ggml.c 755 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897228982289922900229012290222903229042290522906229072290822909229102291122912229132291422915229162291722918229192292022921229222292322924229252292622927229282292922930229312293222933229342293522936229372293822939229402294122942229432294422945229462294722948229492295022951229522295322954229552295622957229582295922960229612296222963229642296522966229672296822969229702297122972229732297422975229762297722978229792298022981229822298322984229852298622987229882298922990229912299222993229942299522996229972299822999230002300123002230032300423005230062300723008230092301023011230122301323014230152301623017230182301923020230212302223023230242302523026230272302823029230302303123032230332303423035230362303723038230392304023041230422304323044230452304623047230482304923050230512305223053230542305523056230572305823059230602306123062230632306423065230662306723068230692307023071230722307323074230752307623077230782307923080230812308223083230842308523086230872308823089230902309123092230932309423095230962309723098230992310023101231022310323104231052310623107231082310923110231112311223113231142311523116231172311823119231202312123122231232312423125231262312723128231292313023131231322313323134231352313623137231382313923140231412314223143231442314523146231472314823149231502315123152231532315423155231562315723158231592316023161231622316323164231652316623167231682316923170231712317223173231742317523176231772317823179231802318123182231832318423185231862318723188231892319023191231922319323194231952319623197231982319923200232012320223203232042320523206232072320823209232102321123212232132321423215232162321723218232192322023221232222322323224232252322623227232282322923230232312323223233232342323523236232372323823239232402324123242232432324423245232462324723248232492325023251232522325323254232552325623257232582325923260232612326223263232642326523266232672326823269232702327123272232732327423275232762327723278232792328023281232822328323284232852328623287232882328923290232912329223293232942329523296232972329823299233002330123302233032330423305233062330723308233092331023311233122331323314233152331623317233182331923320233212332223323233242332523326233272332823329233302333123332233332333423335233362333723338233392334023341233422334323344233452334623347233482334923350233512335223353233542335523356233572335823359233602336123362233632336423365
  1. /**
  2. * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  27. #define _USE_MATH_DEFINES // For M_PI on MSVC
  28. #include "ggml-impl.h"
  29. #include "ggml-quants.h"
  30. #include "ggml.h"
  31. #include "ggml-aarch64.h"
  32. #if defined(_MSC_VER) || defined(__MINGW32__)
  33. #include <malloc.h> // using malloc.h with MSC/MINGW
  34. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  35. #include <alloca.h>
  36. #endif
  37. #include <assert.h>
  38. #include <errno.h>
  39. #include <time.h>
  40. #include <math.h>
  41. #include <stdlib.h>
  42. #include <string.h>
  43. #include <stdint.h>
  44. #include <inttypes.h>
  45. #include <stdio.h>
  46. #include <float.h>
  47. #include <limits.h>
  48. #include <stdarg.h>
  49. #include <signal.h>
  50. #if defined(__gnu_linux__)
  51. #include <syscall.h>
  52. #endif
  53. #ifdef GGML_USE_OPENMP
  54. #include <omp.h>
  55. #endif
  56. #ifdef GGML_USE_METAL
  57. #include <unistd.h>
  58. #endif
  59. #if defined(__ARM_FEATURE_SVE)
  60. int ggml_sve_cnt_b = 0;
  61. #endif
  62. #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
  63. #undef GGML_USE_LLAMAFILE
  64. #endif
  65. #ifdef GGML_USE_LLAMAFILE
  66. #include <llamafile/sgemm.h>
  67. #endif
  68. #if defined(_MSC_VER)
  69. // disable "possible loss of data" to avoid hundreds of casts
  70. // we should just be careful :)
  71. #pragma warning(disable: 4244 4267)
  72. // disable POSIX deprecation warnings
  73. // these functions are never going away, anyway
  74. #pragma warning(disable: 4996)
  75. // unreachable code because of multiple instances of code after GGML_ABORT
  76. #pragma warning(disable: 4702)
  77. #endif
  78. #if defined(_WIN32)
  79. #define WIN32_LEAN_AND_MEAN
  80. #ifndef NOMINMAX
  81. #define NOMINMAX
  82. #endif
  83. #include <windows.h>
  84. #if !defined(__clang__)
  85. typedef volatile LONG atomic_int;
  86. typedef atomic_int atomic_bool;
  87. typedef atomic_int atomic_flag;
  88. #define ATOMIC_FLAG_INIT 0
  89. typedef enum {
  90. memory_order_relaxed,
  91. memory_order_consume,
  92. memory_order_acquire,
  93. memory_order_release,
  94. memory_order_acq_rel,
  95. memory_order_seq_cst
  96. } memory_order;
  97. static void atomic_store(atomic_int * ptr, LONG val) {
  98. InterlockedExchange(ptr, val);
  99. }
  100. static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) {
  101. // TODO: add support for explicit memory order
  102. InterlockedExchange(ptr, val);
  103. }
  104. static LONG atomic_load(atomic_int * ptr) {
  105. return InterlockedCompareExchange(ptr, 0, 0);
  106. }
  107. static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) {
  108. // TODO: add support for explicit memory order
  109. return InterlockedCompareExchange(ptr, 0, 0);
  110. }
  111. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  112. return InterlockedExchangeAdd(ptr, inc);
  113. }
  114. static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) {
  115. // TODO: add support for explicit memory order
  116. return InterlockedExchangeAdd(ptr, inc);
  117. }
  118. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  119. return InterlockedExchange(ptr, 1);
  120. }
  121. static void atomic_flag_clear(atomic_flag * ptr) {
  122. InterlockedExchange(ptr, 0);
  123. }
  124. #else // clang
  125. #include <stdatomic.h>
  126. #endif
  127. typedef HANDLE pthread_t;
  128. typedef DWORD thread_ret_t;
  129. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  130. (void) unused;
  131. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  132. if (handle == NULL)
  133. {
  134. return EAGAIN;
  135. }
  136. *out = handle;
  137. return 0;
  138. }
  139. static int pthread_join(pthread_t thread, void * unused) {
  140. (void) unused;
  141. int ret = (int) WaitForSingleObject(thread, INFINITE);
  142. CloseHandle(thread);
  143. return ret;
  144. }
  145. static int sched_yield (void) {
  146. Sleep (0);
  147. return 0;
  148. }
  149. #else
  150. #include <pthread.h>
  151. #include <stdatomic.h>
  152. #include <sched.h>
  153. #if defined(__FreeBSD__)
  154. #include <pthread_np.h>
  155. #endif
  156. typedef void * thread_ret_t;
  157. #include <sys/types.h>
  158. #include <sys/stat.h>
  159. #include <unistd.h>
  160. #endif
  161. typedef pthread_t ggml_thread_t;
  162. #ifdef GGML_USE_CPU_HBM
  163. #include <hbwmalloc.h>
  164. #endif
  165. #if defined(__APPLE__)
  166. #include <TargetConditionals.h>
  167. #endif
  168. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  169. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  170. #include <sys/wait.h>
  171. #if defined(__ANDROID__)
  172. #include <unwind.h>
  173. #include <dlfcn.h>
  174. #include <stdio.h>
  175. struct backtrace_state {
  176. void ** current;
  177. void ** end;
  178. };
  179. static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
  180. struct backtrace_state * state = (struct backtrace_state *)arg;
  181. uintptr_t pc = _Unwind_GetIP(context);
  182. if (pc) {
  183. if (state->current == state->end) {
  184. return _URC_END_OF_STACK;
  185. } else {
  186. *state->current++ = (void*)pc;
  187. }
  188. }
  189. return _URC_NO_REASON;
  190. }
  191. static void ggml_print_backtrace_symbols(void) {
  192. const int max = 100;
  193. void* buffer[max];
  194. struct backtrace_state state = {buffer, buffer + max};
  195. _Unwind_Backtrace(unwind_callback, &state);
  196. int count = state.current - buffer;
  197. for (int idx = 0; idx < count; ++idx) {
  198. const void * addr = buffer[idx];
  199. const char * symbol = "";
  200. Dl_info info;
  201. if (dladdr(addr, &info) && info.dli_sname) {
  202. symbol = info.dli_sname;
  203. }
  204. fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
  205. }
  206. }
  207. #elif defined(__linux__) && defined(__GLIBC__)
  208. #include <execinfo.h>
  209. static void ggml_print_backtrace_symbols(void) {
  210. void * trace[100];
  211. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  212. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  213. }
  214. #else
  215. static void ggml_print_backtrace_symbols(void) {
  216. // platform not supported
  217. }
  218. #endif
  219. static void ggml_print_backtrace(void) {
  220. char attach[32];
  221. snprintf(attach, sizeof(attach), "attach %d", getpid());
  222. int pid = fork();
  223. if (pid == 0) {
  224. // try gdb
  225. execlp("gdb", "gdb", "--batch",
  226. "-ex", "set style enabled on",
  227. "-ex", attach,
  228. "-ex", "bt -frame-info source-and-location",
  229. "-ex", "detach",
  230. "-ex", "quit",
  231. (char *) NULL);
  232. // try lldb
  233. execlp("lldb", "lldb", "--batch",
  234. "-o", "bt",
  235. "-o", "quit",
  236. "-p", attach,
  237. (char *) NULL);
  238. exit(EXIT_FAILURE);
  239. } else {
  240. int wstatus;
  241. waitpid(pid, &wstatus, 0);
  242. if (WIFEXITED(wstatus)) {
  243. if (WEXITSTATUS(wstatus) == EXIT_FAILURE) {
  244. // gdb failed, fallback to backtrace_symbols
  245. ggml_print_backtrace_symbols();
  246. }
  247. }
  248. }
  249. }
  250. #else
  251. static void ggml_print_backtrace(void) {
  252. // platform not supported
  253. }
  254. #endif
  255. void ggml_abort(const char * file, int line, const char * fmt, ...) {
  256. fflush(stdout);
  257. fprintf(stderr, "%s:%d: ", file, line);
  258. va_list args;
  259. va_start(args, fmt);
  260. vfprintf(stderr, fmt, args);
  261. va_end(args);
  262. fprintf(stderr, "\n");
  263. ggml_print_backtrace();
  264. abort();
  265. }
  266. #define GGML_DEBUG 0
  267. #define GGML_GELU_FP16
  268. #define GGML_GELU_QUICK_FP16
  269. #define GGML_SOFT_MAX_UNROLL 4
  270. #define GGML_VEC_DOT_UNROLL 2
  271. #define GGML_VEC_MAD_UNROLL 32
  272. //
  273. // logging
  274. //
  275. #if (GGML_DEBUG >= 1)
  276. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  277. #else
  278. #define GGML_PRINT_DEBUG(...)
  279. #endif
  280. #if (GGML_DEBUG >= 5)
  281. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  282. #else
  283. #define GGML_PRINT_DEBUG_5(...)
  284. #endif
  285. #if (GGML_DEBUG >= 10)
  286. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  287. #else
  288. #define GGML_PRINT_DEBUG_10(...)
  289. #endif
  290. #define GGML_PRINT(...) printf(__VA_ARGS__)
  291. //
  292. // end of logging block
  293. //
  294. #ifdef GGML_USE_ACCELERATE
  295. // uncomment to use vDSP for soft max computation
  296. // note: not sure if it is actually faster
  297. //#define GGML_SOFT_MAX_ACCELERATE
  298. #endif
  299. #if defined(_MSC_VER) || defined(__MINGW32__)
  300. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  301. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  302. #else
  303. inline static void * ggml_aligned_malloc(size_t size) {
  304. if (size == 0) {
  305. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  306. return NULL;
  307. }
  308. void * aligned_memory = NULL;
  309. #ifdef GGML_USE_CPU_HBM
  310. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  311. #elif GGML_USE_METAL
  312. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  313. #else
  314. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  315. #endif
  316. if (result != 0) {
  317. // Handle allocation failure
  318. const char *error_desc = "unknown allocation error";
  319. switch (result) {
  320. case EINVAL:
  321. error_desc = "invalid alignment value";
  322. break;
  323. case ENOMEM:
  324. error_desc = "insufficient memory";
  325. break;
  326. }
  327. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  328. GGML_ABORT("fatal error");
  329. return NULL;
  330. }
  331. return aligned_memory;
  332. }
  333. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  334. #ifdef GGML_USE_CPU_HBM
  335. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  336. #else
  337. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  338. #endif
  339. #endif
  340. inline static void * ggml_malloc(size_t size) {
  341. if (size == 0) {
  342. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  343. return NULL;
  344. }
  345. void * result = malloc(size);
  346. if (result == NULL) {
  347. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  348. GGML_ABORT("fatal error");
  349. }
  350. return result;
  351. }
  352. // calloc
  353. inline static void * ggml_calloc(size_t num, size_t size) {
  354. if (num == 0 || size == 0) {
  355. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  356. return NULL;
  357. }
  358. void * result = calloc(num, size);
  359. if (result == NULL) {
  360. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  361. GGML_ABORT("fatal error");
  362. }
  363. return result;
  364. }
  365. #define GGML_MALLOC(size) ggml_malloc(size)
  366. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  367. #define GGML_FREE(ptr) free(ptr)
  368. #define UNUSED GGML_UNUSED
  369. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  370. #if defined(GGML_USE_ACCELERATE)
  371. #include <Accelerate/Accelerate.h>
  372. #endif
  373. // floating point type used to accumulate sums
  374. typedef double ggml_float;
  375. #undef MIN
  376. #undef MAX
  377. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  378. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  379. //
  380. // global data
  381. //
  382. // precomputed gelu table for f16 (128 KB)
  383. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  384. // precomputed quick gelu table for f16 (128 KB)
  385. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  386. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  387. float ggml_table_f32_f16[1 << 16];
  388. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  389. switch (status) {
  390. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  391. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  392. case GGML_STATUS_SUCCESS: return "GGML status: success";
  393. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  394. }
  395. return "GGML status: unknown";
  396. }
  397. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  398. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  399. return GGML_FP16_TO_FP32(x);
  400. }
  401. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  402. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  403. return GGML_FP32_TO_FP16(x);
  404. }
  405. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  406. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  407. return GGML_BF16_TO_FP32(x); // it just left shifts
  408. }
  409. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  410. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  411. return GGML_FP32_TO_BF16(x);
  412. }
  413. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  414. for (int64_t i = 0; i < n; i++) {
  415. y[i] = GGML_FP16_TO_FP32(x[i]);
  416. }
  417. }
  418. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  419. int64_t i = 0;
  420. #if defined(__F16C__)
  421. for (; i + 7 < n; i += 8) {
  422. __m256 x_vec = _mm256_loadu_ps(x + i);
  423. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  424. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  425. }
  426. for(; i + 3 < n; i += 4) {
  427. __m128 x_vec = _mm_loadu_ps(x + i);
  428. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  429. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  430. }
  431. #endif
  432. for (; i < n; i++) {
  433. y[i] = GGML_FP32_TO_FP16(x[i]);
  434. }
  435. }
  436. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  437. int64_t i = 0;
  438. #if defined(__AVX512F__)
  439. for (; i + 16 <= n; i += 16) {
  440. _mm512_storeu_ps(y + i,
  441. _mm512_castsi512_ps(
  442. _mm512_slli_epi32(
  443. _mm512_cvtepu16_epi32(
  444. _mm256_loadu_si256(
  445. (const __m256i *)(x + i))),
  446. 16)));
  447. }
  448. #elif defined(__AVX2__)
  449. for (; i + 8 <= n; i += 8) {
  450. _mm256_storeu_ps(y + i,
  451. _mm256_castsi256_ps(
  452. _mm256_slli_epi32(
  453. _mm256_cvtepu16_epi32(
  454. _mm_loadu_si128(
  455. (const __m128i *)(x + i))),
  456. 16)));
  457. }
  458. #endif
  459. for (; i < n; i++) {
  460. y[i] = GGML_BF16_TO_FP32(x[i]);
  461. }
  462. }
  463. void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
  464. for (int i = 0; i < n; i++) {
  465. y[i] = ggml_compute_fp32_to_bf16(x[i]);
  466. }
  467. }
  468. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  469. int i = 0;
  470. #if defined(__AVX512BF16__)
  471. // subnormals are flushed to zero on this platform
  472. for (; i + 32 <= n; i += 32) {
  473. _mm512_storeu_si512(
  474. (__m512i *)(y + i),
  475. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  476. _mm512_loadu_ps(x + i))));
  477. }
  478. #endif
  479. for (; i < n; i++) {
  480. y[i] = GGML_FP32_TO_BF16(x[i]);
  481. }
  482. }
  483. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  484. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  485. }
  486. //
  487. // timing
  488. //
  489. #if defined(_MSC_VER) || defined(__MINGW32__)
  490. static int64_t timer_freq, timer_start;
  491. void ggml_time_init(void) {
  492. LARGE_INTEGER t;
  493. QueryPerformanceFrequency(&t);
  494. timer_freq = t.QuadPart;
  495. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  496. // and the uptime is high enough.
  497. // We subtract the program start time to reduce the likelihood of that happening.
  498. QueryPerformanceCounter(&t);
  499. timer_start = t.QuadPart;
  500. }
  501. int64_t ggml_time_ms(void) {
  502. LARGE_INTEGER t;
  503. QueryPerformanceCounter(&t);
  504. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  505. }
  506. int64_t ggml_time_us(void) {
  507. LARGE_INTEGER t;
  508. QueryPerformanceCounter(&t);
  509. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  510. }
  511. #else
  512. void ggml_time_init(void) {}
  513. int64_t ggml_time_ms(void) {
  514. struct timespec ts;
  515. clock_gettime(CLOCK_MONOTONIC, &ts);
  516. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  517. }
  518. int64_t ggml_time_us(void) {
  519. struct timespec ts;
  520. clock_gettime(CLOCK_MONOTONIC, &ts);
  521. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  522. }
  523. #endif
  524. int64_t ggml_cycles(void) {
  525. return clock();
  526. }
  527. int64_t ggml_cycles_per_ms(void) {
  528. return CLOCKS_PER_SEC/1000;
  529. }
  530. //
  531. // cross-platform UTF-8 file paths
  532. //
  533. #ifdef _WIN32
  534. static wchar_t * ggml_mbstowcs(const char * mbs) {
  535. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  536. if (!wlen) {
  537. errno = EINVAL;
  538. return NULL;
  539. }
  540. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  541. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  542. if (!wlen) {
  543. GGML_FREE(wbuf);
  544. errno = EINVAL;
  545. return NULL;
  546. }
  547. return wbuf;
  548. }
  549. #endif
  550. FILE * ggml_fopen(const char * fname, const char * mode) {
  551. #ifdef _WIN32
  552. FILE * file = NULL;
  553. // convert fname (UTF-8)
  554. wchar_t * wfname = ggml_mbstowcs(fname);
  555. if (wfname) {
  556. // convert mode (ANSI)
  557. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  558. wchar_t * wmode_p = wmode;
  559. do {
  560. *wmode_p++ = (wchar_t)*mode;
  561. } while (*mode++);
  562. // open file
  563. file = _wfopen(wfname, wmode);
  564. GGML_FREE(wfname);
  565. GGML_FREE(wmode);
  566. }
  567. return file;
  568. #else
  569. return fopen(fname, mode);
  570. #endif
  571. }
  572. //
  573. // cache line
  574. //
  575. #if defined(__cpp_lib_hardware_interference_size)
  576. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  577. #else
  578. #if defined(__POWER9_VECTOR__)
  579. #define CACHE_LINE_SIZE 128
  580. #else
  581. #define CACHE_LINE_SIZE 64
  582. #endif
  583. #endif
  584. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  585. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  586. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  587. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  588. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  589. [GGML_TYPE_I8] = {
  590. .type_name = "i8",
  591. .blck_size = 1,
  592. .type_size = sizeof(int8_t),
  593. .is_quantized = false,
  594. },
  595. [GGML_TYPE_I16] = {
  596. .type_name = "i16",
  597. .blck_size = 1,
  598. .type_size = sizeof(int16_t),
  599. .is_quantized = false,
  600. },
  601. [GGML_TYPE_I32] = {
  602. .type_name = "i32",
  603. .blck_size = 1,
  604. .type_size = sizeof(int32_t),
  605. .is_quantized = false,
  606. },
  607. [GGML_TYPE_I64] = {
  608. .type_name = "i64",
  609. .blck_size = 1,
  610. .type_size = sizeof(int64_t),
  611. .is_quantized = false,
  612. },
  613. [GGML_TYPE_F64] = {
  614. .type_name = "f64",
  615. .blck_size = 1,
  616. .type_size = sizeof(double),
  617. .is_quantized = false,
  618. .nrows = 1,
  619. },
  620. [GGML_TYPE_F32] = {
  621. .type_name = "f32",
  622. .blck_size = 1,
  623. .type_size = sizeof(float),
  624. .is_quantized = false,
  625. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  626. .vec_dot_type = GGML_TYPE_F32,
  627. .nrows = 1,
  628. },
  629. [GGML_TYPE_F16] = {
  630. .type_name = "f16",
  631. .blck_size = 1,
  632. .type_size = sizeof(ggml_fp16_t),
  633. .is_quantized = false,
  634. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  635. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  636. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  637. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  638. .vec_dot_type = GGML_TYPE_F16,
  639. .nrows = 1,
  640. },
  641. [GGML_TYPE_Q4_0] = {
  642. .type_name = "q4_0",
  643. .blck_size = QK4_0,
  644. .type_size = sizeof(block_q4_0),
  645. .is_quantized = true,
  646. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  647. .from_float = quantize_row_q4_0,
  648. .from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
  649. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  650. .vec_dot_type = GGML_TYPE_Q8_0,
  651. #if defined (__ARM_FEATURE_MATMUL_INT8)
  652. .nrows = 2,
  653. #else
  654. .nrows = 1,
  655. #endif
  656. },
  657. [GGML_TYPE_Q4_1] = {
  658. .type_name = "q4_1",
  659. .blck_size = QK4_1,
  660. .type_size = sizeof(block_q4_1),
  661. .is_quantized = true,
  662. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  663. .from_float = quantize_row_q4_1,
  664. .from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
  665. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  666. .vec_dot_type = GGML_TYPE_Q8_1,
  667. #if defined (__ARM_FEATURE_MATMUL_INT8)
  668. .nrows = 2,
  669. #else
  670. .nrows = 1,
  671. #endif
  672. },
  673. [4] = { // GGML_TYPE_Q4_2
  674. .type_name = "DEPRECATED",
  675. .blck_size = 0,
  676. .type_size = 0,
  677. .is_quantized = false,
  678. .to_float = NULL,
  679. .from_float = NULL,
  680. .from_float_ref = NULL,
  681. .vec_dot = NULL,
  682. .vec_dot_type = GGML_TYPE_COUNT,
  683. .nrows = 1,
  684. },
  685. [5] = { // GGML_TYPE_Q4_3
  686. .type_name = "DEPRECATED",
  687. .blck_size = 0,
  688. .type_size = 0,
  689. .is_quantized = false,
  690. .to_float = NULL,
  691. .from_float = NULL,
  692. .from_float_ref = NULL,
  693. .vec_dot = NULL,
  694. .vec_dot_type = GGML_TYPE_COUNT,
  695. .nrows = 1,
  696. },
  697. [GGML_TYPE_Q5_0] = {
  698. .type_name = "q5_0",
  699. .blck_size = QK5_0,
  700. .type_size = sizeof(block_q5_0),
  701. .is_quantized = true,
  702. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  703. .from_float = quantize_row_q5_0,
  704. .from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
  705. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  706. .vec_dot_type = GGML_TYPE_Q8_0,
  707. .nrows = 1,
  708. },
  709. [GGML_TYPE_Q5_1] = {
  710. .type_name = "q5_1",
  711. .blck_size = QK5_1,
  712. .type_size = sizeof(block_q5_1),
  713. .is_quantized = true,
  714. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  715. .from_float = quantize_row_q5_1,
  716. .from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
  717. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  718. .vec_dot_type = GGML_TYPE_Q8_1,
  719. .nrows = 1,
  720. },
  721. [GGML_TYPE_Q8_0] = {
  722. .type_name = "q8_0",
  723. .blck_size = QK8_0,
  724. .type_size = sizeof(block_q8_0),
  725. .is_quantized = true,
  726. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  727. .from_float = quantize_row_q8_0,
  728. .from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
  729. .from_float_to_mat = quantize_mat_q8_0,
  730. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  731. .vec_dot_type = GGML_TYPE_Q8_0,
  732. #if defined (__ARM_FEATURE_MATMUL_INT8)
  733. .nrows = 2,
  734. #else
  735. .nrows = 1,
  736. #endif
  737. },
  738. [GGML_TYPE_Q8_1] = {
  739. .type_name = "q8_1",
  740. .blck_size = QK8_1,
  741. .type_size = sizeof(block_q8_1),
  742. .is_quantized = true,
  743. .from_float = quantize_row_q8_1,
  744. .from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
  745. .vec_dot_type = GGML_TYPE_Q8_1,
  746. .nrows = 1,
  747. },
  748. [GGML_TYPE_Q2_K] = {
  749. .type_name = "q2_K",
  750. .blck_size = QK_K,
  751. .type_size = sizeof(block_q2_K),
  752. .is_quantized = true,
  753. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  754. .from_float = quantize_row_q2_K,
  755. .from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
  756. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  757. .vec_dot_type = GGML_TYPE_Q8_K,
  758. .nrows = 1,
  759. },
  760. [GGML_TYPE_Q3_K] = {
  761. .type_name = "q3_K",
  762. .blck_size = QK_K,
  763. .type_size = sizeof(block_q3_K),
  764. .is_quantized = true,
  765. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  766. .from_float = quantize_row_q3_K,
  767. .from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
  768. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  769. .vec_dot_type = GGML_TYPE_Q8_K,
  770. .nrows = 1,
  771. },
  772. [GGML_TYPE_Q4_K] = {
  773. .type_name = "q4_K",
  774. .blck_size = QK_K,
  775. .type_size = sizeof(block_q4_K),
  776. .is_quantized = true,
  777. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  778. .from_float = quantize_row_q4_K,
  779. .from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
  780. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  781. .vec_dot_type = GGML_TYPE_Q8_K,
  782. .nrows = 1,
  783. },
  784. [GGML_TYPE_Q5_K] = {
  785. .type_name = "q5_K",
  786. .blck_size = QK_K,
  787. .type_size = sizeof(block_q5_K),
  788. .is_quantized = true,
  789. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  790. .from_float = quantize_row_q5_K,
  791. .from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
  792. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  793. .vec_dot_type = GGML_TYPE_Q8_K,
  794. .nrows = 1,
  795. },
  796. [GGML_TYPE_Q6_K] = {
  797. .type_name = "q6_K",
  798. .blck_size = QK_K,
  799. .type_size = sizeof(block_q6_K),
  800. .is_quantized = true,
  801. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  802. .from_float = quantize_row_q6_K,
  803. .from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
  804. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  805. .vec_dot_type = GGML_TYPE_Q8_K,
  806. .nrows = 1,
  807. },
  808. [GGML_TYPE_IQ2_XXS] = {
  809. .type_name = "iq2_xxs",
  810. .blck_size = QK_K,
  811. .type_size = sizeof(block_iq2_xxs),
  812. .is_quantized = true,
  813. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  814. .from_float = NULL,
  815. .from_float_ref = NULL,
  816. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  817. .vec_dot_type = GGML_TYPE_Q8_K,
  818. .nrows = 1,
  819. },
  820. [GGML_TYPE_IQ2_XS] = {
  821. .type_name = "iq2_xs",
  822. .blck_size = QK_K,
  823. .type_size = sizeof(block_iq2_xs),
  824. .is_quantized = true,
  825. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  826. .from_float = NULL,
  827. .from_float_ref = NULL,
  828. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  829. .vec_dot_type = GGML_TYPE_Q8_K,
  830. .nrows = 1,
  831. },
  832. [GGML_TYPE_IQ3_XXS] = {
  833. .type_name = "iq3_xxs",
  834. .blck_size = QK_K,
  835. .type_size = sizeof(block_iq3_xxs),
  836. .is_quantized = true,
  837. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  838. .from_float = quantize_row_iq3_xxs,
  839. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
  840. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  841. .vec_dot_type = GGML_TYPE_Q8_K,
  842. .nrows = 1,
  843. },
  844. [GGML_TYPE_IQ3_S] = {
  845. .type_name = "iq3_s",
  846. .blck_size = QK_K,
  847. .type_size = sizeof(block_iq3_s),
  848. .is_quantized = true,
  849. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  850. .from_float = quantize_row_iq3_s,
  851. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
  852. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  853. .vec_dot_type = GGML_TYPE_Q8_K,
  854. .nrows = 1,
  855. },
  856. [GGML_TYPE_IQ2_S] = {
  857. .type_name = "iq2_s",
  858. .blck_size = QK_K,
  859. .type_size = sizeof(block_iq2_s),
  860. .is_quantized = true,
  861. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  862. .from_float = quantize_row_iq2_s,
  863. .from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
  864. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  865. .vec_dot_type = GGML_TYPE_Q8_K,
  866. .nrows = 1,
  867. },
  868. [GGML_TYPE_IQ1_S] = {
  869. .type_name = "iq1_s",
  870. .blck_size = QK_K,
  871. .type_size = sizeof(block_iq1_s),
  872. .is_quantized = true,
  873. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  874. .from_float = NULL,
  875. .from_float_ref = NULL,
  876. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  877. .vec_dot_type = GGML_TYPE_Q8_K,
  878. .nrows = 1,
  879. },
  880. [GGML_TYPE_IQ1_M] = {
  881. .type_name = "iq1_m",
  882. .blck_size = QK_K,
  883. .type_size = sizeof(block_iq1_m),
  884. .is_quantized = true,
  885. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  886. .from_float = NULL,
  887. .from_float_ref = NULL,
  888. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  889. .vec_dot_type = GGML_TYPE_Q8_K,
  890. .nrows = 1,
  891. },
  892. [GGML_TYPE_IQ4_NL] = {
  893. .type_name = "iq4_nl",
  894. .blck_size = QK4_NL,
  895. .type_size = sizeof(block_iq4_nl),
  896. .is_quantized = true,
  897. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  898. .from_float = quantize_row_iq4_nl,
  899. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
  900. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  901. .vec_dot_type = GGML_TYPE_Q8_0,
  902. .nrows = 1,
  903. },
  904. [GGML_TYPE_IQ4_XS] = {
  905. .type_name = "iq4_xs",
  906. .blck_size = QK_K,
  907. .type_size = sizeof(block_iq4_xs),
  908. .is_quantized = true,
  909. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  910. .from_float = quantize_row_iq4_xs,
  911. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
  912. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  913. .vec_dot_type = GGML_TYPE_Q8_K,
  914. .nrows = 1,
  915. },
  916. [GGML_TYPE_Q8_K] = {
  917. .type_name = "q8_K",
  918. .blck_size = QK_K,
  919. .type_size = sizeof(block_q8_K),
  920. .is_quantized = true,
  921. .from_float = quantize_row_q8_K,
  922. },
  923. [GGML_TYPE_BF16] = {
  924. .type_name = "bf16",
  925. .blck_size = 1,
  926. .type_size = sizeof(ggml_bf16_t),
  927. .is_quantized = false,
  928. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  929. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  930. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
  931. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  932. .vec_dot_type = GGML_TYPE_BF16,
  933. .nrows = 1,
  934. },
  935. [GGML_TYPE_Q4_0_4_4] = {
  936. .type_name = "q4_0_4x4",
  937. .blck_size = QK4_0,
  938. .blck_size_interleave = 4,
  939. .type_size = sizeof(block_q4_0),
  940. .is_quantized = true,
  941. .to_float = NULL,
  942. .from_float = NULL,
  943. .from_float_ref = NULL,
  944. .vec_dot = NULL,
  945. .vec_dot_type = GGML_TYPE_Q8_0,
  946. .nrows = 1,
  947. .ncols = 4,
  948. .gemv = ggml_gemv_q4_0_4x4_q8_0,
  949. .gemm = ggml_gemm_q4_0_4x4_q8_0,
  950. },
  951. [GGML_TYPE_Q4_0_4_8] = {
  952. .type_name = "q4_0_4x8",
  953. .blck_size = QK4_0,
  954. .blck_size_interleave = 8,
  955. .type_size = sizeof(block_q4_0),
  956. .is_quantized = true,
  957. .to_float = NULL,
  958. .from_float = NULL,
  959. .from_float_ref = NULL,
  960. .vec_dot = NULL,
  961. .vec_dot_type = GGML_TYPE_Q8_0,
  962. .nrows = 1,
  963. .ncols = 4,
  964. .gemv = ggml_gemv_q4_0_4x8_q8_0,
  965. .gemm = ggml_gemm_q4_0_4x8_q8_0,
  966. },
  967. [GGML_TYPE_Q4_0_8_8] = {
  968. .type_name = "q4_0_8x8",
  969. .blck_size = QK4_0,
  970. .blck_size_interleave = 8,
  971. .type_size = sizeof(block_q4_0),
  972. .is_quantized = true,
  973. .to_float = NULL,
  974. .from_float = NULL,
  975. .from_float_ref = NULL,
  976. .vec_dot = NULL,
  977. .vec_dot_type = GGML_TYPE_Q8_0,
  978. .nrows = 1,
  979. .ncols = 8,
  980. .gemv = ggml_gemv_q4_0_8x8_q8_0,
  981. .gemm = ggml_gemm_q4_0_8x8_q8_0,
  982. }
  983. };
  984. // For internal test use
  985. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  986. GGML_ASSERT(type < GGML_TYPE_COUNT);
  987. return type_traits[type];
  988. }
  989. //
  990. // simd mappings
  991. //
  992. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  993. // we then implement the fundamental computation operations below using only these macros
  994. // adding support for new architectures requires to define the corresponding SIMD macros
  995. //
  996. // GGML_F32_STEP / GGML_F16_STEP
  997. // number of elements to process in a single step
  998. //
  999. // GGML_F32_EPR / GGML_F16_EPR
  1000. // number of elements to fit in a single register
  1001. //
  1002. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1003. #define GGML_SIMD
  1004. // F32 NEON
  1005. #define GGML_F32_STEP 16
  1006. #define GGML_F32_EPR 4
  1007. #define GGML_F32x4 float32x4_t
  1008. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1009. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1010. #define GGML_F32x4_LOAD vld1q_f32
  1011. #define GGML_F32x4_STORE vst1q_f32
  1012. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1013. #define GGML_F32x4_ADD vaddq_f32
  1014. #define GGML_F32x4_MUL vmulq_f32
  1015. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1016. #define GGML_F32x4_REDUCE(res, x) \
  1017. { \
  1018. int offset = GGML_F32_ARR >> 1; \
  1019. for (int i = 0; i < offset; ++i) { \
  1020. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1021. } \
  1022. offset >>= 1; \
  1023. for (int i = 0; i < offset; ++i) { \
  1024. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1025. } \
  1026. offset >>= 1; \
  1027. for (int i = 0; i < offset; ++i) { \
  1028. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1029. } \
  1030. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1031. }
  1032. #define GGML_F32_VEC GGML_F32x4
  1033. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1034. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1035. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1036. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1037. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1038. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1039. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1040. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1041. // F16 NEON
  1042. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1043. #define GGML_F16_STEP 32
  1044. #define GGML_F16_EPR 8
  1045. #define GGML_F16x8 float16x8_t
  1046. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1047. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1048. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  1049. #define GGML_F16x8_STORE vst1q_f16
  1050. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1051. #define GGML_F16x8_ADD vaddq_f16
  1052. #define GGML_F16x8_MUL vmulq_f16
  1053. #define GGML_F16x8_REDUCE(res, x) \
  1054. do { \
  1055. int offset = GGML_F16_ARR >> 1; \
  1056. for (int i = 0; i < offset; ++i) { \
  1057. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1058. } \
  1059. offset >>= 1; \
  1060. for (int i = 0; i < offset; ++i) { \
  1061. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1062. } \
  1063. offset >>= 1; \
  1064. for (int i = 0; i < offset; ++i) { \
  1065. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1066. } \
  1067. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1068. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1069. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1070. } while (0)
  1071. #define GGML_F16_VEC GGML_F16x8
  1072. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1073. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1074. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1075. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  1076. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1077. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1078. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1079. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1080. #else
  1081. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1082. // and take advantage of the vcvt_ functions to convert to/from FP16
  1083. #define GGML_F16_STEP 16
  1084. #define GGML_F16_EPR 4
  1085. #define GGML_F32Cx4 float32x4_t
  1086. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1087. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1088. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  1089. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1090. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1091. #define GGML_F32Cx4_ADD vaddq_f32
  1092. #define GGML_F32Cx4_MUL vmulq_f32
  1093. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1094. #define GGML_F16_VEC GGML_F32Cx4
  1095. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1096. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1097. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1098. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  1099. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1100. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1101. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1102. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1103. #endif
  1104. #elif defined(__AVX512F__)
  1105. #define GGML_SIMD
  1106. // F32 AVX512
  1107. #define GGML_F32_STEP 64
  1108. #define GGML_F32_EPR 16
  1109. #define GGML_F32x16 __m512
  1110. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  1111. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  1112. #define GGML_F32x16_LOAD _mm512_loadu_ps
  1113. #define GGML_F32x16_STORE _mm512_storeu_ps
  1114. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  1115. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1116. #define GGML_F32x16_ADD _mm512_add_ps
  1117. #define GGML_F32x16_MUL _mm512_mul_ps
  1118. #define GGML_F32x16_REDUCE(res, x) \
  1119. do { \
  1120. int offset = GGML_F32_ARR >> 1; \
  1121. for (int i = 0; i < offset; ++i) { \
  1122. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1123. } \
  1124. offset >>= 1; \
  1125. for (int i = 0; i < offset; ++i) { \
  1126. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1127. } \
  1128. offset >>= 1; \
  1129. for (int i = 0; i < offset; ++i) { \
  1130. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1131. } \
  1132. res = _mm512_reduce_add_ps(x[0]); \
  1133. } while (0)
  1134. // TODO: is this optimal ?
