1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145 |
- /**
- * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "ggml-cuda.h"
- #include "ggml.h"
- #include "ggml-backend-impl.h"
- #include "ggml-cuda/common.cuh"
- #include "ggml-cuda/acc.cuh"
- #include "ggml-cuda/arange.cuh"
- #include "ggml-cuda/argsort.cuh"
- #include "ggml-cuda/binbcast.cuh"
- #include "ggml-cuda/clamp.cuh"
- #include "ggml-cuda/concat.cuh"
- #include "ggml-cuda/conv-transpose-1d.cuh"
- #include "ggml-cuda/convert.cuh"
- #include "ggml-cuda/cpy.cuh"
- #include "ggml-cuda/cross-entropy-loss.cuh"
- #include "ggml-cuda/diagmask.cuh"
- #include "ggml-cuda/dmmv.cuh"
- #include "ggml-cuda/fattn.cuh"
- #include "ggml-cuda/getrows.cuh"
- #include "ggml-cuda/im2col.cuh"
- #include "ggml-cuda/mmq.cuh"
- #include "ggml-cuda/mmvq.cuh"
- #include "ggml-cuda/norm.cuh"
- #include "ggml-cuda/pad.cuh"
- #include "ggml-cuda/pool2d.cuh"
- #include "ggml-cuda/quantize.cuh"
- #include "ggml-cuda/rope.cuh"
- #include "ggml-cuda/scale.cuh"
- #include "ggml-cuda/softmax.cuh"
- #include "ggml-cuda/sumrows.cuh"
- #include "ggml-cuda/tsembd.cuh"
- #include "ggml-cuda/unary.cuh"
- #include "ggml-cuda/upscale.cuh"
- #include <algorithm>
- #include <array>
- #include <atomic>
- #include <cinttypes>
- #include <cstddef>
- #include <cstdint>
- #include <float.h>
- #include <limits>
- #include <map>
- #include <memory>
- #include <mutex>
- #include <stdint.h>
- #include <stdio.h>
- #include <stdarg.h>
- #include <stdlib.h>
- #include <string>
- #include <vector>
- static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
- static void ggml_cuda_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
- GGML_UNUSED(level);
- GGML_UNUSED(user_data);
- fprintf(stderr, "%s", msg);
- }
- ggml_log_callback ggml_cuda_log_callback = ggml_cuda_default_log_callback;
- void * ggml_cuda_log_user_data = NULL;
- GGML_API void ggml_backend_cuda_log_set_callback(ggml_log_callback log_callback, void * user_data) {
- ggml_cuda_log_callback = log_callback;
- ggml_cuda_log_user_data = user_data;
- }
- #define GGML_CUDA_LOG_INFO(...) ggml_cuda_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
- #define GGML_CUDA_LOG_WARN(...) ggml_cuda_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
- #define GGML_CUDA_LOG_ERROR(...) ggml_cuda_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
- GGML_ATTRIBUTE_FORMAT(2, 3)
- static void ggml_cuda_log(enum ggml_log_level level, const char * format, ...) {
- if (ggml_cuda_log_callback != NULL) {
- va_list args;
- va_start(args, format);
- char buffer[128];
- int len = vsnprintf(buffer, 128, format, args);
- if (len < 128) {
- ggml_cuda_log_callback(level, buffer, ggml_cuda_log_user_data);
- } else {
- std::vector<char> buffer2(len + 1); // vsnprintf adds a null terminator
- va_end(args);
- va_start(args, format);
- vsnprintf(&buffer2[0], buffer2.size(), format, args);
- ggml_cuda_log_callback(level, buffer2.data(), ggml_cuda_log_user_data);
- }
- va_end(args);
- }
- }
- [[noreturn]]
- void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
- int id = -1; // in case cudaGetDevice fails
- cudaGetDevice(&id);
- GGML_CUDA_LOG_ERROR("CUDA error: %s\n", msg);
- GGML_CUDA_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
- GGML_CUDA_LOG_ERROR(" %s\n", stmt);
- // abort with GGML_ASSERT to get a stack trace
- GGML_ABORT("CUDA error");
- }
- // this is faster on Windows
- // probably because the Windows CUDA libraries forget to make this check before invoking the drivers
- void ggml_cuda_set_device(int device) {
- int current_device;
- CUDA_CHECK(cudaGetDevice(¤t_device));
- if (device == current_device) {
- return;
- }
- CUDA_CHECK(cudaSetDevice(device));
- }
- int ggml_cuda_get_device() {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- return id;
- }
- static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
- ggml_cuda_set_device(device);
- #if defined(GGML_USE_HIPBLAS) && defined(GGML_HIP_UMA)
- auto res = hipMallocManaged(ptr, size);
- if (res == hipSuccess) {
- // if error we "need" to know why...
- CUDA_CHECK(hipMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device));
- }
- return res;
- #else
- #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
- cudaError_t err;
- if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr)
- {
- err = cudaMallocManaged(ptr, size);
- }
- else
- {
- err = cudaMalloc(ptr, size);
- }
- return err;
- #else
- return cudaMalloc(ptr, size);
- #endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
- #endif
- }
- static ggml_cuda_device_info ggml_cuda_init() {
- #ifdef __HIP_PLATFORM_AMD__
- // Workaround for a rocBLAS bug when using multiple graphics cards:
- // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
- rocblas_initialize();
- CUDA_CHECK(cudaDeviceSynchronize());
- #endif
- ggml_cuda_device_info info = {};
- cudaError_t err = cudaGetDeviceCount(&info.device_count);
- if (err != cudaSuccess) {
- GGML_CUDA_LOG_ERROR("%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
- return info;
- }
- GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
- int64_t total_vram = 0;
- #ifdef GGML_CUDA_FORCE_MMQ
- GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
- #else
- GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
- #endif // GGML_CUDA_FORCE_MMQ
- #ifdef GGML_CUDA_FORCE_CUBLAS
- GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: yes\n", __func__);
- #else
- GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n", __func__);
- #endif // GGML_CUDA_FORCE_CUBLAS
- GGML_CUDA_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
- for (int id = 0; id < info.device_count; ++id) {
- int device_vmm = 0;
- #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
- CUdevice device;
- CU_CHECK(cuDeviceGet(&device, id));
- CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
- if (device_vmm) {
- CUmemAllocationProp alloc_prop = {};
- alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
- alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- alloc_prop.location.id = id;
- CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
- }
- #endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
- info.devices[id].vmm = !!device_vmm;
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
- GGML_CUDA_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
- info.default_tensor_split[id] = total_vram;
- total_vram += prop.totalGlobalMem;
- info.devices[id].nsm = prop.multiProcessorCount;
- info.devices[id].smpb = prop.sharedMemPerBlock;
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- info.devices[id].smpbo = prop.sharedMemPerBlock;
- info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
- #else
- info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
- info.devices[id].cc = 100*prop.major + 10*prop.minor;
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- }
- for (int id = 0; id < info.device_count; ++id) {
- info.default_tensor_split[id] /= total_vram;
- }
- // configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
- return info;
- }
- const ggml_cuda_device_info & ggml_cuda_info() {
- static ggml_cuda_device_info info = ggml_cuda_init();
- return info;
- }
- // #define DEBUG_CUDA_MALLOC
- // buffer pool for cuda (legacy)
- struct ggml_cuda_pool_leg : public ggml_cuda_pool {
- static const int MAX_BUFFERS = 256;
- int device;
- struct ggml_cuda_buffer {
- void * ptr = nullptr;
- size_t size = 0;
- };
- ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
- size_t pool_size = 0;
- explicit ggml_cuda_pool_leg(int device) :
- device(device) {
- }
- ~ggml_cuda_pool_leg() {
- ggml_cuda_set_device(device);
- for (int i = 0; i < MAX_BUFFERS; ++i) {
- ggml_cuda_buffer & b = buffer_pool[i];
- if (b.ptr != nullptr) {
- CUDA_CHECK(cudaFree(b.ptr));
- pool_size -= b.size;
- }
- }
- GGML_ASSERT(pool_size == 0);
- }
- void * alloc(size_t size, size_t * actual_size) override {
- #ifdef DEBUG_CUDA_MALLOC
- int nnz = 0;
- size_t max_size = 0;
- #endif
- size_t best_diff = 1ull << 36;
- int ibest = -1;
- for (int i = 0; i < MAX_BUFFERS; ++i) {
- ggml_cuda_buffer& b = buffer_pool[i];
- if (b.ptr != nullptr) {
- #ifdef DEBUG_CUDA_MALLOC
- ++nnz;
- if (b.size > max_size) max_size = b.size;
- #endif
- if (b.size >= size) {
- size_t diff = b.size - size;
- if (diff < best_diff) {
- best_diff = diff;
- ibest = i;
- if (!best_diff) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- }
- }
- }
- }
- if (ibest >= 0) {
- ggml_cuda_buffer& b = buffer_pool[ibest];
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- void * ptr;
- size_t look_ahead_size = (size_t) (1.05 * size);
- look_ahead_size = 256 * ((look_ahead_size + 255)/256);
- ggml_cuda_set_device(device);
- CUDA_CHECK(ggml_cuda_device_malloc(&ptr, look_ahead_size, device));
- *actual_size = look_ahead_size;
- pool_size += look_ahead_size;
- #ifdef DEBUG_CUDA_MALLOC
- GGML_CUDA_LOG_INFO("%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
- (uint32_t)(max_size / 1024 / 1024), (uint32_t)(pool_size / 1024 / 1024), (uint32_t)(size / 1024 / 1024));
- #endif
- return ptr;
- }
- void free(void * ptr, size_t size) override {
- for (int i = 0; i < MAX_BUFFERS; ++i) {
- ggml_cuda_buffer& b = buffer_pool[i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- GGML_CUDA_LOG_WARN("Cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaFree(ptr));
- pool_size -= size;
- }
- };
- // pool with virtual memory
- #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
- struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
- static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
- int device;
- CUdeviceptr pool_addr = 0;
- size_t pool_used = 0;
- size_t pool_size = 0;
- size_t granularity;
- explicit ggml_cuda_pool_vmm(int device) :
- device(device),
- granularity(ggml_cuda_info().devices[device].vmm_granularity) {
- }
- ~ggml_cuda_pool_vmm() {
- if (pool_addr != 0) {
- CU_CHECK(cuMemUnmap(pool_addr, pool_size));
- CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
- }
- }
- void * alloc(size_t size, size_t * actual_size) override {
- // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
- const size_t alignment = 128;
- size = alignment * ((size + alignment - 1) / alignment);
