan
runners cd5c8f6471 Optimize container images for startup (#6547) 7 månader sedan
scripts 96efd9052f Re-introduce the `llama` package (#5034) 6 månader sedan
server 96efd9052f Re-introduce the `llama` package (#5034) 6 månader sedan
template 9468c6824a Merge pull request #6534 from ollama/mxyng/messages 8 månader sedan
types 0a8d6ea86d Fix typo and improve readability (#5964) 8 månader sedan
util cb42e607c5 llm: speed up gguf decoding by a lot (#5246) 10 månader sedan
version 2c7f956b38 add version 1 år sedan
.dockerignore cd5c8f6471 Optimize container images for startup (#6547) 7 månader sedan
.gitattributes b54dcc750c update .gitattributes with proper linguist-vendored entry 6 månader sedan
.gitignore 96efd9052f Re-introduce the `llama` package (#5034) 6 månader sedan
.gitmodules fac9060da5 Init submodule with new path 1 år sedan
.golangci.yaml 8e6da3cbc5 update deprecated warnings 8 månader sedan
.prettierrc.json 8685a5ad18 move .prettierrc.json to root 1 år sedan
CONTRIBUTING.md 369479cc30 docs: fix spelling error (#6391) 8 månader sedan
Dockerfile 96efd9052f Re-introduce the `llama` package (#5034) 6 månader sedan
LICENSE df5fdd6647 `proto` -> `ollama` 1 år sedan
README.md de982616f1 readme: replace stale links to LangChain documentation (#7117) 6 månader sedan
SECURITY.md 463a8aa273 Create SECURITY.md 9 månader sedan
go.mod feedf49c71 Go back to a pinned Go version 8 månader sedan
go.sum 9b6c2e6eb6 detect chat template from KV 10 månader sedan
main.go b732beba6a lint 9 månader sedan

README.md

 ollama

Ollama

Discord

Get up and running with large language models.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3.2:

ollama run llama3.2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 70B 40GB ollama run llama3.1:70b
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2 2B 1.6GB ollama run gemma2:2b
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.2 model:

ollama pull llama3.2

Create a Modelfile:

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.2

Copy a model

ollama cp llama3.2 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.2

List models on your computer

ollama list

List which models are currently loaded

ollama ps

Stop a model which is currently running

ollama stop llama3.2

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Apple Vision Pro

Database

Package managers

Libraries

Mobile

  • Enchanted
  • Maid
  • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.