  1135. #define GGML_F32_VEC GGML_F32x16
  1136. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  1137. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  1138. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  1139. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  1140. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  1141. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  1142. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  1143. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  1144. // F16 AVX512
  1145. // F16 AVX
  1146. #define GGML_F16_STEP 64
  1147. #define GGML_F16_EPR 16
  1148. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  1149. #define GGML_F32Cx16 __m512
  1150. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1151. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1152. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1153. // so F16C guard isn't required
  1154. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1155. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1156. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1157. #define GGML_F32Cx16_ADD _mm512_add_ps
  1158. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1159. #define GGML_F32Cx16_REDUCE(res, x) \
  1160. do { \
  1161. int offset = GGML_F32_ARR >> 1; \
  1162. for (int i = 0; i < offset; ++i) { \
  1163. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1164. } \
  1165. offset >>= 1; \
  1166. for (int i = 0; i < offset; ++i) { \
  1167. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1168. } \
  1169. offset >>= 1; \
  1170. for (int i = 0; i < offset; ++i) { \
  1171. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1172. } \
  1173. res = _mm512_reduce_add_ps(x[0]); \
  1174. } while (0)
  1175. #define GGML_F16_VEC GGML_F32Cx16
  1176. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1177. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1178. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1179. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1180. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1181. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1182. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1183. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1184. #elif defined(__AVX__)
  1185. #define GGML_SIMD
  1186. // F32 AVX
  1187. #define GGML_F32_STEP 32
  1188. #define GGML_F32_EPR 8
  1189. #define GGML_F32x8 __m256
  1190. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1191. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1192. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1193. #define GGML_F32x8_STORE _mm256_storeu_ps
  1194. #if defined(__FMA__)
  1195. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1196. #else
  1197. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1198. #endif
  1199. #define GGML_F32x8_ADD _mm256_add_ps
  1200. #define GGML_F32x8_MUL _mm256_mul_ps
  1201. #define GGML_F32x8_REDUCE(res, x) \
  1202. do { \
  1203. int offset = GGML_F32_ARR >> 1; \
  1204. for (int i = 0; i < offset; ++i) { \
  1205. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1206. } \
  1207. offset >>= 1; \
  1208. for (int i = 0; i < offset; ++i) { \
  1209. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1210. } \
  1211. offset >>= 1; \
  1212. for (int i = 0; i < offset; ++i) { \
  1213. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1214. } \
  1215. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1216. _mm256_extractf128_ps(x[0], 1)); \
  1217. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1218. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1219. } while (0)
  1220. // TODO: is this optimal ?
  1221. #define GGML_F32_VEC GGML_F32x8
  1222. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1223. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1224. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1225. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1226. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1227. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1228. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1229. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1230. // F16 AVX
  1231. #define GGML_F16_STEP 32
  1232. #define GGML_F16_EPR 8
  1233. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1234. #define GGML_F32Cx8 __m256
  1235. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1236. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1237. #if defined(__F16C__)
  1238. // the _mm256_cvt intrinsics require F16C
  1239. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1240. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1241. #else
  1242. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1243. float tmp[8];
  1244. for (int i = 0; i < 8; i++) {
  1245. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1246. }
  1247. return _mm256_loadu_ps(tmp);
  1248. }
  1249. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1250. float arr[8];
  1251. _mm256_storeu_ps(arr, y);
  1252. for (int i = 0; i < 8; i++)
  1253. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1254. }
  1255. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1256. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1257. #endif
  1258. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1259. #define GGML_F32Cx8_ADD _mm256_add_ps
  1260. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1261. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1262. #define GGML_F16_VEC GGML_F32Cx8
  1263. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1264. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1265. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1266. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1267. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1268. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1269. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1270. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1271. #elif defined(__POWER9_VECTOR__)
  1272. #define GGML_SIMD
  1273. // F32 POWER9
  1274. #define GGML_F32_STEP 32
  1275. #define GGML_F32_EPR 4
  1276. #define GGML_F32x4 vector float
  1277. #define GGML_F32x4_ZERO 0.0f
  1278. #define GGML_F32x4_SET1 vec_splats
  1279. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1280. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1281. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1282. #define GGML_F32x4_ADD vec_add
  1283. #define GGML_F32x4_MUL vec_mul
  1284. #define GGML_F32x4_REDUCE(res, x) \
  1285. { \
  1286. int offset = GGML_F32_ARR >> 1; \
  1287. for (int i = 0; i < offset; ++i) { \
  1288. x[i] = vec_add(x[i], x[offset+i]); \
  1289. } \
  1290. offset >>= 1; \
  1291. for (int i = 0; i < offset; ++i) { \
  1292. x[i] = vec_add(x[i], x[offset+i]); \
  1293. } \
  1294. offset >>= 1; \
  1295. for (int i = 0; i < offset; ++i) { \
  1296. x[i] = vec_add(x[i], x[offset+i]); \
  1297. } \
  1298. res = vec_extract(x[0], 0) + \
  1299. vec_extract(x[0], 1) + \
  1300. vec_extract(x[0], 2) + \
  1301. vec_extract(x[0], 3); \
  1302. }
  1303. #define GGML_F32_VEC GGML_F32x4
  1304. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1305. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1306. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1307. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1308. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1309. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1310. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1311. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1312. // F16 POWER9
  1313. #define GGML_F16_STEP GGML_F32_STEP
  1314. #define GGML_F16_EPR GGML_F32_EPR
  1315. #define GGML_F16_VEC GGML_F32x4
  1316. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1317. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1318. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1319. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1320. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1321. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1322. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1323. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1324. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1325. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1326. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1327. #define GGML_F16_VEC_STORE(p, r, i) \
  1328. if (i & 0x1) \
  1329. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1330. r[i - GGML_ENDIAN_BYTE(0)]), \
  1331. 0, p - GGML_F16_EPR)
  1332. #elif defined(__wasm_simd128__)
  1333. #define GGML_SIMD
  1334. // F32 WASM
  1335. #define GGML_F32_STEP 16
  1336. #define GGML_F32_EPR 4
  1337. #define GGML_F32x4 v128_t
  1338. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1339. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1340. #define GGML_F32x4_LOAD wasm_v128_load
  1341. #define GGML_F32x4_STORE wasm_v128_store
  1342. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1343. #define GGML_F32x4_ADD wasm_f32x4_add
  1344. #define GGML_F32x4_MUL wasm_f32x4_mul
  1345. #define GGML_F32x4_REDUCE(res, x) \
  1346. { \
  1347. int offset = GGML_F32_ARR >> 1; \
  1348. for (int i = 0; i < offset; ++i) { \
  1349. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1350. } \
  1351. offset >>= 1; \
  1352. for (int i = 0; i < offset; ++i) { \
  1353. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1354. } \
  1355. offset >>= 1; \
  1356. for (int i = 0; i < offset; ++i) { \
  1357. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1358. } \
  1359. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1360. wasm_f32x4_extract_lane(x[0], 1) + \
  1361. wasm_f32x4_extract_lane(x[0], 2) + \
  1362. wasm_f32x4_extract_lane(x[0], 3); \
  1363. }
  1364. #define GGML_F32_VEC GGML_F32x4
  1365. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1366. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1367. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1368. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1369. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1370. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1371. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1372. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1373. // F16 WASM
  1374. #define GGML_F16_STEP 16
  1375. #define GGML_F16_EPR 4
  1376. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1377. float tmp[4];
  1378. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1379. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1380. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1381. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1382. return wasm_v128_load(tmp);
  1383. }
  1384. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1385. float tmp[4];
  1386. wasm_v128_store(tmp, x);
  1387. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1388. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1389. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1390. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1391. }
  1392. #define GGML_F16x4 v128_t
  1393. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1394. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1395. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1396. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1397. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1398. #define GGML_F16x4_ADD wasm_f32x4_add
  1399. #define GGML_F16x4_MUL wasm_f32x4_mul
  1400. #define GGML_F16x4_REDUCE(res, x) \
  1401. { \
  1402. int offset = GGML_F16_ARR >> 1; \
  1403. for (int i = 0; i < offset; ++i) { \
  1404. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1405. } \
  1406. offset >>= 1; \
  1407. for (int i = 0; i < offset; ++i) { \
  1408. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1409. } \
  1410. offset >>= 1; \
  1411. for (int i = 0; i < offset; ++i) { \
  1412. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1413. } \
  1414. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1415. wasm_f32x4_extract_lane(x[0], 1) + \
  1416. wasm_f32x4_extract_lane(x[0], 2) + \
  1417. wasm_f32x4_extract_lane(x[0], 3); \
  1418. }
  1419. #define GGML_F16_VEC GGML_F16x4
  1420. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1421. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1422. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1423. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1424. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1425. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1426. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1427. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1428. #elif defined(__SSE3__)
  1429. #define GGML_SIMD
  1430. // F32 SSE
  1431. #define GGML_F32_STEP 32
  1432. #define GGML_F32_EPR 4
  1433. #define GGML_F32x4 __m128
  1434. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1435. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1436. #define GGML_F32x4_LOAD _mm_loadu_ps
  1437. #define GGML_F32x4_STORE _mm_storeu_ps
  1438. #if defined(__FMA__)
  1439. // TODO: Does this work?
  1440. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1441. #else
  1442. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1443. #endif
  1444. #define GGML_F32x4_ADD _mm_add_ps
  1445. #define GGML_F32x4_MUL _mm_mul_ps
  1446. #define GGML_F32x4_REDUCE(res, x) \
  1447. { \
  1448. int offset = GGML_F32_ARR >> 1; \
  1449. for (int i = 0; i < offset; ++i) { \
  1450. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1451. } \
  1452. offset >>= 1; \
  1453. for (int i = 0; i < offset; ++i) { \
  1454. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1455. } \
  1456. offset >>= 1; \
  1457. for (int i = 0; i < offset; ++i) { \
  1458. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1459. } \
  1460. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1461. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1462. }
  1463. // TODO: is this optimal ?
  1464. #define GGML_F32_VEC GGML_F32x4
  1465. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1466. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1467. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1468. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1469. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1470. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1471. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1472. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1473. // F16 SSE
  1474. #define GGML_F16_STEP 32
  1475. #define GGML_F16_EPR 4
  1476. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1477. float tmp[4];
  1478. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1479. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1480. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1481. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1482. return _mm_loadu_ps(tmp);
  1483. }
  1484. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1485. float arr[4];
  1486. _mm_storeu_ps(arr, y);
  1487. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1488. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1489. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1490. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1491. }
  1492. #define GGML_F32Cx4 __m128
  1493. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1494. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1495. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1496. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1497. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1498. #define GGML_F32Cx4_ADD _mm_add_ps
  1499. #define GGML_F32Cx4_MUL _mm_mul_ps
  1500. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1501. #define GGML_F16_VEC GGML_F32Cx4
  1502. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1503. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1504. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1505. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1506. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1507. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1508. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1509. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1510. #elif defined(__loongarch_asx)
  1511. #define GGML_SIMD
  1512. // F32 LASX
  1513. #define GGML_F32_STEP 32
  1514. #define GGML_F32_EPR 8
  1515. #define GGML_F32x8 __m256
  1516. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1517. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1518. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1519. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1520. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1521. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1522. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1523. #define GGML_F32x8_REDUCE(res, x) \
  1524. do { \
  1525. int offset = GGML_F32_ARR >> 1; \
  1526. for (int i = 0; i < offset; ++i) { \
  1527. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1528. } \
  1529. offset >>= 1; \
  1530. for (int i = 0; i < offset; ++i) { \
  1531. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1532. } \
  1533. offset >>= 1; \
  1534. for (int i = 0; i < offset; ++i) { \
  1535. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1536. } \
  1537. float *tmp_p = (float *)&x[0]; \
  1538. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1539. } while (0)
  1540. // TODO: is this optimal ?
  1541. #define GGML_F32_VEC GGML_F32x8
  1542. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1543. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1544. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1545. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1546. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1547. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1548. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1549. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1550. // F16 LASX
  1551. #define GGML_F16_STEP 32
  1552. #define GGML_F16_EPR 8
  1553. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1554. #define GGML_F32Cx8 __m256
  1555. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1556. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1557. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1558. float tmp[8];
  1559. for (int i = 0; i < 8; i++) {
  1560. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1561. }
  1562. return (__m256)__lasx_xvld(tmp, 0);
  1563. }
  1564. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1565. float arr[8];
  1566. __lasx_xvst(y, arr, 0);
  1567. for (int i = 0; i < 8; i++) {
  1568. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1569. }
  1570. }
  1571. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1572. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1573. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1574. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1575. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1576. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1577. #define GGML_F16_VEC GGML_F32Cx8
  1578. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1579. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1580. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1581. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1582. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1583. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1584. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1585. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1586. #elif defined(__loongarch_sx)
  1587. #define GGML_SIMD
  1588. // F32 LSX
  1589. #define GGML_F32_STEP 32
  1590. #define GGML_F32_EPR 4
  1591. #define GGML_F32x4 __m128
  1592. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1593. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1594. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1595. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1596. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1597. #define GGML_F32x4_ADD __lsx_vfadd_s
  1598. #define GGML_F32x4_MUL __lsx_vfmul_s
  1599. #define GGML_F32x4_REDUCE(res, x) \
  1600. { \
  1601. int offset = GGML_F32_ARR >> 1; \
  1602. for (int i = 0; i < offset; ++i) { \
  1603. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1604. } \
  1605. offset >>= 1; \
  1606. for (int i = 0; i < offset; ++i) { \
  1607. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1608. } \
  1609. offset >>= 1; \
  1610. for (int i = 0; i < offset; ++i) { \
  1611. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1612. } \
  1613. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1614. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1615. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1616. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1617. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1618. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1619. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1620. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1621. }
  1622. #define GGML_F32_VEC GGML_F32x4
  1623. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1624. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1625. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1626. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1627. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1628. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1629. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1630. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1631. // F16 LSX
  1632. #define GGML_F16_STEP 32
  1633. #define GGML_F16_EPR 4
  1634. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1635. float tmp[4];
  1636. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1637. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1638. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1639. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1640. return __lsx_vld(tmp, 0);
  1641. }
  1642. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1643. float arr[4];
  1644. __lsx_vst(y, arr, 0);
  1645. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1646. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1647. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1648. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1649. }
  1650. #define GGML_F32Cx4 __m128
  1651. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1652. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1653. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1654. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1655. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1656. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1657. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1658. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1659. #define GGML_F16_VEC GGML_F32Cx4
  1660. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1661. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1662. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1663. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1664. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1665. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1666. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1667. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1668. #endif
  1669. // GGML_F32_ARR / GGML_F16_ARR
  1670. // number of registers to use per step
  1671. #ifdef GGML_SIMD
  1672. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1673. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1674. #endif
  1675. //
  1676. // ggml context
  1677. //
  1678. struct ggml_context {
  1679. size_t mem_size;
  1680. void* mem_buffer;
  1681. bool mem_buffer_owned;
  1682. bool no_alloc;
  1683. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1684. int n_objects;
  1685. struct ggml_object * objects_begin;
  1686. struct ggml_object * objects_end;
  1687. struct ggml_scratch scratch;
  1688. struct ggml_scratch scratch_save;
  1689. };
  1690. struct ggml_context_container {
  1691. bool used;
  1692. struct ggml_context context;
  1693. };
  1694. //
  1695. // Threading defs
  1696. //
  1697. typedef pthread_t ggml_thread_t;
  1698. #if defined(_WIN32)
  1699. typedef CONDITION_VARIABLE ggml_cond_t;
  1700. typedef SRWLOCK ggml_mutex_t;
  1701. #define ggml_mutex_init(m) InitializeSRWLock(m)
  1702. #define ggml_mutex_destroy(m)
  1703. #define ggml_mutex_lock(m) AcquireSRWLockExclusive(m)
  1704. #define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m)
  1705. #define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m)
  1706. #define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m)
  1707. #define ggml_cond_init(c) InitializeConditionVariable(c)
  1708. #define ggml_cond_destroy(c)
  1709. #define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED)
  1710. #define ggml_cond_broadcast(c) WakeAllConditionVariable(c)
  1711. #define ggml_thread_create pthread_create
  1712. #define ggml_thread_join pthread_join
  1713. #else
  1714. typedef pthread_cond_t ggml_cond_t;
  1715. typedef pthread_mutex_t ggml_mutex_t;
  1716. #define ggml_mutex_init(m) pthread_mutex_init(m, NULL)
  1717. #define ggml_mutex_destroy(m) pthread_mutex_destroy(m)
  1718. #define ggml_mutex_lock(m) pthread_mutex_lock(m)
  1719. #define ggml_mutex_unlock(m) pthread_mutex_unlock(m)
  1720. #define ggml_mutex_lock_shared(m) pthread_mutex_lock(m)
  1721. #define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m)
  1722. #define ggml_lock_init(x) UNUSED(x)
  1723. #define ggml_lock_destroy(x) UNUSED(x)
  1724. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  1725. #define ggml_lock_lock(x) _mm_pause()
  1726. #else
  1727. #define ggml_lock_lock(x) UNUSED(x)
  1728. #endif
  1729. #define ggml_lock_unlock(x) UNUSED(x)
  1730. #define GGML_LOCK_INITIALIZER 0
  1731. #define ggml_cond_init(c) pthread_cond_init(c, NULL)
  1732. #define ggml_cond_destroy(c) pthread_cond_destroy(c)
  1733. #define ggml_cond_wait(c, m) pthread_cond_wait(c, m)
  1734. #define ggml_cond_broadcast(c) pthread_cond_broadcast(c)
  1735. #define ggml_thread_create pthread_create
  1736. #define ggml_thread_join pthread_join
  1737. #endif
  1738. // Threadpool def
  1739. struct ggml_threadpool {
  1740. ggml_mutex_t mutex; // mutex for cond.var
  1741. ggml_cond_t cond; // cond.var for waiting for new work
  1742. struct ggml_cgraph * cgraph;
  1743. struct ggml_cplan * cplan;
  1744. // synchronization primitives
  1745. atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
  1746. atomic_int n_barrier;
  1747. atomic_int n_barrier_passed;
  1748. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1749. // these are atomic as an annotation for thread-sanitizer
  1750. atomic_bool stop; // Used for stopping the threadpool altogether
  1751. atomic_bool pause; // Used for pausing the threadpool or individual threads
  1752. struct ggml_compute_state * workers; // per thread state
  1753. int n_threads_max; // number of threads in the pool
  1754. int n_threads_cur; // number of threads used in the current graph
  1755. int32_t prio; // Scheduling priority
  1756. uint32_t poll; // Polling level (0 - no polling)
  1757. enum ggml_status ec;
  1758. };
  1759. // Per-thread state
  1760. struct ggml_compute_state {
  1761. #ifndef GGML_USE_OPENMP
  1762. ggml_thread_t thrd;
  1763. bool cpumask[GGML_MAX_N_THREADS];
  1764. int last_graph;
  1765. bool pending;
  1766. #endif
  1767. struct ggml_threadpool * threadpool;
  1768. int ith;
  1769. };
  1770. struct ggml_compute_params {
  1771. // ith = thread index, nth = number of threads
  1772. int ith, nth;
  1773. // work buffer for all threads
  1774. size_t wsize;
  1775. void * wdata;
  1776. struct ggml_threadpool * threadpool;
  1777. };
  1778. //
  1779. // fundamental operations
  1780. //
  1781. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1782. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1783. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1784. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1785. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1786. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1787. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1788. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1789. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1790. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1791. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1792. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1793. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1794. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1795. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1796. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1797. assert(nrc == 1);
  1798. UNUSED(nrc);
  1799. UNUSED(bx);
  1800. UNUSED(by);
  1801. UNUSED(bs);
  1802. #if defined(GGML_SIMD)
  1803. float sumf = 0.0f;
  1804. const int np = (n & ~(GGML_F32_STEP - 1));
  1805. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1806. GGML_F32_VEC ax[GGML_F32_ARR];
  1807. GGML_F32_VEC ay[GGML_F32_ARR];
  1808. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1809. for (int j = 0; j < GGML_F32_ARR; j++) {
  1810. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1811. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1812. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1813. }
  1814. }
  1815. // reduce sum0..sum3 to sum0
  1816. GGML_F32_VEC_REDUCE(sumf, sum);
  1817. // leftovers
  1818. for (int i = np; i < n; ++i) {
  1819. sumf += x[i]*y[i];
  1820. }
  1821. #else
  1822. // scalar
  1823. ggml_float sumf = 0.0;
  1824. for (int i = 0; i < n; ++i) {
  1825. sumf += (ggml_float)(x[i]*y[i]);
  1826. }
  1827. #endif
  1828. *s = sumf;
  1829. }
  1830. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1831. assert(nrc == 1);
  1832. UNUSED(nrc);
  1833. UNUSED(bx);
  1834. UNUSED(by);
  1835. UNUSED(bs);
  1836. int i = 0;
  1837. ggml_float sumf = 0;
  1838. #if defined(__AVX512BF16__)
  1839. __m512 c1 = _mm512_setzero_ps();
  1840. __m512 c2 = _mm512_setzero_ps();
  1841. for (; i + 64 <= n; i += 64) {
  1842. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1843. m512bh(_mm512_loadu_si512((y + i))));
  1844. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1845. m512bh(_mm512_loadu_si512((y + i + 32))));
  1846. }
  1847. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1848. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1849. #elif defined(__AVX512F__)
  1850. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1851. __m512 c1 = _mm512_setzero_ps();
  1852. __m512 c2 = _mm512_setzero_ps();
  1853. for (; i + 32 <= n; i += 32) {
  1854. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1855. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1856. }
  1857. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1858. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1859. #undef LOAD
  1860. #elif defined(__AVX2__)
  1861. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1862. __m256 c1 = _mm256_setzero_ps();
  1863. __m256 c2 = _mm256_setzero_ps();
  1864. __m256 c3 = _mm256_setzero_ps();
  1865. __m256 c4 = _mm256_setzero_ps();
  1866. for (; i + 32 <= n; i += 32) {
  1867. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1868. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1869. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1870. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1871. }
  1872. __m128 g;
  1873. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1874. _mm256_add_ps(c2, c4));
  1875. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1876. _mm256_castps256_ps128(c1));
  1877. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1878. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1879. sumf += (ggml_float)_mm_cvtss_f32(g);
  1880. #undef LOAD
  1881. #endif
  1882. for (; i < n; ++i) {
  1883. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1884. GGML_BF16_TO_FP32(y[i]));
  1885. }
  1886. *s = sumf;
  1887. }
  1888. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1889. assert(nrc == 1);
  1890. UNUSED(nrc);
  1891. UNUSED(bx);
  1892. UNUSED(by);
  1893. UNUSED(bs);
  1894. ggml_float sumf = 0.0;
  1895. #if defined(GGML_SIMD)
  1896. const int np = (n & ~(GGML_F16_STEP - 1));
  1897. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1898. GGML_F16_VEC ax[GGML_F16_ARR];
  1899. GGML_F16_VEC ay[GGML_F16_ARR];
  1900. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1901. for (int j = 0; j < GGML_F16_ARR; j++) {
  1902. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1903. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1904. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1905. }
  1906. }
  1907. // reduce sum0..sum3 to sum0
  1908. GGML_F16_VEC_REDUCE(sumf, sum);
  1909. // leftovers
  1910. for (int i = np; i < n; ++i) {
  1911. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1912. }
  1913. #else
  1914. for (int i = 0; i < n; ++i) {
  1915. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1916. }
  1917. #endif
  1918. *s = sumf;
  1919. }
  1920. // compute GGML_VEC_DOT_UNROLL dot products at once
  1921. // xs - x row stride in bytes
  1922. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1923. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1924. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1925. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1926. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1927. }
  1928. #if defined(GGML_SIMD)
  1929. const int np = (n & ~(GGML_F16_STEP - 1));
  1930. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1931. GGML_F16_VEC ax[GGML_F16_ARR];
  1932. GGML_F16_VEC ay[GGML_F16_ARR];
  1933. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1934. for (int j = 0; j < GGML_F16_ARR; j++) {
  1935. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1936. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1937. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1938. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1939. }
  1940. }
  1941. }
  1942. // reduce sum0..sum3 to sum0
  1943. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1944. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1945. }
  1946. // leftovers
  1947. for (int i = np; i < n; ++i) {
  1948. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1949. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1950. }
  1951. }
  1952. #else
  1953. for (int i = 0; i < n; ++i) {
  1954. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1955. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1956. }
  1957. }
  1958. #endif
  1959. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1960. s[i] = sumf[i];
  1961. }
  1962. }
  1963. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1964. #if defined(GGML_SIMD)
  1965. const int np = (n & ~(GGML_F32_STEP - 1));
  1966. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1967. GGML_F32_VEC ax[GGML_F32_ARR];
  1968. GGML_F32_VEC ay[GGML_F32_ARR];
  1969. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1970. for (int j = 0; j < GGML_F32_ARR; j++) {
  1971. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1972. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1973. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1974. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1975. }
  1976. }
  1977. // leftovers
  1978. for (int i = np; i < n; ++i) {
  1979. y[i] += x[i]*v;
  1980. }
  1981. #else
  1982. // scalar
  1983. for (int i = 0; i < n; ++i) {
  1984. y[i] += x[i]*v;
  1985. }
  1986. #endif
  1987. }
  1988. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1989. #if defined(GGML_SIMD)
  1990. const int np = (n & ~(GGML_F16_STEP - 1));
  1991. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1992. GGML_F16_VEC ax[GGML_F16_ARR];
  1993. GGML_F16_VEC ay[GGML_F16_ARR];
  1994. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1995. for (int j = 0; j < GGML_F16_ARR; j++) {
  1996. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1997. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1998. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1999. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  2000. }