- size_t avail = pool_size - pool_used;
- if (size > avail) {
- // round up to the next multiple of the granularity
- size_t reserve_size = size - avail;
- reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
- GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
- // allocate more physical memory
- CUmemAllocationProp prop = {};
- prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
- prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- prop.location.id = device;
- CUmemGenericAllocationHandle handle;
- CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
- // reserve virtual address space (if not already reserved)
- if (pool_addr == 0) {
- CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
- }
- // map at the end of the pool
- CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
- // the memory allocation handle is no longer needed after mapping
- CU_CHECK(cuMemRelease(handle));
- // set access
- CUmemAccessDesc access = {};
- access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- access.location.id = device;
- access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
- CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
- // add to the pool
- pool_size += reserve_size;
- //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
- // device, (unsigned long long) (pool_size/1024/1024),
- // (unsigned long long) (reserve_size/1024/1024));
- }
- GGML_ASSERT(pool_addr != 0);
- void * ptr = (void *) (pool_addr + pool_used);
- *actual_size = size;
- pool_used += size;
- #ifdef DEBUG_CUDA_MALLOC
- printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
- #endif
- return ptr;
- }
- void free(void * ptr, size_t size) override {
- #ifdef DEBUG_CUDA_MALLOC
- printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
- #endif
- pool_used -= size;
- // all deallocations must be in reverse order of the allocations
- GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
- }
- };
- #endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
- std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
- #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
- if (ggml_cuda_info().devices[device].vmm) {
- return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
- }
- #endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
- return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
- }
- // cuda buffer
- struct ggml_backend_cuda_buffer_context {
- int device;
- void * dev_ptr = nullptr;
- std::string name;
- ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
- device(device), dev_ptr(dev_ptr),
- name(GGML_CUDA_NAME + std::to_string(device)) {
- }
- ~ggml_backend_cuda_buffer_context() {
- CUDA_CHECK(cudaFree(dev_ptr));
- }
- };
- GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- return ctx->name.c_str();
- }
- GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
- }
- GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- delete ctx;
- // TODO: this needs to be freed in cuda and hipblas backends because
- // the cuda backend implementation compiled with msvc
- free(buffer);
- }
- GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- return ctx->dev_ptr;
- }
- GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- if (tensor->view_src != NULL) {
- assert(tensor->view_src->buffer->buft == buffer->buft);
- return;
- }
- if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
- // initialize padding to 0 to avoid possible NaN values
- size_t original_size = ggml_nbytes(tensor);
- size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
- if (padded_size > original_size) {
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
- }
- }
- }
- GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
- }
- GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
- }
- GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
- if (ggml_backend_buffer_is_cuda(src->buffer)) {
- ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
- ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
- if (src_ctx->device == dst_ctx->device) {
- CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
- } else {
- #ifdef GGML_CUDA_NO_PEER_COPY
- return false;
- #else
- CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
- #endif
- }
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
- return true;
- }
- return false;
- GGML_UNUSED(buffer);
- }
- GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaDeviceSynchronize());
- CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
- /* .get_name = */ ggml_backend_cuda_buffer_get_name,
- /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
- /* .get_base = */ ggml_backend_cuda_buffer_get_base,
- /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
- /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
- /* .clear = */ ggml_backend_cuda_buffer_clear,
- /* .reset = */ NULL,
- };
- // cuda buffer type
- struct ggml_backend_cuda_buffer_type_context {
- int device;
- std::string name;
- };
- GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
- ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- return ctx->name.c_str();
- }
- static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) {
- return buft->iface.get_name == ggml_backend_cuda_buffer_type_name;
- }
- GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- ggml_cuda_set_device(buft_ctx->device);
- size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
- void * dev_ptr;
- cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
- GGML_CUDA_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(err));
- return nullptr;
- }
- ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
- return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
- }
- GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
- GGML_UNUSED(buft);
- }
- GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- size_t size = ggml_nbytes(tensor);
- int64_t ne0 = tensor->ne[0];
- if (ggml_is_quantized(tensor->type)) {
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- }
- return size;
- GGML_UNUSED(buft);
- }
- static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
- /* .get_name = */ ggml_backend_cuda_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
- /* .is_host = */ NULL,
- };
- GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
- static std::mutex mutex;
- std::lock_guard<std::mutex> lock(mutex);
- if (device >= ggml_backend_cuda_get_device_count()) {
- return nullptr;
- }
- static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
- static bool ggml_backend_cuda_buffer_type_initialized = false;
- if (!ggml_backend_cuda_buffer_type_initialized) {
- for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
- ggml_backend_cuda_buffer_types[i] = {
- /* .iface = */ ggml_backend_cuda_buffer_type_interface,
- /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
- };
- }
- ggml_backend_cuda_buffer_type_initialized = true;
- }
- return &ggml_backend_cuda_buffer_types[device];
- }
- // cuda split buffer
- static int64_t get_row_rounding(const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
- int64_t row_rounding = 0;
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
- continue;
- }
- const int cc = ggml_cuda_info().devices[id].cc;
- row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc));
- }
- return row_rounding;
- }
- static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
- const int64_t nrows = ggml_nrows(tensor);
- const int64_t rounding = get_row_rounding(tensor_split);
- *row_low = id == 0 ? 0 : nrows*tensor_split[id];
- *row_low -= *row_low % rounding;
- if (id == ggml_backend_cuda_get_device_count() - 1) {
- *row_high = nrows;
- } else {
- *row_high = nrows*tensor_split[id + 1];
- *row_high -= *row_high % rounding;
- }
- }
- static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
- }
- struct ggml_backend_cuda_split_buffer_type_context {
- std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
- };
- struct ggml_backend_cuda_split_buffer_context {
- ~ggml_backend_cuda_split_buffer_context() {
- for (ggml_tensor_extra_gpu * extra : tensor_extras) {
- for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
- for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
- if (extra->events[id][is] != nullptr) {
- CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
- }
- }
- if (extra->data_device[id] != nullptr) {
- CUDA_CHECK(cudaFree(extra->data_device[id]));
- }
- }
- delete extra;
- }
- }
- std::vector<ggml_tensor_extra_gpu *> tensor_extras;
- };
- GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
- return GGML_CUDA_NAME "_Split";
- GGML_UNUSED(buffer);
- }
- static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
- GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
- delete ctx;
- }
- GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
- // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
- return (void *)0x1000;
- GGML_UNUSED(buffer);
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
- ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
- ctx->tensor_extras.push_back(extra);
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- // FIXME: do not crash if cudaMalloc fails
- // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
- ggml_cuda_set_device(id);
- char * buf;
- CUDA_CHECK(ggml_cuda_device_malloc((void**)&buf, size, id));
- // set padding to 0 to avoid possible NaN values
- if (size > original_size) {
- CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
- }
- extra->data_device[id] = buf;
- for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
- CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
- }
- }
- tensor->extra = extra;
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- // split tensors must always be set in their entirety at once
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- const char * buf_host = (const char *)data + offset_split;
- CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
- }
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
- }
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- // split tensors must always be set in their entirety at once
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- char * buf_host = (char *)data + offset_split;
- CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
- }
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
- }
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- GGML_UNUSED(buffer);
- GGML_UNUSED(value);
- }
- static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
- /* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
- /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
- /* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
- /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_cuda_split_buffer_clear,
- /* .reset = */ NULL,
- };
- // cuda split buffer type
- GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_CUDA_NAME "_Split";
- GGML_UNUSED(buft);
- }
- static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) {
- return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_name;
- }
- GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
- // instead, we allocate them for each tensor separately in init_tensor
- // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
- // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
- ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
- return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
- }
- GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
- GGML_UNUSED(buft);
- }
- GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
- size_t total_size = 0;
- const int64_t ne0 = tensor->ne[0];
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- total_size += ggml_nbytes_split(tensor, nrows_split);
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- }
- return total_size;
- }
- GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
- return false;
- GGML_UNUSED(buft);
- }
- static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
- /* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
- /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
- };
- GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
- static std::mutex mutex;
- std::lock_guard<std::mutex> lock(mutex);
- static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
- std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
- bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
- if (all_zero) {
- tensor_split_arr = ggml_cuda_info().default_tensor_split;
- } else {
- float split_sum = 0.0f;
- for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
- tensor_split_arr[i] = split_sum;
- split_sum += tensor_split[i];
- }
- for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
- tensor_split_arr[i] /= split_sum;
- }
- }
- auto it = buft_map.find(tensor_split_arr);
- if (it != buft_map.end()) {
- return &it->second;
- }
- struct ggml_backend_buffer_type buft {
- /* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
- /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
- };
- auto result = buft_map.emplace(tensor_split_arr, buft);
- return &result.first->second;
- }
- // host buffer type
- GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_CUDA_NAME "_Host";
- GGML_UNUSED(buft);
- }
- GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
- return GGML_CUDA_NAME "_Host";
- GGML_UNUSED(buffer);
- }
- GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- CUDA_CHECK(cudaFreeHost(buffer->context));
- }
- static void * ggml_cuda_host_malloc(size_t size) {
- if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
- return nullptr;
- }
- void * ptr = nullptr;
- cudaError_t err = cudaMallocHost((void **) &ptr, size);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
- GGML_CUDA_LOG_WARN("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
- size / 1024.0 / 1024.0, cudaGetErrorString(err));
- return nullptr;
- }
- return ptr;
- }
- GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- void * ptr = ggml_cuda_host_malloc(size);
- if (ptr == nullptr) {
- // fallback to cpu buffer
- return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
- }
- ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
- buffer->buft = buft;
- buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
- buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
- return buffer;
- }
- GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
- static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
- /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
- },
- /* .context = */ nullptr,
- };
- return &ggml_backend_cuda_buffer_type_host;
- }
- //static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
- // return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
- //}
- /// kernels
- typedef void (*ggml_cuda_op_mul_mat_t)(
- ggml_backend_cuda_context & ctx,
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream);
- #ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
- #define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
- #endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
- #define MUL_MAT_SRC1_COL_STRIDE 128
- static __global__ void mul_mat_p021_f16_f32(
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
- const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int channel_x = channel / (nchannels_y / nchannels_x);
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- // x is transposed and permuted
- const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
- const float xi = __half2float(x[ix]);
- const int row_y = col_x;
- // y is not transposed but permuted
- const int iy = channel*nrows_y + row_y;
- tmp += xi * y[iy];
- }
- // dst is not transposed and not permuted
- const int idst = channel*nrows_dst + row_dst;
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
- const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
- const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int channel_x = channel / channel_x_divisor;
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- const int idst = channel*nrows_dst + row_dst;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- const int row_y = col_x;
- const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
- const int iy = channel*nrows_y + row_y;
- const float xi = __half2float(x[ix]);
- tmp += xi * y[iy];
- }
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static void ggml_mul_mat_p021_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
- const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_y);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
- }
- static void ggml_mul_mat_vec_nc_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
- const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_y);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
- (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
- }
- static cudaError_t ggml_cuda_cpy_tensor_2d(
- void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
- GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
- char * src_ptr = (char *) src->data;
- char * dst_ptr = (char *) dst;
- const int64_t ne0 = src->ne[0];
- const int64_t nb0 = src->nb[0];
- const int64_t nb1 = src->nb[1];
- const int64_t nb2 = src->nb[2];
- const int64_t nb3 = src->nb[3];
- const enum ggml_type type = src->type;
- const int64_t ts = ggml_type_size(type);
- const int64_t bs = ggml_blck_size(type);
- int64_t i1_diff = i1_high - i1_low;
- const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
- } else if (nb0 == ts) {
- return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
- } else {
- for (int64_t i1 = 0; i1 < i1_diff; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
- if (r != cudaSuccess) {
- return r;
- }
- }
- return cudaSuccess;
- }
- }
- static void ggml_cuda_op_mul_mat_cublas(
- ggml_backend_cuda_context & ctx,
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream) {
- GGML_ASSERT(src0_dd_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_dd_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t row_diff = row_high - row_low;
- int id = ggml_cuda_get_device();
- // the main device has a larger memory buffer to hold the results from all GPUs
- // ldc == nrows of the matrix that cuBLAS writes into
- int64_t ldc = id == ctx.device ? ne0 : row_diff;
- const int compute_capability = ggml_cuda_info().devices[id].cc;
- if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
- // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
- ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
- if (src0->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t ne = row_diff*ne00;
- src0_as_f16.alloc(ne);
- to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
- }
- const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
- ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t ne = src1_ncols*ne10;
- src1_as_f16.alloc(ne);
- to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
- }
- const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
- ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
- CUBLAS_CHECK(
- cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
- row_diff, src1_ncols, ne10,
- &alpha_f16, src0_ptr, CUDA_R_16F, ne00,
- src1_ptr, CUDA_R_16F, ne10,
- &beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
- CUBLAS_COMPUTE_16F,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
- } else {
- ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
- ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
- if (src0->type != GGML_TYPE_F32) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
- GGML_ASSERT(to_fp32_cuda != nullptr);
- src0_ddq_as_f32.alloc(row_diff*ne00);
- to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
- }
- if (src1->type != GGML_TYPE_F32) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
- GGML_ASSERT(to_fp32_cuda != nullptr);
- src1_ddq_as_f32.alloc(src1_ncols*ne10);
- to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
- }
- const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
- const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
- const float alpha = 1.0f;
- const float beta = 0.0f;
- CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
- CUBLAS_CHECK(
- cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
- row_diff, src1_ncols, ne10,
- &alpha, src0_ddf_i, ne00,
- src1_ddf1_i, ne10,
- &beta, dst_dd_i, ldc));
- }
- GGML_UNUSED(dst);
- GGML_UNUSED(src1_ddq_i);
- GGML_UNUSED(src1_padded_row_size);
- }
- static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
- static bool peer_access_enabled = false;
- const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
- if (peer_access_enabled == enable_peer_access) {
- return;
- }
- #ifdef NDEBUG
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- ggml_cuda_set_device(id);
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- ggml_cuda_set_device(id);
- for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
- if (id == id_other) {
- continue;
- }
- if (id != main_device && id_other != main_device) {
- continue;
- }
- int can_access_peer;
- CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
- if (can_access_peer) {
- if (enable_peer_access) {
- cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
- if (err != cudaErrorPeerAccessAlreadyEnabled) {
- CUDA_CHECK(err);
- }
- } else {
- cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
- if (err != cudaErrorPeerAccessNotEnabled) {
- CUDA_CHECK(err);
- }
- }
- }
- }
- }
- ggml_cuda_set_device(main_device);
- #endif // NDEBUG
- peer_access_enabled = enable_peer_access;
- GGML_UNUSED(main_device);
- }
- static cudaError_t ggml_cuda_Memcpy2DPeerAsync(
- void * dst, int dstDevice, size_t dpitch, void * src, int srcDevice, size_t spitch, size_t width, size_t height, cudaStream_t stream) {
- #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
- // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
- cudaMemcpy3DPeerParms p = {};
- p.dstDevice = dstDevice;
- p.dstPtr = make_cudaPitchedPtr(dst, dpitch, dpitch, height);
- p.srcDevice = srcDevice;
- p.srcPtr = make_cudaPitchedPtr(src, spitch, spitch, height);
- p.extent = make_cudaExtent(width, height, 1);
- return cudaMemcpy3DPeerAsync(&p, stream);
- #else
- // HIP does not support cudaMemcpy3DPeerAsync or vmm pools
- GGML_UNUSED(dstDevice);
- GGML_UNUSED(srcDevice);
- return cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, cudaMemcpyDeviceToDevice, stream);
- #endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
- }
- static void ggml_cuda_op_mul_mat(
- ggml_backend_cuda_context & ctx,
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
- quantize_cuda_t quantize_src1) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t nrows1 = ggml_nrows(src1);
- GGML_ASSERT(ne03 == ne13);
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int64_t nb2 = dst->nb[2];
- const int64_t nb3 = dst->nb[3];
- GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
- GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
- ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
- ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
- GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
- GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
- const int64_t i02_divisor = ne12 / ne02;
- const size_t src0_ts = ggml_type_size(src0->type);
- const size_t src0_bs = ggml_blck_size(src0->type);
- const size_t q8_1_ts = sizeof(block_q8_1);
- const size_t q8_1_bs = QK8_1;
- const bool src0_is_contiguous = ggml_is_contiguous(src0);
- const bool src1_is_contiguous = ggml_is_contiguous(src1);
- const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
- const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
- GGML_ASSERT(!(split && ne02 > 1));
- GGML_ASSERT(!(split && ne03 > 1));
- GGML_ASSERT(!(split && ne02 < ne12));
- ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;
- std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
- if (split) {
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
- tensor_split = buft_ctx->tensor_split;
- }
- struct dev_data {
- int cc;
- ggml_cuda_pool_alloc<char> src0_dd_alloc;
- ggml_cuda_pool_alloc<float> src1_ddf_alloc;
- ggml_cuda_pool_alloc<char> src1_ddq_alloc;
- ggml_cuda_pool_alloc<float> dst_dd_alloc;
- char * src0_dd = nullptr;
- float * src1_ddf = nullptr; // float
- char * src1_ddq = nullptr; // q8_1
- float * dst_dd = nullptr;
- int64_t row_low;
- int64_t row_high;
- };
- dev_data dev[GGML_CUDA_MAX_DEVICES];
- int used_devices = 0;
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- dev[id].cc = ggml_cuda_info().devices[id].cc;
- // by default, use all rows
- dev[id].row_low = 0;
- dev[id].row_high = ne01;
- // for multi GPU, get the row boundaries from tensor split
- // and round to mul_mat_q tile sizes
- if (split) {
- const int64_t rounding = get_row_rounding(tensor_split);
- if (id != 0) {
- dev[id].row_low = ne01*tensor_split[id];
- if (dev[id].row_low < ne01) {
- dev[id].row_low -= dev[id].row_low % rounding;
- }
- }
- if (id != ggml_backend_cuda_get_device_count() - 1) {
- dev[id].row_high = ne01*tensor_split[id + 1];
- if (dev[id].row_high < ne01) {
- dev[id].row_high -= dev[id].row_high % rounding;
- }
- }
- }
- }
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
- continue;
- }
- used_devices++;
- const bool src1_on_device = id == src1_ctx->device;
- const bool dst_on_device = id == dst_ctx->device;
- ggml_cuda_set_device(id);
- cudaStream_t stream = ctx.stream(id, 0);
- if (src0_is_contiguous) {
- dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
- } else {
- dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0));
- }
- // If src0 is on a temporary compute buffers (partial offloading) there may be some padding that needs to be cleared:
- if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
- const int64_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
- const int64_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
- CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data , 0, nbytes_padding, stream));
- }
- if (src1_on_device && src1_is_contiguous) {
- dev[id].src1_ddf = (float *) src1->data;
- } else {
- dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
- }
- if (quantize_src1) {
- size_t src_1_ddq_size = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs;
- if (quantize_src1 == quantize_mmq_q8_1_cuda) {
- src_1_ddq_size += get_mmq_x_max_host(dev[id].cc)*sizeof(block_q8_1_mmq);
- }
- dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), src_1_ddq_size);
- if (src1_on_device && src1_is_contiguous) {
- quantize_src1(dev[id].src1_ddf, dev[id].src1_ddq, ne10, ne11, ne12*ne13, src1_padded_col_size, src0->type, stream);
- CUDA_CHECK(cudaGetLastError());
- }
- }
- if (dst_on_device) {
- dev[id].dst_dd = (float *) dst->data;
- } else {
- const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
- dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
- }
- }
- // if multiple devices are used they need to wait for the main device
- // here an event is recorded that signals that the main device has finished calculating the input data
- if (split && used_devices > 1) {
- ggml_cuda_set_device(ctx.device);
- CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
- }
- const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
- for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
- const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
- const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
- continue;
- }
- const bool src1_on_device = id == src1_ctx->device;
- const bool dst_on_device = id == dst_ctx->device;
- const int64_t row_diff = dev[id].row_high - dev[id].row_low;
- ggml_cuda_set_device(id);
- cudaStream_t stream = ctx.stream(id, is);
- // wait for main GPU data if necessary
- if (split && (id != ctx.device || is != 0)) {
- CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
- }
- for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
- const int64_t i03 = i0 / ne12;
- const int64_t i02 = i0 % ne12;
- size_t src1_ddq_i_offset = i0*ne11 * src1_padded_col_size*q8_1_ts/q8_1_bs;
- if (quantize_src1 == quantize_mmq_q8_1_cuda) {
- src1_ddq_i_offset += src1_col_0 * sizeof(block_q8_1_mmq);
- } else {
- src1_ddq_i_offset += src1_col_0 * src1_padded_col_size*q8_1_ts/q8_1_bs;
- }
- // for split tensors the data begins at i0 == i0_offset_low
- char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
- float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
- char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset;
- float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
- // the main device memory buffer can be on VRAM scratch, with space for all partial results
- // in that case an offset on dst_ddf_i is needed
- if (id == ctx.device) {
- dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
- }
- // copy src0, src1 to device if necessary
- if (src1_is_contiguous) {
- if (id != ctx.device) {
- if (quantize_src1) {
- char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
- if (quantize_src1 == quantize_mmq_q8_1_cuda) {
- const size_t pitch = ne11*sizeof(block_q8_1_mmq);
- const size_t width = src1_ncols*sizeof(block_q8_1_mmq);
- const size_t height = src1_padded_col_size/(4*QK8_1);
- CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync(src1_ddq_i, id, pitch, src1_ddq_i_source, ctx.device, pitch, width, height, stream));
- } else {
- CUDA_CHECK(cudaMemcpyPeerAsync(
- src1_ddq_i, id, src1_ddq_i_source, ctx.device, src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
- }
- } else {
- float * src1_ddf_i_source = (float *) src1->data;
- src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
- CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
- src1_ncols*ne10*sizeof(float), stream));
- }
- }
- } else if (src1_on_device && !src1_is_contiguous) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
- src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
- } else {
- GGML_ABORT("fatal error");
- }
- if (quantize_src1 && !src1_is_contiguous) {
- quantize_src1(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, 1, src1_padded_col_size, src0->type, stream);
- CUDA_CHECK(cudaGetLastError());
- }
- if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
- }
- // do the computation
- op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
- dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
- // copy dst to host or other device if necessary
- if (!dst_on_device) {
- void * dst_off_device = dst->data;
- if (split) {
- // src0 = weight matrix is saved as a transposed matrix for better memory layout.