  2001. }
  2002. // leftovers
  2003. for (int i = np; i < n; ++i) {
  2004. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  2005. }
  2006. #else
  2007. // scalar
  2008. for (int i = 0; i < n; ++i) {
  2009. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  2010. }
  2011. #endif
  2012. }
  2013. // xs and vs are byte strides of x and v
  2014. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  2015. const float * restrict x[GGML_VEC_MAD_UNROLL];
  2016. const float * restrict v[GGML_VEC_MAD_UNROLL];
  2017. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  2018. x[i] = (const float *) ((const char *) xv + i*xs);
  2019. v[i] = (const float *) ((const char *) vv + i*vs);
  2020. }
  2021. #if defined(GGML_SIMD)
  2022. const int np = (n & ~(GGML_F32_STEP - 1));
  2023. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  2024. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2025. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  2026. }
  2027. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  2028. GGML_F32_VEC ay[GGML_F32_ARR];
  2029. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2030. for (int j = 0; j < GGML_F32_ARR; j++) {
  2031. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2032. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2033. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  2034. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  2035. }
  2036. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2037. }
  2038. }
  2039. // leftovers
  2040. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2041. for (int i = np; i < n; ++i) {
  2042. y[i] += x[k][i]*v[k][0];
  2043. }
  2044. }
  2045. #else
  2046. // scalar
  2047. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2048. for (int i = 0; i < n; ++i) {
  2049. y[i] += x[k][i]*v[k][0];
  2050. }
  2051. }
  2052. #endif
  2053. }
  2054. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2055. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2056. #if defined(GGML_USE_ACCELERATE)
  2057. vDSP_vsmul(y, 1, &v, y, 1, n);
  2058. #elif defined(GGML_SIMD)
  2059. const int np = (n & ~(GGML_F32_STEP - 1));
  2060. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2061. GGML_F32_VEC ay[GGML_F32_ARR];
  2062. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2063. for (int j = 0; j < GGML_F32_ARR; j++) {
  2064. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2065. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2066. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2067. }
  2068. }
  2069. // leftovers
  2070. for (int i = np; i < n; ++i) {
  2071. y[i] *= v;
  2072. }
  2073. #else
  2074. // scalar
  2075. for (int i = 0; i < n; ++i) {
  2076. y[i] *= v;
  2077. }
  2078. #endif
  2079. }
  2080. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  2081. #if defined(GGML_SIMD)
  2082. const int np = (n & ~(GGML_F16_STEP - 1));
  2083. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  2084. GGML_F16_VEC ay[GGML_F16_ARR];
  2085. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2086. for (int j = 0; j < GGML_F16_ARR; j++) {
  2087. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2088. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  2089. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  2090. }
  2091. }
  2092. // leftovers
  2093. for (int i = np; i < n; ++i) {
  2094. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  2095. }
  2096. #else
  2097. // scalar
  2098. for (int i = 0; i < n; ++i) {
  2099. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  2100. }
  2101. #endif
  2102. }
  2103. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  2104. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2105. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2106. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2107. inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
  2108. inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
  2109. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2110. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2111. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2112. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2113. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
  2114. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2115. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  2116. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  2117. // TODO: optimize performance
  2118. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2119. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2120. inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
  2121. static const float GELU_COEF_A = 0.044715f;
  2122. static const float GELU_QUICK_COEF = -1.702f;
  2123. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2124. inline static float ggml_gelu_f32(float x) {
  2125. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2126. }
  2127. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2128. const uint16_t * i16 = (const uint16_t *) x;
  2129. for (int i = 0; i < n; ++i) {
  2130. y[i] = ggml_table_gelu_f16[i16[i]];
  2131. }
  2132. }
  2133. #ifdef GGML_GELU_FP16
  2134. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2135. uint16_t t;
  2136. for (int i = 0; i < n; ++i) {
  2137. if (x[i] <= -10.0f) {
  2138. y[i] = 0.0f;
  2139. } else if (x[i] >= 10.0f) {
  2140. y[i] = x[i];
  2141. } else {
  2142. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2143. memcpy(&t, &fp16, sizeof(uint16_t));
  2144. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  2145. }
  2146. }
  2147. }
  2148. #else
  2149. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2150. for (int i = 0; i < n; ++i) {
  2151. y[i] = ggml_gelu_f32(x[i]);
  2152. }
  2153. }
  2154. #endif
  2155. inline static float ggml_gelu_quick_f32(float x) {
  2156. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2157. }
  2158. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2159. // const uint16_t * i16 = (const uint16_t *) x;
  2160. // for (int i = 0; i < n; ++i) {
  2161. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  2162. // }
  2163. //}
  2164. #ifdef GGML_GELU_QUICK_FP16
  2165. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2166. uint16_t t;
  2167. for (int i = 0; i < n; ++i) {
  2168. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2169. memcpy(&t, &fp16, sizeof(uint16_t));
  2170. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  2171. }
  2172. }
  2173. #else
  2174. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2175. for (int i = 0; i < n; ++i) {
  2176. y[i] = ggml_gelu_quick_f32(x[i]);
  2177. }
  2178. }
  2179. #endif
  2180. // Sigmoid Linear Unit (SiLU) function
  2181. inline static float ggml_silu_f32(float x) {
  2182. return x/(1.0f + expf(-x));
  2183. }
  2184. #if __FINITE_MATH_ONLY__
  2185. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  2186. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  2187. #endif
  2188. #if defined(__ARM_NEON) && defined(__aarch64__)
  2189. // adapted from arm limited optimized routine
  2190. // the maximum error is 1.45358 plus 0.5 ulps
  2191. // numbers above 88.38 will flush to infinity
  2192. // numbers beneath -103.97 will flush to zero
  2193. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  2194. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  2195. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  2196. const float32x4_t n = vsubq_f32(z, r);
  2197. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  2198. vdupq_n_f32(0x1.7f7d1cp-20f));
  2199. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  2200. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  2201. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  2202. const float32x4_t u = vmulq_f32(b, b);
  2203. const float32x4_t j = vfmaq_f32(
  2204. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  2205. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  2206. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  2207. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  2208. return vfmaq_f32(k, j, k);
  2209. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  2210. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  2211. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  2212. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  2213. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  2214. }
  2215. // computes silu x/(1+exp(-x)) in single precision vector
  2216. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  2217. const float32x4_t one = vdupq_n_f32(1.0f);
  2218. const float32x4_t zero = vdupq_n_f32(0.0f);
  2219. const float32x4_t neg_x = vsubq_f32(zero, x);
  2220. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  2221. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  2222. return vdivq_f32(x, one_plus_exp_neg_x);
  2223. }
  2224. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  2225. // adapted from arm limited optimized routine
  2226. // the maximum error is 1.45358 plus 0.5 ulps
  2227. // numbers above 88.38 will flush to infinity
  2228. // numbers beneath -103.97 will flush to zero
  2229. inline static __m512 ggml_v_expf(__m512 x) {
  2230. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2231. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2232. const __m512 n = _mm512_sub_ps(z, r);
  2233. const __m512 b =
  2234. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2235. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2236. const __mmask16 d =
  2237. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2238. const __m512 u = _mm512_mul_ps(b, b);
  2239. const __m512 j = _mm512_fmadd_ps(
  2240. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2241. _mm512_set1_ps(0x1.573e2ep-5f)),
  2242. u,
  2243. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2244. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2245. u,
  2246. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2247. const __m512 res = _mm512_scalef_ps(j, n);
  2248. if (_mm512_kortestz(d, d))
  2249. return res;
  2250. const __m512 zero = _mm512_setzero_ps();
  2251. const __m512 alt = _mm512_mask_blend_ps(
  2252. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2253. return _mm512_mask_blend_ps(d, res, alt);
  2254. }
  2255. // computes silu x/(1+exp(-x)) in single precision vector
  2256. inline static __m512 ggml_v_silu(__m512 x) {
  2257. const __m512 one = _mm512_set1_ps(1);
  2258. const __m512 zero = _mm512_setzero_ps();
  2259. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2260. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2261. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2262. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2263. }
  2264. #elif defined(__AVX2__) && defined(__FMA__)
  2265. // adapted from arm limited optimized routine
  2266. // the maximum error is 1.45358 plus 0.5 ulps
  2267. // numbers above 88.38 will flush to infinity
  2268. // numbers beneath -103.97 will flush to zero
  2269. inline static __m256 ggml_v_expf(__m256 x) {
  2270. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2271. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2272. const __m256 n = _mm256_sub_ps(z, r);
  2273. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2274. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2275. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2276. const __m256 k = _mm256_castsi256_ps(
  2277. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2278. const __m256i c = _mm256_castps_si256(
  2279. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2280. _mm256_set1_ps(126), _CMP_GT_OQ));
  2281. const __m256 u = _mm256_mul_ps(b, b);
  2282. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2283. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2284. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2285. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2286. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2287. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2288. return _mm256_fmadd_ps(j, k, k);
  2289. const __m256i g = _mm256_and_si256(
  2290. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2291. _mm256_set1_epi32(0x82000000u));
  2292. const __m256 s1 =
  2293. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2294. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2295. const __m256i d = _mm256_castps_si256(
  2296. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2297. _mm256_set1_ps(192), _CMP_GT_OQ));
  2298. return _mm256_or_ps(
  2299. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2300. _mm256_andnot_ps(
  2301. _mm256_castsi256_ps(d),
  2302. _mm256_or_ps(
  2303. _mm256_and_ps(_mm256_castsi256_ps(c),
  2304. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2305. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2306. }
  2307. // computes silu x/(1+exp(-x)) in single precision vector
  2308. inline static __m256 ggml_v_silu(__m256 x) {
  2309. const __m256 one = _mm256_set1_ps(1);
  2310. const __m256 zero = _mm256_setzero_ps();
  2311. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2312. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2313. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2314. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2315. }
  2316. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2317. #if defined(__FMA__)
  2318. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2319. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2320. #else
  2321. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2322. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2323. #endif
  2324. // adapted from arm limited optimized routine
  2325. // the maximum error is 1.45358 plus 0.5 ulps
  2326. // numbers above 88.38 will flush to infinity
  2327. // numbers beneath -103.97 will flush to zero
  2328. inline static __m128 ggml_v_expf(__m128 x) {
  2329. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2330. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2331. const __m128 n = _mm_sub_ps(z, r);
  2332. const __m128 b =
  2333. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2334. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2335. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2336. const __m128i c =
  2337. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2338. const __m128 u = _mm_mul_ps(b, b);
  2339. const __m128 j =
  2340. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2341. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2342. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2343. if (!_mm_movemask_epi8(c))
  2344. return MADD128(j, k, k);
  2345. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2346. _mm_set1_epi32(0x82000000u));
  2347. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2348. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2349. const __m128i d =
  2350. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2351. return _mm_or_ps(
  2352. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2353. _mm_andnot_ps(_mm_castsi128_ps(d),
  2354. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2355. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2356. }
  2357. // computes silu x/(1+exp(-x)) in single precision vector
  2358. inline static __m128 ggml_v_silu(__m128 x) {
  2359. const __m128 one = _mm_set1_ps(1);
  2360. const __m128 zero = _mm_setzero_ps();
  2361. const __m128 neg_x = _mm_sub_ps(zero, x);
  2362. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2363. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2364. return _mm_div_ps(x, one_plus_exp_neg_x);
  2365. }
  2366. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2367. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2368. int i = 0;
  2369. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2370. for (; i + 15 < n; i += 16) {
  2371. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2372. }
  2373. #elif defined(__AVX2__) && defined(__FMA__)
  2374. for (; i + 7 < n; i += 8) {
  2375. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2376. }
  2377. #elif defined(__SSE2__)
  2378. for (; i + 3 < n; i += 4) {
  2379. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2380. }
  2381. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2382. for (; i + 3 < n; i += 4) {
  2383. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2384. }
  2385. #endif
  2386. for (; i < n; ++i) {
  2387. y[i] = ggml_silu_f32(x[i]);
  2388. }
  2389. }
  2390. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2391. int i = 0;
  2392. ggml_float sum = 0;
  2393. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2394. for (; i + 15 < n; i += 16) {
  2395. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2396. _mm512_set1_ps(max)));
  2397. _mm512_storeu_ps(y + i, val);
  2398. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2399. }
  2400. #elif defined(__AVX2__) && defined(__FMA__)
  2401. for (; i + 7 < n; i += 8) {
  2402. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2403. _mm256_set1_ps(max)));
  2404. _mm256_storeu_ps(y + i, val);
  2405. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2406. _mm256_castps256_ps128(val));
  2407. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2408. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2409. sum += (ggml_float)_mm_cvtss_f32(val2);
  2410. }
  2411. #elif defined(__SSE2__)
  2412. for (; i + 3 < n; i += 4) {
  2413. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2414. _mm_set1_ps(max)));
  2415. _mm_storeu_ps(y + i, val);
  2416. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2417. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2418. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2419. #else
  2420. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2421. val = _mm_add_ps(val, tmp);
  2422. tmp = _mm_movehl_ps(tmp, val);
  2423. val = _mm_add_ss(val, tmp);
  2424. #endif
  2425. sum += (ggml_float)_mm_cvtss_f32(val);
  2426. }
  2427. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2428. for (; i + 3 < n; i += 4) {
  2429. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2430. vdupq_n_f32(max)));
  2431. vst1q_f32(y + i, val);
  2432. sum += (ggml_float)vaddvq_f32(val);
  2433. }
  2434. #endif
  2435. for (; i < n; ++i) {
  2436. float val = expf(x[i] - max);
  2437. sum += (ggml_float)val;
  2438. y[i] = val;
  2439. }
  2440. return sum;
  2441. }
  2442. static ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
  2443. // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
  2444. int i = 0;
  2445. ggml_float sum = 0;
  2446. for (; i < n; ++i) {
  2447. float val = x[i] - max;
  2448. y[i] = val;
  2449. sum += (ggml_float)expf(val);
  2450. }
  2451. return sum = (ggml_float)logf(sum);
  2452. }
  2453. inline static float ggml_silu_backward_f32(float x, float dy) {
  2454. const float s = 1.0f/(1.0f + expf(-x));
  2455. return dy*s*(1.0f + x*(1.0f - s));
  2456. }
  2457. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2458. for (int i = 0; i < n; ++i) {
  2459. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2460. }
  2461. }
  2462. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2463. #ifndef GGML_USE_ACCELERATE
  2464. ggml_float sum = 0.0;
  2465. for (int i = 0; i < n; ++i) {
  2466. sum += (ggml_float)x[i];
  2467. }
  2468. *s = sum;
  2469. #else
  2470. vDSP_sve(x, 1, s, n);
  2471. #endif
  2472. }
  2473. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2474. ggml_float sum = 0.0;
  2475. for (int i = 0; i < n; ++i) {
  2476. sum += (ggml_float)x[i];
  2477. }
  2478. *s = sum;
  2479. }
  2480. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2481. float sum = 0.0f;
  2482. for (int i = 0; i < n; ++i) {
  2483. sum += GGML_FP16_TO_FP32(x[i]);
  2484. }
  2485. *s = sum;
  2486. }
  2487. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2488. float sum = 0.0f;
  2489. for (int i = 0; i < n; ++i) {
  2490. sum += GGML_BF16_TO_FP32(x[i]);
  2491. }
  2492. *s = sum;
  2493. }
  2494. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2495. #ifndef GGML_USE_ACCELERATE
  2496. float max = -INFINITY;
  2497. for (int i = 0; i < n; ++i) {
  2498. max = MAX(max, x[i]);
  2499. }
  2500. *s = max;
  2501. #else
  2502. vDSP_maxv(x, 1, s, n);
  2503. #endif
  2504. }
  2505. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2506. ggml_vec_norm_f32(n, s, x);
  2507. *s = 1.f/(*s);
  2508. }
  2509. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2510. float max = -INFINITY;
  2511. int idx = 0;
  2512. for (int i = 0; i < n; ++i) {
  2513. max = MAX(max, x[i]);
  2514. if (max == x[i]) { idx = i; }
  2515. }
  2516. *s = idx;
  2517. }
  2518. //
  2519. // data types
  2520. //
  2521. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2522. "NONE",
  2523. "DUP",
  2524. "ADD",
  2525. "ADD1",
  2526. "ACC",
  2527. "SUB",
  2528. "MUL",
  2529. "DIV",
  2530. "SQR",
  2531. "SQRT",
  2532. "LOG",
  2533. "SIN",
  2534. "COS",
  2535. "SUM",
  2536. "SUM_ROWS",
  2537. "MEAN",
  2538. "ARGMAX",
  2539. "REPEAT",
  2540. "REPEAT_BACK",
  2541. "CONCAT",
  2542. "SILU_BACK",
  2543. "NORM",
  2544. "RMS_NORM",
  2545. "RMS_NORM_BACK",
  2546. "GROUP_NORM",
  2547. "MUL_MAT",
  2548. "MUL_MAT_ID",
  2549. "OUT_PROD",
  2550. "SCALE",
  2551. "SET",
  2552. "CPY",
  2553. "CONT",
  2554. "RESHAPE",
  2555. "VIEW",
  2556. "PERMUTE",
  2557. "TRANSPOSE",
  2558. "GET_ROWS",
  2559. "GET_ROWS_BACK",
  2560. "DIAG",
  2561. "DIAG_MASK_INF",
  2562. "DIAG_MASK_ZERO",
  2563. "SOFT_MAX",
  2564. "SOFT_MAX_BACK",
  2565. "ROPE",
  2566. "ROPE_BACK",
  2567. "CLAMP",
  2568. "CONV_TRANSPOSE_1D",
  2569. "IM2COL",
  2570. "IM2COL_BACK",
  2571. "CONV_TRANSPOSE_2D",
  2572. "POOL_1D",
  2573. "POOL_2D",
  2574. "POOL_2D_BACK",
  2575. "UPSCALE",
  2576. "PAD",
  2577. "ARANGE",
  2578. "TIMESTEP_EMBEDDING",
  2579. "ARGSORT",
  2580. "LEAKY_RELU",
  2581. "FLASH_ATTN_EXT",
  2582. "FLASH_ATTN_BACK",
  2583. "SSM_CONV",
  2584. "SSM_SCAN",
  2585. "WIN_PART",
  2586. "WIN_UNPART",
  2587. "GET_REL_POS",
  2588. "ADD_REL_POS",
  2589. "RWKV_WKV",
  2590. "UNARY",
  2591. "MAP_UNARY",
  2592. "MAP_BINARY",
  2593. "MAP_CUSTOM1_F32",
  2594. "MAP_CUSTOM2_F32",
  2595. "MAP_CUSTOM3_F32",
  2596. "MAP_CUSTOM1",
  2597. "MAP_CUSTOM2",
  2598. "MAP_CUSTOM3",
  2599. "CROSS_ENTROPY_LOSS",
  2600. "CROSS_ENTROPY_LOSS_BACK",
  2601. };
  2602. static_assert(GGML_OP_COUNT == 79, "GGML_OP_COUNT != 79");
  2603. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2604. "none",
  2605. "x",
  2606. "x+y",
  2607. "x+y",
  2608. "view(x,nb,offset)+=y->x",
  2609. "x-y",
  2610. "x*y",
  2611. "x/y",
  2612. "x^2",
  2613. "√x",
  2614. "log(x)",
  2615. "sin(x)",
  2616. "cos(x)",
  2617. "Σx",
  2618. "Σx_k",
  2619. "Σx/n",
  2620. "argmax(x)",
  2621. "repeat(x)",
  2622. "repeat_back(x)",
  2623. "concat(x, y)",
  2624. "silu_back(x)",
  2625. "norm(x)",
  2626. "rms_norm(x)",
  2627. "rms_norm_back(x)",
  2628. "group_norm(x)",
  2629. "X*Y",
  2630. "X[i]*Y",
  2631. "X*Y",
  2632. "x*v",
  2633. "y-\\>view(x)",
  2634. "x-\\>y",
  2635. "cont(x)",
  2636. "reshape(x)",
  2637. "view(x)",
  2638. "permute(x)",
  2639. "transpose(x)",
  2640. "get_rows(x)",
  2641. "get_rows_back(x)",
  2642. "diag(x)",
  2643. "diag_mask_inf(x)",
  2644. "diag_mask_zero(x)",
  2645. "soft_max(x)",
  2646. "soft_max_back(x)",
  2647. "rope(x)",
  2648. "rope_back(x)",
  2649. "clamp(x)",
  2650. "conv_transpose_1d(x)",
  2651. "im2col(x)",
  2652. "im2col_back(x)",
  2653. "conv_transpose_2d(x)",
  2654. "pool_1d(x)",
  2655. "pool_2d(x)",
  2656. "pool_2d_back(x)",
  2657. "upscale(x)",
  2658. "pad(x)",
  2659. "arange(start, stop, step)",
  2660. "timestep_embedding(timesteps, dim, max_period)",
  2661. "argsort(x)",
  2662. "leaky_relu(x)",
  2663. "flash_attn_ext(x)",
  2664. "flash_attn_back(x)",
  2665. "ssm_conv(x)",
  2666. "ssm_scan(x)",
  2667. "win_part(x)",
  2668. "win_unpart(x)",
  2669. "get_rel_pos(x)",
  2670. "add_rel_pos(x)",
  2671. "rwkv_wkv(k, v, r, tf, td, s)",
  2672. "unary(x)",
  2673. "f(x)",
  2674. "f(x,y)",
  2675. "custom_f32(x)",
  2676. "custom_f32(x,y)",
  2677. "custom_f32(x,y,z)",
  2678. "custom(x)",
  2679. "custom(x,y)",
  2680. "custom(x,y,z)",
  2681. "cross_entropy_loss(x,y)",
  2682. "cross_entropy_loss_back(x,y)",
  2683. };
  2684. static_assert(GGML_OP_COUNT == 79, "GGML_OP_COUNT != 79");
  2685. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2686. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2687. "ABS",
  2688. "SGN",
  2689. "NEG",
  2690. "STEP",
  2691. "TANH",
  2692. "ELU",
  2693. "RELU",
  2694. "SIGMOID",
  2695. "GELU",
  2696. "GELU_QUICK",
  2697. "SILU",
  2698. "HARDSWISH",
  2699. "HARDSIGMOID",
  2700. "EXP",
  2701. };
  2702. static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14");
  2703. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2704. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2705. // Helpers for polling loops
  2706. #if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
  2707. static inline void ggml_thread_cpu_relax(void) {
  2708. __asm__ volatile("yield" ::: "memory");
  2709. }
  2710. #elif defined(__x86_64__)
  2711. static inline void ggml_thread_cpu_relax(void) {
  2712. _mm_pause();
  2713. }
  2714. #else
  2715. static inline void ggml_thread_cpu_relax(void) {;}
  2716. #endif
  2717. //
  2718. // NUMA support
  2719. //
  2720. #define GGML_NUMA_MAX_NODES 8
  2721. #define GGML_NUMA_MAX_CPUS 512
  2722. struct ggml_numa_node {
  2723. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2724. uint32_t n_cpus;
  2725. };
  2726. struct ggml_numa_nodes {
  2727. enum ggml_numa_strategy numa_strategy;
  2728. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2729. uint32_t n_nodes;
  2730. uint32_t total_cpus; // hardware threads on system
  2731. uint32_t current_node; // node on which main process is execting
  2732. #if defined(__gnu_linux__)
  2733. cpu_set_t cpuset; // cpuset from numactl
  2734. #else
  2735. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2736. #endif
  2737. };
  2738. //
  2739. // ggml state
  2740. //
  2741. struct ggml_state {
  2742. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2743. struct ggml_numa_nodes numa;
  2744. };
  2745. // global state
  2746. static struct ggml_state g_state;
  2747. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2748. // critical section via spin lock
  2749. inline static void ggml_critical_section_start(void) {
  2750. while (atomic_flag_test_and_set(&g_state_critical)) {
  2751. // spin
  2752. sched_yield();
  2753. }
  2754. }
  2755. #ifdef GGML_USE_OPENMP
  2756. static void ggml_barrier(struct ggml_threadpool * threadpool) {
  2757. if (threadpool->n_threads_cur == 1) {
  2758. return;
  2759. }
  2760. #pragma omp barrier
  2761. }
  2762. #else
  2763. static void ggml_barrier(struct ggml_threadpool * threadpool) {
  2764. if (threadpool->n_threads_cur == 1) {
  2765. return;
  2766. }
  2767. atomic_int * n_barrier = &threadpool->n_barrier;
  2768. atomic_int * n_barrier_passed = &threadpool->n_barrier_passed;
  2769. int n_threads = threadpool->n_threads_cur;
  2770. int passed_old = atomic_load_explicit(n_barrier_passed, memory_order_relaxed);
  2771. if (atomic_fetch_add(n_barrier, 1) == n_threads - 1) {
  2772. // last thread
  2773. atomic_store(n_barrier, 0);
  2774. atomic_fetch_add_explicit(n_barrier_passed, 1, memory_order_relaxed);
  2775. } else {
  2776. // wait for other threads
  2777. while (true) {
  2778. if (atomic_load_explicit(n_barrier_passed, memory_order_relaxed) != passed_old) {
  2779. return;
  2780. }
  2781. ggml_thread_cpu_relax();
  2782. }
  2783. }
  2784. }
  2785. #endif
  2786. // TODO: make this somehow automatically executed
  2787. // some sort of "sentry" mechanism
  2788. inline static void ggml_critical_section_end(void) {
  2789. atomic_flag_clear(&g_state_critical);
  2790. }
  2791. #if defined(__gnu_linux__)
  2792. static cpu_set_t ggml_get_numa_affinity(void) {
  2793. cpu_set_t cpuset;
  2794. pthread_t thread;
  2795. thread = pthread_self();
  2796. CPU_ZERO(&cpuset);
  2797. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2798. return cpuset;
  2799. }
  2800. #else
  2801. static uint32_t ggml_get_numa_affinity(void) {
  2802. return 0; // no NUMA support
  2803. }
  2804. #endif
  2805. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2806. if (g_state.numa.n_nodes > 0) {
  2807. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2808. return;
  2809. }
  2810. #if defined(__gnu_linux__)
  2811. struct stat st;
  2812. char path[256];
  2813. int rv;
  2814. // set numa scheme
  2815. g_state.numa.numa_strategy = numa_flag;
  2816. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2817. g_state.numa.cpuset = ggml_get_numa_affinity();
  2818. // enumerate nodes
  2819. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2820. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2821. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2822. if (stat(path, &st) != 0) { break; }
  2823. ++g_state.numa.n_nodes;
  2824. }
  2825. // enumerate CPUs
  2826. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2827. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2828. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2829. if (stat(path, &st) != 0) { break; }
  2830. ++g_state.numa.total_cpus;
  2831. }
  2832. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2833. // figure out which node we're on
  2834. uint current_cpu;
  2835. int getcpu_ret = 0;
  2836. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2837. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2838. #else
  2839. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2840. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2841. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2842. # endif
  2843. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2844. #endif
  2845. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2846. g_state.numa.n_nodes = 0;
  2847. return;
  2848. }
  2849. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2850. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2851. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2852. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2853. node->n_cpus = 0;
  2854. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2855. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2856. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2857. if (stat(path, &st) == 0) {
  2858. node->cpus[node->n_cpus++] = c;
  2859. GGML_PRINT_DEBUG(" %u", c);
  2860. }
  2861. }
  2862. GGML_PRINT_DEBUG("\n");
  2863. }
  2864. if (ggml_is_numa()) {
  2865. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2866. if (fptr != NULL) {
  2867. char buf[42];
  2868. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2869. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2870. }
  2871. fclose(fptr);
  2872. }
  2873. }
  2874. #else
  2875. UNUSED(numa_flag);
  2876. // TODO
  2877. #endif
  2878. }
  2879. bool ggml_is_numa(void) {
  2880. return g_state.numa.n_nodes > 1;
  2881. }
  2882. ////////////////////////////////////////////////////////////////////////////////
  2883. void ggml_print_object(const struct ggml_object * obj) {
  2884. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2885. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2886. }
  2887. void ggml_print_objects(const struct ggml_context * ctx) {
  2888. struct ggml_object * obj = ctx->objects_begin;
  2889. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2890. while (obj != NULL) {
  2891. ggml_print_object(obj);
  2892. obj = obj->next;
  2893. }
  2894. GGML_PRINT("%s: --- end ---\n", __func__);
  2895. }
  2896. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2897. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2898. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2899. }
  2900. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2901. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2902. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2903. }
  2904. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2905. size_t nbytes;
  2906. size_t blck_size = ggml_blck_size(tensor->type);
  2907. if (blck_size == 1) {
  2908. nbytes = ggml_type_size(tensor->type);
  2909. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2910. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2911. }
  2912. }
  2913. else {
  2914. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2915. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2916. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2917. }
  2918. }
  2919. return nbytes;
  2920. }
  2921. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2922. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2923. }
  2924. GGML_CALL int64_t ggml_blck_size(enum ggml_type type) {
  2925. return type_traits[type].blck_size;
  2926. }
  2927. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2928. return type_traits[type].type_size;
  2929. }
  2930. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2931. assert(ne % ggml_blck_size(type) == 0);
  2932. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2933. }
  2934. double ggml_type_sizef(enum ggml_type type) {
  2935. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2936. }
  2937. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2938. return type_traits[type].type_name;
  2939. }
  2940. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2941. return type_traits[type].is_quantized;
  2942. }
  2943. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2944. return GGML_OP_NAME[op];
  2945. }
  2946. const char * ggml_op_symbol(enum ggml_op op) {
  2947. return GGML_OP_SYMBOL[op];
  2948. }
  2949. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2950. return GGML_UNARY_OP_NAME[op];
  2951. }
  2952. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2953. if (t->op == GGML_OP_UNARY) {
  2954. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2955. return ggml_unary_op_name(uop);
  2956. }
  2957. return ggml_op_name(t->op);
  2958. }
  2959. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2960. return ggml_type_size(tensor->type);
  2961. }
  2962. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2963. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2964. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2965. }
  2966. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2967. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2968. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2969. }
  2970. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2971. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2972. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2973. }
  2974. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2975. return tensor->ne[3] == 1;
  2976. }
  2977. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2978. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2979. if (tensor->ne[i] > 1) {
  2980. return i + 1;
  2981. }
  2982. }
  2983. return 1;
  2984. }
  2985. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2986. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2987. return (t0->ne[0] == t1->ne[0]) &&
  2988. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2989. (t1->ne[3]%t0->ne[3] == 0);
  2990. }
  2991. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2992. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2993. return (t0->ne[1] == t1->ne[1]) &&
  2994. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2995. (t1->ne[3]%t0->ne[3] == 0);
  2996. }
  2997. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2998. enum ggml_type wtype = GGML_TYPE_COUNT;
  2999. switch (ftype) {
  3000. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3001. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3002. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  3003. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3004. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3005. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3006. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3007. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3008. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3009. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3010. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3011. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3012. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3013. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  3014. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  3015. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  3016. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  3017. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  3018. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  3019. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  3020. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  3021. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  3022. case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
  3023. case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
  3024. case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
  3025. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3026. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3027. }
  3028. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3029. return wtype;
  3030. }
  3031. size_t ggml_tensor_overhead(void) {
  3032. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3033. }
  3034. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3035. return tensor->nb[0] > tensor->nb[1];
  3036. }
  3037. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  3038. size_t next_nb = ggml_type_size(tensor->type);
  3039. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  3040. return false;
  3041. }
  3042. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  3043. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  3044. if (tensor->ne[i] != 1) {
  3045. if (i > n) {
  3046. if (tensor->nb[i] != next_nb) {
  3047. return false;
  3048. }
  3049. next_nb *= tensor->ne[i];
  3050. } else {
  3051. // this dimension does not need to be contiguous
  3052. next_nb = tensor->ne[i]*tensor->nb[i];
  3053. }
  3054. }
  3055. }
  3056. return true;
  3057. }
  3058. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3059. return ggml_is_contiguous_0(tensor);
  3060. }
  3061. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  3062. return ggml_is_contiguous_n(tensor, 0);
  3063. }
  3064. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  3065. return ggml_is_contiguous_n(tensor, 1);
  3066. }
  3067. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  3068. return ggml_is_contiguous_n(tensor, 2);
  3069. }
  3070. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3071. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3072. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3073. }
  3074. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3075. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3076. return
  3077. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3078. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3079. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3080. }
  3081. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  3082. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3083. if (tensor->ne[i] == 0) {
  3084. // empty if any dimension has no elements
  3085. return true;
  3086. }
  3087. }
  3088. return false;
  3089. }
  3090. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3091. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3092. return
  3093. (t0->ne[0] == t1->ne[0]) &&
  3094. (t0->ne[1] == t1->ne[1]) &&
  3095. (t0->ne[2] == t1->ne[2]) &&
  3096. (t0->ne[3] == t1->ne[3]);
  3097. }
  3098. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3099. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3100. return
  3101. (t0->nb[0] == t1->nb[0]) &&
  3102. (t0->nb[1] == t1->nb[1]) &&
  3103. (t0->nb[2] == t1->nb[2]) &&
  3104. (t0->nb[3] == t1->nb[3]);
  3105. }
  3106. // check if t1 can be represented as a repeatition of t0
  3107. bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3108. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3109. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  3110. (t1->ne[0]%t0->ne[0] == 0) &&
  3111. (t1->ne[1]%t0->ne[1] == 0) &&
  3112. (t1->ne[2]%t0->ne[2] == 0) &&
  3113. (t1->ne[3]%t0->ne[3] == 0);
  3114. }
  3115. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3116. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3117. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3118. }
  3119. static inline int ggml_up32(int n) {
  3120. return (n + 31) & ~31;
  3121. }
  3122. //static inline int ggml_up64(int n) {
  3123. // return (n + 63) & ~63;
  3124. //}
  3125. static inline int ggml_up(int n, int m) {
  3126. // assert m is a power of 2
  3127. GGML_ASSERT((m & (m - 1)) == 0);
  3128. return (n + m - 1) & ~(m - 1);
  3129. }
  3130. // assert that pointer is aligned to GGML_MEM_ALIGN
  3131. #define GGML_ASSERT_ALIGNED(ptr) \
  3132. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3133. ////////////////////////////////////////////////////////////////////////////////
  3134. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3135. // make this function thread safe
  3136. ggml_critical_section_start();
  3137. static bool is_first_call = true;
  3138. if (is_first_call) {
  3139. // initialize time system (required on Windows)
  3140. ggml_time_init();
  3141. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3142. {
  3143. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3144. for (int i = 0; i < (1 << 16); ++i) {
  3145. union {
  3146. uint16_t u16;
  3147. ggml_fp16_t fp16;
  3148. } u = {i};
  3149. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  3150. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3151. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3152. }
  3153. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3154. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3155. }
  3156. // initialize g_state
  3157. {
  3158. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3159. g_state = (struct ggml_state) {
  3160. /*.contexts =*/ { { 0 } },
  3161. /*.numa =*/ {
  3162. .n_nodes = 0,
  3163. .total_cpus = 0,
  3164. },
  3165. };
  3166. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3167. g_state.contexts[i].used = false;
  3168. }
  3169. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3170. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3171. }
  3172. is_first_call = false;
  3173. }
  3174. // find non-used context in g_state
  3175. struct ggml_context * ctx = NULL;
  3176. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3177. if (!g_state.contexts[i].used) {
  3178. g_state.contexts[i].used = true;
  3179. ctx = &g_state.contexts[i].context;
  3180. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3181. break;
  3182. }
  3183. }
  3184. if (ctx == NULL) {
  3185. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3186. ggml_critical_section_end();
  3187. return NULL;
  3188. }
  3189. // allow to call ggml_init with 0 size
  3190. if (params.mem_size == 0) {
  3191. params.mem_size = GGML_MEM_ALIGN;
  3192. }
  3193. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3194. *ctx = (struct ggml_context) {
  3195. /*.mem_size =*/ mem_size,
  3196. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3197. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3198. /*.no_alloc =*/ params.no_alloc,
  3199. /*.no_alloc_save =*/ params.no_alloc,
  3200. /*.n_objects =*/ 0,
  3201. /*.objects_begin =*/ NULL,
  3202. /*.objects_end =*/ NULL,
  3203. /*.scratch =*/ { 0, 0, NULL, },
  3204. /*.scratch_save =*/ { 0, 0, NULL, },
  3205. };
  3206. GGML_ASSERT(ctx->mem_buffer != NULL);
  3207. GGML_ASSERT_ALIGNED(ctx->mem_buffer);
  3208. #if defined(__ARM_FEATURE_SVE)
  3209. if (!ggml_sve_cnt_b) {
  3210. ggml_sve_cnt_b = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
  3211. }
  3212. #endif
  3213. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3214. ggml_critical_section_end();
  3215. return ctx;
  3216. }
  3217. void ggml_free(struct ggml_context * ctx) {
  3218. if (ctx == NULL) {
  3219. return;
  3220. }
  3221. // make this function thread safe
  3222. ggml_critical_section_start();
  3223. bool found = false;
  3224. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3225. if (&g_state.contexts[i].context == ctx) {
  3226. g_state.contexts[i].used = false;
  3227. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3228. __func__, i, ggml_used_mem(ctx));
  3229. if (ctx->mem_buffer_owned) {
  3230. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3231. }
  3232. found = true;
  3233. break;
  3234. }
  3235. }
  3236. if (!found) {
  3237. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3238. }
  3239. ggml_critical_section_end();
  3240. }
  3241. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3242. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3243. }
  3244. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3245. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3246. ctx->scratch = scratch;
  3247. return result;
  3248. }
  3249. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3250. return ctx->no_alloc;
  3251. }
  3252. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3253. ctx->no_alloc = no_alloc;
  3254. }
  3255. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3256. return ctx->mem_buffer;
  3257. }
  3258. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3259. return ctx->mem_size;
  3260. }
  3261. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3262. size_t max_size = 0;
  3263. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3264. size_t bytes = ggml_nbytes(tensor);
  3265. max_size = MAX(max_size, bytes);
  3266. }
  3267. return max_size;
  3268. }
  3269. // IMPORTANT:
  3270. // when creating "opt" tensors, always save and load the scratch buffer
  3271. // this is an error prone process, but it is necessary to support inplace
  3272. // operators when using scratch buffers
  3273. // TODO: implement a better way
  3274. static void ggml_scratch_save(struct ggml_context * ctx) {
  3275. // this is needed to allow opt tensors to store their data
  3276. // TODO: again, need to find a better way
  3277. ctx->no_alloc_save = ctx->no_alloc;
  3278. ctx->no_alloc = false;
  3279. ctx->scratch_save = ctx->scratch;
  3280. ctx->scratch.data = NULL;
  3281. }
  3282. static void ggml_scratch_load(struct ggml_context * ctx) {
  3283. ctx->no_alloc = ctx->no_alloc_save;
  3284. ctx->scratch = ctx->scratch_save;
  3285. }
  3286. ////////////////////////////////////////////////////////////////////////////////
  3287. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3288. // always insert objects at the end of the context's memory pool
  3289. struct ggml_object * obj_cur = ctx->objects_end;
  3290. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3291. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3292. const size_t cur_end = cur_offs + cur_size;
  3293. // align to GGML_MEM_ALIGN
  3294. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3295. char * const mem_buffer = ctx->mem_buffer;
  3296. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3297. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3298. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3299. __func__, cur_end + size_needed, ctx->mem_size);
  3300. assert(false);
  3301. return NULL;
  3302. }
  3303. *obj_new = (struct ggml_object) {
  3304. .offs = cur_end + GGML_OBJECT_SIZE,
  3305. .size = size_needed,
  3306. .next = NULL,
  3307. .type = type,
  3308. };
  3309. GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
  3310. if (obj_cur != NULL) {
  3311. obj_cur->next = obj_new;
  3312. } else {
  3313. // this is the first object in this context
  3314. ctx->objects_begin = obj_new;
  3315. }
  3316. ctx->objects_end = obj_new;
  3317. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3318. return obj_new;
  3319. }
  3320. static struct ggml_tensor * ggml_new_tensor_impl(
  3321. struct ggml_context * ctx,
  3322. enum ggml_type type,
  3323. int n_dims,
  3324. const int64_t * ne,
  3325. struct ggml_tensor * view_src,
  3326. size_t view_offs) {
  3327. GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT);
  3328. GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3329. // find the base tensor and absolute offset
  3330. if (view_src != NULL && view_src->view_src != NULL) {
  3331. view_offs += view_src->view_offs;
  3332. view_src = view_src->view_src;
  3333. }
  3334. size_t data_size = ggml_row_size(type, ne[0]);
  3335. for (int i = 1; i < n_dims; i++) {
  3336. data_size *= ne[i];
  3337. }
  3338. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3339. void * data = view_src != NULL ? view_src->data : NULL;
  3340. if (data != NULL) {
  3341. data = (char *) data + view_offs;
  3342. }
  3343. size_t obj_alloc_size = 0;
  3344. if (view_src == NULL && !ctx->no_alloc) {
  3345. if (ctx->scratch.data != NULL) {
  3346. // allocate tensor data in the scratch buffer
  3347. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3348. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3349. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3350. assert(false);
  3351. return NULL;
  3352. }
  3353. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3354. ctx->scratch.offs += data_size;
  3355. } else {
  3356. // allocate tensor data in the context's memory pool
  3357. obj_alloc_size = data_size;
  3358. }
  3359. }
  3360. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3361. GGML_ASSERT(obj_new);
  3362. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3363. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3364. #ifdef __clang__
  3365. // temporary until ggml_tensor::backend is removed
  3366. #pragma clang diagnostic push
  3367. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3368. #endif
  3369. *result = (struct ggml_tensor) {
  3370. /*.type =*/ type,
  3371. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3372. /*.buffer =*/ NULL,
  3373. /*.ne =*/ { 1, 1, 1, 1 },
  3374. /*.nb =*/ { 0, 0, 0, 0 },
  3375. /*.op =*/ GGML_OP_NONE,
  3376. /*.op_params =*/ { 0 },
  3377. /*.flags =*/ 0,
  3378. /*.grad =*/ NULL,
  3379. /*.src =*/ { NULL },
  3380. /*.view_src =*/ view_src,
  3381. /*.view_offs =*/ view_offs,
  3382. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3383. /*.name =*/ { 0 },
  3384. /*.extra =*/ NULL,
  3385. ///*.padding =*/ { 0 },
  3386. };
  3387. #ifdef __clang__
  3388. #pragma clang diagnostic pop
  3389. #endif
  3390. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3391. //GGML_ASSERT_ALIGNED(result->data);
  3392. for (int i = 0; i < n_dims; i++) {
  3393. result->ne[i] = ne[i];
  3394. }
  3395. result->nb[0] = ggml_type_size(type);
  3396. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3397. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3398. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3399. }
  3400. ctx->n_objects++;
  3401. return result;
  3402. }
  3403. struct ggml_tensor * ggml_new_tensor(
  3404. struct ggml_context * ctx,
  3405. enum ggml_type type,
  3406. int n_dims,
  3407. const int64_t * ne) {
  3408. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3409. }
  3410. struct ggml_tensor * ggml_new_tensor_1d(
  3411. struct ggml_context * ctx,
  3412. enum ggml_type type,
  3413. int64_t ne0) {
  3414. return ggml_new_tensor(ctx, type, 1, &ne0);
  3415. }
  3416. struct ggml_tensor * ggml_new_tensor_2d(
  3417. struct ggml_context * ctx,
  3418. enum ggml_type type,
  3419. int64_t ne0,
  3420. int64_t ne1) {
  3421. const int64_t ne[2] = { ne0, ne1 };
  3422. return ggml_new_tensor(ctx, type, 2, ne);
  3423. }
  3424. struct ggml_tensor * ggml_new_tensor_3d(
  3425. struct ggml_context * ctx,
  3426. enum ggml_type type,
  3427. int64_t ne0,
  3428. int64_t ne1,
  3429. int64_t ne2) {
  3430. const int64_t ne[3] = { ne0, ne1, ne2 };
  3431. return ggml_new_tensor(ctx, type, 3, ne);
  3432. }
  3433. struct ggml_tensor * ggml_new_tensor_4d(
  3434. struct ggml_context * ctx,
  3435. enum ggml_type type,
  3436. int64_t ne0,
  3437. int64_t ne1,
  3438. int64_t ne2,
  3439. int64_t ne3) {
  3440. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3441. return ggml_new_tensor(ctx, type, 4, ne);
  3442. }
  3443. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3444. ggml_scratch_save(ctx);
  3445. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3446. ggml_scratch_load(ctx);
  3447. ggml_set_i32(result, value);
  3448. return result;
  3449. }
  3450. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3451. ggml_scratch_save(ctx);
  3452. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3453. ggml_scratch_load(ctx);
  3454. ggml_set_f32(result, value);
  3455. return result;
  3456. }
  3457. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3458. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3459. }
  3460. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3461. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3462. assert(params_size <= GGML_MAX_OP_PARAMS);
  3463. memcpy(tensor->op_params, params, params_size);
  3464. }
  3465. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3466. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3467. return ((const int32_t *)(tensor->op_params))[i];
  3468. }
  3469. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3470. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3471. return ((const float *)(tensor->op_params))[i];
  3472. }
  3473. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3474. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3475. ((int32_t *)(tensor->op_params))[i] = value;
  3476. }
  3477. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3478. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3479. ((float *)(tensor->op_params))[i] = value;
  3480. }
  3481. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3482. memset(tensor->data, 0, ggml_nbytes(tensor));
  3483. return tensor;
  3484. }
  3485. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3486. const int n = ggml_nrows(tensor);
  3487. const int nc = tensor->ne[0];
  3488. const size_t n1 = tensor->nb[1];
  3489. char * const data = tensor->data;
  3490. switch (tensor->type) {
  3491. case GGML_TYPE_I8:
  3492. {
  3493. assert(tensor->nb[0] == sizeof(int8_t));
  3494. for (int i = 0; i < n; i++) {
  3495. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3496. }
  3497. } break;
  3498. case GGML_TYPE_I16:
  3499. {
  3500. assert(tensor->nb[0] == sizeof(int16_t));
  3501. for (int i = 0; i < n; i++) {
  3502. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3503. }
  3504. } break;
  3505. case GGML_TYPE_I32:
  3506. {
  3507. assert(tensor->nb[0] == sizeof(int32_t));
  3508. for (int i = 0; i < n; i++) {
  3509. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3510. }
  3511. } break;
  3512. case GGML_TYPE_F16:
  3513. {
  3514. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3515. for (int i = 0; i < n; i++) {
  3516. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3517. }
  3518. } break;
  3519. case GGML_TYPE_BF16:
  3520. {
  3521. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3522. for (int i = 0; i < n; i++) {
  3523. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3524. }
  3525. } break;
  3526. case GGML_TYPE_F32:
  3527. {
  3528. assert(tensor->nb[0] == sizeof(float));
  3529. for (int i = 0; i < n; i++) {
  3530. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3531. }
  3532. } break;
  3533. default:
  3534. {
  3535. GGML_ABORT("fatal error");
  3536. }
  3537. }
  3538. return tensor;
  3539. }
  3540. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3541. const int n = ggml_nrows(tensor);
  3542. const int nc = tensor->ne[0];
  3543. const size_t n1 = tensor->nb[1];
  3544. char * const data = tensor->data;
  3545. switch (tensor->type) {
  3546. case GGML_TYPE_I8:
  3547. {
  3548. assert(tensor->nb[0] == sizeof(int8_t));
  3549. for (int i = 0; i < n; i++) {
  3550. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3551. }
  3552. } break;
  3553. case GGML_TYPE_I16:
  3554. {
  3555. assert(tensor->nb[0] == sizeof(int16_t));
  3556. for (int i = 0; i < n; i++) {
  3557. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3558. }
  3559. } break;
  3560. case GGML_TYPE_I32:
  3561. {
  3562. assert(tensor->nb[0] == sizeof(int32_t));
  3563. for (int i = 0; i < n; i++) {
  3564. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3565. }
  3566. } break;
  3567. case GGML_TYPE_F16:
  3568. {
  3569. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3570. for (int i = 0; i < n; i++) {
  3571. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3572. }
  3573. } break;
  3574. case GGML_TYPE_BF16:
  3575. {
  3576. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3577. for (int i = 0; i < n; i++) {
  3578. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3579. }
  3580. } break;
  3581. case GGML_TYPE_F32:
  3582. {
  3583. assert(tensor->nb[0] == sizeof(float));
  3584. for (int i = 0; i < n; i++) {
  3585. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3586. }
  3587. } break;
  3588. default:
  3589. {
  3590. GGML_ABORT("fatal error");
  3591. }
  3592. }
  3593. return tensor;
  3594. }
  3595. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3596. const int64_t ne2 = tensor->ne[2];
  3597. const int64_t ne1 = tensor->ne[1];
  3598. const int64_t ne0 = tensor->ne[0];
  3599. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3600. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3601. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3602. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3603. if (i0) {
  3604. * i0 = i0_;
  3605. }
  3606. if (i1) {
  3607. * i1 = i1_;
  3608. }
  3609. if (i2) {
  3610. * i2 = i2_;
  3611. }
  3612. if (i3) {
  3613. * i3 = i3_;
  3614. }
  3615. }
  3616. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3617. if (!ggml_is_contiguous(tensor)) {
  3618. int64_t id[4] = { 0, 0, 0, 0 };
  3619. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3620. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3621. }
  3622. switch (tensor->type) {
  3623. case GGML_TYPE_I8:
  3624. {
  3625. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3626. return ((int8_t *)(tensor->data))[i];
  3627. }
  3628. case GGML_TYPE_I16:
  3629. {
  3630. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3631. return ((int16_t *)(tensor->data))[i];
  3632. }
  3633. case GGML_TYPE_I32:
  3634. {
  3635. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3636. return ((int32_t *)(tensor->data))[i];
  3637. }
  3638. case GGML_TYPE_F16:
  3639. {
  3640. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3641. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3642. }
  3643. case GGML_TYPE_BF16:
  3644. {
  3645. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3646. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3647. }
  3648. case GGML_TYPE_F32:
  3649. {
  3650. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3651. return ((float *)(tensor->data))[i];
  3652. }
  3653. default:
  3654. {
  3655. GGML_ABORT("fatal error");
  3656. }
  3657. }
  3658. }
  3659. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3660. if (!ggml_is_contiguous(tensor)) {
  3661. int64_t id[4] = { 0, 0, 0, 0 };
  3662. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3663. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3664. return;
  3665. }
  3666. switch (tensor->type) {
  3667. case GGML_TYPE_I8:
  3668. {
  3669. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3670. ((int8_t *)(tensor->data))[i] = value;
  3671. } break;
  3672. case GGML_TYPE_I16:
  3673. {
  3674. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3675. ((int16_t *)(tensor->data))[i] = value;
  3676. } break;
  3677. case GGML_TYPE_I32:
  3678. {
  3679. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3680. ((int32_t *)(tensor->data))[i] = value;
  3681. } break;
  3682. case GGML_TYPE_F16:
  3683. {
  3684. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3685. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3686. } break;
  3687. case GGML_TYPE_BF16:
  3688. {
  3689. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3690. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3691. } break;
  3692. case GGML_TYPE_F32:
  3693. {
  3694. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3695. ((float *)(tensor->data))[i] = value;
  3696. } break;
  3697. default:
  3698. {
  3699. GGML_ABORT("fatal error");
  3700. }
  3701. }
  3702. }
  3703. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3704. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3705. switch (tensor->type) {
  3706. case GGML_TYPE_I8:
  3707. return ((int8_t *) data)[0];
  3708. case GGML_TYPE_I16:
  3709. return ((int16_t *) data)[0];
  3710. case GGML_TYPE_I32:
  3711. return ((int32_t *) data)[0];
  3712. case GGML_TYPE_F16:
  3713. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3714. case GGML_TYPE_BF16:
  3715. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3716. case GGML_TYPE_F32:
  3717. return ((float *) data)[0];
  3718. default:
  3719. GGML_ABORT("fatal error");
  3720. }
  3721. }
  3722. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3723. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3724. switch (tensor->type) {
  3725. case GGML_TYPE_I8:
  3726. {
  3727. ((int8_t *)(data))[0] = value;
  3728. } break;
  3729. case GGML_TYPE_I16:
  3730. {
  3731. ((int16_t *)(data))[0] = value;
  3732. } break;
  3733. case GGML_TYPE_I32:
  3734. {
  3735. ((int32_t *)(data))[0] = value;
  3736. } break;
  3737. case GGML_TYPE_F16:
  3738. {
  3739. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3740. } break;
  3741. case GGML_TYPE_BF16:
  3742. {
  3743. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3744. } break;
  3745. case GGML_TYPE_F32:
  3746. {
  3747. ((float *)(data))[0] = value;
  3748. } break;
  3749. default:
  3750. {
  3751. GGML_ABORT("fatal error");
  3752. }
  3753. }
  3754. }
  3755. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3756. if (!ggml_is_contiguous(tensor)) {
  3757. int64_t id[4] = { 0, 0, 0, 0 };
  3758. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3759. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3760. }
  3761. switch (tensor->type) {
  3762. case GGML_TYPE_I8:
  3763. {
  3764. return ((int8_t *)(tensor->data))[i];
  3765. }
  3766. case GGML_TYPE_I16:
  3767. {
  3768. return ((int16_t *)(tensor->data))[i];
  3769. }
  3770. case GGML_TYPE_I32:
  3771. {
  3772. return ((int32_t *)(tensor->data))[i];
  3773. }
  3774. case GGML_TYPE_F16:
  3775. {
  3776. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3777. }
  3778. case GGML_TYPE_BF16:
  3779. {
  3780. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3781. }
  3782. case GGML_TYPE_F32:
  3783. {
  3784. return ((float *)(tensor->data))[i];
  3785. }
  3786. default:
  3787. {
  3788. GGML_ABORT("fatal error");
  3789. }
  3790. }
  3791. }
  3792. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3793. if (!ggml_is_contiguous(tensor)) {
  3794. int64_t id[4] = { 0, 0, 0, 0 };
  3795. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3796. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3797. return;
  3798. }
  3799. switch (tensor->type) {
  3800. case GGML_TYPE_I8:
  3801. {
  3802. ((int8_t *)(tensor->data))[i] = value;
  3803. } break;
  3804. case GGML_TYPE_I16:
  3805. {
  3806. ((int16_t *)(tensor->data))[i] = value;
  3807. } break;
  3808. case GGML_TYPE_I32:
  3809. {
  3810. ((int32_t *)(tensor->data))[i] = value;
  3811. } break;
  3812. case GGML_TYPE_F16:
  3813. {
  3814. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3815. } break;
  3816. case GGML_TYPE_BF16:
  3817. {
  3818. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3819. } break;
  3820. case GGML_TYPE_F32:
  3821. {
  3822. ((float *)(tensor->data))[i] = value;
  3823. } break;
  3824. default:
  3825. {
  3826. GGML_ABORT("fatal error");
  3827. }
  3828. }
  3829. }
  3830. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3831. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3832. switch (tensor->type) {
  3833. case GGML_TYPE_I8:
  3834. return ((int8_t *) data)[0];
  3835. case GGML_TYPE_I16:
  3836. return ((int16_t *) data)[0];
  3837. case GGML_TYPE_I32:
  3838. return ((int32_t *) data)[0];
  3839. case GGML_TYPE_F16:
  3840. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3841. case GGML_TYPE_BF16:
  3842. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3843. case GGML_TYPE_F32:
  3844. return ((float *) data)[0];
  3845. default:
  3846. GGML_ABORT("fatal error");
  3847. }
  3848. }
  3849. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3850. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3851. switch (tensor->type) {
  3852. case GGML_TYPE_I8:
  3853. {
  3854. ((int8_t *)(data))[0] = value;
  3855. } break;
  3856. case GGML_TYPE_I16:
  3857. {
  3858. ((int16_t *)(data))[0] = value;
  3859. } break;
  3860. case GGML_TYPE_I32:
  3861. {
  3862. ((int32_t *)(data))[0] = value;
  3863. } break;
  3864. case GGML_TYPE_F16:
  3865. {
  3866. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3867. } break;
  3868. case GGML_TYPE_BF16:
  3869. {
  3870. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3871. } break;
  3872. case GGML_TYPE_F32:
  3873. {
  3874. ((float *)(data))[0] = value;
  3875. } break;
  3876. default:
  3877. {
  3878. GGML_ABORT("fatal error");
  3879. }
  3880. }
  3881. }
  3882. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3883. return tensor->data;
  3884. }
  3885. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3886. assert(tensor->type == GGML_TYPE_F32);
  3887. return (float *)(tensor->data);
  3888. }
  3889. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3890. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3891. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3892. }
  3893. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3894. return tensor->name;
  3895. }
  3896. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3897. size_t i;
  3898. for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
  3899. tensor->name[i] = name[i];
  3900. }
  3901. tensor->name[i] = '\0';
  3902. return tensor;
  3903. }
  3904. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3905. va_list args;
  3906. va_start(args, fmt);
  3907. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3908. va_end(args);
  3909. return tensor;
  3910. }
  3911. struct ggml_tensor * ggml_view_tensor(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * src) {
  3914. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3915. ggml_format_name(result, "%s (view)", src->name);
  3916. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3917. result->nb[i] = src->nb[i];
  3918. }
  3919. return result;
  3920. }
  3921. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3922. struct ggml_object * obj = ctx->objects_begin;
  3923. char * const mem_buffer = ctx->mem_buffer;
  3924. while (obj != NULL) {
  3925. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3926. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3927. }
  3928. obj = obj->next;
  3929. }
  3930. return NULL;
  3931. }
  3932. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3933. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3934. obj = obj->next;
  3935. char * const mem_buffer = ctx->mem_buffer;
  3936. while (obj != NULL) {
  3937. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3938. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3939. }
  3940. obj = obj->next;
  3941. }
  3942. return NULL;
  3943. }
  3944. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3945. struct ggml_object * obj = ctx->objects_begin;
  3946. char * const mem_buffer = ctx->mem_buffer;
  3947. while (obj != NULL) {
  3948. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3949. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3950. if (strcmp(cur->name, name) == 0) {
  3951. return cur;
  3952. }
  3953. }
  3954. obj = obj->next;
  3955. }
  3956. return NULL;
  3957. }
  3958. ////////////////////////////////////////////////////////////////////////////////
  3959. // ggml_dup
  3960. static struct ggml_tensor * ggml_dup_impl(
  3961. struct ggml_context * ctx,
  3962. struct ggml_tensor * a,
  3963. bool inplace) {
  3964. bool is_node = false;
  3965. if (!inplace && (a->grad)) {
  3966. is_node = true;
  3967. }
  3968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3969. result->op = GGML_OP_DUP;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src[0] = a;
  3972. return result;
  3973. }
  3974. struct ggml_tensor * ggml_dup(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a) {
  3977. return ggml_dup_impl(ctx, a, false);
  3978. }
  3979. struct ggml_tensor * ggml_dup_inplace(
  3980. struct ggml_context * ctx,
  3981. struct ggml_tensor * a) {
  3982. return ggml_dup_impl(ctx, a, true);
  3983. }
  3984. // ggml_add
  3985. static struct ggml_tensor * ggml_add_impl(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a,
  3988. struct ggml_tensor * b,
  3989. bool inplace) {
  3990. GGML_ASSERT(ggml_can_repeat(b, a));
  3991. bool is_node = false;
  3992. if (!inplace && (a->grad || b->grad)) {
  3993. is_node = true;
  3994. }
  3995. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3996. result->op = GGML_OP_ADD;
  3997. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3998. result->src[0] = a;
  3999. result->src[1] = b;
  4000. return result;
  4001. }
  4002. struct ggml_tensor * ggml_add(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a,
  4005. struct ggml_tensor * b) {
  4006. return ggml_add_impl(ctx, a, b, false);
  4007. }
  4008. struct ggml_tensor * ggml_add_inplace(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a,
  4011. struct ggml_tensor * b) {
  4012. return ggml_add_impl(ctx, a, b, true);
  4013. }
  4014. // ggml_add_cast
  4015. static struct ggml_tensor * ggml_add_cast_impl(
  4016. struct ggml_context * ctx,
  4017. struct ggml_tensor * a,
  4018. struct ggml_tensor * b,
  4019. enum ggml_type type) {
  4020. // TODO: support less-strict constraint
  4021. // GGML_ASSERT(ggml_can_repeat(b, a));
  4022. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4023. // currently only supported for quantized input and f16
  4024. GGML_ASSERT(ggml_is_quantized(a->type) ||
  4025. a->type == GGML_TYPE_F16 ||
  4026. a->type == GGML_TYPE_BF16);
  4027. bool is_node = false;
  4028. if (a->grad || b->grad) {
  4029. // TODO: support backward pass for broadcasting
  4030. GGML_ASSERT(ggml_are_same_shape(a, b));
  4031. is_node = true;
  4032. }
  4033. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4034. result->op = GGML_OP_ADD;
  4035. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  4036. result->src[0] = a;
  4037. result->src[1] = b;
  4038. return result;
  4039. }
  4040. struct ggml_tensor * ggml_add_cast(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a,
  4043. struct ggml_tensor * b,
  4044. enum ggml_type type) {
  4045. return ggml_add_cast_impl(ctx, a, b, type);
  4046. }
  4047. // ggml_add1
  4048. static struct ggml_tensor * ggml_add1_impl(
  4049. struct ggml_context * ctx,
  4050. struct ggml_tensor * a,
  4051. struct ggml_tensor * b,
  4052. bool inplace) {
  4053. GGML_ASSERT(ggml_is_scalar(b));
  4054. GGML_ASSERT(ggml_is_padded_1d(a));
  4055. bool is_node = false;
  4056. if (a->grad || b->grad) {
  4057. is_node = true;
  4058. }
  4059. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4060. result->op = GGML_OP_ADD1;
  4061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4062. result->src[0] = a;
  4063. result->src[1] = b;
  4064. return result;
  4065. }
  4066. struct ggml_tensor * ggml_add1(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a,
  4069. struct ggml_tensor * b) {
  4070. return ggml_add1_impl(ctx, a, b, false);
  4071. }
  4072. struct ggml_tensor * ggml_add1_inplace(
  4073. struct ggml_context * ctx,
  4074. struct ggml_tensor * a,
  4075. struct ggml_tensor * b) {
  4076. return ggml_add1_impl(ctx, a, b, true);
  4077. }
  4078. // ggml_acc
  4079. static struct ggml_tensor * ggml_acc_impl(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a,
  4082. struct ggml_tensor * b,
  4083. size_t nb1,