- // dst is NOT transposed.
- // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
- // Instead they need to be copied to the correct slice in ne0 = dst row index.
- // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
- CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync(
- dhf_dst_i, ctx.device, ne0*sizeof(float), dst_dd_i, id, row_diff*sizeof(float), row_diff*sizeof(float), src1_ncols, stream));
- } else {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0;
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
- }
- }
- // add event for the main device to wait on until other device is done
- if (split && (id != ctx.device || is != 0)) {
- CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
- }
- }
- }
- }
- // main device waits for all other devices to be finished
- if (split && ggml_backend_cuda_get_device_count() > 1) {
- int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
- is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;
- ggml_cuda_set_device(ctx.device);
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- if (dev[id].row_low == dev[id].row_high) {
- continue;
- }
- for (int64_t is = 0; is < is_max; ++is) {
- CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
- }
- }
- }
- }
- static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
- GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
- GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
- GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne12 = src1->ne[2];
- cudaStream_t main_stream = ctx.stream();
- void * src0_ddq = src0->data;
- float * src1_ddf = (float *) src1->data;
- float * dst_ddf = (float *) dst->data;
- ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
- }
- static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(!ggml_is_permuted(src0));
- GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- const int64_t ne12 = src1->ne[2];
- cudaStream_t main_stream = ctx.stream();
- void * src0_ddq = src0->data;
- float * src1_ddf = (float *) src1->data;
- float * dst_ddf = (float *) dst->data;
- const int64_t row_stride_x = nb01 / sizeof(half);
- const int64_t channel_stride_x = nb02 / sizeof(half);
- ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
- }
- static __global__ void k_compute_batched_ptrs(
- const half * src0_as_f16, const half * src1_as_f16, char * dst,
- const void ** ptrs_src, void ** ptrs_dst,
- int64_t ne12, int64_t ne13,
- int64_t ne23,
- size_t nb02, size_t nb03,
- size_t nb12, size_t nb13,
- size_t nbd2, size_t nbd3,
- int64_t r2, int64_t r3) {
- int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
- int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
- if (i13 >= ne13 || i12 >= ne12) {
- return;
- }
- int64_t i03 = i13 / r3;
- int64_t i02 = i12 / r2;
- ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
- ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
- ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
- }
- static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t ne_dst = ggml_nelements(dst);
- cudaStream_t main_stream = ctx.stream();
- CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
- void * src0_ddq = src0->data;
- half * src0_f16 = (half *) src0_ddq;
- float * src1_ddf = (float *) src1->data;
- float * dst_ddf = (float *) dst->data;
- // convert src1 to fp16
- ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- const int64_t ne_src1 = ggml_nelements(src1);
- src1_f16_alloc.alloc(ne_src1);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
- }
- half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
- ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
- char * dst_t;
- cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
- cudaDataType_t cu_data_type = CUDA_R_16F;
- // dst strides
- size_t nbd2 = dst->nb[2];
- size_t nbd3 = dst->nb[3];
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- const float alpha_f32 = 1.0f;
- const float beta_f32 = 0.0f;
- const void * alpha = &alpha_f16;
- const void * beta = &beta_f16;
- if (dst->op_params[0] == GGML_PREC_DEFAULT) {
- dst_t = (char *) dst_f16.alloc(ne_dst);
- nbd2 /= sizeof(float) / sizeof(half);
- nbd3 /= sizeof(float) / sizeof(half);
- } else {
- dst_t = (char *) dst_ddf;
- cu_compute_type = CUBLAS_COMPUTE_32F;
- cu_data_type = CUDA_R_32F;
- alpha = &alpha_f32;
- beta = &beta_f32;
- }
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- #if 0
- // use cublasGemmEx
- {
- for (int i13 = 0; i13 < ne13; ++i13) {
- for (int i12 = 0; i12 < ne12; ++i12) {
- int i03 = i13 / r3;
- int i02 = i12 / r2;
- CUBLAS_CHECK(
- cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
- (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
- beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- }
- }
- }
- #else
- #ifdef GGML_USE_MUSA
- GGML_ASSERT(false);
- #else // !GGML_USE_MUSA
- if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
- // there is no broadcast and src0, src1 are contiguous across dims 2, 3
- // use cublasGemmStridedBatchedEx
- CUBLAS_CHECK(
- cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
- (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
- beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
- ne12*ne13,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- } else {
- // use cublasGemmBatchedEx
- const int ne23 = ne12*ne13;
- ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
- ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
- dim3 block_dims(ne13, ne12);
- k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
- src0_f16, src1_f16, dst_t,
- ptrs_src.get(), ptrs_dst.get(),
- ne12, ne13,
- ne23,
- nb02, nb03,
- src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
- src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
- nbd2, nbd3,
- r2, r3);
- CUDA_CHECK(cudaGetLastError());
- CUBLAS_CHECK(
- cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
- (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
- beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
- ne23,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- }
- #endif // GGML_USE_MUSA
- #endif
- if (dst->op_params[0] == GGML_PREC_DEFAULT) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
- }
- }
- static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
- bool use_dequantize_mul_mat_vec = ggml_cuda_dmmv_type_supported(src0->type)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
- && src0->ne[0] % (GGML_CUDA_DMMV_X*2) == 0 && src1->ne[1] == 1;
- bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
- && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
- bool use_mul_mat_q = ggml_is_quantized(src0->type)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
- // if mmvq is available it's a better choice than dmmv:
- #ifndef GGML_CUDA_FORCE_DMMV
- use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
- #endif // GGML_CUDA_FORCE_DMMV
- bool any_gpus_with_slow_fp16 = false;
- if (split) {
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
- auto & tensor_split = buft_ctx->tensor_split;
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- // skip devices that are not going to do any work:
- if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
- continue;
- }
- const int cc = ggml_cuda_info().devices[id].cc;
- use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
- any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
- }
- } else {
- const int cc = ggml_cuda_info().devices[ctx.device].cc;
- use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
- any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
- }
- // debug helpers
- //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
- //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
- //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
- //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
- //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
- //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
- if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
- // FP32 precision KQ single-batch for batch size 1 without FlashAttention
- ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
- } else if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
- // FP32 precision KQV single-batch for batch size 1 without FlashAttention
- ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
- } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16)
- && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
- // KQ + KQV multi-batch without FlashAttention
- ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
- } else if (use_dequantize_mul_mat_vec) {
- ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, nullptr);
- } else if (use_mul_mat_vec_q) {
- ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda);
- } else if (use_mul_mat_q) {
- ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, quantize_mmq_q8_1_cuda);
- } else {
- ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, nullptr);
- }
- }
- struct mmid_row_mapping {
- int32_t i1;
- int32_t i2;
- };
- static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
- int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
- const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
- int64_t ne11, int64_t ne10,
- size_t nb11, size_t nb12) {
- int32_t iid1 = blockIdx.x;
- int32_t id = blockIdx.y;
- const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
- if (row_id_i != i02) {
- return;
- }
- const int64_t i11 = id % ne11;
- const int64_t i12 = iid1;
- __shared__ int src1_row;
- if (threadIdx.x == 0) {
- src1_row = atomicAdd(cur_src1_row, 1);
- row_mapping[src1_row] = {id, iid1};
- }
- __syncthreads();
- const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
- float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
- for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
- src1_row_contiguous[i] = src1_row_original[i];
- }
- }
- static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
- const mmid_row_mapping * __restrict__ row_mapping,
- int64_t ne0,
- size_t nb1, size_t nb2) {
- int32_t i = blockIdx.x;
- const int32_t i1 = row_mapping[i].i1;
- const int32_t i2 = row_mapping[i].i2;
- const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
- float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
- for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
- dst_row_original[j] = dst_row_contiguous[j];
- }
- }
- static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- const ggml_tensor * ids = dst->src[2];
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");
- cudaStream_t stream = ctx.stream();
- const int64_t n_as = ne02;
- const int64_t n_ids = ids->ne[0];
- std::vector<char> ids_host(ggml_nbytes(ids));
- const char * ids_dev = (const char *) ids->data;
- CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
- CUDA_CHECK(cudaStreamSynchronize(stream));
- ggml_tensor src0_row = *src0;
- ggml_tensor src1_row = *src1;
- ggml_tensor dst_row = *dst;
- char * src0_original = (char *) src0->data;
- char * src1_original = (char *) src1->data;
- char * dst_original = (char *) dst->data;
- src0_row.ne[2] = 1;
- src0_row.ne[3] = 1;
- src0_row.nb[3] = nb02;
- src1_row.ne[1] = 1;
- src1_row.ne[2] = 1;
- src1_row.ne[3] = 1;
- src1_row.nb[2] = nb11;
- src1_row.nb[3] = nb11;
- dst_row.ne[1] = 1;
- dst_row.ne[2] = 1;
- dst_row.ne[3] = 1;
- dst_row.nb[2] = nb1;
- dst_row.nb[3] = nb1;
- if (ne12 == 1) {
- for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
- for (int64_t id = 0; id < n_ids; id++) {
- const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
- GGML_ASSERT(i02 >= 0 && i02 < n_as);
- const int64_t i11 = id % ne11;
- const int64_t i12 = iid1;
- const int64_t i1 = id;
- const int64_t i2 = i12;
- src0_row.data = src0_original + i02*nb02;
- src1_row.data = src1_original + i11*nb11 + i12*nb12;
- dst_row.data = dst_original + i1*nb1 + i2*nb2;
- ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
- }
- }
- } else {
- ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
- ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
- src1_row.data = src1_contiguous.get();
- dst_row.data = dst_contiguous.get();
- for (int64_t i02 = 0; i02 < n_as; i02++) {
- int64_t num_src1_rows = 0;
- for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
- for (int64_t id = 0; id < n_ids; id++) {
- const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
- GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
- if (row_id_i != i02) {
- continue;
- }
- num_src1_rows++;
- }
- }
- if (num_src1_rows == 0) {
- continue;
- }
- ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
- ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
- CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));
- {
- dim3 block_dims(std::min((unsigned int)ne10, 768u));
- dim3 grid_dims(ids->ne[1], n_ids);
- k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
- src1_original, src1_contiguous.get(),
- dev_cur_src1_row.get(), dev_row_mapping.get(),
- ids_dev, i02, ids->nb[1], ids->nb[0],
- ne11, ne10,
- nb11, nb12);
- CUDA_CHECK(cudaGetLastError());
- }
- src0_row.data = src0_original + i02*nb02;
- GGML_ASSERT(nb11 == sizeof(float)*ne10);
- GGML_ASSERT(nb1 == sizeof(float)*ne0);
- src1_row.ne[1] = num_src1_rows;
- src1_row.nb[1] = nb11;
- src1_row.nb[2] = num_src1_rows*nb11;
- src1_row.nb[3] = num_src1_rows*nb11;
- dst_row.ne[1] = num_src1_rows;
- dst_row.nb[1] = nb1;
- dst_row.nb[2] = num_src1_rows*nb1;
- dst_row.nb[3] = num_src1_rows*nb1;
- ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
- {
- dim3 block_dims(std::min((unsigned int)ne0, 768u));
- dim3 grid_dims(num_src1_rows);
- k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
- dst_original, dst_contiguous.get(),
- dev_row_mapping.get(),
- ne0,
- nb1, nb2);
- CUDA_CHECK(cudaGetLastError());
- }
- }
- }
- }
- static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
- // why is this here instead of mul_mat?
- if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) {
- ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
- }
- switch (dst->op) {
- case GGML_OP_REPEAT:
- ggml_cuda_op_repeat(ctx, dst);
- break;
- case GGML_OP_GET_ROWS:
- ggml_cuda_op_get_rows(ctx, dst);
- break;
- case GGML_OP_DUP:
- ggml_cuda_dup(ctx, dst);
- break;
- case GGML_OP_CPY:
- ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]);
- break;
- case GGML_OP_CONT:
- ggml_cuda_dup(ctx, dst);
- break;
- case GGML_OP_ADD:
- ggml_cuda_op_add(ctx, dst);
- break;
- case GGML_OP_SUB:
- ggml_cuda_op_sub(ctx, dst);
- break;
- case GGML_OP_ACC:
- ggml_cuda_op_acc(ctx, dst);
- break;
- case GGML_OP_MUL:
- ggml_cuda_op_mul(ctx, dst);
- break;
- case GGML_OP_DIV:
- ggml_cuda_op_div(ctx, dst);
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(dst)) {
- case GGML_UNARY_OP_GELU:
- ggml_cuda_op_gelu(ctx, dst);
- break;
- case GGML_UNARY_OP_SILU:
- ggml_cuda_op_silu(ctx, dst);
- break;
- case GGML_UNARY_OP_GELU_QUICK:
- ggml_cuda_op_gelu_quick(ctx, dst);
- break;
- case GGML_UNARY_OP_TANH:
- ggml_cuda_op_tanh(ctx, dst);
- break;
- case GGML_UNARY_OP_RELU:
- ggml_cuda_op_relu(ctx, dst);
- break;
- case GGML_UNARY_OP_SIGMOID:
- ggml_cuda_op_sigmoid(ctx, dst);
- break;
- case GGML_UNARY_OP_HARDSIGMOID:
- ggml_cuda_op_hardsigmoid(ctx, dst);
- break;
- case GGML_UNARY_OP_HARDSWISH:
- ggml_cuda_op_hardswish(ctx, dst);
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_NORM:
- ggml_cuda_op_norm(ctx, dst);
- break;
- case GGML_OP_GROUP_NORM:
- ggml_cuda_op_group_norm(ctx, dst);
- break;
- case GGML_OP_CONCAT:
- ggml_cuda_op_concat(ctx, dst);
- break;
- case GGML_OP_UPSCALE:
- ggml_cuda_op_upscale(ctx, dst);
- break;
- case GGML_OP_PAD:
- ggml_cuda_op_pad(ctx, dst);
- break;
- case GGML_OP_ARANGE:
- ggml_cuda_op_arange(ctx, dst);
- break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- ggml_cuda_op_timestep_embedding(ctx, dst);
- break;
- case GGML_OP_LEAKY_RELU:
- ggml_cuda_op_leaky_relu(ctx, dst);
- break;
- case GGML_OP_RMS_NORM:
- ggml_cuda_op_rms_norm(ctx, dst);
- break;
- case GGML_OP_MUL_MAT:
- if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
- GGML_CUDA_LOG_ERROR("%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
- return false;
- } else {
- ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
- }
- break;
- case GGML_OP_MUL_MAT_ID:
- ggml_cuda_mul_mat_id(ctx, dst);
- break;
- case GGML_OP_SCALE:
- ggml_cuda_op_scale(ctx, dst);
- break;
- case GGML_OP_SQR:
- ggml_cuda_op_sqr(ctx, dst);
- break;
- case GGML_OP_SQRT:
- ggml_cuda_op_sqrt(ctx, dst);
- break;
- case GGML_OP_SIN:
- ggml_cuda_op_sin(ctx, dst);
- break;
- case GGML_OP_COS:
- ggml_cuda_op_cos(ctx, dst);
- break;
- case GGML_OP_CLAMP:
- ggml_cuda_op_clamp(ctx, dst);
- break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- break;
- case GGML_OP_DIAG_MASK_INF:
- ggml_cuda_op_diag_mask_inf(ctx, dst);
- break;
- case GGML_OP_SOFT_MAX:
- ggml_cuda_op_soft_max(ctx, dst);
- break;
- case GGML_OP_ROPE:
- ggml_cuda_op_rope(ctx, dst);
- break;
- case GGML_OP_IM2COL:
- ggml_cuda_op_im2col(ctx, dst);
- break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- ggml_cuda_op_conv_transpose_1d(ctx,dst);
- break;
- case GGML_OP_POOL_2D:
- ggml_cuda_op_pool2d(ctx, dst);
- break;
- case GGML_OP_SUM_ROWS:
- ggml_cuda_op_sum_rows(ctx, dst);
- break;
- case GGML_OP_ARGSORT:
- ggml_cuda_op_argsort(ctx, dst);
- break;
- case GGML_OP_FLASH_ATTN_EXT:
- ggml_cuda_flash_attn_ext(ctx, dst);
- break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- ggml_cuda_cross_entropy_loss(ctx, dst);
- break;
- default:
- return false;
- }
- cudaError_t err = cudaGetLastError();
- if (err != cudaSuccess) {
- GGML_CUDA_LOG_ERROR("%s: %s failed\n", __func__, ggml_op_desc(dst));
- CUDA_CHECK(err);
- }
- return true;
- }
- ////////////////////////////////////////////////////////////////////////////////
- // backend
- GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- return cuda_ctx->name.c_str();
- }
- GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- delete cuda_ctx;
- delete backend;
- }
- GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- return ggml_backend_cuda_buffer_type(cuda_ctx->device);
- }
- GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
- GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
- CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
- }
- GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
- GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
- CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
- }
- GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
- ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
- ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
- if (!ggml_backend_is_cuda(backend_src) || !ggml_backend_is_cuda(backend_dst)) {
- return false;
- }
- if (!ggml_backend_buffer_is_cuda(src->buffer) || !ggml_backend_buffer_is_cuda(dst->buffer)) {
- return false;