  4084. size_t nb2,
  4085. size_t nb3,
  4086. size_t offset,
  4087. bool inplace) {
  4088. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4089. GGML_ASSERT(ggml_is_contiguous(a));
  4090. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4091. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4092. bool is_node = false;
  4093. if (!inplace && (a->grad || b->grad)) {
  4094. is_node = true;
  4095. }
  4096. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4097. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4098. ggml_set_op_params(result, params, sizeof(params));
  4099. result->op = GGML_OP_ACC;
  4100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4101. result->src[0] = a;
  4102. result->src[1] = b;
  4103. return result;
  4104. }
  4105. struct ggml_tensor * ggml_acc(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a,
  4108. struct ggml_tensor * b,
  4109. size_t nb1,
  4110. size_t nb2,
  4111. size_t nb3,
  4112. size_t offset) {
  4113. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4114. }
  4115. struct ggml_tensor * ggml_acc_inplace(
  4116. struct ggml_context * ctx,
  4117. struct ggml_tensor * a,
  4118. struct ggml_tensor * b,
  4119. size_t nb1,
  4120. size_t nb2,
  4121. size_t nb3,
  4122. size_t offset) {
  4123. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4124. }
  4125. // ggml_sub
  4126. static struct ggml_tensor * ggml_sub_impl(
  4127. struct ggml_context * ctx,
  4128. struct ggml_tensor * a,
  4129. struct ggml_tensor * b,
  4130. bool inplace) {
  4131. GGML_ASSERT(ggml_can_repeat(b, a));
  4132. bool is_node = false;
  4133. if (!inplace && (a->grad || b->grad)) {
  4134. // TODO: support backward pass for broadcasting
  4135. GGML_ASSERT(ggml_are_same_shape(a, b));
  4136. is_node = true;
  4137. }
  4138. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4139. result->op = GGML_OP_SUB;
  4140. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4141. result->src[0] = a;
  4142. result->src[1] = b;
  4143. return result;
  4144. }
  4145. struct ggml_tensor * ggml_sub(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. struct ggml_tensor * b) {
  4149. return ggml_sub_impl(ctx, a, b, false);
  4150. }
  4151. struct ggml_tensor * ggml_sub_inplace(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. struct ggml_tensor * b) {
  4155. return ggml_sub_impl(ctx, a, b, true);
  4156. }
  4157. // ggml_mul
  4158. static struct ggml_tensor * ggml_mul_impl(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a,
  4161. struct ggml_tensor * b,
  4162. bool inplace) {
  4163. GGML_ASSERT(ggml_can_repeat(b, a));
  4164. bool is_node = false;
  4165. if (!inplace && (a->grad || b->grad)) {
  4166. // TODO: support backward pass for broadcasting
  4167. GGML_ASSERT(ggml_are_same_shape(a, b));
  4168. is_node = true;
  4169. }
  4170. if (inplace) {
  4171. GGML_ASSERT(!is_node);
  4172. }
  4173. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4174. result->op = GGML_OP_MUL;
  4175. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4176. result->src[0] = a;
  4177. result->src[1] = b;
  4178. return result;
  4179. }
  4180. struct ggml_tensor * ggml_mul(
  4181. struct ggml_context * ctx,
  4182. struct ggml_tensor * a,
  4183. struct ggml_tensor * b) {
  4184. return ggml_mul_impl(ctx, a, b, false);
  4185. }
  4186. struct ggml_tensor * ggml_mul_inplace(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. struct ggml_tensor * b) {
  4190. return ggml_mul_impl(ctx, a, b, true);
  4191. }
  4192. // ggml_div
  4193. static struct ggml_tensor * ggml_div_impl(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a,
  4196. struct ggml_tensor * b,
  4197. bool inplace) {
  4198. GGML_ASSERT(ggml_can_repeat(b, a));
  4199. bool is_node = false;
  4200. if (!inplace && (a->grad || b->grad)) {
  4201. is_node = true;
  4202. }
  4203. if (inplace) {
  4204. GGML_ASSERT(!is_node);
  4205. }
  4206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4207. result->op = GGML_OP_DIV;
  4208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4209. result->src[0] = a;
  4210. result->src[1] = b;
  4211. return result;
  4212. }
  4213. struct ggml_tensor * ggml_div(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a,
  4216. struct ggml_tensor * b) {
  4217. return ggml_div_impl(ctx, a, b, false);
  4218. }
  4219. struct ggml_tensor * ggml_div_inplace(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a,
  4222. struct ggml_tensor * b) {
  4223. return ggml_div_impl(ctx, a, b, true);
  4224. }
  4225. // ggml_sqr
  4226. static struct ggml_tensor * ggml_sqr_impl(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a,
  4229. bool inplace) {
  4230. bool is_node = false;
  4231. if (!inplace && (a->grad)) {
  4232. is_node = true;
  4233. }
  4234. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4235. result->op = GGML_OP_SQR;
  4236. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4237. result->src[0] = a;
  4238. return result;
  4239. }
  4240. struct ggml_tensor * ggml_sqr(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a) {
  4243. return ggml_sqr_impl(ctx, a, false);
  4244. }
  4245. struct ggml_tensor * ggml_sqr_inplace(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a) {
  4248. return ggml_sqr_impl(ctx, a, true);
  4249. }
  4250. // ggml_sqrt
  4251. static struct ggml_tensor * ggml_sqrt_impl(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a,
  4254. bool inplace) {
  4255. bool is_node = false;
  4256. if (!inplace && (a->grad)) {
  4257. is_node = true;
  4258. }
  4259. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4260. result->op = GGML_OP_SQRT;
  4261. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4262. result->src[0] = a;
  4263. return result;
  4264. }
  4265. struct ggml_tensor * ggml_sqrt(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a) {
  4268. return ggml_sqrt_impl(ctx, a, false);
  4269. }
  4270. struct ggml_tensor * ggml_sqrt_inplace(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a) {
  4273. return ggml_sqrt_impl(ctx, a, true);
  4274. }
  4275. // ggml_log
  4276. static struct ggml_tensor * ggml_log_impl(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a,
  4279. bool inplace) {
  4280. bool is_node = false;
  4281. if (!inplace && (a->grad)) {
  4282. is_node = true;
  4283. }
  4284. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4285. result->op = GGML_OP_LOG;
  4286. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4287. result->src[0] = a;
  4288. return result;
  4289. }
  4290. struct ggml_tensor * ggml_log(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a) {
  4293. return ggml_log_impl(ctx, a, false);
  4294. }
  4295. struct ggml_tensor * ggml_log_inplace(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a) {
  4298. return ggml_log_impl(ctx, a, true);
  4299. }
  4300. // ggml_sin
  4301. static struct ggml_tensor * ggml_sin_impl(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * a,
  4304. bool inplace) {
  4305. bool is_node = false;
  4306. if (!inplace && (a->grad)) {
  4307. is_node = true;
  4308. }
  4309. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4310. result->op = GGML_OP_SIN;
  4311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4312. result->src[0] = a;
  4313. return result;
  4314. }
  4315. struct ggml_tensor * ggml_sin(
  4316. struct ggml_context * ctx,
  4317. struct ggml_tensor * a) {
  4318. return ggml_sin_impl(ctx, a, false);
  4319. }
  4320. struct ggml_tensor * ggml_sin_inplace(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a) {
  4323. return ggml_sin_impl(ctx, a, true);
  4324. }
  4325. // ggml_cos
  4326. static struct ggml_tensor * ggml_cos_impl(
  4327. struct ggml_context * ctx,
  4328. struct ggml_tensor * a,
  4329. bool inplace) {
  4330. bool is_node = false;
  4331. if (!inplace && (a->grad)) {
  4332. is_node = true;
  4333. }
  4334. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4335. result->op = GGML_OP_COS;
  4336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4337. result->src[0] = a;
  4338. return result;
  4339. }
  4340. struct ggml_tensor * ggml_cos(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a) {
  4343. return ggml_cos_impl(ctx, a, false);
  4344. }
  4345. struct ggml_tensor * ggml_cos_inplace(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a) {
  4348. return ggml_cos_impl(ctx, a, true);
  4349. }
  4350. // ggml_sum
  4351. struct ggml_tensor * ggml_sum(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a) {
  4354. bool is_node = false;
  4355. if (a->grad) {
  4356. is_node = true;
  4357. }
  4358. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4359. result->op = GGML_OP_SUM;
  4360. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4361. result->src[0] = a;
  4362. return result;
  4363. }
  4364. // ggml_sum_rows
  4365. struct ggml_tensor * ggml_sum_rows(
  4366. struct ggml_context * ctx,
  4367. struct ggml_tensor * a) {
  4368. bool is_node = false;
  4369. if (a->grad) {
  4370. is_node = true;
  4371. }
  4372. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4373. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4374. ne[i] = a->ne[i];
  4375. }
  4376. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4377. result->op = GGML_OP_SUM_ROWS;
  4378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4379. result->src[0] = a;
  4380. return result;
  4381. }
  4382. // ggml_mean
  4383. struct ggml_tensor * ggml_mean(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a) {
  4386. bool is_node = false;
  4387. if (a->grad) {
  4388. GGML_ABORT("fatal error"); // TODO: implement
  4389. is_node = true;
  4390. }
  4391. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4392. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4393. result->op = GGML_OP_MEAN;
  4394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4395. result->src[0] = a;
  4396. return result;
  4397. }
  4398. // ggml_argmax
  4399. struct ggml_tensor * ggml_argmax(
  4400. struct ggml_context * ctx,
  4401. struct ggml_tensor * a) {
  4402. GGML_ASSERT(ggml_is_matrix(a));
  4403. bool is_node = false;
  4404. if (a->grad) {
  4405. GGML_ABORT("fatal error");
  4406. is_node = true;
  4407. }
  4408. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4409. result->op = GGML_OP_ARGMAX;
  4410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4411. result->src[0] = a;
  4412. return result;
  4413. }
  4414. // ggml_repeat
  4415. struct ggml_tensor * ggml_repeat(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. struct ggml_tensor * b) {
  4419. GGML_ASSERT(ggml_can_repeat(a, b));
  4420. bool is_node = false;
  4421. if (a->grad) {
  4422. is_node = true;
  4423. }
  4424. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4425. result->op = GGML_OP_REPEAT;
  4426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4427. result->src[0] = a;
  4428. return result;
  4429. }
  4430. // ggml_repeat_back
  4431. struct ggml_tensor * ggml_repeat_back(
  4432. struct ggml_context * ctx,
  4433. struct ggml_tensor * a,
  4434. struct ggml_tensor * b) {
  4435. GGML_ASSERT(ggml_can_repeat(b, a));
  4436. bool is_node = false;
  4437. if (a->grad) {
  4438. is_node = true;
  4439. }
  4440. if (ggml_are_same_shape(a, b) && !is_node) {
  4441. return a;
  4442. }
  4443. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4444. result->op = GGML_OP_REPEAT_BACK;
  4445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4446. result->src[0] = a;
  4447. return result;
  4448. }
  4449. // ggml_concat
  4450. struct ggml_tensor * ggml_concat(
  4451. struct ggml_context * ctx,
  4452. struct ggml_tensor * a,
  4453. struct ggml_tensor * b,
  4454. int dim) {
  4455. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4456. int64_t ne[GGML_MAX_DIMS];
  4457. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4458. if (d == dim) {
  4459. ne[d] = a->ne[d] + b->ne[d];
  4460. continue;
  4461. }
  4462. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4463. ne[d] = a->ne[d];
  4464. }
  4465. bool is_node = false;
  4466. if (a->grad || b->grad) {
  4467. is_node = true;
  4468. }
  4469. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4470. ggml_set_op_params_i32(result, 0, dim);
  4471. result->op = GGML_OP_CONCAT;
  4472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4473. result->src[0] = a;
  4474. result->src[1] = b;
  4475. return result;
  4476. }
  4477. // ggml_abs
  4478. struct ggml_tensor * ggml_abs(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a) {
  4481. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4482. }
  4483. struct ggml_tensor * ggml_abs_inplace(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * a) {
  4486. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4487. }
  4488. // ggml_sgn
  4489. struct ggml_tensor * ggml_sgn(
  4490. struct ggml_context * ctx,
  4491. struct ggml_tensor * a) {
  4492. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4493. }
  4494. struct ggml_tensor * ggml_sgn_inplace(
  4495. struct ggml_context * ctx,
  4496. struct ggml_tensor * a) {
  4497. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4498. }
  4499. // ggml_neg
  4500. struct ggml_tensor * ggml_neg(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * a) {
  4503. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4504. }
  4505. struct ggml_tensor * ggml_neg_inplace(
  4506. struct ggml_context * ctx,
  4507. struct ggml_tensor * a) {
  4508. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4509. }
  4510. // ggml_step
  4511. struct ggml_tensor * ggml_step(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a) {
  4514. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4515. }
  4516. struct ggml_tensor * ggml_step_inplace(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a) {
  4519. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4520. }
  4521. // ggml_tanh
  4522. struct ggml_tensor * ggml_tanh(
  4523. struct ggml_context * ctx,
  4524. struct ggml_tensor * a) {
  4525. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4526. }
  4527. struct ggml_tensor * ggml_tanh_inplace(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a) {
  4530. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4531. }
  4532. // ggml_elu
  4533. struct ggml_tensor * ggml_elu(
  4534. struct ggml_context * ctx,
  4535. struct ggml_tensor * a) {
  4536. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4537. }
  4538. struct ggml_tensor * ggml_elu_inplace(
  4539. struct ggml_context * ctx,
  4540. struct ggml_tensor * a) {
  4541. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4542. }
  4543. // ggml_relu
  4544. struct ggml_tensor * ggml_relu(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a) {
  4547. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4548. }
  4549. struct ggml_tensor * ggml_relu_inplace(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a) {
  4552. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4553. }
  4554. // ggml_leaky_relu
  4555. struct ggml_tensor * ggml_leaky_relu(
  4556. struct ggml_context * ctx,
  4557. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4558. bool is_node = false;
  4559. if (!inplace && (a->grad)) {
  4560. is_node = true;
  4561. }
  4562. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4563. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4564. result->op = GGML_OP_LEAKY_RELU;
  4565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4566. result->src[0] = a;
  4567. return result;
  4568. }
  4569. // ggml_sigmoid
  4570. struct ggml_tensor * ggml_sigmoid(
  4571. struct ggml_context * ctx,
  4572. struct ggml_tensor * a) {
  4573. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4574. }
  4575. struct ggml_tensor * ggml_sigmoid_inplace(
  4576. struct ggml_context * ctx,
  4577. struct ggml_tensor * a) {
  4578. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4579. }
  4580. // ggml_gelu
  4581. struct ggml_tensor * ggml_gelu(
  4582. struct ggml_context * ctx,
  4583. struct ggml_tensor * a) {
  4584. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4585. }
  4586. struct ggml_tensor * ggml_gelu_inplace(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a) {
  4589. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4590. }
  4591. // ggml_gelu_quick
  4592. struct ggml_tensor * ggml_gelu_quick(
  4593. struct ggml_context * ctx,
  4594. struct ggml_tensor * a) {
  4595. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4596. }
  4597. struct ggml_tensor * ggml_gelu_quick_inplace(
  4598. struct ggml_context * ctx,
  4599. struct ggml_tensor * a) {
  4600. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4601. }
  4602. // ggml_silu
  4603. struct ggml_tensor * ggml_silu(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a) {
  4606. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4607. }
  4608. struct ggml_tensor * ggml_silu_inplace(
  4609. struct ggml_context * ctx,
  4610. struct ggml_tensor * a) {
  4611. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4612. }
  4613. // ggml_silu_back
  4614. struct ggml_tensor * ggml_silu_back(
  4615. struct ggml_context * ctx,
  4616. struct ggml_tensor * a,
  4617. struct ggml_tensor * b) {
  4618. bool is_node = false;
  4619. if (a->grad || b->grad) {
  4620. // TODO: implement backward
  4621. is_node = true;
  4622. }
  4623. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4624. result->op = GGML_OP_SILU_BACK;
  4625. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4626. result->src[0] = a;
  4627. result->src[1] = b;
  4628. return result;
  4629. }
  4630. // ggml hardswish
  4631. struct ggml_tensor * ggml_hardswish(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * a) {
  4634. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4635. }
  4636. // ggml hardsigmoid
  4637. struct ggml_tensor * ggml_hardsigmoid(
  4638. struct ggml_context * ctx,
  4639. struct ggml_tensor * a) {
  4640. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4641. }
  4642. // ggml exp
  4643. struct ggml_tensor * ggml_exp(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a) {
  4646. return ggml_unary(ctx, a, GGML_UNARY_OP_EXP);
  4647. }
  4648. struct ggml_tensor * ggml_exp_inplace(
  4649. struct ggml_context * ctx,
  4650. struct ggml_tensor * a) {
  4651. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP);
  4652. }
  4653. // ggml_norm
  4654. static struct ggml_tensor * ggml_norm_impl(
  4655. struct ggml_context * ctx,
  4656. struct ggml_tensor * a,
  4657. float eps,
  4658. bool inplace) {
  4659. bool is_node = false;
  4660. if (!inplace && (a->grad)) {
  4661. GGML_ABORT("fatal error"); // TODO: implement backward
  4662. is_node = true;
  4663. }
  4664. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4665. ggml_set_op_params(result, &eps, sizeof(eps));
  4666. result->op = GGML_OP_NORM;
  4667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4668. result->src[0] = a;
  4669. return result;
  4670. }
  4671. struct ggml_tensor * ggml_norm(
  4672. struct ggml_context * ctx,
  4673. struct ggml_tensor * a,
  4674. float eps) {
  4675. return ggml_norm_impl(ctx, a, eps, false);
  4676. }
  4677. struct ggml_tensor * ggml_norm_inplace(
  4678. struct ggml_context * ctx,
  4679. struct ggml_tensor * a,
  4680. float eps) {
  4681. return ggml_norm_impl(ctx, a, eps, true);
  4682. }
  4683. // ggml_rms_norm
  4684. static struct ggml_tensor * ggml_rms_norm_impl(
  4685. struct ggml_context * ctx,
  4686. struct ggml_tensor * a,
  4687. float eps,
  4688. bool inplace) {
  4689. bool is_node = false;
  4690. if (!inplace && (a->grad)) {
  4691. is_node = true;
  4692. }
  4693. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4694. ggml_set_op_params(result, &eps, sizeof(eps));
  4695. result->op = GGML_OP_RMS_NORM;
  4696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4697. result->src[0] = a;
  4698. return result;
  4699. }
  4700. struct ggml_tensor * ggml_rms_norm(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * a,
  4703. float eps) {
  4704. return ggml_rms_norm_impl(ctx, a, eps, false);
  4705. }
  4706. struct ggml_tensor * ggml_rms_norm_inplace(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a,
  4709. float eps) {
  4710. return ggml_rms_norm_impl(ctx, a, eps, true);
  4711. }
  4712. // ggml_rms_norm_back
  4713. struct ggml_tensor * ggml_rms_norm_back(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. struct ggml_tensor * b,
  4717. float eps) {
  4718. bool is_node = false;
  4719. if (a->grad) {
  4720. // TODO: implement backward
  4721. is_node = true;
  4722. }
  4723. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4724. ggml_set_op_params(result, &eps, sizeof(eps));
  4725. result->op = GGML_OP_RMS_NORM_BACK;
  4726. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4727. result->src[0] = a;
  4728. result->src[1] = b;
  4729. return result;
  4730. }
  4731. // ggml_group_norm
  4732. static struct ggml_tensor * ggml_group_norm_impl(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a,
  4735. int n_groups,
  4736. float eps,
  4737. bool inplace) {
  4738. bool is_node = false;
  4739. if (!inplace && (a->grad)) {
  4740. GGML_ABORT("fatal error"); // TODO: implement backward
  4741. is_node = true;
  4742. }
  4743. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4744. ggml_set_op_params_i32(result, 0, n_groups);
  4745. ggml_set_op_params_f32(result, 1, eps);
  4746. result->op = GGML_OP_GROUP_NORM;
  4747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4748. result->src[0] = a;
  4749. return result;
  4750. }
  4751. struct ggml_tensor * ggml_group_norm(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a,
  4754. int n_groups,
  4755. float eps) {
  4756. return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
  4757. }
  4758. struct ggml_tensor * ggml_group_norm_inplace(
  4759. struct ggml_context * ctx,
  4760. struct ggml_tensor * a,
  4761. int n_groups,
  4762. float eps) {
  4763. return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
  4764. }
  4765. // ggml_mul_mat
  4766. struct ggml_tensor * ggml_mul_mat(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a,
  4769. struct ggml_tensor * b) {
  4770. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4771. GGML_ASSERT(!ggml_is_transposed(a));
  4772. bool is_node = false;
  4773. if (a->grad || b->grad) {
  4774. is_node = true;
  4775. }
  4776. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4777. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4778. result->op = GGML_OP_MUL_MAT;
  4779. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4780. result->src[0] = a;
  4781. result->src[1] = b;
  4782. return result;
  4783. }
  4784. void ggml_mul_mat_set_prec(
  4785. struct ggml_tensor * a,
  4786. enum ggml_prec prec) {
  4787. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4788. const int32_t prec_i32 = (int32_t) prec;
  4789. ggml_set_op_params_i32(a, 0, prec_i32);
  4790. }
  4791. // ggml_mul_mat_id
  4792. /*
  4793. c = ggml_mul_mat_id(ctx, as, b, ids);
  4794. as -> [cols, rows, n_expert]
  4795. ids -> [n_experts_used, n_tokens] (i32)
  4796. b -> [cols, n_expert_used, n_tokens]
  4797. c -> [rows, n_expert_used, n_tokens]
  4798. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4799. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4800. */
  4801. struct ggml_tensor * ggml_mul_mat_id(
  4802. struct ggml_context * ctx,
  4803. struct ggml_tensor * as,
  4804. struct ggml_tensor * b,
  4805. struct ggml_tensor * ids) {
  4806. GGML_ASSERT(!ggml_is_transposed(as));
  4807. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4808. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4809. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4810. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4811. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4812. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4813. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4814. bool is_node = false;
  4815. if (as->grad || b->grad) {
  4816. is_node = true;
  4817. }
  4818. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4819. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4820. result->op = GGML_OP_MUL_MAT_ID;
  4821. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4822. result->src[0] = as;
  4823. result->src[1] = b;
  4824. result->src[2] = ids;
  4825. return result;
  4826. }
  4827. // ggml_out_prod
  4828. struct ggml_tensor * ggml_out_prod(
  4829. struct ggml_context * ctx,
  4830. struct ggml_tensor * a,
  4831. struct ggml_tensor * b) {
  4832. GGML_ASSERT(ggml_can_out_prod(a, b));
  4833. GGML_ASSERT(!ggml_is_transposed(a));
  4834. bool is_node = false;
  4835. if (a->grad || b->grad) {
  4836. is_node = true;
  4837. }
  4838. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4839. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4840. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4841. result->op = GGML_OP_OUT_PROD;
  4842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4843. result->src[0] = a;
  4844. result->src[1] = b;
  4845. return result;
  4846. }
  4847. // ggml_scale
  4848. static struct ggml_tensor * ggml_scale_impl(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a,
  4851. float s,
  4852. bool inplace) {
  4853. GGML_ASSERT(ggml_is_padded_1d(a));
  4854. bool is_node = false;
  4855. if (a->grad) {
  4856. is_node = true;
  4857. }
  4858. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4859. ggml_set_op_params(result, &s, sizeof(s));
  4860. result->op = GGML_OP_SCALE;
  4861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4862. result->src[0] = a;
  4863. return result;
  4864. }
  4865. struct ggml_tensor * ggml_scale(
  4866. struct ggml_context * ctx,
  4867. struct ggml_tensor * a,
  4868. float s) {
  4869. return ggml_scale_impl(ctx, a, s, false);
  4870. }
  4871. struct ggml_tensor * ggml_scale_inplace(
  4872. struct ggml_context * ctx,
  4873. struct ggml_tensor * a,
  4874. float s) {
  4875. return ggml_scale_impl(ctx, a, s, true);
  4876. }
  4877. // ggml_set
  4878. static struct ggml_tensor * ggml_set_impl(
  4879. struct ggml_context * ctx,
  4880. struct ggml_tensor * a,
  4881. struct ggml_tensor * b,
  4882. size_t nb1,
  4883. size_t nb2,
  4884. size_t nb3,
  4885. size_t offset,
  4886. bool inplace) {
  4887. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4888. bool is_node = false;
  4889. if (a->grad || b->grad) {
  4890. is_node = true;
  4891. }
  4892. // make a view of the destination
  4893. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4894. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4895. ggml_set_op_params(result, params, sizeof(params));
  4896. result->op = GGML_OP_SET;
  4897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4898. result->src[0] = a;
  4899. result->src[1] = b;
  4900. return result;
  4901. }
  4902. struct ggml_tensor * ggml_set(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. struct ggml_tensor * b,
  4906. size_t nb1,
  4907. size_t nb2,
  4908. size_t nb3,
  4909. size_t offset) {
  4910. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4911. }
  4912. struct ggml_tensor * ggml_set_inplace(
  4913. struct ggml_context * ctx,
  4914. struct ggml_tensor * a,
  4915. struct ggml_tensor * b,
  4916. size_t nb1,
  4917. size_t nb2,
  4918. size_t nb3,
  4919. size_t offset) {
  4920. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4921. }
  4922. struct ggml_tensor * ggml_set_1d(
  4923. struct ggml_context * ctx,
  4924. struct ggml_tensor * a,
  4925. struct ggml_tensor * b,
  4926. size_t offset) {
  4927. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4928. }
  4929. struct ggml_tensor * ggml_set_1d_inplace(
  4930. struct ggml_context * ctx,
  4931. struct ggml_tensor * a,
  4932. struct ggml_tensor * b,
  4933. size_t offset) {
  4934. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4935. }
  4936. struct ggml_tensor * ggml_set_2d(
  4937. struct ggml_context * ctx,
  4938. struct ggml_tensor * a,
  4939. struct ggml_tensor * b,
  4940. size_t nb1,
  4941. size_t offset) {
  4942. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4943. }
  4944. struct ggml_tensor * ggml_set_2d_inplace(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. struct ggml_tensor * b,
  4948. size_t nb1,
  4949. size_t offset) {
  4950. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4951. }
  4952. // ggml_cpy
  4953. static struct ggml_tensor * ggml_cpy_impl(
  4954. struct ggml_context * ctx,
  4955. struct ggml_tensor * a,
  4956. struct ggml_tensor * b) {
  4957. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4958. bool is_node = false;
  4959. if (a->grad || b->grad) {
  4960. // inplace is false and either one have a grad
  4961. is_node = true;
  4962. }
  4963. // make a view of the destination
  4964. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4965. if (strlen(b->name) > 0) {
  4966. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4967. } else {
  4968. ggml_format_name(result, "%s (copy)", a->name);
  4969. }
  4970. result->op = GGML_OP_CPY;
  4971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4972. result->src[0] = a;
  4973. result->src[1] = b;
  4974. return result;
  4975. }
  4976. struct ggml_tensor * ggml_cpy(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. struct ggml_tensor * b) {
  4980. return ggml_cpy_impl(ctx, a, b);
  4981. }
  4982. struct ggml_tensor * ggml_cast(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. enum ggml_type type) {
  4986. bool is_node = false;
  4987. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4988. ggml_format_name(result, "%s (copy)", a->name);
  4989. result->op = GGML_OP_CPY;
  4990. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4991. result->src[0] = a;
  4992. result->src[1] = result;
  4993. return result;
  4994. }
  4995. // ggml_cont
  4996. static struct ggml_tensor * ggml_cont_impl(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * a) {
  4999. bool is_node = false;
  5000. if (a->grad) {
  5001. is_node = true;
  5002. }
  5003. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5004. ggml_format_name(result, "%s (cont)", a->name);
  5005. result->op = GGML_OP_CONT;
  5006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5007. result->src[0] = a;
  5008. return result;
  5009. }
  5010. struct ggml_tensor * ggml_cont(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a) {
  5013. return ggml_cont_impl(ctx, a);
  5014. }
  5015. // make contiguous, with new shape
  5016. GGML_API struct ggml_tensor * ggml_cont_1d(
  5017. struct ggml_context * ctx,
  5018. struct ggml_tensor * a,
  5019. int64_t ne0) {
  5020. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  5021. }
  5022. GGML_API struct ggml_tensor * ggml_cont_2d(
  5023. struct ggml_context * ctx,
  5024. struct ggml_tensor * a,
  5025. int64_t ne0,
  5026. int64_t ne1) {
  5027. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  5028. }
  5029. GGML_API struct ggml_tensor * ggml_cont_3d(
  5030. struct ggml_context * ctx,
  5031. struct ggml_tensor * a,
  5032. int64_t ne0,
  5033. int64_t ne1,
  5034. int64_t ne2) {
  5035. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  5036. }
  5037. struct ggml_tensor * ggml_cont_4d(
  5038. struct ggml_context * ctx,
  5039. struct ggml_tensor * a,
  5040. int64_t ne0,
  5041. int64_t ne1,
  5042. int64_t ne2,
  5043. int64_t ne3) {
  5044. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  5045. bool is_node = false;
  5046. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5047. ggml_format_name(result, "%s (cont)", a->name);
  5048. result->op = GGML_OP_CONT;
  5049. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5050. result->src[0] = a;
  5051. return result;
  5052. }
  5053. // ggml_reshape
  5054. struct ggml_tensor * ggml_reshape(
  5055. struct ggml_context * ctx,
  5056. struct ggml_tensor * a,
  5057. struct ggml_tensor * b) {
  5058. GGML_ASSERT(ggml_is_contiguous(a));
  5059. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  5060. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5061. bool is_node = false;
  5062. if (a->grad) {
  5063. is_node = true;
  5064. }
  5065. if (b->grad) {
  5066. // gradient propagation is not supported
  5067. //GGML_ABORT("fatal error");
  5068. }
  5069. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  5070. ggml_format_name(result, "%s (reshaped)", a->name);
  5071. result->op = GGML_OP_RESHAPE;
  5072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5073. result->src[0] = a;
  5074. return result;
  5075. }
  5076. struct ggml_tensor * ggml_reshape_1d(
  5077. struct ggml_context * ctx,
  5078. struct ggml_tensor * a,
  5079. int64_t ne0) {
  5080. GGML_ASSERT(ggml_is_contiguous(a));
  5081. GGML_ASSERT(ggml_nelements(a) == ne0);
  5082. bool is_node = false;
  5083. if (a->grad) {
  5084. is_node = true;
  5085. }
  5086. const int64_t ne[1] = { ne0 };
  5087. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5088. ggml_format_name(result, "%s (reshaped)", a->name);
  5089. result->op = GGML_OP_RESHAPE;
  5090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5091. result->src[0] = a;
  5092. return result;
  5093. }
  5094. struct ggml_tensor * ggml_reshape_2d(
  5095. struct ggml_context * ctx,
  5096. struct ggml_tensor * a,
  5097. int64_t ne0,
  5098. int64_t ne1) {
  5099. GGML_ASSERT(ggml_is_contiguous(a));
  5100. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5101. bool is_node = false;
  5102. if (a->grad) {
  5103. is_node = true;
  5104. }
  5105. const int64_t ne[2] = { ne0, ne1 };
  5106. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5107. ggml_format_name(result, "%s (reshaped)", a->name);
  5108. result->op = GGML_OP_RESHAPE;
  5109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5110. result->src[0] = a;
  5111. return result;
  5112. }
  5113. struct ggml_tensor * ggml_reshape_3d(
  5114. struct ggml_context * ctx,
  5115. struct ggml_tensor * a,
  5116. int64_t ne0,
  5117. int64_t ne1,
  5118. int64_t ne2) {
  5119. GGML_ASSERT(ggml_is_contiguous(a));
  5120. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5121. bool is_node = false;
  5122. if (a->grad) {
  5123. is_node = true;
  5124. }
  5125. const int64_t ne[3] = { ne0, ne1, ne2 };
  5126. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5127. ggml_format_name(result, "%s (reshaped)", a->name);
  5128. result->op = GGML_OP_RESHAPE;
  5129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5130. result->src[0] = a;
  5131. return result;
  5132. }
  5133. struct ggml_tensor * ggml_reshape_4d(
  5134. struct ggml_context * ctx,
  5135. struct ggml_tensor * a,
  5136. int64_t ne0,
  5137. int64_t ne1,
  5138. int64_t ne2,
  5139. int64_t ne3) {
  5140. GGML_ASSERT(ggml_is_contiguous(a));
  5141. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5142. bool is_node = false;
  5143. if (a->grad) {
  5144. is_node = true;
  5145. }
  5146. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5147. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5148. ggml_format_name(result, "%s (reshaped)", a->name);
  5149. result->op = GGML_OP_RESHAPE;
  5150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5151. result->src[0] = a;
  5152. return result;
  5153. }
  5154. static struct ggml_tensor * ggml_view_impl(
  5155. struct ggml_context * ctx,
  5156. struct ggml_tensor * a,
  5157. int n_dims,
  5158. const int64_t * ne,
  5159. size_t offset) {
  5160. bool is_node = false;
  5161. if (a->grad) {
  5162. is_node = true;
  5163. }
  5164. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5165. ggml_format_name(result, "%s (view)", a->name);
  5166. ggml_set_op_params(result, &offset, sizeof(offset));
  5167. result->op = GGML_OP_VIEW;
  5168. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5169. result->src[0] = a;
  5170. return result;
  5171. }
  5172. // ggml_view_1d
  5173. struct ggml_tensor * ggml_view_1d(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * a,
  5176. int64_t ne0,
  5177. size_t offset) {
  5178. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5179. return result;
  5180. }
  5181. // ggml_view_2d
  5182. struct ggml_tensor * ggml_view_2d(
  5183. struct ggml_context * ctx,
  5184. struct ggml_tensor * a,
  5185. int64_t ne0,
  5186. int64_t ne1,
  5187. size_t nb1,
  5188. size_t offset) {
  5189. const int64_t ne[2] = { ne0, ne1 };
  5190. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5191. result->nb[1] = nb1;
  5192. result->nb[2] = result->nb[1]*ne1;
  5193. result->nb[3] = result->nb[2];
  5194. return result;
  5195. }
  5196. // ggml_view_3d
  5197. struct ggml_tensor * ggml_view_3d(
  5198. struct ggml_context * ctx,
  5199. struct ggml_tensor * a,
  5200. int64_t ne0,
  5201. int64_t ne1,
  5202. int64_t ne2,
  5203. size_t nb1,
  5204. size_t nb2,
  5205. size_t offset) {
  5206. const int64_t ne[3] = { ne0, ne1, ne2 };
  5207. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5208. result->nb[1] = nb1;
  5209. result->nb[2] = nb2;
  5210. result->nb[3] = result->nb[2]*ne2;
  5211. return result;
  5212. }
  5213. // ggml_view_4d
  5214. struct ggml_tensor * ggml_view_4d(
  5215. struct ggml_context * ctx,
  5216. struct ggml_tensor * a,
  5217. int64_t ne0,
  5218. int64_t ne1,
  5219. int64_t ne2,
  5220. int64_t ne3,
  5221. size_t nb1,
  5222. size_t nb2,
  5223. size_t nb3,
  5224. size_t offset) {
  5225. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5226. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5227. result->nb[1] = nb1;
  5228. result->nb[2] = nb2;
  5229. result->nb[3] = nb3;
  5230. return result;
  5231. }
  5232. // ggml_permute
  5233. struct ggml_tensor * ggml_permute(
  5234. struct ggml_context * ctx,
  5235. struct ggml_tensor * a,
  5236. int axis0,
  5237. int axis1,
  5238. int axis2,
  5239. int axis3) {
  5240. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5241. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5242. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5243. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5244. GGML_ASSERT(axis0 != axis1);
  5245. GGML_ASSERT(axis0 != axis2);
  5246. GGML_ASSERT(axis0 != axis3);
  5247. GGML_ASSERT(axis1 != axis2);
  5248. GGML_ASSERT(axis1 != axis3);
  5249. GGML_ASSERT(axis2 != axis3);
  5250. bool is_node = false;
  5251. if (a->grad) {
  5252. is_node = true;
  5253. }
  5254. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5255. ggml_format_name(result, "%s (permuted)", a->name);
  5256. int ne[GGML_MAX_DIMS];
  5257. int nb[GGML_MAX_DIMS];
  5258. ne[axis0] = a->ne[0];
  5259. ne[axis1] = a->ne[1];
  5260. ne[axis2] = a->ne[2];
  5261. ne[axis3] = a->ne[3];
  5262. nb[axis0] = a->nb[0];
  5263. nb[axis1] = a->nb[1];
  5264. nb[axis2] = a->nb[2];
  5265. nb[axis3] = a->nb[3];
  5266. result->ne[0] = ne[0];
  5267. result->ne[1] = ne[1];
  5268. result->ne[2] = ne[2];
  5269. result->ne[3] = ne[3];
  5270. result->nb[0] = nb[0];
  5271. result->nb[1] = nb[1];
  5272. result->nb[2] = nb[2];
  5273. result->nb[3] = nb[3];
  5274. result->op = GGML_OP_PERMUTE;
  5275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5276. result->src[0] = a;
  5277. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5278. ggml_set_op_params(result, params, sizeof(params));
  5279. return result;
  5280. }
  5281. // ggml_transpose
  5282. struct ggml_tensor * ggml_transpose(
  5283. struct ggml_context * ctx,
  5284. struct ggml_tensor * a) {
  5285. bool is_node = false;
  5286. if (a->grad) {
  5287. is_node = true;
  5288. }
  5289. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5290. ggml_format_name(result, "%s (transposed)", a->name);
  5291. result->ne[0] = a->ne[1];
  5292. result->ne[1] = a->ne[0];
  5293. result->nb[0] = a->nb[1];
  5294. result->nb[1] = a->nb[0];
  5295. result->op = GGML_OP_TRANSPOSE;
  5296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5297. result->src[0] = a;
  5298. return result;
  5299. }
  5300. // ggml_get_rows
  5301. struct ggml_tensor * ggml_get_rows(
  5302. struct ggml_context * ctx,
  5303. struct ggml_tensor * a,
  5304. struct ggml_tensor * b) {
  5305. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5306. GGML_ASSERT(b->ne[3] == 1);
  5307. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5308. bool is_node = false;
  5309. if (a->grad || b->grad) {
  5310. is_node = true;
  5311. }
  5312. // TODO: implement non F32 return
  5313. enum ggml_type type = GGML_TYPE_F32;
  5314. if (a->type == GGML_TYPE_I32) {
  5315. type = a->type;
  5316. }
  5317. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  5318. result->op = GGML_OP_GET_ROWS;
  5319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5320. result->src[0] = a;
  5321. result->src[1] = b;
  5322. return result;
  5323. }
  5324. // ggml_get_rows_back
  5325. struct ggml_tensor * ggml_get_rows_back(
  5326. struct ggml_context * ctx,
  5327. struct ggml_tensor * a,
  5328. struct ggml_tensor * b,
  5329. struct ggml_tensor * c) {
  5330. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5331. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5332. bool is_node = false;
  5333. if (a->grad || b->grad) {
  5334. is_node = true;
  5335. }
  5336. // TODO: implement non F32 return
  5337. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5338. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5339. result->op = GGML_OP_GET_ROWS_BACK;
  5340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5341. result->src[0] = a;
  5342. result->src[1] = b;
  5343. return result;
  5344. }
  5345. // ggml_diag
  5346. struct ggml_tensor * ggml_diag(
  5347. struct ggml_context * ctx,
  5348. struct ggml_tensor * a) {
  5349. GGML_ASSERT(a->ne[1] == 1);
  5350. bool is_node = false;
  5351. if (a->grad) {
  5352. is_node = true;
  5353. }
  5354. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5355. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5356. result->op = GGML_OP_DIAG;
  5357. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5358. result->src[0] = a;
  5359. return result;
  5360. }
  5361. // ggml_diag_mask_inf
  5362. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5363. struct ggml_context * ctx,
  5364. struct ggml_tensor * a,
  5365. int n_past,
  5366. bool inplace) {
  5367. bool is_node = false;
  5368. if (a->grad) {
  5369. is_node = true;
  5370. }
  5371. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5372. int32_t params[] = { n_past };
  5373. ggml_set_op_params(result, params, sizeof(params));
  5374. result->op = GGML_OP_DIAG_MASK_INF;
  5375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5376. result->src[0] = a;
  5377. return result;
  5378. }
  5379. struct ggml_tensor * ggml_diag_mask_inf(
  5380. struct ggml_context * ctx,
  5381. struct ggml_tensor * a,
  5382. int n_past) {
  5383. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5384. }
  5385. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5386. struct ggml_context * ctx,
  5387. struct ggml_tensor * a,
  5388. int n_past) {
  5389. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5390. }
  5391. // ggml_diag_mask_zero
  5392. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5393. struct ggml_context * ctx,
  5394. struct ggml_tensor * a,
  5395. int n_past,
  5396. bool inplace) {
  5397. bool is_node = false;
  5398. if (a->grad) {
  5399. is_node = true;
  5400. }
  5401. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5402. int32_t params[] = { n_past };
  5403. ggml_set_op_params(result, params, sizeof(params));
  5404. result->op = GGML_OP_DIAG_MASK_ZERO;
  5405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5406. result->src[0] = a;
  5407. return result;
  5408. }
  5409. struct ggml_tensor * ggml_diag_mask_zero(
  5410. struct ggml_context * ctx,
  5411. struct ggml_tensor * a,
  5412. int n_past) {
  5413. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5414. }
  5415. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5416. struct ggml_context * ctx,
  5417. struct ggml_tensor * a,
  5418. int n_past) {
  5419. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5420. }
  5421. // ggml_soft_max
  5422. static struct ggml_tensor * ggml_soft_max_impl(
  5423. struct ggml_context * ctx,
  5424. struct ggml_tensor * a,
  5425. struct ggml_tensor * mask,
  5426. float scale,
  5427. float max_bias,
  5428. bool inplace) {
  5429. GGML_ASSERT(ggml_is_contiguous(a));
  5430. if (mask) {
  5431. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5432. GGML_ASSERT(ggml_is_contiguous(mask));
  5433. GGML_ASSERT(ggml_is_matrix(mask));
  5434. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5435. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5436. }
  5437. if (max_bias > 0.0f) {
  5438. GGML_ASSERT(mask);
  5439. }
  5440. bool is_node = false;
  5441. if (a->grad) {
  5442. is_node = true;
  5443. }
  5444. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5445. float params[] = { scale, max_bias };
  5446. ggml_set_op_params(result, params, sizeof(params));
  5447. result->op = GGML_OP_SOFT_MAX;
  5448. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5449. result->src[0] = a;
  5450. result->src[1] = mask;
  5451. return result;
  5452. }
  5453. struct ggml_tensor * ggml_soft_max(
  5454. struct ggml_context * ctx,
  5455. struct ggml_tensor * a) {
  5456. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5457. }
  5458. struct ggml_tensor * ggml_soft_max_inplace(
  5459. struct ggml_context * ctx,
  5460. struct ggml_tensor * a) {
  5461. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5462. }
  5463. struct ggml_tensor * ggml_soft_max_ext(
  5464. struct ggml_context * ctx,
  5465. struct ggml_tensor * a,
  5466. struct ggml_tensor * mask,
  5467. float scale,
  5468. float max_bias) {
  5469. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5470. }
  5471. // ggml_soft_max_back
  5472. static struct ggml_tensor * ggml_soft_max_back_impl(
  5473. struct ggml_context * ctx,
  5474. struct ggml_tensor * a,
  5475. struct ggml_tensor * b,
  5476. bool inplace) {
  5477. bool is_node = false;
  5478. if (a->grad || b->grad) {
  5479. is_node = true; // TODO : implement backward pass
  5480. }
  5481. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5482. result->op = GGML_OP_SOFT_MAX_BACK;
  5483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5484. result->src[0] = a;
  5485. result->src[1] = b;
  5486. return result;
  5487. }
  5488. struct ggml_tensor * ggml_soft_max_back(
  5489. struct ggml_context * ctx,
  5490. struct ggml_tensor * a,
  5491. struct ggml_tensor * b) {
  5492. return ggml_soft_max_back_impl(ctx, a, b, false);
  5493. }
  5494. struct ggml_tensor * ggml_soft_max_back_inplace(
  5495. struct ggml_context * ctx,
  5496. struct ggml_tensor * a,
  5497. struct ggml_tensor * b) {
  5498. return ggml_soft_max_back_impl(ctx, a, b, true);
  5499. }
  5500. // ggml_rope
  5501. static struct ggml_tensor * ggml_rope_impl(
  5502. struct ggml_context * ctx,
  5503. struct ggml_tensor * a,
  5504. struct ggml_tensor * b,
  5505. struct ggml_tensor * c,
  5506. int n_dims,
  5507. int mode,
  5508. int n_ctx_orig,
  5509. float freq_base,
  5510. float freq_scale,
  5511. float ext_factor,
  5512. float attn_factor,
  5513. float beta_fast,
  5514. float beta_slow,
  5515. bool inplace) {
  5516. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5517. GGML_ASSERT(ggml_is_vector(b));
  5518. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5519. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5520. if (c) {
  5521. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5522. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5523. }
  5524. bool is_node = false;
  5525. if (a->grad) {
  5526. is_node = true;
  5527. }
  5528. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5529. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5530. memcpy(params + 5, &freq_base, sizeof(float));
  5531. memcpy(params + 6, &freq_scale, sizeof(float));
  5532. memcpy(params + 7, &ext_factor, sizeof(float));
  5533. memcpy(params + 8, &attn_factor, sizeof(float));
  5534. memcpy(params + 9, &beta_fast, sizeof(float));
  5535. memcpy(params + 10, &beta_slow, sizeof(float));
  5536. ggml_set_op_params(result, params, sizeof(params));
  5537. result->op = GGML_OP_ROPE;
  5538. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5539. result->src[0] = a;
  5540. result->src[1] = b;
  5541. result->src[2] = c;
  5542. return result;
  5543. }
  5544. struct ggml_tensor * ggml_rope(
  5545. struct ggml_context * ctx,
  5546. struct ggml_tensor * a,
  5547. struct ggml_tensor * b,
  5548. int n_dims,
  5549. int mode) {
  5550. return ggml_rope_impl(
  5551. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5552. );
  5553. }
  5554. struct ggml_tensor * ggml_rope_inplace(
  5555. struct ggml_context * ctx,
  5556. struct ggml_tensor * a,
  5557. struct ggml_tensor * b,
  5558. int n_dims,
  5559. int mode) {
  5560. return ggml_rope_impl(
  5561. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5562. );
  5563. }
  5564. struct ggml_tensor * ggml_rope_ext(
  5565. struct ggml_context * ctx,
  5566. struct ggml_tensor * a,
  5567. struct ggml_tensor * b,
  5568. struct ggml_tensor * c,
  5569. int n_dims,
  5570. int mode,
  5571. int n_ctx_orig,
  5572. float freq_base,
  5573. float freq_scale,
  5574. float ext_factor,
  5575. float attn_factor,
  5576. float beta_fast,
  5577. float beta_slow) {
  5578. return ggml_rope_impl(
  5579. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5580. ext_factor, attn_factor, beta_fast, beta_slow, false
  5581. );
  5582. }
  5583. struct ggml_tensor * ggml_rope_ext_inplace(
  5584. struct ggml_context * ctx,
  5585. struct ggml_tensor * a,
  5586. struct ggml_tensor * b,
  5587. struct ggml_tensor * c,
  5588. int n_dims,
  5589. int mode,
  5590. int n_ctx_orig,
  5591. float freq_base,
  5592. float freq_scale,
  5593. float ext_factor,
  5594. float attn_factor,
  5595. float beta_fast,
  5596. float beta_slow) {
  5597. return ggml_rope_impl(
  5598. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5599. ext_factor, attn_factor, beta_fast, beta_slow, true
  5600. );
  5601. }
  5602. struct ggml_tensor * ggml_rope_custom(
  5603. struct ggml_context * ctx,
  5604. struct ggml_tensor * a,
  5605. struct ggml_tensor * b,
  5606. int n_dims,
  5607. int mode,
  5608. int n_ctx_orig,
  5609. float freq_base,
  5610. float freq_scale,
  5611. float ext_factor,
  5612. float attn_factor,
  5613. float beta_fast,
  5614. float beta_slow) {
  5615. return ggml_rope_impl(
  5616. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5617. ext_factor, attn_factor, beta_fast, beta_slow, false
  5618. );
  5619. }
  5620. struct ggml_tensor * ggml_rope_custom_inplace(
  5621. struct ggml_context * ctx,
  5622. struct ggml_tensor * a,
  5623. struct ggml_tensor * b,
  5624. int n_dims,
  5625. int mode,
  5626. int n_ctx_orig,
  5627. float freq_base,
  5628. float freq_scale,
  5629. float ext_factor,
  5630. float attn_factor,
  5631. float beta_fast,
  5632. float beta_slow) {
  5633. return ggml_rope_impl(
  5634. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5635. ext_factor, attn_factor, beta_fast, beta_slow, true
  5636. );
  5637. }
  5638. // ggml_rope_back
  5639. struct ggml_tensor * ggml_rope_back(
  5640. struct ggml_context * ctx,
  5641. struct ggml_tensor * a,
  5642. struct ggml_tensor * b,
  5643. struct ggml_tensor * c,
  5644. int n_dims,
  5645. int mode,
  5646. int n_ctx_orig,
  5647. float freq_base,
  5648. float freq_scale,
  5649. float ext_factor,
  5650. float attn_factor,
  5651. float beta_fast,
  5652. float beta_slow) {
  5653. GGML_ASSERT(ggml_is_vector(b));
  5654. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5655. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5656. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5657. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5658. bool is_node = false;
  5659. if (a->grad) {
  5660. is_node = false; // TODO: implement backward
  5661. }
  5662. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5663. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5664. memcpy(params + 5, &freq_base, sizeof(float));
  5665. memcpy(params + 6, &freq_scale, sizeof(float));
  5666. memcpy(params + 7, &ext_factor, sizeof(float));
  5667. memcpy(params + 8, &attn_factor, sizeof(float));
  5668. memcpy(params + 9, &beta_fast, sizeof(float));
  5669. memcpy(params + 10, &beta_slow, sizeof(float));
  5670. ggml_set_op_params(result, params, sizeof(params));
  5671. result->op = GGML_OP_ROPE_BACK;
  5672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5673. result->src[0] = a;
  5674. result->src[1] = b;
  5675. return result;
  5676. }
  5677. // ggml_clamp
  5678. struct ggml_tensor * ggml_clamp(
  5679. struct ggml_context * ctx,
  5680. struct ggml_tensor * a,
  5681. float min,
  5682. float max) {
  5683. bool is_node = false;
  5684. if (a->grad) {
  5685. GGML_ABORT("fatal error"); // TODO: implement backward
  5686. is_node = true;
  5687. }
  5688. // TODO: when implement backward, fix this:
  5689. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5690. float params[] = { min, max };
  5691. ggml_set_op_params(result, params, sizeof(params));
  5692. result->op = GGML_OP_CLAMP;
  5693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5694. result->src[0] = a;
  5695. return result;
  5696. }
  5697. // ggml_conv_1d
  5698. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5699. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5700. }
  5701. GGML_API struct ggml_tensor * ggml_conv_1d(
  5702. struct ggml_context * ctx,
  5703. struct ggml_tensor * a,
  5704. struct ggml_tensor * b,
  5705. int s0,
  5706. int p0,
  5707. int d0) {
  5708. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5709. struct ggml_tensor * result =
  5710. ggml_mul_mat(ctx,
  5711. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5712. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5713. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5714. return result;
  5715. }
  5716. // ggml_conv_1d_ph
  5717. struct ggml_tensor* ggml_conv_1d_ph(
  5718. struct ggml_context * ctx,
  5719. struct ggml_tensor * a,
  5720. struct ggml_tensor * b,
  5721. int s,
  5722. int d) {
  5723. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5724. }
  5725. // ggml_conv_transpose_1d
  5726. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5727. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5728. }
  5729. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5730. struct ggml_context * ctx,
  5731. struct ggml_tensor * a,
  5732. struct ggml_tensor * b,
  5733. int s0,
  5734. int p0,
  5735. int d0) {
  5736. GGML_ASSERT(ggml_is_matrix(b));
  5737. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5738. GGML_ASSERT(a->ne[3] == 1);
  5739. GGML_ASSERT(p0 == 0);
  5740. GGML_ASSERT(d0 == 1);
  5741. bool is_node = false;
  5742. if (a->grad || b->grad) {
  5743. GGML_ABORT("fatal error"); // TODO: implement backward
  5744. is_node = true;
  5745. }
  5746. const int64_t ne[4] = {
  5747. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5748. a->ne[1], b->ne[2], 1,
  5749. };
  5750. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5751. int32_t params[] = { s0, p0, d0 };
  5752. ggml_set_op_params(result, params, sizeof(params));
  5753. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5755. result->src[0] = a;
  5756. result->src[1] = b;
  5757. return result;
  5758. }
  5759. // ggml_conv_depthwise
  5760. struct ggml_tensor * ggml_conv_depthwise_2d(
  5761. struct ggml_context * ctx,
  5762. struct ggml_tensor * a,
  5763. struct ggml_tensor * b,
  5764. int s0,
  5765. int s1,
  5766. int p0,
  5767. int p1,
  5768. int d0,
  5769. int d1) {
  5770. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5771. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5772. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5773. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5774. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5775. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5776. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5777. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5778. return result;
  5779. }
  5780. // ggml_conv_2d
  5781. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5782. // a: [OC,IC, KH, KW]
  5783. // b: [N, IC, IH, IW]
  5784. // result: [N, OH, OW, IC*KH*KW]
  5785. struct ggml_tensor * ggml_im2col(
  5786. struct ggml_context * ctx,
  5787. struct ggml_tensor * a,
  5788. struct ggml_tensor * b,
  5789. int s0,
  5790. int s1,
  5791. int p0,
  5792. int p1,
  5793. int d0,
  5794. int d1,
  5795. bool is_2D,
  5796. enum ggml_type dst_type) {
  5797. if(is_2D) {
  5798. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5799. } else {
  5800. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5801. GGML_ASSERT(b->ne[3] == 1);
  5802. }
  5803. bool is_node = false;
  5804. if (/*a->grad ||*/ b->grad) { // a is only used for its shape, not its data
  5805. is_node = true;
  5806. }
  5807. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5808. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5809. GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a");
  5810. GGML_ASSERT((OW > 0) && "b too small compared to a");
  5811. const int64_t ne[4] = {
  5812. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5813. OW,
  5814. is_2D ? OH : b->ne[2],
  5815. is_2D ? b->ne[3] : 1,
  5816. };
  5817. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5818. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5819. ggml_set_op_params(result, params, sizeof(params));
  5820. result->op = GGML_OP_IM2COL;
  5821. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5822. result->src[0] = a;
  5823. result->src[1] = b;
  5824. return result;
  5825. }
  5826. struct ggml_tensor * ggml_im2col_back(
  5827. struct ggml_context * ctx,
  5828. struct ggml_tensor * a,
  5829. struct ggml_tensor * b,
  5830. int64_t * ne,
  5831. int s0,
  5832. int s1,
  5833. int p0,
  5834. int p1,
  5835. int d0,
  5836. int d1,
  5837. bool is_2D) {
  5838. bool is_node = false;
  5839. if (/*a->grad ||*/ b->grad) { // a is only used for its shape, not its data
  5840. is_node = true;
  5841. }
  5842. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5843. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5844. ggml_set_op_params(result, params, sizeof(params));
  5845. result->op = GGML_OP_IM2COL_BACK;
  5846. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5847. result->src[0] = a;
  5848. result->src[1] = b;
  5849. return result;
  5850. }
  5851. // a: [OC,IC, KH, KW]
  5852. // b: [N, IC, IH, IW]
  5853. // result: [N, OC, OH, OW]
  5854. struct ggml_tensor * ggml_conv_2d(
  5855. struct ggml_context * ctx,
  5856. struct ggml_tensor * a,
  5857. struct ggml_tensor * b,
  5858. int s0,
  5859. int s1,
  5860. int p0,
  5861. int p1,
  5862. int d0,
  5863. int d1) {
  5864. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, a->type); // [N, OH, OW, IC * KH * KW]
  5865. struct ggml_tensor * result =
  5866. ggml_mul_mat(ctx,
  5867. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5868. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5869. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5870. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5871. return result;
  5872. }
  5873. // ggml_conv_2d_sk_p0
  5874. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5875. struct ggml_context * ctx,
  5876. struct ggml_tensor * a,
  5877. struct ggml_tensor * b) {
  5878. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5879. }
  5880. // ggml_conv_2d_s1_ph
  5881. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5882. struct ggml_context * ctx,
  5883. struct ggml_tensor * a,
  5884. struct ggml_tensor * b) {
  5885. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5886. }
  5887. // ggml_conv_transpose_2d_p0
  5888. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5889. return (ins - 1) * s - 2 * p + ks;
  5890. }
  5891. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5892. struct ggml_context * ctx,
  5893. struct ggml_tensor * a,
  5894. struct ggml_tensor * b,
  5895. int stride) {
  5896. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5897. bool is_node = false;
  5898. if (a->grad || b->grad) {
  5899. GGML_ABORT("fatal error"); // TODO: implement backward
  5900. is_node = true;
  5901. }
  5902. const int64_t ne[4] = {
  5903. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5904. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5905. a->ne[2], b->ne[3],
  5906. };
  5907. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5908. ggml_set_op_params_i32(result, 0, stride);
  5909. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5910. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5911. result->src[0] = a;
  5912. result->src[1] = b;
  5913. return result;
  5914. }
  5915. // ggml_pool_*
  5916. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5917. return (ins + 2 * p - ks) / s + 1;
  5918. }
  5919. // ggml_pool_1d
  5920. struct ggml_tensor * ggml_pool_1d(
  5921. struct ggml_context * ctx,
  5922. struct ggml_tensor * a,
  5923. enum ggml_op_pool op,
  5924. int k0,
  5925. int s0,
  5926. int p0) {
  5927. bool is_node = false;
  5928. if (a->grad) {
  5929. GGML_ABORT("fatal error"); // TODO: implement backward
  5930. is_node = true;
  5931. }
  5932. const int64_t ne[4] = {
  5933. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5934. a->ne[1],
  5935. a->ne[2],
  5936. a->ne[3],
  5937. };
  5938. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5939. int32_t params[] = { op, k0, s0, p0 };
  5940. ggml_set_op_params(result, params, sizeof(params));
  5941. result->op = GGML_OP_POOL_1D;
  5942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5943. result->src[0] = a;
  5944. return result;
  5945. }
  5946. // ggml_pool_2d
  5947. struct ggml_tensor * ggml_pool_2d(
  5948. struct ggml_context * ctx,
  5949. struct ggml_tensor * a,
  5950. enum ggml_op_pool op,
  5951. int k0,
  5952. int k1,
  5953. int s0,
  5954. int s1,
  5955. float p0,
  5956. float p1) {
  5957. bool is_node = false;
  5958. if (a->grad) {
  5959. is_node = true;
  5960. }
  5961. struct ggml_tensor * result;
  5962. const int64_t ne[4] = {
  5963. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5964. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5965. a->ne[2],
  5966. a->ne[3],
  5967. };
  5968. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5969. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5970. ggml_set_op_params(result, params, sizeof(params));
  5971. result->op = GGML_OP_POOL_2D;
  5972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5973. result->src[0] = a;
  5974. return result;
  5975. }
  5976. struct ggml_tensor * ggml_pool_2d_back(
  5977. struct ggml_context * ctx,
  5978. struct ggml_tensor * a,
  5979. struct ggml_tensor * af,
  5980. enum ggml_op_pool op,
  5981. int k0,
  5982. int k1,
  5983. int s0,
  5984. int s1,
  5985. float p0,
  5986. float p1) {
  5987. bool is_node = false;
  5988. if (a->grad) {
  5989. is_node = true;
  5990. }
  5991. struct ggml_tensor * result;
  5992. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, af->ne);
  5993. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5994. ggml_set_op_params(result, params, sizeof(params));
  5995. result->op = GGML_OP_POOL_2D_BACK;
  5996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5997. result->src[0] = a;
  5998. result->src[1] = af;
  5999. return result;
  6000. }
  6001. // ggml_upscale
  6002. static struct ggml_tensor * ggml_upscale_impl(
  6003. struct ggml_context * ctx,
  6004. struct ggml_tensor * a,
  6005. int ne0,
  6006. int ne1,
  6007. int ne2,
  6008. int ne3) {
  6009. bool is_node = false;
  6010. if (a->grad) {
  6011. GGML_ABORT("fatal error"); // TODO: implement backward
  6012. is_node = true;
  6013. }
  6014. GGML_ASSERT(a->ne[0] <= ne0);
  6015. GGML_ASSERT(a->ne[1] <= ne1);
  6016. GGML_ASSERT(a->ne[2] <= ne2);
  6017. GGML_ASSERT(a->ne[3] <= ne3);
  6018. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  6019. ne0,
  6020. ne1,
  6021. ne2,
  6022. ne3
  6023. );
  6024. result->op = GGML_OP_UPSCALE;
  6025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6026. result->src[0] = a;
  6027. return result;
  6028. }
  6029. struct ggml_tensor * ggml_upscale(
  6030. struct ggml_context * ctx,
  6031. struct ggml_tensor * a,
  6032. int scale_factor) {
  6033. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  6034. }
  6035. struct ggml_tensor * ggml_upscale_ext(
  6036. struct ggml_context * ctx,
  6037. struct ggml_tensor * a,
  6038. int ne0,
  6039. int ne1,
  6040. int ne2,
  6041. int ne3) {
  6042. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  6043. }
  6044. // ggml_pad
  6045. struct ggml_tensor * ggml_pad(
  6046. struct ggml_context * ctx,
  6047. struct ggml_tensor * a,
  6048. int p0, int p1, int p2, int p3) {
  6049. bool is_node = false;
  6050. if (a->grad) {
  6051. GGML_ABORT("fatal error"); // TODO: implement backward
  6052. is_node = true;
  6053. }
  6054. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  6055. a->ne[0] + p0,
  6056. a->ne[1] + p1,
  6057. a->ne[2] + p2,
  6058. a->ne[3] + p3);
  6059. result->op = GGML_OP_PAD;
  6060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6061. result->src[0] = a;
  6062. return result;
  6063. }
  6064. // ggml_arange
  6065. struct ggml_tensor * ggml_arange(
  6066. struct ggml_context * ctx,
  6067. float start,
  6068. float stop,
  6069. float step) {
  6070. GGML_ASSERT(stop > start);
  6071. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  6072. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  6073. result->op = GGML_OP_ARANGE;
  6074. ggml_set_op_params_f32(result, 0, start);
  6075. ggml_set_op_params_f32(result, 1, stop);
  6076. ggml_set_op_params_f32(result, 2, step);
  6077. return result;
  6078. }
  6079. // ggml_timestep_embedding
  6080. struct ggml_tensor * ggml_timestep_embedding(
  6081. struct ggml_context * ctx,
  6082. struct ggml_tensor * timesteps,
  6083. int dim,
  6084. int max_period) {
  6085. bool is_node = false;
  6086. if (timesteps->grad) {
  6087. GGML_ABORT("fatal error"); // TODO: implement backward
  6088. is_node = true;
  6089. }
  6090. int actual_dim = dim;
  6091. if (dim % 2 != 0) {
  6092. actual_dim = dim + 1;
  6093. }
  6094. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  6095. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  6096. ggml_set_op_params_i32(result, 0, dim);
  6097. ggml_set_op_params_i32(result, 1, max_period);
  6098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6099. result->src[0] = timesteps;
  6100. return result;
  6101. }
  6102. // ggml_argsort
  6103. struct ggml_tensor * ggml_argsort(
  6104. struct ggml_context * ctx,
  6105. struct ggml_tensor * a,
  6106. enum ggml_sort_order order) {
  6107. bool is_node = false;
  6108. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  6109. ggml_set_op_params_i32(result, 0, (int32_t) order);
  6110. result->op = GGML_OP_ARGSORT;
  6111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6112. result->src[0] = a;
  6113. return result;
  6114. }
  6115. // ggml_top_k
  6116. struct ggml_tensor * ggml_top_k(
  6117. struct ggml_context * ctx,
  6118. struct ggml_tensor * a,
  6119. int k) {
  6120. GGML_ASSERT(a->ne[0] >= k);
  6121. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  6122. result = ggml_view_4d(ctx, result,
  6123. k, result->ne[1], result->ne[2], result->ne[3],
  6124. result->nb[1], result->nb[2], result->nb[3],
  6125. 0);
  6126. return result;
  6127. }
  6128. // ggml_flash_attn_ext
  6129. struct ggml_tensor * ggml_flash_attn_ext(
  6130. struct ggml_context * ctx,
  6131. struct ggml_tensor * q,
  6132. struct ggml_tensor * k,
  6133. struct ggml_tensor * v,
  6134. struct ggml_tensor * mask,
  6135. float scale,
  6136. float max_bias,
  6137. float logit_softcap) {
  6138. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6139. // TODO: check if vT can be multiplied by (k*qT)
  6140. if (mask) {
  6141. GGML_ASSERT(ggml_is_contiguous(mask));
  6142. GGML_ASSERT(mask->ne[2] == 1);
  6143. GGML_ASSERT(mask->ne[3] == 1);
  6144. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  6145. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  6146. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  6147. }
  6148. if (max_bias > 0.0f) {
  6149. GGML_ASSERT(mask);
  6150. }
  6151. bool is_node = false;
  6152. if (q->grad || k->grad || v->grad) {
  6153. is_node = true;
  6154. }
  6155. // permute(0, 2, 1, 3)
  6156. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  6157. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6158. float params[] = { scale, max_bias, logit_softcap };
  6159. ggml_set_op_params(result, params, sizeof(params));
  6160. result->op = GGML_OP_FLASH_ATTN_EXT;
  6161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6162. result->src[0] = q;
  6163. result->src[1] = k;
  6164. result->src[2] = v;
  6165. result->src[3] = mask;
  6166. return result;
  6167. }
  6168. void ggml_flash_attn_ext_set_prec(
  6169. struct ggml_tensor * a,
  6170. enum ggml_prec prec) {
  6171. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  6172. const int32_t prec_i32 = (int32_t) prec;
  6173. ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
  6174. }
  6175. // ggml_flash_attn_back
  6176. struct ggml_tensor * ggml_flash_attn_back(
  6177. struct ggml_context * ctx,
  6178. struct ggml_tensor * q,
  6179. struct ggml_tensor * k,
  6180. struct ggml_tensor * v,
  6181. struct ggml_tensor * d,
  6182. bool masked) {
  6183. GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
  6184. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6185. // TODO: check if vT can be multiplied by (k*qT)
  6186. // d shape [D,N,ne2,ne3]
  6187. // q shape [D,N,ne2,ne3]
  6188. // k shape [D,M,kvne2,ne3]
  6189. // v shape [M,D,kvne2,ne3]
  6190. const int64_t D = q->ne[0];
  6191. const int64_t N = q->ne[1];
  6192. const int64_t M = k->ne[1];
  6193. const int64_t ne2 = q->ne[2];
  6194. const int64_t ne3 = q->ne[3];
  6195. const int64_t kvne2 = k->ne[2];
  6196. GGML_ASSERT(k->ne[0] == D);
  6197. GGML_ASSERT(v->ne[0] == M);
  6198. GGML_ASSERT(v->ne[1] == D);
  6199. GGML_ASSERT(d->ne[0] == D);
  6200. GGML_ASSERT(d->ne[1] == N);
  6201. GGML_ASSERT(k->ne[2] == kvne2);
  6202. GGML_ASSERT(k->ne[3] == ne3);
  6203. GGML_ASSERT(v->ne[2] == kvne2);
  6204. GGML_ASSERT(v->ne[3] == ne3);
  6205. GGML_ASSERT(d->ne[2] == ne2);
  6206. GGML_ASSERT(d->ne[3] == ne3);
  6207. GGML_ASSERT(ne2 % kvne2 == 0);
  6208. bool is_node = false;
  6209. if (q->grad || k->grad || v->grad) {
  6210. // when using this operation (in backwards pass) these grads are set.
  6211. // we don't want to create (big) grad of our result, so is_node is false.
  6212. is_node = false;
  6213. }
  6214. // store gradients of q, k and v as continuous tensors concatenated in result.
  6215. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  6216. const int64_t elem_q = ggml_nelements(q);
  6217. const int64_t elem_k = ggml_nelements(k);
  6218. const int64_t elem_v = ggml_nelements(v);
  6219. enum ggml_type result_type = GGML_TYPE_F32;
  6220. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  6221. const size_t tsize = ggml_type_size(result_type);
  6222. const size_t offs_q = 0;
  6223. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  6224. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  6225. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  6226. const size_t nelements = (end + tsize - 1)/tsize;
  6227. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  6228. int32_t masked_i = masked ? 1 : 0;
  6229. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6230. result->op = GGML_OP_FLASH_ATTN_BACK;
  6231. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6232. result->src[0] = q;
  6233. result->src[1] = k;
  6234. result->src[2] = v;
  6235. result->src[3] = d;
  6236. return result;
  6237. }
  6238. // ggml_ssm_conv
  6239. struct ggml_tensor * ggml_ssm_conv(
  6240. struct ggml_context * ctx,
  6241. struct ggml_tensor * sx,
  6242. struct ggml_tensor * c) {
  6243. GGML_ASSERT(ggml_is_3d(sx));
  6244. GGML_ASSERT(ggml_is_matrix(c));
  6245. const int64_t d_conv = c->ne[0];
  6246. const int64_t d_inner = c->ne[1];
  6247. const int64_t n_t = sx->ne[0] - d_conv + 1; // tokens per sequence
  6248. const int64_t n_s = sx->ne[2];
  6249. // TODO: maybe support other strides than 1?