- }
- // device -> device copy
- ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
- ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;
- ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
- ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
- if (cuda_ctx_src->device != buf_ctx_src->device || cuda_ctx_dst->device != buf_ctx_dst->device) {
- #ifndef NDEBUG
- GGML_CUDA_LOG_WARN("%s: backend and buffer devices do not match\n", __func__);
- #endif
- return false;
- }
- if (backend_src != backend_dst) {
- // copy on src stream
- if (cuda_ctx_src->device == cuda_ctx_dst->device) {
- CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
- } else {
- #ifdef GGML_CUDA_NO_PEER_COPY
- return false;
- #else
- CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
- #endif
- }
- // record event on src stream after the copy
- if (!cuda_ctx_src->copy_event) {
- ggml_cuda_set_device(cuda_ctx_src->device);
- CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
- }
- CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));
- // wait on dst stream for the copy to complete
- CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
- } else {
- // src and dst are on the same backend
- CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
- }
- return true;
- }
- GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
- GGML_UNUSED(backend);
- }
- static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
- graph_node_properties->node_address = node->data;
- graph_node_properties->node_op = node->op;
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- graph_node_properties->ne[i] = node->ne[i];
- graph_node_properties->nb[i] = node->nb[i];
- }
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
- }
- }
- static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
- if (node->data != graph_node_properties->node_address &&
- node->op != GGML_OP_CPY &&
- node->op != GGML_OP_VIEW) {
- return false;
- }
- if (node->op != graph_node_properties->node_op) {
- return false;
- }
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- if (node->ne[i] != graph_node_properties->ne[i]) {
- return false;
- }
- if (node->nb[i] != graph_node_properties->nb[i]) {
- return false;
- }
- }
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (node->src[i] &&
- node->src[i]->data != graph_node_properties->src_address[i] &&
- node->op != GGML_OP_CPY &&
- node->op != GGML_OP_VIEW
- ) {
- return false;
- }
- }
- return true;
- }
- GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- ggml_cuda_set_device(cuda_ctx->device);
- #ifdef USE_CUDA_GRAPH
- static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
- // Objects required for CUDA Graph
- if (cuda_ctx->cuda_graph == nullptr) {
- cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
- }
- bool use_cuda_graph = true;
- bool cuda_graph_update_required = false;
- // vector of pointers to CUDA cpy kernels, which are required to identify
- // kernel parameters which need updated in the graph for each token
- std::vector<void *> ggml_cuda_cpy_fn_ptrs;
- if (cuda_ctx->cuda_graph->graph == nullptr) {
- if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
- cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
- #ifndef NDEBUG
- GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
- #endif
- }
- }
- // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
- // or previous graph capture failure.
- // Also disable for multi-gpu for now. TO DO investigate
- if (disable_cuda_graphs_due_to_env
- || cuda_ctx->cuda_graph->disable_due_to_gpu_arch
- || cuda_ctx->cuda_graph->disable_due_to_too_many_updates
- || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
- use_cuda_graph = false;
- }
- if (use_cuda_graph) {
- if (cuda_ctx->cuda_graph->instance == nullptr) {
- cuda_graph_update_required = true;
- }
- // Check if the graph size has changed
- if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
- cuda_graph_update_required = true;
- cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
- }
- // Loop over nodes in GGML graph to determine if CUDA graph update is required
- // and store properties to allow this comparison for the next token
- for (int i = 0; i < cgraph->n_nodes; i++) {
- bool has_matching_properties = true;
- if (!cuda_graph_update_required) {
- has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
- }
- if (!has_matching_properties) {
- cuda_graph_update_required = true;
- }
- set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
- }
- // Loop over nodes in GGML graph to obtain info needed for CUDA graph
- cuda_ctx->cuda_graph->updated_kernel_arg.clear();
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_tensor * node = cgraph->nodes[i];
- if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
- use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
- #ifndef NDEBUG
- GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to split buffer\n", __func__);
- #endif
- }
- if (node->op == GGML_OP_MUL_MAT_ID) {
- use_cuda_graph = false; // This node type is not supported by CUDA graph capture
- #ifndef NDEBUG
- GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
- #endif
- }
- if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
- // disable CUDA graphs for batch size > 1 for now.
- // Changes in batch size or context size can cause changes to the grid size of some kernels.
- use_cuda_graph = false;
- #ifndef NDEBUG
- GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
- #endif
- }
- if (node->op == GGML_OP_CPY) {
- // store the copy op parameter which changes with each token.
- cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
- // store a pointer to each copy op CUDA kernel to identify it later
- void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
- if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
- ggml_cuda_cpy_fn_ptrs.push_back(ptr);
- }
- }
- if (!use_cuda_graph) {
- break;
- }
- }
- // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
- if (use_cuda_graph && cuda_graph_update_required) {
- cuda_ctx->cuda_graph->number_consecutive_updates++;
- } else {
- cuda_ctx->cuda_graph->number_consecutive_updates = 0;
- }
- if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
- cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
- #ifndef NDEBUG
- GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
- #endif
- }
- }
- if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
- CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
- }
- #else
- bool use_cuda_graph = false;
- bool cuda_graph_update_required = false;
- #endif // USE_CUDA_GRAPH
- bool graph_evaluated_or_captured = false;
- while (!graph_evaluated_or_captured) {
- // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
- // With the use of CUDA graphs, the execution will be performed by the graph launch.
- if (!use_cuda_graph || cuda_graph_update_required) {
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_tensor * node = cgraph->nodes[i];
- if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
- continue;
- }
- #ifndef NDEBUG
- assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j] != nullptr) {
- assert(node->src[j]->buffer);
- assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
- }
- }
- #endif
- bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
- if (!ok) {
- GGML_CUDA_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
- }
- GGML_ASSERT(ok);
- }
- }
- #ifdef USE_CUDA_GRAPH
- if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
- if (cuda_ctx->cuda_graph->graph != nullptr) {
- CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
- cuda_ctx->cuda_graph->graph = nullptr;
- }
- CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
- #if 0
- if (disable_cuda_graphs_due_to_failed_capture) {
- use_cuda_graph = false;
- cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
- #ifndef NDEBUG
- GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to failed graph capture\n", __func__);
- #endif
- } else {
- graph_evaluated_or_captured = true; // CUDA graph has been captured
- }
- #endif
- graph_evaluated_or_captured = true; // CUDA graph has been captured
- } else {
- graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
- }
- }
- if (use_cuda_graph) {
- if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
- CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
- }
- // Perform update to graph (if required for this token), and change copy parameter (required for every token)
- if (cuda_graph_update_required) {
- // Extract nodes from graph
- // First call with null argument gets number of nodes in graph
- CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
- // Subsequent call with non-null argument gets nodes
- cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
- cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
- if (cuda_ctx->cuda_graph->num_nodes > 0) {
- CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
- // Loop over nodes, and extract kernel parameters from each node
- for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
- cudaGraphNodeType node_type;
- CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
- if (node_type == cudaGraphNodeTypeKernel) {
- cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
- if (stat == cudaErrorInvalidDeviceFunction) {
- // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
- // We don't need to update blas nodes, so clear error and move on.