  6250. GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t);
  6251. GGML_ASSERT(sx->ne[1] == d_inner);
  6252. GGML_ASSERT(n_t >= 0);
  6253. bool is_node = false;
  6254. if (sx->grad || c->grad) {
  6255. GGML_ABORT("fatal error"); // TODO: implement
  6256. is_node = true;
  6257. }
  6258. struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_t, n_s);
  6259. result->op = GGML_OP_SSM_CONV;
  6260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6261. result->src[0] = sx;
  6262. result->src[1] = c;
  6263. return result;
  6264. }
  6265. // ggml_ssm_scan
  6266. struct ggml_tensor * ggml_ssm_scan(
  6267. struct ggml_context * ctx,
  6268. struct ggml_tensor * s,
  6269. struct ggml_tensor * x,
  6270. struct ggml_tensor * dt,
  6271. struct ggml_tensor * A,
  6272. struct ggml_tensor * B,
  6273. struct ggml_tensor * C) {
  6274. GGML_ASSERT(ggml_is_contiguous(s));
  6275. GGML_ASSERT(ggml_is_contiguous(x));
  6276. GGML_ASSERT(ggml_is_contiguous(dt));
  6277. GGML_ASSERT(ggml_is_contiguous(A));
  6278. GGML_ASSERT(ggml_is_matrix(A));
  6279. GGML_ASSERT(ggml_is_3d(B));
  6280. GGML_ASSERT(ggml_is_3d(s));
  6281. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  6282. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  6283. GGML_ASSERT(ggml_are_same_shape(x, dt));
  6284. GGML_ASSERT(ggml_are_same_shape(B, C));
  6285. {
  6286. const int64_t d_state = s->ne[0];
  6287. const int64_t d_inner = s->ne[1];
  6288. const int64_t n_seq_tokens = x->ne[1];
  6289. const int64_t n_seqs = x->ne[2];
  6290. GGML_ASSERT(s->ne[2] == n_seqs);
  6291. GGML_ASSERT(x->ne[0] == d_inner);
  6292. GGML_ASSERT(A->ne[0] == d_state);
  6293. GGML_ASSERT(A->ne[1] == d_inner);
  6294. GGML_ASSERT(B->ne[0] == d_state);
  6295. GGML_ASSERT(B->ne[1] == n_seq_tokens);
  6296. GGML_ASSERT(B->ne[2] == n_seqs);
  6297. }
  6298. bool is_node = false;
  6299. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad) {
  6300. GGML_ABORT("fatal error"); // TODO: implement
  6301. is_node = true;
  6302. }
  6303. // concatenated y + ssm_states
  6304. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  6305. result->op = GGML_OP_SSM_SCAN;
  6306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6307. result->src[0] = s;
  6308. result->src[1] = x;
  6309. result->src[2] = dt;
  6310. result->src[3] = A;
  6311. result->src[4] = B;
  6312. result->src[5] = C;
  6313. return result;
  6314. }
  6315. // ggml_win_part
  6316. struct ggml_tensor * ggml_win_part(
  6317. struct ggml_context * ctx,
  6318. struct ggml_tensor * a,
  6319. int w) {
  6320. GGML_ASSERT(a->ne[3] == 1);
  6321. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6322. bool is_node = false;
  6323. if (a->grad) {
  6324. GGML_ABORT("fatal error"); // TODO: implement backward
  6325. is_node = true;
  6326. }
  6327. // padding
  6328. const int px = (w - a->ne[1]%w)%w;
  6329. const int py = (w - a->ne[2]%w)%w;
  6330. const int npx = (px + a->ne[1])/w;
  6331. const int npy = (py + a->ne[2])/w;
  6332. const int np = npx*npy;
  6333. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6334. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6335. int32_t params[] = { npx, npy, w };
  6336. ggml_set_op_params(result, params, sizeof(params));
  6337. result->op = GGML_OP_WIN_PART;
  6338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6339. result->src[0] = a;
  6340. return result;
  6341. }
  6342. // ggml_win_unpart
  6343. struct ggml_tensor * ggml_win_unpart(
  6344. struct ggml_context * ctx,
  6345. struct ggml_tensor * a,
  6346. int w0,
  6347. int h0,
  6348. int w) {
  6349. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6350. bool is_node = false;
  6351. if (a->grad) {
  6352. GGML_ABORT("fatal error"); // TODO: implement backward
  6353. is_node = true;
  6354. }
  6355. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6356. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6357. int32_t params[] = { w };
  6358. ggml_set_op_params(result, params, sizeof(params));
  6359. result->op = GGML_OP_WIN_UNPART;
  6360. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6361. result->src[0] = a;
  6362. return result;
  6363. }
  6364. // ggml_get_rel_pos
  6365. struct ggml_tensor * ggml_get_rel_pos(
  6366. struct ggml_context * ctx,
  6367. struct ggml_tensor * a,
  6368. int qh,
  6369. int kh) {
  6370. GGML_ASSERT(qh == kh);
  6371. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6372. bool is_node = false;
  6373. if (a->grad) {
  6374. GGML_ABORT("fatal error"); // TODO: implement backward
  6375. is_node = true;
  6376. }
  6377. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6378. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6379. result->op = GGML_OP_GET_REL_POS;
  6380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6381. result->src[0] = a;
  6382. return result;
  6383. }
  6384. // ggml_add_rel_pos
  6385. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6386. struct ggml_context * ctx,
  6387. struct ggml_tensor * a,
  6388. struct ggml_tensor * pw,
  6389. struct ggml_tensor * ph,
  6390. bool inplace) {
  6391. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6392. GGML_ASSERT(ggml_is_contiguous(a));
  6393. GGML_ASSERT(ggml_is_contiguous(pw));
  6394. GGML_ASSERT(ggml_is_contiguous(ph));
  6395. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6396. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6397. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6398. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6399. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6400. bool is_node = false;
  6401. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6402. is_node = true;
  6403. }
  6404. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6405. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6406. result->op = GGML_OP_ADD_REL_POS;
  6407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6408. result->src[0] = a;
  6409. result->src[1] = pw;
  6410. result->src[2] = ph;
  6411. return result;
  6412. }
  6413. struct ggml_tensor * ggml_add_rel_pos(
  6414. struct ggml_context * ctx,
  6415. struct ggml_tensor * a,
  6416. struct ggml_tensor * pw,
  6417. struct ggml_tensor * ph) {
  6418. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6419. }
  6420. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6421. struct ggml_context * ctx,
  6422. struct ggml_tensor * a,
  6423. struct ggml_tensor * pw,
  6424. struct ggml_tensor * ph) {
  6425. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6426. }
  6427. // ggml_rwkv_wkv
  6428. struct ggml_tensor * ggml_rwkv_wkv(
  6429. struct ggml_context * ctx,
  6430. struct ggml_tensor * k,
  6431. struct ggml_tensor * v,
  6432. struct ggml_tensor * r,
  6433. struct ggml_tensor * tf,
  6434. struct ggml_tensor * td,
  6435. struct ggml_tensor * state) {
  6436. GGML_ASSERT(ggml_is_contiguous(k));
  6437. GGML_ASSERT(ggml_is_contiguous(v));
  6438. GGML_ASSERT(ggml_is_contiguous(r));
  6439. GGML_ASSERT(ggml_is_contiguous(tf));
  6440. GGML_ASSERT(ggml_is_contiguous(td));
  6441. GGML_ASSERT(ggml_is_contiguous(state));
  6442. const int64_t S = k->ne[0];
  6443. const int64_t H = k->ne[2];
  6444. const int64_t n_tokens = k->ne[3];
  6445. const int64_t n_seqs = state->ne[1];
  6446. {
  6447. GGML_ASSERT(k->ne[1] == 1);
  6448. GGML_ASSERT(v->ne[0] == 1 && v->ne[1] == S && v->ne[2] == H && v->ne[3] == n_tokens);
  6449. GGML_ASSERT(r->ne[0] == 1 && r->ne[1] == S && r->ne[2] == H && r->ne[3] == n_tokens);
  6450. // TODO: RWKV v4 and v5
  6451. GGML_ASSERT(td->ne[0] == 1 && td->ne[1] == S && td->ne[2] == H && td->ne[3] == n_tokens);
  6452. GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
  6453. }
  6454. bool is_node = false;
  6455. if (k->grad || v->grad || r->grad || tf->grad || td->grad || state->grad) {
  6456. GGML_ABORT("fatal error"); // TODO: implement backward
  6457. is_node = true;
  6458. }
  6459. // concat output and new_state
  6460. const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
  6461. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6462. result->op = GGML_OP_RWKV_WKV;
  6463. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6464. result->src[0] = k;
  6465. result->src[1] = v;
  6466. result->src[2] = r;
  6467. result->src[3] = tf;
  6468. result->src[4] = td;
  6469. result->src[5] = state;
  6470. return result;
  6471. }
  6472. // ggml_unary
  6473. static struct ggml_tensor * ggml_unary_impl(
  6474. struct ggml_context * ctx,
  6475. struct ggml_tensor * a,
  6476. enum ggml_unary_op op,
  6477. bool inplace) {
  6478. GGML_ASSERT(ggml_is_contiguous_1(a));
  6479. bool is_node = false;
  6480. if (!inplace && (a->grad)) {
  6481. is_node = true;
  6482. }
  6483. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6484. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6485. result->op = GGML_OP_UNARY;
  6486. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6487. result->src[0] = a;
  6488. return result;
  6489. }
  6490. struct ggml_tensor * ggml_unary(
  6491. struct ggml_context * ctx,
  6492. struct ggml_tensor * a,
  6493. enum ggml_unary_op op) {
  6494. return ggml_unary_impl(ctx, a, op, false);
  6495. }
  6496. struct ggml_tensor * ggml_unary_inplace(
  6497. struct ggml_context * ctx,
  6498. struct ggml_tensor * a,
  6499. enum ggml_unary_op op) {
  6500. return ggml_unary_impl(ctx, a, op, true);
  6501. }
  6502. // ggml_map_unary
  6503. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6504. struct ggml_context * ctx,
  6505. struct ggml_tensor * a,
  6506. const ggml_unary_op_f32_t fun,
  6507. bool inplace) {
  6508. bool is_node = false;
  6509. if (!inplace && a->grad) {
  6510. is_node = true;
  6511. }
  6512. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6513. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6514. result->op = GGML_OP_MAP_UNARY;
  6515. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6516. result->src[0] = a;
  6517. return result;
  6518. }
  6519. struct ggml_tensor * ggml_map_unary_f32(
  6520. struct ggml_context * ctx,
  6521. struct ggml_tensor * a,
  6522. const ggml_unary_op_f32_t fun) {
  6523. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6524. }
  6525. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6526. struct ggml_context * ctx,
  6527. struct ggml_tensor * a,
  6528. const ggml_unary_op_f32_t fun) {
  6529. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6530. }
  6531. // ggml_map_binary
  6532. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6533. struct ggml_context * ctx,
  6534. struct ggml_tensor * a,
  6535. struct ggml_tensor * b,
  6536. const ggml_binary_op_f32_t fun,
  6537. bool inplace) {
  6538. GGML_ASSERT(ggml_are_same_shape(a, b));
  6539. bool is_node = false;
  6540. if (!inplace && (a->grad || b->grad)) {
  6541. is_node = true;
  6542. }
  6543. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6544. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6545. result->op = GGML_OP_MAP_BINARY;
  6546. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6547. result->src[0] = a;
  6548. result->src[1] = b;
  6549. return result;
  6550. }
  6551. struct ggml_tensor * ggml_map_binary_f32(
  6552. struct ggml_context * ctx,
  6553. struct ggml_tensor * a,
  6554. struct ggml_tensor * b,
  6555. const ggml_binary_op_f32_t fun) {
  6556. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6557. }
  6558. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6559. struct ggml_context * ctx,
  6560. struct ggml_tensor * a,
  6561. struct ggml_tensor * b,
  6562. const ggml_binary_op_f32_t fun) {
  6563. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6564. }
  6565. // ggml_map_custom1_f32
  6566. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6567. struct ggml_context * ctx,
  6568. struct ggml_tensor * a,
  6569. const ggml_custom1_op_f32_t fun,
  6570. bool inplace) {
  6571. bool is_node = false;
  6572. if (!inplace && a->grad) {
  6573. is_node = true;
  6574. }
  6575. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6576. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6577. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6578. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6579. result->src[0] = a;
  6580. return result;
  6581. }
  6582. struct ggml_tensor * ggml_map_custom1_f32(
  6583. struct ggml_context * ctx,
  6584. struct ggml_tensor * a,
  6585. const ggml_custom1_op_f32_t fun) {
  6586. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6587. }
  6588. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6589. struct ggml_context * ctx,
  6590. struct ggml_tensor * a,
  6591. const ggml_custom1_op_f32_t fun) {
  6592. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6593. }
  6594. // ggml_map_custom2_f32
  6595. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6596. struct ggml_context * ctx,
  6597. struct ggml_tensor * a,
  6598. struct ggml_tensor * b,
  6599. const ggml_custom2_op_f32_t fun,
  6600. bool inplace) {
  6601. bool is_node = false;
  6602. if (!inplace && (a->grad || b->grad)) {
  6603. is_node = true;
  6604. }
  6605. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6606. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6607. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6608. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6609. result->src[0] = a;
  6610. result->src[1] = b;
  6611. return result;
  6612. }
  6613. struct ggml_tensor * ggml_map_custom2_f32(
  6614. struct ggml_context * ctx,
  6615. struct ggml_tensor * a,
  6616. struct ggml_tensor * b,
  6617. const ggml_custom2_op_f32_t fun) {
  6618. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6619. }
  6620. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6621. struct ggml_context * ctx,
  6622. struct ggml_tensor * a,
  6623. struct ggml_tensor * b,
  6624. const ggml_custom2_op_f32_t fun) {
  6625. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6626. }
  6627. // ggml_map_custom3_f32
  6628. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6629. struct ggml_context * ctx,
  6630. struct ggml_tensor * a,
  6631. struct ggml_tensor * b,
  6632. struct ggml_tensor * c,
  6633. const ggml_custom3_op_f32_t fun,
  6634. bool inplace) {
  6635. bool is_node = false;
  6636. if (!inplace && (a->grad || b->grad || c->grad)) {
  6637. is_node = true;
  6638. }
  6639. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6640. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6641. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6643. result->src[0] = a;
  6644. result->src[1] = b;
  6645. result->src[2] = c;
  6646. return result;
  6647. }
  6648. struct ggml_tensor * ggml_map_custom3_f32(
  6649. struct ggml_context * ctx,
  6650. struct ggml_tensor * a,
  6651. struct ggml_tensor * b,
  6652. struct ggml_tensor * c,
  6653. const ggml_custom3_op_f32_t fun) {
  6654. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6655. }
  6656. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6657. struct ggml_context * ctx,
  6658. struct ggml_tensor * a,
  6659. struct ggml_tensor * b,
  6660. struct ggml_tensor * c,
  6661. const ggml_custom3_op_f32_t fun) {
  6662. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6663. }
  6664. // ggml_map_custom1
  6665. struct ggml_map_custom1_op_params {
  6666. ggml_custom1_op_t fun;
  6667. int n_tasks;
  6668. void * userdata;
  6669. };
  6670. static struct ggml_tensor * ggml_map_custom1_impl(
  6671. struct ggml_context * ctx,
  6672. struct ggml_tensor * a,
  6673. const ggml_custom1_op_t fun,
  6674. int n_tasks,
  6675. void * userdata,
  6676. bool inplace) {
  6677. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6678. bool is_node = false;
  6679. if (!inplace && a->grad) {
  6680. is_node = true;
  6681. }
  6682. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6683. struct ggml_map_custom1_op_params params = {
  6684. /*.fun =*/ fun,
  6685. /*.n_tasks =*/ n_tasks,
  6686. /*.userdata =*/ userdata
  6687. };
  6688. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6689. result->op = GGML_OP_MAP_CUSTOM1;
  6690. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6691. result->src[0] = a;
  6692. return result;
  6693. }
  6694. struct ggml_tensor * ggml_map_custom1(
  6695. struct ggml_context * ctx,
  6696. struct ggml_tensor * a,
  6697. const ggml_custom1_op_t fun,
  6698. int n_tasks,
  6699. void * userdata) {
  6700. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6701. }
  6702. struct ggml_tensor * ggml_map_custom1_inplace(
  6703. struct ggml_context * ctx,
  6704. struct ggml_tensor * a,
  6705. const ggml_custom1_op_t fun,
  6706. int n_tasks,
  6707. void * userdata) {
  6708. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6709. }
  6710. // ggml_map_custom2
  6711. struct ggml_map_custom2_op_params {
  6712. ggml_custom2_op_t fun;
  6713. int n_tasks;
  6714. void * userdata;
  6715. };
  6716. static struct ggml_tensor * ggml_map_custom2_impl(
  6717. struct ggml_context * ctx,
  6718. struct ggml_tensor * a,
  6719. struct ggml_tensor * b,
  6720. const ggml_custom2_op_t fun,
  6721. int n_tasks,
  6722. void * userdata,
  6723. bool inplace) {
  6724. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6725. bool is_node = false;
  6726. if (!inplace && (a->grad || b->grad)) {
  6727. is_node = true;
  6728. }
  6729. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6730. struct ggml_map_custom2_op_params params = {
  6731. /*.fun =*/ fun,
  6732. /*.n_tasks =*/ n_tasks,
  6733. /*.userdata =*/ userdata
  6734. };
  6735. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6736. result->op = GGML_OP_MAP_CUSTOM2;
  6737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6738. result->src[0] = a;
  6739. result->src[1] = b;
  6740. return result;
  6741. }
  6742. struct ggml_tensor * ggml_map_custom2(
  6743. struct ggml_context * ctx,
  6744. struct ggml_tensor * a,
  6745. struct ggml_tensor * b,
  6746. const ggml_custom2_op_t fun,
  6747. int n_tasks,
  6748. void * userdata) {
  6749. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6750. }
  6751. struct ggml_tensor * ggml_map_custom2_inplace(
  6752. struct ggml_context * ctx,
  6753. struct ggml_tensor * a,
  6754. struct ggml_tensor * b,
  6755. const ggml_custom2_op_t fun,
  6756. int n_tasks,
  6757. void * userdata) {
  6758. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6759. }
  6760. // ggml_map_custom3
  6761. struct ggml_map_custom3_op_params {
  6762. ggml_custom3_op_t fun;
  6763. int n_tasks;
  6764. void * userdata;
  6765. };
  6766. static struct ggml_tensor * ggml_map_custom3_impl(
  6767. struct ggml_context * ctx,
  6768. struct ggml_tensor * a,
  6769. struct ggml_tensor * b,
  6770. struct ggml_tensor * c,
  6771. const ggml_custom3_op_t fun,
  6772. int n_tasks,
  6773. void * userdata,
  6774. bool inplace) {
  6775. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6776. bool is_node = false;
  6777. if (!inplace && (a->grad || b->grad || c->grad)) {
  6778. is_node = true;
  6779. }
  6780. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6781. struct ggml_map_custom3_op_params params = {
  6782. /*.fun =*/ fun,
  6783. /*.n_tasks =*/ n_tasks,
  6784. /*.userdata =*/ userdata
  6785. };
  6786. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6787. result->op = GGML_OP_MAP_CUSTOM3;
  6788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6789. result->src[0] = a;
  6790. result->src[1] = b;
  6791. result->src[2] = c;
  6792. return result;
  6793. }
  6794. struct ggml_tensor * ggml_map_custom3(
  6795. struct ggml_context * ctx,
  6796. struct ggml_tensor * a,
  6797. struct ggml_tensor * b,
  6798. struct ggml_tensor * c,
  6799. const ggml_custom3_op_t fun,
  6800. int n_tasks,
  6801. void * userdata) {
  6802. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6803. }
  6804. struct ggml_tensor * ggml_map_custom3_inplace(
  6805. struct ggml_context * ctx,
  6806. struct ggml_tensor * a,
  6807. struct ggml_tensor * b,
  6808. struct ggml_tensor * c,
  6809. const ggml_custom3_op_t fun,
  6810. int n_tasks,
  6811. void * userdata) {
  6812. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6813. }
  6814. // ggml_cross_entropy_loss
  6815. struct ggml_tensor * ggml_cross_entropy_loss(
  6816. struct ggml_context * ctx,
  6817. struct ggml_tensor * a,
  6818. struct ggml_tensor * b) {
  6819. GGML_ASSERT(ggml_are_same_shape(a, b));
  6820. bool is_node = false;
  6821. if (a->grad || b->grad) {
  6822. is_node = true;
  6823. }
  6824. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6825. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6826. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6827. result->src[0] = a;
  6828. result->src[1] = b;
  6829. return result;
  6830. }
  6831. // ggml_cross_entropy_loss_back
  6832. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6833. struct ggml_context * ctx,
  6834. struct ggml_tensor * a,
  6835. struct ggml_tensor * b,
  6836. struct ggml_tensor * c) {
  6837. GGML_ASSERT(ggml_are_same_shape(a, b));
  6838. GGML_ASSERT(ggml_is_scalar(c));
  6839. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6840. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6841. result->grad = NULL;
  6842. result->src[0] = a;
  6843. result->src[1] = b;
  6844. result->src[2] = c;
  6845. return result;
  6846. }
  6847. ////////////////////////////////////////////////////////////////////////////////
  6848. void ggml_set_param(
  6849. struct ggml_context * ctx,
  6850. struct ggml_tensor * tensor) {
  6851. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6852. GGML_ASSERT(tensor->grad == NULL);
  6853. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6854. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6855. }
  6856. // ggml_compute_forward_dup
  6857. static void ggml_compute_forward_dup_same_cont(
  6858. const struct ggml_compute_params * params,
  6859. struct ggml_tensor * dst) {
  6860. const struct ggml_tensor * src0 = dst->src[0];
  6861. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6862. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6863. GGML_ASSERT(src0->type == dst->type);
  6864. const size_t nb00 = src0->nb[0];
  6865. const size_t nb0 = dst->nb[0];
  6866. const int ith = params->ith; // thread index
  6867. const int nth = params->nth; // number of threads
  6868. // parallelize by elements
  6869. const int ne = ggml_nelements(dst);
  6870. const int dr = (ne + nth - 1) / nth;
  6871. const int ie0 = dr * ith;
  6872. const int ie1 = MIN(ie0 + dr, ne);
  6873. if (ie0 < ie1) {
  6874. memcpy(
  6875. ((char *) dst->data + ie0*nb0),
  6876. ((char *) src0->data + ie0*nb00),
  6877. (ie1 - ie0) * ggml_type_size(src0->type));
  6878. }
  6879. }
  6880. static void ggml_compute_forward_dup_f16(
  6881. const struct ggml_compute_params * params,
  6882. struct ggml_tensor * dst) {
  6883. const struct ggml_tensor * src0 = dst->src[0];
  6884. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6885. GGML_TENSOR_UNARY_OP_LOCALS
  6886. const int ith = params->ith; // thread index
  6887. const int nth = params->nth; // number of threads
  6888. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6889. ggml_compute_forward_dup_same_cont(params, dst);
  6890. return;
  6891. }
  6892. // parallelize by rows
  6893. const int nr = ne01;
  6894. // number of rows per thread
  6895. const int dr = (nr + nth - 1) / nth;
  6896. // row range for this thread
  6897. const int ir0 = dr * ith;
  6898. const int ir1 = MIN(ir0 + dr, nr);
  6899. if (src0->type == dst->type &&
  6900. ne00 == ne0 &&
  6901. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6902. // copy by rows
  6903. const size_t rs = ne00*nb00;
  6904. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6905. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6906. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6907. memcpy(
  6908. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6909. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6910. rs);
  6911. }
  6912. }
  6913. }
  6914. return;
  6915. }
  6916. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6917. if (ggml_is_contiguous(dst)) {
  6918. if (nb00 == sizeof(ggml_fp16_t)) {
  6919. if (dst->type == GGML_TYPE_F16) {
  6920. size_t id = 0;
  6921. const size_t rs = ne00 * nb00;
  6922. char * dst_ptr = (char *) dst->data;
  6923. for (int i03 = 0; i03 < ne03; i03++) {
  6924. for (int i02 = 0; i02 < ne02; i02++) {
  6925. id += rs * ir0;
  6926. for (int i01 = ir0; i01 < ir1; i01++) {
  6927. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6928. memcpy(dst_ptr + id, src0_ptr, rs);
  6929. id += rs;
  6930. }
  6931. id += rs * (ne01 - ir1);
  6932. }
  6933. }
  6934. } else if (dst->type == GGML_TYPE_F32) {
  6935. size_t id = 0;
  6936. float * dst_ptr = (float *) dst->data;
  6937. for (int i03 = 0; i03 < ne03; i03++) {
  6938. for (int i02 = 0; i02 < ne02; i02++) {
  6939. id += ne00 * ir0;
  6940. for (int i01 = ir0; i01 < ir1; i01++) {
  6941. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6942. for (int i00 = 0; i00 < ne00; i00++) {
  6943. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6944. id++;
  6945. }
  6946. }
  6947. id += ne00 * (ne01 - ir1);
  6948. }
  6949. }
  6950. } else if (type_traits[dst->type].from_float) {
  6951. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6952. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6953. size_t id = 0;
  6954. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6955. char * dst_ptr = (char *) dst->data;
  6956. for (int i03 = 0; i03 < ne03; i03++) {
  6957. for (int i02 = 0; i02 < ne02; i02++) {
  6958. id += rs * ir0;
  6959. for (int i01 = ir0; i01 < ir1; i01++) {
  6960. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6961. for (int i00 = 0; i00 < ne00; i00++) {
  6962. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6963. }
  6964. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6965. id += rs;
  6966. }
  6967. id += rs * (ne01 - ir1);
  6968. }
  6969. }
  6970. } else {
  6971. GGML_ABORT("fatal error"); // TODO: implement
  6972. }
  6973. } else {
  6974. //printf("%s: this is not optimal - fix me\n", __func__);
  6975. if (dst->type == GGML_TYPE_F32) {
  6976. size_t id = 0;
  6977. float * dst_ptr = (float *) dst->data;
  6978. for (int i03 = 0; i03 < ne03; i03++) {
  6979. for (int i02 = 0; i02 < ne02; i02++) {
  6980. id += ne00 * ir0;
  6981. for (int i01 = ir0; i01 < ir1; i01++) {
  6982. for (int i00 = 0; i00 < ne00; i00++) {
  6983. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6984. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6985. id++;
  6986. }
  6987. }
  6988. id += ne00 * (ne01 - ir1);
  6989. }
  6990. }
  6991. } else if (dst->type == GGML_TYPE_F16) {
  6992. size_t id = 0;
  6993. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6994. for (int i03 = 0; i03 < ne03; i03++) {
  6995. for (int i02 = 0; i02 < ne02; i02++) {
  6996. id += ne00 * ir0;
  6997. for (int i01 = ir0; i01 < ir1; i01++) {
  6998. for (int i00 = 0; i00 < ne00; i00++) {
  6999. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7000. dst_ptr[id] = *src0_ptr;
  7001. id++;
  7002. }
  7003. }
  7004. id += ne00 * (ne01 - ir1);
  7005. }
  7006. }
  7007. } else {
  7008. GGML_ABORT("fatal error"); // TODO: implement
  7009. }
  7010. }
  7011. return;
  7012. }
  7013. // dst counters
  7014. int64_t i10 = 0;
  7015. int64_t i11 = 0;
  7016. int64_t i12 = 0;
  7017. int64_t i13 = 0;
  7018. if (dst->type == GGML_TYPE_F16) {
  7019. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7020. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7021. i10 += ne00 * ir0;
  7022. while (i10 >= ne0) {
  7023. i10 -= ne0;
  7024. if (++i11 == ne1) {
  7025. i11 = 0;
  7026. if (++i12 == ne2) {
  7027. i12 = 0;
  7028. if (++i13 == ne3) {
  7029. i13 = 0;
  7030. }
  7031. }
  7032. }
  7033. }
  7034. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7035. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7036. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7037. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7038. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  7039. if (++i10 == ne00) {
  7040. i10 = 0;
  7041. if (++i11 == ne01) {
  7042. i11 = 0;
  7043. if (++i12 == ne02) {
  7044. i12 = 0;
  7045. if (++i13 == ne03) {
  7046. i13 = 0;
  7047. }
  7048. }
  7049. }
  7050. }
  7051. }
  7052. }
  7053. i10 += ne00 * (ne01 - ir1);
  7054. while (i10 >= ne0) {
  7055. i10 -= ne0;
  7056. if (++i11 == ne1) {
  7057. i11 = 0;
  7058. if (++i12 == ne2) {
  7059. i12 = 0;
  7060. if (++i13 == ne3) {
  7061. i13 = 0;
  7062. }
  7063. }
  7064. }
  7065. }
  7066. }
  7067. }
  7068. } else if (dst->type == GGML_TYPE_F32) {
  7069. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7070. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7071. i10 += ne00 * ir0;
  7072. while (i10 >= ne0) {
  7073. i10 -= ne0;
  7074. if (++i11 == ne1) {
  7075. i11 = 0;
  7076. if (++i12 == ne2) {
  7077. i12 = 0;
  7078. if (++i13 == ne3) {
  7079. i13 = 0;
  7080. }
  7081. }
  7082. }
  7083. }
  7084. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7085. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7086. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7087. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7088. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  7089. if (++i10 == ne0) {
  7090. i10 = 0;
  7091. if (++i11 == ne1) {
  7092. i11 = 0;
  7093. if (++i12 == ne2) {
  7094. i12 = 0;
  7095. if (++i13 == ne3) {
  7096. i13 = 0;
  7097. }
  7098. }
  7099. }
  7100. }
  7101. }
  7102. }
  7103. i10 += ne00 * (ne01 - ir1);
  7104. while (i10 >= ne0) {
  7105. i10 -= ne0;
  7106. if (++i11 == ne1) {
  7107. i11 = 0;
  7108. if (++i12 == ne2) {
  7109. i12 = 0;
  7110. if (++i13 == ne3) {
  7111. i13 = 0;
  7112. }
  7113. }
  7114. }
  7115. }
  7116. }
  7117. }
  7118. } else {
  7119. GGML_ABORT("fatal error"); // TODO: implement
  7120. }
  7121. }
  7122. static void ggml_compute_forward_dup_bf16(
  7123. const struct ggml_compute_params * params,
  7124. struct ggml_tensor * dst) {
  7125. const struct ggml_tensor * src0 = dst->src[0];
  7126. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7127. GGML_TENSOR_UNARY_OP_LOCALS
  7128. const int ith = params->ith; // thread index
  7129. const int nth = params->nth; // number of threads
  7130. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7131. ggml_compute_forward_dup_same_cont(params, dst);
  7132. return;
  7133. }
  7134. // parallelize by rows
  7135. const int nr = ne01;
  7136. // number of rows per thread
  7137. const int dr = (nr + nth - 1) / nth;
  7138. // row range for this thread
  7139. const int ir0 = dr * ith;
  7140. const int ir1 = MIN(ir0 + dr, nr);
  7141. if (src0->type == dst->type &&
  7142. ne00 == ne0 &&
  7143. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7144. // copy by rows
  7145. const size_t rs = ne00*nb00;
  7146. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7147. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7148. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7149. memcpy(
  7150. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7151. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7152. rs);
  7153. }
  7154. }
  7155. }
  7156. return;
  7157. }
  7158. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  7159. if (ggml_is_contiguous(dst)) {
  7160. if (nb00 == sizeof(ggml_bf16_t)) {
  7161. if (dst->type == GGML_TYPE_BF16) {
  7162. size_t id = 0;
  7163. const size_t rs = ne00 * nb00;
  7164. char * dst_ptr = (char *) dst->data;
  7165. for (int i03 = 0; i03 < ne03; i03++) {
  7166. for (int i02 = 0; i02 < ne02; i02++) {
  7167. id += rs * ir0;
  7168. for (int i01 = ir0; i01 < ir1; i01++) {
  7169. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7170. memcpy(dst_ptr + id, src0_ptr, rs);
  7171. id += rs;
  7172. }
  7173. id += rs * (ne01 - ir1);
  7174. }
  7175. }
  7176. } else if (dst->type == GGML_TYPE_F16) {
  7177. size_t id = 0;
  7178. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7179. for (int i03 = 0; i03 < ne03; i03++) {
  7180. for (int i02 = 0; i02 < ne02; i02++) {
  7181. id += ne00 * ir0;
  7182. for (int i01 = ir0; i01 < ir1; i01++) {
  7183. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7184. for (int i00 = 0; i00 < ne00; i00++) {
  7185. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  7186. id++;
  7187. }
  7188. }
  7189. id += ne00 * (ne01 - ir1);
  7190. }
  7191. }
  7192. } else if (dst->type == GGML_TYPE_F32) {
  7193. size_t id = 0;
  7194. float * dst_ptr = (float *) dst->data;
  7195. for (int i03 = 0; i03 < ne03; i03++) {
  7196. for (int i02 = 0; i02 < ne02; i02++) {
  7197. id += ne00 * ir0;
  7198. for (int i01 = ir0; i01 < ir1; i01++) {
  7199. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7200. for (int i00 = 0; i00 < ne00; i00++) {
  7201. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  7202. id++;
  7203. }
  7204. }
  7205. id += ne00 * (ne01 - ir1);
  7206. }
  7207. }
  7208. } else if (type_traits[dst->type].from_float) {
  7209. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7210. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7211. size_t id = 0;
  7212. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7213. char * dst_ptr = (char *) dst->data;
  7214. for (int i03 = 0; i03 < ne03; i03++) {
  7215. for (int i02 = 0; i02 < ne02; i02++) {
  7216. id += rs * ir0;
  7217. for (int i01 = ir0; i01 < ir1; i01++) {
  7218. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7219. for (int i00 = 0; i00 < ne00; i00++) {
  7220. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  7221. }
  7222. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  7223. id += rs;
  7224. }
  7225. id += rs * (ne01 - ir1);
  7226. }
  7227. }
  7228. } else {
  7229. GGML_ABORT("fatal error"); // TODO: implement
  7230. }
  7231. } else {
  7232. //printf("%s: this is not optimal - fix me\n", __func__);
  7233. if (dst->type == GGML_TYPE_F32) {
  7234. size_t id = 0;
  7235. float * dst_ptr = (float *) dst->data;
  7236. for (int i03 = 0; i03 < ne03; i03++) {
  7237. for (int i02 = 0; i02 < ne02; i02++) {
  7238. id += ne00 * ir0;
  7239. for (int i01 = ir0; i01 < ir1; i01++) {
  7240. for (int i00 = 0; i00 < ne00; i00++) {
  7241. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7242. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  7243. id++;
  7244. }
  7245. }
  7246. id += ne00 * (ne01 - ir1);
  7247. }
  7248. }
  7249. } else if (dst->type == GGML_TYPE_BF16) {
  7250. size_t id = 0;
  7251. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7252. for (int i03 = 0; i03 < ne03; i03++) {
  7253. for (int i02 = 0; i02 < ne02; i02++) {
  7254. id += ne00 * ir0;
  7255. for (int i01 = ir0; i01 < ir1; i01++) {
  7256. for (int i00 = 0; i00 < ne00; i00++) {
  7257. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7258. dst_ptr[id] = *src0_ptr;
  7259. id++;
  7260. }
  7261. }
  7262. id += ne00 * (ne01 - ir1);
  7263. }
  7264. }
  7265. } else if (dst->type == GGML_TYPE_F16) {
  7266. size_t id = 0;
  7267. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7268. for (int i03 = 0; i03 < ne03; i03++) {
  7269. for (int i02 = 0; i02 < ne02; i02++) {
  7270. id += ne00 * ir0;
  7271. for (int i01 = ir0; i01 < ir1; i01++) {
  7272. for (int i00 = 0; i00 < ne00; i00++) {
  7273. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7274. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  7275. id++;
  7276. }
  7277. }
  7278. id += ne00 * (ne01 - ir1);
  7279. }
  7280. }
  7281. } else {
  7282. GGML_ABORT("fatal error"); // TODO: implement
  7283. }
  7284. }
  7285. return;
  7286. }
  7287. // dst counters
  7288. int64_t i10 = 0;
  7289. int64_t i11 = 0;
  7290. int64_t i12 = 0;
  7291. int64_t i13 = 0;
  7292. if (dst->type == GGML_TYPE_BF16) {
  7293. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7294. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7295. i10 += ne00 * ir0;
  7296. while (i10 >= ne0) {
  7297. i10 -= ne0;
  7298. if (++i11 == ne1) {
  7299. i11 = 0;
  7300. if (++i12 == ne2) {
  7301. i12 = 0;
  7302. if (++i13 == ne3) {
  7303. i13 = 0;
  7304. }
  7305. }
  7306. }
  7307. }
  7308. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7309. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7310. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7311. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7312. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  7313. if (++i10 == ne00) {
  7314. i10 = 0;
  7315. if (++i11 == ne01) {
  7316. i11 = 0;
  7317. if (++i12 == ne02) {
  7318. i12 = 0;
  7319. if (++i13 == ne03) {