- cudaGetLastError();
- } else {
- GGML_ASSERT(stat == cudaSuccess);
- }
- }
- }
- }
- }
- // One of the arguments to the copy kernel is updated for each token, hence we need to
- // replace that argument with the updated value in the CUDA graph
- if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
- int k = 0;
- for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
- if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
- char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
- cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
- CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
- }
- }
- }
- // Update graph executable
- cudaGraphExecUpdateResultInfo result_info;
- cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
- if (stat == cudaErrorGraphExecUpdateFailure) {
- #ifndef NDEBUG
- GGML_CUDA_LOG_ERROR("%s: CUDA graph update failed\n", __func__);
- #endif
- // The pre-existing graph exec cannot be updated due to violated constraints
- // so instead clear error and re-instantiate
- cudaGetLastError();
- CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
- cuda_ctx->cuda_graph->instance = nullptr;
- CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
- } else {
- GGML_ASSERT(stat == cudaSuccess);
- }
- // Launch graph
- CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
- #else
- graph_evaluated_or_captured = true;
- #endif // USE_CUDA_GRAPH
- }
- return GGML_STATUS_SUCCESS;
- }
- GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
- switch (op->op) {
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_SIGMOID:
- case GGML_UNARY_OP_HARDSIGMOID:
- case GGML_UNARY_OP_HARDSWISH:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_TANH:
- return ggml_is_contiguous(op->src[0]);
- default:
- return false;
- }
- break;
- case GGML_OP_MUL_MAT:
- case GGML_OP_MUL_MAT_ID:
- {
- struct ggml_tensor * a = op->src[0];
- struct ggml_tensor * b = op->src[1];
- if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) {
- return false;
- }
- if (op->op == GGML_OP_MUL_MAT && a->ne[3] != b->ne[3]) {
- return false;
- }
- switch (a->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_Q8_K:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- return true;
- default:
- return false;
- }
- } break;
- case GGML_OP_GET_ROWS:
- {
- switch (op->src[0]->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return true;
- default:
- return false;
- }
- } break;
- case GGML_OP_CPY:
- {
- ggml_type src0_type = op->src[0]->type;
- ggml_type src1_type = op->src[1]->type;
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
- return true;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
- return true;
- }
- return false;
- } break;
- case GGML_OP_DUP:
- case GGML_OP_REPEAT:
- case GGML_OP_CONCAT:
- {
- ggml_type src0_type = op->src[0]->type;
- return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- ggml_type src0_type = op->src[0]->type;
- ggml_type src1_type = op->src[1]->type;
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
- return true;
- }
- return false;
- } break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_NORM:
- case GGML_OP_ADD:
- case GGML_OP_SUB:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_RMS_NORM:
- case GGML_OP_SCALE:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_SIN:
- case GGML_OP_COS:
- case GGML_OP_CLAMP:
- case GGML_OP_CONT:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX:
- return true;
- case GGML_OP_ROPE:
- return ggml_is_contiguous(op->src[0]);
- case GGML_OP_IM2COL:
- case GGML_OP_POOL_2D:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_ARGSORT:
- case GGML_OP_ACC:
- case GGML_OP_GROUP_NORM:
- case GGML_OP_UPSCALE:
- case GGML_OP_PAD:
- case GGML_OP_ARANGE:
- case GGML_OP_TIMESTEP_EMBEDDING:
- case GGML_OP_LEAKY_RELU:
- return true;
- case GGML_OP_FLASH_ATTN_EXT:
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- return (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) || op->src[0]->ne[0] == 128;
- #else
- if (op->src[0]->ne[0] == 128) {
- return true;
- }
- if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) {
- return true;
- }
- return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA &&
- op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- return true;
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- default:
- return false;
- }
- GGML_UNUSED(backend);
- }
- GGML_CALL static bool ggml_backend_cuda_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
- if (ggml_backend_buft_is_cuda_split(buft)) {
- return true;
- }
- if (ggml_backend_buft_is_cuda(buft)) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- return buft_ctx->device == cuda_ctx->device;
- }
- return false;
- }
- GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
- const int min_batch_size = 32;
- return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
- (op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
- GGML_UNUSED(backend);
- }
- static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
- #ifdef GGML_CUDA_NO_PEER_COPY
- return nullptr;
- #else
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- ggml_cuda_set_device(cuda_ctx->device);
- cudaEvent_t event;
- CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
- return new ggml_backend_event {
- /* .backend = */ backend,
- /* .context = */ event,
- };
- #endif
- }
- static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
- CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
- delete event;
- }
- static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
- CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
- }
- static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- if (ggml_backend_is_cuda(event->backend)) {
- CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
- } else {
- #if 0
- // untested
- auto wait_fn = [](void * user_data) {
- ggml_backend_event_t event = (ggml_backend_event_t)user_data;
- ggml_backend_event_synchronize(event);
- };
- CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
- #endif
- GGML_ABORT("fatal error");
- }
- }
- static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) {
- CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
- }
- static ggml_backend_i ggml_backend_cuda_interface = {
- /* .get_name = */ ggml_backend_cuda_name,
- /* .free = */ ggml_backend_cuda_free,
- /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
- /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
- /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
- /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
- /* .synchronize = */ ggml_backend_cuda_synchronize,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_cuda_graph_compute,
- /* .supports_op = */ ggml_backend_cuda_supports_op,
- /* .supports_buft = */ ggml_backend_cuda_supports_buft,
- /* .offload_op = */ ggml_backend_cuda_offload_op,
- /* .event_new = */ ggml_backend_cuda_event_new,
- /* .event_free = */ ggml_backend_cuda_event_free,
- /* .event_record = */ ggml_backend_cuda_event_record,
- /* .event_wait = */ ggml_backend_cuda_event_wait,
- /* .event_synchronize = */ ggml_backend_cuda_event_synchronize,
- };
- static ggml_guid_t ggml_backend_cuda_guid() {
- static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
- return &guid;
- }
- GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
- if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
- GGML_CUDA_LOG_ERROR("%s: invalid device %d\n", __func__, device);
- return nullptr;
- }
- ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
- if (ctx == nullptr) {
- GGML_CUDA_LOG_ERROR("%s: failed to allocate context\n", __func__);
- return nullptr;
- }
- ggml_backend_t cuda_backend = new ggml_backend {
- /* .guid = */ ggml_backend_cuda_guid(),
- /* .interface = */ ggml_backend_cuda_interface,
- /* .context = */ ctx
- };
- return cuda_backend;
- }
- GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
- }
- GGML_CALL int ggml_backend_cuda_get_device_count() {
- return ggml_cuda_info().device_count;
- }
- GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
- snprintf(description, description_size, "%s", prop.name);
- }
- GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaMemGetInfo(free, total));
- }
- GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
- if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
- return false;
- }
- #if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
- cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
- GGML_CUDA_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
- size / 1024.0 / 1024.0, cudaGetErrorString(err));
- return false;
- }
- return true;
- #else
- return false;
- #endif
- }
- GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
- if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
- return;
- }
- cudaError_t err = cudaHostUnregister(buffer);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
- }
- }
- // backend registry
- GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
- ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
- return cuda_backend;
- GGML_UNUSED(params);
- }
- GGML_CALL int ggml_backend_cuda_reg_devices() {
- int device_count = ggml_backend_cuda_get_device_count();
- //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
- for (int i = 0; i < device_count; i++) {
- char name[128];
- snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
- ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
- }
- return device_count;
- }
|