  7320. i13 = 0;
  7321. }
  7322. }
  7323. }
  7324. }
  7325. }
  7326. }
  7327. i10 += ne00 * (ne01 - ir1);
  7328. while (i10 >= ne0) {
  7329. i10 -= ne0;
  7330. if (++i11 == ne1) {
  7331. i11 = 0;
  7332. if (++i12 == ne2) {
  7333. i12 = 0;
  7334. if (++i13 == ne3) {
  7335. i13 = 0;
  7336. }
  7337. }
  7338. }
  7339. }
  7340. }
  7341. }
  7342. } else if (dst->type == GGML_TYPE_F16) {
  7343. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7344. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7345. i10 += ne00 * ir0;
  7346. while (i10 >= ne0) {
  7347. i10 -= ne0;
  7348. if (++i11 == ne1) {
  7349. i11 = 0;
  7350. if (++i12 == ne2) {
  7351. i12 = 0;
  7352. if (++i13 == ne3) {
  7353. i13 = 0;
  7354. }
  7355. }
  7356. }
  7357. }
  7358. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7359. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7360. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7361. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7362. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  7363. if (++i10 == ne0) {
  7364. i10 = 0;
  7365. if (++i11 == ne1) {
  7366. i11 = 0;
  7367. if (++i12 == ne2) {
  7368. i12 = 0;
  7369. if (++i13 == ne3) {
  7370. i13 = 0;
  7371. }
  7372. }
  7373. }
  7374. }
  7375. }
  7376. }
  7377. i10 += ne00 * (ne01 - ir1);
  7378. while (i10 >= ne0) {
  7379. i10 -= ne0;
  7380. if (++i11 == ne1) {
  7381. i11 = 0;
  7382. if (++i12 == ne2) {
  7383. i12 = 0;
  7384. if (++i13 == ne3) {
  7385. i13 = 0;
  7386. }
  7387. }
  7388. }
  7389. }
  7390. }
  7391. }
  7392. } else if (dst->type == GGML_TYPE_F32) {
  7393. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7394. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7395. i10 += ne00 * ir0;
  7396. while (i10 >= ne0) {
  7397. i10 -= ne0;
  7398. if (++i11 == ne1) {
  7399. i11 = 0;
  7400. if (++i12 == ne2) {
  7401. i12 = 0;
  7402. if (++i13 == ne3) {
  7403. i13 = 0;
  7404. }
  7405. }
  7406. }
  7407. }
  7408. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7409. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7410. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7411. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7412. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7413. if (++i10 == ne0) {
  7414. i10 = 0;
  7415. if (++i11 == ne1) {
  7416. i11 = 0;
  7417. if (++i12 == ne2) {
  7418. i12 = 0;
  7419. if (++i13 == ne3) {
  7420. i13 = 0;
  7421. }
  7422. }
  7423. }
  7424. }
  7425. }
  7426. }
  7427. i10 += ne00 * (ne01 - ir1);
  7428. while (i10 >= ne0) {
  7429. i10 -= ne0;
  7430. if (++i11 == ne1) {
  7431. i11 = 0;
  7432. if (++i12 == ne2) {
  7433. i12 = 0;
  7434. if (++i13 == ne3) {
  7435. i13 = 0;
  7436. }
  7437. }
  7438. }
  7439. }
  7440. }
  7441. }
  7442. } else {
  7443. GGML_ABORT("fatal error"); // TODO: implement
  7444. }
  7445. }
  7446. static void ggml_compute_forward_dup_f32(
  7447. const struct ggml_compute_params * params,
  7448. struct ggml_tensor * dst) {
  7449. const struct ggml_tensor * src0 = dst->src[0];
  7450. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7451. GGML_TENSOR_UNARY_OP_LOCALS
  7452. const int ith = params->ith; // thread index
  7453. const int nth = params->nth; // number of threads
  7454. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7455. ggml_compute_forward_dup_same_cont(params, dst);
  7456. return;
  7457. }
  7458. // parallelize by rows
  7459. const int nr = ne01;
  7460. // number of rows per thread
  7461. const int dr = (nr + nth - 1) / nth;
  7462. // row range for this thread
  7463. const int ir0 = dr * ith;
  7464. const int ir1 = MIN(ir0 + dr, nr);
  7465. if (src0->type == dst->type &&
  7466. ne00 == ne0 &&
  7467. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7468. // copy by rows
  7469. const size_t rs = ne00*nb00;
  7470. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7471. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7472. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7473. memcpy(
  7474. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7475. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7476. rs);
  7477. }
  7478. }
  7479. }
  7480. return;
  7481. }
  7482. if (ggml_is_contiguous(dst)) {
  7483. // TODO: simplify
  7484. if (nb00 == sizeof(float)) {
  7485. if (dst->type == GGML_TYPE_F32) {
  7486. size_t id = 0;
  7487. const size_t rs = ne00 * nb00;
  7488. char * dst_ptr = (char *) dst->data;
  7489. for (int i03 = 0; i03 < ne03; i03++) {
  7490. for (int i02 = 0; i02 < ne02; i02++) {
  7491. id += rs * ir0;
  7492. for (int i01 = ir0; i01 < ir1; i01++) {
  7493. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7494. memcpy(dst_ptr + id, src0_ptr, rs);
  7495. id += rs;
  7496. }
  7497. id += rs * (ne01 - ir1);
  7498. }
  7499. }
  7500. } else if (type_traits[dst->type].from_float) {
  7501. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7502. size_t id = 0;
  7503. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7504. char * dst_ptr = (char *) dst->data;
  7505. for (int i03 = 0; i03 < ne03; i03++) {
  7506. for (int i02 = 0; i02 < ne02; i02++) {
  7507. id += rs * ir0;
  7508. for (int i01 = ir0; i01 < ir1; i01++) {
  7509. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7510. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7511. id += rs;
  7512. }
  7513. id += rs * (ne01 - ir1);
  7514. }
  7515. }
  7516. } else {
  7517. GGML_ABORT("fatal error"); // TODO: implement
  7518. }
  7519. } else {
  7520. //printf("%s: this is not optimal - fix me\n", __func__);
  7521. if (dst->type == GGML_TYPE_F32) {
  7522. size_t id = 0;
  7523. float * dst_ptr = (float *) dst->data;
  7524. for (int i03 = 0; i03 < ne03; i03++) {
  7525. for (int i02 = 0; i02 < ne02; i02++) {
  7526. id += ne00 * ir0;
  7527. for (int i01 = ir0; i01 < ir1; i01++) {
  7528. for (int i00 = 0; i00 < ne00; i00++) {
  7529. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7530. dst_ptr[id] = *src0_ptr;
  7531. id++;
  7532. }
  7533. }
  7534. id += ne00 * (ne01 - ir1);
  7535. }
  7536. }
  7537. } else if (dst->type == GGML_TYPE_F16) {
  7538. size_t id = 0;
  7539. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7540. for (int i03 = 0; i03 < ne03; i03++) {
  7541. for (int i02 = 0; i02 < ne02; i02++) {
  7542. id += ne00 * ir0;
  7543. for (int i01 = ir0; i01 < ir1; i01++) {
  7544. for (int i00 = 0; i00 < ne00; i00++) {
  7545. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7546. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7547. id++;
  7548. }
  7549. }
  7550. id += ne00 * (ne01 - ir1);
  7551. }
  7552. }
  7553. } else if (dst->type == GGML_TYPE_BF16) {
  7554. size_t id = 0;
  7555. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7556. for (int i03 = 0; i03 < ne03; i03++) {
  7557. for (int i02 = 0; i02 < ne02; i02++) {
  7558. id += ne00 * ir0;
  7559. for (int i01 = ir0; i01 < ir1; i01++) {
  7560. for (int i00 = 0; i00 < ne00; i00++) {
  7561. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7562. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7563. id++;
  7564. }
  7565. }
  7566. id += ne00 * (ne01 - ir1);
  7567. }
  7568. }
  7569. } else {
  7570. GGML_ABORT("fatal error"); // TODO: implement
  7571. }
  7572. }
  7573. return;
  7574. }
  7575. // dst counters
  7576. int64_t i10 = 0;
  7577. int64_t i11 = 0;
  7578. int64_t i12 = 0;
  7579. int64_t i13 = 0;
  7580. if (dst->type == GGML_TYPE_F32) {
  7581. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7582. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7583. i10 += ne00 * ir0;
  7584. while (i10 >= ne0) {
  7585. i10 -= ne0;
  7586. if (++i11 == ne1) {
  7587. i11 = 0;
  7588. if (++i12 == ne2) {
  7589. i12 = 0;
  7590. if (++i13 == ne3) {
  7591. i13 = 0;
  7592. }
  7593. }
  7594. }
  7595. }
  7596. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7597. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7598. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7599. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7600. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7601. if (++i10 == ne0) {
  7602. i10 = 0;
  7603. if (++i11 == ne1) {
  7604. i11 = 0;
  7605. if (++i12 == ne2) {
  7606. i12 = 0;
  7607. if (++i13 == ne3) {
  7608. i13 = 0;
  7609. }
  7610. }
  7611. }
  7612. }
  7613. }
  7614. }
  7615. i10 += ne00 * (ne01 - ir1);
  7616. while (i10 >= ne0) {
  7617. i10 -= ne0;
  7618. if (++i11 == ne1) {
  7619. i11 = 0;
  7620. if (++i12 == ne2) {
  7621. i12 = 0;
  7622. if (++i13 == ne3) {
  7623. i13 = 0;
  7624. }
  7625. }
  7626. }
  7627. }
  7628. }
  7629. }
  7630. } else if (dst->type == GGML_TYPE_F16) {
  7631. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7632. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7633. i10 += ne00 * ir0;
  7634. while (i10 >= ne0) {
  7635. i10 -= ne0;
  7636. if (++i11 == ne1) {
  7637. i11 = 0;
  7638. if (++i12 == ne2) {
  7639. i12 = 0;
  7640. if (++i13 == ne3) {
  7641. i13 = 0;
  7642. }
  7643. }
  7644. }
  7645. }
  7646. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7647. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7648. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7649. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7650. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7651. if (++i10 == ne0) {
  7652. i10 = 0;
  7653. if (++i11 == ne1) {
  7654. i11 = 0;
  7655. if (++i12 == ne2) {
  7656. i12 = 0;
  7657. if (++i13 == ne3) {
  7658. i13 = 0;
  7659. }
  7660. }
  7661. }
  7662. }
  7663. }
  7664. }
  7665. i10 += ne00 * (ne01 - ir1);
  7666. while (i10 >= ne0) {
  7667. i10 -= ne0;
  7668. if (++i11 == ne1) {
  7669. i11 = 0;
  7670. if (++i12 == ne2) {
  7671. i12 = 0;
  7672. if (++i13 == ne3) {
  7673. i13 = 0;
  7674. }
  7675. }
  7676. }
  7677. }
  7678. }
  7679. }
  7680. } else if (dst->type == GGML_TYPE_BF16) {
  7681. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7682. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7683. i10 += ne00 * ir0;
  7684. while (i10 >= ne0) {
  7685. i10 -= ne0;
  7686. if (++i11 == ne1) {
  7687. i11 = 0;
  7688. if (++i12 == ne2) {
  7689. i12 = 0;
  7690. if (++i13 == ne3) {
  7691. i13 = 0;
  7692. }
  7693. }
  7694. }
  7695. }
  7696. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7697. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7698. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7699. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7700. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7701. if (++i10 == ne0) {
  7702. i10 = 0;
  7703. if (++i11 == ne1) {
  7704. i11 = 0;
  7705. if (++i12 == ne2) {
  7706. i12 = 0;
  7707. if (++i13 == ne3) {
  7708. i13 = 0;
  7709. }
  7710. }
  7711. }
  7712. }
  7713. }
  7714. }
  7715. i10 += ne00 * (ne01 - ir1);
  7716. while (i10 >= ne0) {
  7717. i10 -= ne0;
  7718. if (++i11 == ne1) {
  7719. i11 = 0;
  7720. if (++i12 == ne2) {
  7721. i12 = 0;
  7722. if (++i13 == ne3) {
  7723. i13 = 0;
  7724. }
  7725. }
  7726. }
  7727. }
  7728. }
  7729. }
  7730. } else {
  7731. GGML_ABORT("fatal error"); // TODO: implement
  7732. }
  7733. }
  7734. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7735. static void ggml_compute_forward_dup_bytes(
  7736. const struct ggml_compute_params * params,
  7737. struct ggml_tensor * dst) {
  7738. const struct ggml_tensor * src0 = dst->src[0];
  7739. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7740. GGML_ASSERT(src0->type == dst->type);
  7741. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7742. ggml_compute_forward_dup_same_cont(params, dst);
  7743. return;
  7744. }
  7745. GGML_TENSOR_UNARY_OP_LOCALS;
  7746. const size_t type_size = ggml_type_size(src0->type);
  7747. const int ith = params->ith; // thread index
  7748. const int nth = params->nth; // number of threads
  7749. // parallelize by rows
  7750. const int nr = ne01;
  7751. // number of rows per thread
  7752. const int dr = (nr + nth - 1) / nth;
  7753. // row range for this thread
  7754. const int ir0 = dr * ith;
  7755. const int ir1 = MIN(ir0 + dr, nr);
  7756. if (src0->type == dst->type &&
  7757. ne00 == ne0 &&
  7758. nb00 == type_size && nb0 == type_size) {
  7759. // copy by rows
  7760. const size_t rs = ne00 * type_size;
  7761. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7762. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7763. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7764. memcpy(
  7765. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7766. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7767. rs);
  7768. }
  7769. }
  7770. }
  7771. return;
  7772. }
  7773. if (ggml_is_contiguous(dst)) {
  7774. size_t id = 0;
  7775. char * dst_ptr = (char *) dst->data;
  7776. const size_t rs = ne00 * type_size;
  7777. if (nb00 == type_size) {
  7778. // src0 is contigous on first dimension, copy by rows
  7779. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7780. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7781. id += rs * ir0;
  7782. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7783. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7784. memcpy(dst_ptr + id, src0_ptr, rs);
  7785. id += rs;
  7786. }
  7787. id += rs * (ne01 - ir1);
  7788. }
  7789. }
  7790. } else {
  7791. //printf("%s: this is not optimal - fix me\n", __func__);
  7792. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7793. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7794. id += rs * ir0;
  7795. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7796. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7797. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7798. memcpy(dst_ptr + id, src0_ptr, type_size);
  7799. id += type_size;
  7800. }
  7801. }
  7802. id += rs * (ne01 - ir1);
  7803. }
  7804. }
  7805. }
  7806. return;
  7807. }
  7808. // dst counters
  7809. int64_t i10 = 0;
  7810. int64_t i11 = 0;
  7811. int64_t i12 = 0;
  7812. int64_t i13 = 0;
  7813. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7814. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7815. i10 += ne00 * ir0;
  7816. while (i10 >= ne0) {
  7817. i10 -= ne0;
  7818. if (++i11 == ne1) {
  7819. i11 = 0;
  7820. if (++i12 == ne2) {
  7821. i12 = 0;
  7822. if (++i13 == ne3) {
  7823. i13 = 0;
  7824. }
  7825. }
  7826. }
  7827. }
  7828. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7829. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7830. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7831. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7832. memcpy(dst_ptr, src0_ptr, type_size);
  7833. if (++i10 == ne0) {
  7834. i10 = 0;
  7835. if (++i11 == ne1) {
  7836. i11 = 0;
  7837. if (++i12 == ne2) {
  7838. i12 = 0;
  7839. if (++i13 == ne3) {
  7840. i13 = 0;
  7841. }
  7842. }
  7843. }
  7844. }
  7845. }
  7846. }
  7847. i10 += ne00 * (ne01 - ir1);
  7848. while (i10 >= ne0) {
  7849. i10 -= ne0;
  7850. if (++i11 == ne1) {
  7851. i11 = 0;
  7852. if (++i12 == ne2) {
  7853. i12 = 0;
  7854. if (++i13 == ne3) {
  7855. i13 = 0;
  7856. }
  7857. }
  7858. }
  7859. }
  7860. }
  7861. }
  7862. }
  7863. static void ggml_compute_forward_dup(
  7864. const struct ggml_compute_params * params,
  7865. struct ggml_tensor * dst) {
  7866. const struct ggml_tensor * src0 = dst->src[0];
  7867. if (src0->type == dst->type) {
  7868. ggml_compute_forward_dup_bytes(params, dst);
  7869. return;
  7870. }
  7871. switch (src0->type) {
  7872. case GGML_TYPE_F16:
  7873. {
  7874. ggml_compute_forward_dup_f16(params, dst);
  7875. } break;
  7876. case GGML_TYPE_BF16:
  7877. {
  7878. ggml_compute_forward_dup_bf16(params, dst);
  7879. } break;
  7880. case GGML_TYPE_F32:
  7881. {
  7882. ggml_compute_forward_dup_f32(params, dst);
  7883. } break;
  7884. default:
  7885. {
  7886. GGML_ABORT("fatal error");
  7887. }
  7888. }
  7889. }
  7890. // ggml_compute_forward_add
  7891. static void ggml_compute_forward_add_f32(
  7892. const struct ggml_compute_params * params,
  7893. struct ggml_tensor * dst) {
  7894. const struct ggml_tensor * src0 = dst->src[0];
  7895. const struct ggml_tensor * src1 = dst->src[1];
  7896. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7897. const int ith = params->ith;
  7898. const int nth = params->nth;
  7899. const int nr = ggml_nrows(src0);
  7900. GGML_TENSOR_BINARY_OP_LOCALS
  7901. GGML_ASSERT( nb0 == sizeof(float));
  7902. GGML_ASSERT(nb00 == sizeof(float));
  7903. // rows per thread
  7904. const int dr = (nr + nth - 1)/nth;
  7905. // row range for this thread
  7906. const int ir0 = dr*ith;
  7907. const int ir1 = MIN(ir0 + dr, nr);
  7908. if (nb10 == sizeof(float)) {
  7909. for (int ir = ir0; ir < ir1; ++ir) {
  7910. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7911. const int64_t i03 = ir/(ne02*ne01);
  7912. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7913. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7914. const int64_t i13 = i03 % ne13;
  7915. const int64_t i12 = i02 % ne12;
  7916. const int64_t i11 = i01 % ne11;
  7917. const int64_t nr0 = ne00 / ne10;
  7918. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7919. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7920. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7921. for (int64_t r = 0; r < nr0; ++r) {
  7922. #ifdef GGML_USE_ACCELERATE
  7923. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7924. #else
  7925. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7926. #endif
  7927. }
  7928. }
  7929. } else {
  7930. // src1 is not contiguous
  7931. for (int ir = ir0; ir < ir1; ++ir) {
  7932. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7933. const int64_t i03 = ir/(ne02*ne01);
  7934. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7935. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7936. const int64_t i13 = i03 % ne13;
  7937. const int64_t i12 = i02 % ne12;
  7938. const int64_t i11 = i01 % ne11;
  7939. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7940. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7941. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7942. const int64_t i10 = i0 % ne10;
  7943. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7944. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7945. }
  7946. }
  7947. }
  7948. }
  7949. static void ggml_compute_forward_add_f16_f32(
  7950. const struct ggml_compute_params * params,
  7951. struct ggml_tensor * dst) {
  7952. const struct ggml_tensor * src0 = dst->src[0];
  7953. const struct ggml_tensor * src1 = dst->src[1];
  7954. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7955. const int ith = params->ith;
  7956. const int nth = params->nth;
  7957. const int nr = ggml_nrows(src0);
  7958. GGML_TENSOR_BINARY_OP_LOCALS
  7959. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7960. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7961. if (dst->type == GGML_TYPE_F32) {
  7962. GGML_ASSERT( nb0 == sizeof(float));
  7963. }
  7964. else {
  7965. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7966. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7967. }
  7968. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7969. // rows per thread
  7970. const int dr = (nr + nth - 1)/nth;
  7971. // row range for this thread
  7972. const int ir0 = dr*ith;
  7973. const int ir1 = MIN(ir0 + dr, nr);
  7974. if (nb10 == sizeof(float)) {
  7975. if (dst->type == GGML_TYPE_F16) {
  7976. for (int ir = ir0; ir < ir1; ++ir) {
  7977. // src0, src1 and dst are same shape => same indices
  7978. const int i3 = ir/(ne2*ne1);
  7979. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7980. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7981. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7982. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7983. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7984. for (int i = 0; i < ne0; i++) {
  7985. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7986. }
  7987. }
  7988. } else {
  7989. for (int ir = ir0; ir < ir1; ++ir) {
  7990. // src0, src1 and dst are same shape => same indices
  7991. const int i3 = ir/(ne2*ne1);
  7992. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7993. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7994. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7995. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7996. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7997. for (int i = 0; i < ne0; i++) {
  7998. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7999. }
  8000. }
  8001. }
  8002. }
  8003. else {
  8004. // src1 is not contiguous
  8005. GGML_ABORT("fatal error");
  8006. }
  8007. }
  8008. static void ggml_compute_forward_add_bf16_f32(
  8009. const struct ggml_compute_params * params,
  8010. struct ggml_tensor * dst) {
  8011. const struct ggml_tensor * src0 = dst->src[0];
  8012. const struct ggml_tensor * src1 = dst->src[1];
  8013. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8014. const int ith = params->ith;
  8015. const int nth = params->nth;
  8016. const int nr = ggml_nrows(src0);
  8017. GGML_TENSOR_BINARY_OP_LOCALS
  8018. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8019. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8020. if (dst->type == GGML_TYPE_F32) {
  8021. GGML_ASSERT( nb0 == sizeof(float));
  8022. }
  8023. else {
  8024. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8025. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8026. }
  8027. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8028. // rows per thread
  8029. const int dr = (nr + nth - 1)/nth;
  8030. // row range for this thread
  8031. const int ir0 = dr*ith;
  8032. const int ir1 = MIN(ir0 + dr, nr);
  8033. if (nb10 == sizeof(float)) {
  8034. if (dst->type == GGML_TYPE_BF16) {
  8035. for (int ir = ir0; ir < ir1; ++ir) {
  8036. // src0, src1 and dst are same shape => same indices
  8037. const int i3 = ir/(ne2*ne1);
  8038. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8039. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8040. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8041. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8042. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  8043. for (int i = 0; i < ne0; i++) {
  8044. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  8045. }
  8046. }
  8047. } else {
  8048. for (int ir = ir0; ir < ir1; ++ir) {
  8049. // src0, src1 and dst are same shape => same indices
  8050. const int i3 = ir/(ne2*ne1);
  8051. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8052. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8053. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8054. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8055. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  8056. for (int i = 0; i < ne0; i++) {
  8057. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  8058. }
  8059. }
  8060. }
  8061. }
  8062. else {
  8063. // src1 is not contiguous
  8064. GGML_ABORT("fatal error");
  8065. }
  8066. }
  8067. static void ggml_compute_forward_add_f16_f16(
  8068. const struct ggml_compute_params * params,
  8069. struct ggml_tensor * dst) {
  8070. const struct ggml_tensor * src0 = dst->src[0];
  8071. const struct ggml_tensor * src1 = dst->src[1];
  8072. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8073. const int ith = params->ith;
  8074. const int nth = params->nth;
  8075. const int nr = ggml_nrows(src0);
  8076. GGML_TENSOR_BINARY_OP_LOCALS
  8077. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8078. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8079. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8080. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8081. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8082. // rows per thread
  8083. const int dr = (nr + nth - 1)/nth;
  8084. // row range for this thread
  8085. const int ir0 = dr*ith;
  8086. const int ir1 = MIN(ir0 + dr, nr);
  8087. if (nb10 == sizeof(ggml_fp16_t)) {
  8088. for (int ir = ir0; ir < ir1; ++ir) {
  8089. // src0, src1 and dst are same shape => same indices
  8090. const int i3 = ir/(ne2*ne1);
  8091. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8092. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8093. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8094. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8095. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  8096. for (int i = 0; i < ne0; i++) {
  8097. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  8098. }
  8099. }
  8100. }
  8101. else {
  8102. // src1 is not contiguous
  8103. GGML_ABORT("fatal error");
  8104. }
  8105. }
  8106. static void ggml_compute_forward_add_bf16_bf16(
  8107. const struct ggml_compute_params * params,
  8108. struct ggml_tensor * dst) {
  8109. const struct ggml_tensor * src0 = dst->src[0];
  8110. const struct ggml_tensor * src1 = dst->src[1];
  8111. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8112. const int ith = params->ith;
  8113. const int nth = params->nth;
  8114. const int nr = ggml_nrows(src0);
  8115. GGML_TENSOR_BINARY_OP_LOCALS
  8116. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8117. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8118. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8119. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8120. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8121. // rows per thread
  8122. const int dr = (nr + nth - 1)/nth;
  8123. // row range for this thread
  8124. const int ir0 = dr*ith;
  8125. const int ir1 = MIN(ir0 + dr, nr);
  8126. if (nb10 == sizeof(ggml_bf16_t)) {
  8127. for (int ir = ir0; ir < ir1; ++ir) {
  8128. // src0, src1 and dst are same shape => same indices
  8129. const int i3 = ir/(ne2*ne1);
  8130. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8131. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8132. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8133. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8134. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  8135. for (int i = 0; i < ne0; i++) {
  8136. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  8137. }
  8138. }
  8139. }
  8140. else {
  8141. // src1 is not contiguous
  8142. GGML_ABORT("fatal error");
  8143. }
  8144. }
  8145. static void ggml_compute_forward_add_q_f32(
  8146. const struct ggml_compute_params * params,
  8147. struct ggml_tensor * dst) {
  8148. const struct ggml_tensor * src0 = dst->src[0];
  8149. const struct ggml_tensor * src1 = dst->src[1];
  8150. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8151. const int nr = ggml_nrows(src0);
  8152. GGML_TENSOR_BINARY_OP_LOCALS
  8153. const int ith = params->ith;
  8154. const int nth = params->nth;
  8155. const enum ggml_type type = src0->type;
  8156. const enum ggml_type dtype = dst->type;
  8157. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8158. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  8159. // we don't support permuted src0 or src1
  8160. GGML_ASSERT(nb00 == ggml_type_size(type));
  8161. GGML_ASSERT(nb10 == sizeof(float));
  8162. // dst cannot be transposed or permuted
  8163. GGML_ASSERT(nb0 <= nb1);
  8164. GGML_ASSERT(nb1 <= nb2);
  8165. GGML_ASSERT(nb2 <= nb3);
  8166. GGML_ASSERT(ggml_is_quantized(src0->type));
  8167. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8168. // rows per thread
  8169. const int dr = (nr + nth - 1)/nth;
  8170. // row range for this thread
  8171. const int ir0 = dr*ith;
  8172. const int ir1 = MIN(ir0 + dr, nr);
  8173. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  8174. for (int ir = ir0; ir < ir1; ++ir) {
  8175. // src0 indices
  8176. const int i03 = ir/(ne02*ne01);
  8177. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8178. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8179. // src1 and dst are same shape as src0 => same indices
  8180. const int i13 = i03;
  8181. const int i12 = i02;
  8182. const int i11 = i01;
  8183. const int i3 = i03;
  8184. const int i2 = i02;
  8185. const int i1 = i01;
  8186. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8187. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  8188. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8189. assert(ne00 % 32 == 0);
  8190. // unquantize row from src0 to temp buffer
  8191. dequantize_row_q(src0_row, wdata, ne00);
  8192. // add src1
  8193. ggml_vec_acc_f32(ne00, wdata, src1_row);
  8194. // quantize row to dst
  8195. if (quantize_row_q != NULL) {
  8196. quantize_row_q(wdata, dst_row, ne00);
  8197. } else {
  8198. memcpy(dst_row, wdata, ne0*nb0);
  8199. }
  8200. }
  8201. }
  8202. static void ggml_compute_forward_add(
  8203. const struct ggml_compute_params * params,
  8204. struct ggml_tensor * dst) {
  8205. const struct ggml_tensor * src0 = dst->src[0];
  8206. const struct ggml_tensor * src1 = dst->src[1];
  8207. switch (src0->type) {
  8208. case GGML_TYPE_F32:
  8209. {
  8210. if (src1->type == GGML_TYPE_F32) {
  8211. ggml_compute_forward_add_f32(params, dst);
  8212. }
  8213. else {
  8214. GGML_ABORT("fatal error");
  8215. }
  8216. } break;
  8217. case GGML_TYPE_F16:
  8218. {
  8219. if (src1->type == GGML_TYPE_F16) {
  8220. ggml_compute_forward_add_f16_f16(params, dst);
  8221. }
  8222. else if (src1->type == GGML_TYPE_F32) {
  8223. ggml_compute_forward_add_f16_f32(params, dst);
  8224. }
  8225. else {
  8226. GGML_ABORT("fatal error");
  8227. }
  8228. } break;
  8229. case GGML_TYPE_BF16:
  8230. {
  8231. if (src1->type == GGML_TYPE_BF16) {
  8232. ggml_compute_forward_add_bf16_bf16(params, dst);
  8233. }
  8234. else if (src1->type == GGML_TYPE_F32) {
  8235. ggml_compute_forward_add_bf16_f32(params, dst);
  8236. }
  8237. else {
  8238. GGML_ABORT("fatal error");
  8239. }
  8240. } break;
  8241. case GGML_TYPE_Q4_0:
  8242. case GGML_TYPE_Q4_1:
  8243. case GGML_TYPE_Q5_0:
  8244. case GGML_TYPE_Q5_1:
  8245. case GGML_TYPE_Q8_0:
  8246. case GGML_TYPE_Q2_K:
  8247. case GGML_TYPE_Q3_K:
  8248. case GGML_TYPE_Q4_K:
  8249. case GGML_TYPE_Q5_K:
  8250. case GGML_TYPE_Q6_K:
  8251. case GGML_TYPE_IQ2_XXS:
  8252. case GGML_TYPE_IQ2_XS:
  8253. case GGML_TYPE_IQ3_XXS:
  8254. case GGML_TYPE_IQ1_S:
  8255. case GGML_TYPE_IQ1_M:
  8256. case GGML_TYPE_IQ4_NL:
  8257. case GGML_TYPE_IQ4_XS:
  8258. case GGML_TYPE_IQ3_S:
  8259. case GGML_TYPE_IQ2_S:
  8260. case GGML_TYPE_Q4_0_4_4:
  8261. case GGML_TYPE_Q4_0_4_8:
  8262. case GGML_TYPE_Q4_0_8_8:
  8263. {
  8264. ggml_compute_forward_add_q_f32(params, dst);
  8265. } break;
  8266. default:
  8267. {
  8268. GGML_ABORT("fatal error");
  8269. }
  8270. }
  8271. }
  8272. // ggml_compute_forward_add1
  8273. static void ggml_compute_forward_add1_f32(
  8274. const struct ggml_compute_params * params,
  8275. struct ggml_tensor * dst) {
  8276. const struct ggml_tensor * src0 = dst->src[0];
  8277. const struct ggml_tensor * src1 = dst->src[1];
  8278. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8279. GGML_ASSERT(ggml_is_scalar(src1));
  8280. const int ith = params->ith;
  8281. const int nth = params->nth;
  8282. const int nr = ggml_nrows(src0);
  8283. GGML_TENSOR_UNARY_OP_LOCALS
  8284. GGML_ASSERT( nb0 == sizeof(float));
  8285. GGML_ASSERT(nb00 == sizeof(float));
  8286. // rows per thread
  8287. const int dr = (nr + nth - 1)/nth;
  8288. // row range for this thread
  8289. const int ir0 = dr*ith;
  8290. const int ir1 = MIN(ir0 + dr, nr);
  8291. for (int ir = ir0; ir < ir1; ++ir) {
  8292. // src0 and dst are same shape => same indices
  8293. const int i3 = ir/(ne2*ne1);
  8294. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8295. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8296. #ifdef GGML_USE_ACCELERATE
  8297. UNUSED(ggml_vec_add1_f32);
  8298. vDSP_vadd(
  8299. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8300. (float *) ((char *) src1->data), 0,
  8301. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8302. ne0);
  8303. #else
  8304. ggml_vec_add1_f32(ne0,
  8305. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8306. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8307. *(float *) src1->data);
  8308. #endif
  8309. }
  8310. }
  8311. static void ggml_compute_forward_add1_f16_f32(
  8312. const struct ggml_compute_params * params,
  8313. struct ggml_tensor * dst) {
  8314. const struct ggml_tensor * src0 = dst->src[0];
  8315. const struct ggml_tensor * src1 = dst->src[1];
  8316. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8317. GGML_ASSERT(ggml_is_scalar(src1));
  8318. // scalar to add
  8319. const float v = *(float *) src1->data;
  8320. const int ith = params->ith;
  8321. const int nth = params->nth;
  8322. const int nr = ggml_nrows(src0);
  8323. GGML_TENSOR_UNARY_OP_LOCALS
  8324. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8325. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8326. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8327. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8328. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8329. // rows per thread
  8330. const int dr = (nr + nth - 1)/nth;
  8331. // row range for this thread
  8332. const int ir0 = dr*ith;
  8333. const int ir1 = MIN(ir0 + dr, nr);
  8334. for (int ir = ir0; ir < ir1; ++ir) {
  8335. // src0 and dst are same shape => same indices
  8336. const int i3 = ir/(ne2*ne1);
  8337. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8338. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8339. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8340. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8341. for (int i = 0; i < ne0; i++) {
  8342. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8343. }
  8344. }
  8345. }
  8346. static void ggml_compute_forward_add1_f16_f16(
  8347. const struct ggml_compute_params * params,
  8348. struct ggml_tensor * dst) {
  8349. const struct ggml_tensor * src0 = dst->src[0];
  8350. const struct ggml_tensor * src1 = dst->src[1];
  8351. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8352. GGML_ASSERT(ggml_is_scalar(src1));
  8353. // scalar to add
  8354. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8355. const int ith = params->ith;
  8356. const int nth = params->nth;
  8357. const int nr = ggml_nrows(src0);
  8358. GGML_TENSOR_UNARY_OP_LOCALS
  8359. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8360. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8361. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8362. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8363. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8364. // rows per thread
  8365. const int dr = (nr + nth - 1)/nth;
  8366. // row range for this thread
  8367. const int ir0 = dr*ith;
  8368. const int ir1 = MIN(ir0 + dr, nr);
  8369. for (int ir = ir0; ir < ir1; ++ir) {
  8370. // src0 and dst are same shape => same indices
  8371. const int i3 = ir/(ne2*ne1);
  8372. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8373. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8374. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8375. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8376. for (int i = 0; i < ne0; i++) {
  8377. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8378. }
  8379. }
  8380. }
  8381. static void ggml_compute_forward_add1_q_f32(
  8382. const struct ggml_compute_params * params,
  8383. struct ggml_tensor * dst) {
  8384. const struct ggml_tensor * src0 = dst->src[0];
  8385. const struct ggml_tensor * src1 = dst->src[1];
  8386. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8387. GGML_ASSERT(ggml_is_scalar(src1));
  8388. // scalar to add
  8389. const float v = *(float *) src1->data;
  8390. const int ith = params->ith;
  8391. const int nth = params->nth;
  8392. const int nr = ggml_nrows(src0);
  8393. GGML_TENSOR_UNARY_OP_LOCALS
  8394. const enum ggml_type type = src0->type;
  8395. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8396. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8397. // we don't support permuted src0
  8398. GGML_ASSERT(nb00 == ggml_type_size(type));
  8399. // dst cannot be transposed or permuted
  8400. GGML_ASSERT(nb0 <= nb1);
  8401. GGML_ASSERT(nb1 <= nb2);
  8402. GGML_ASSERT(nb2 <= nb3);
  8403. GGML_ASSERT(ggml_is_quantized(src0->type));
  8404. GGML_ASSERT(dst->type == src0->type);
  8405. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8406. // rows per thread
  8407. const int dr = (nr + nth - 1)/nth;
  8408. // row range for this thread
  8409. const int ir0 = dr*ith;
  8410. const int ir1 = MIN(ir0 + dr, nr);
  8411. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8412. for (int ir = ir0; ir < ir1; ++ir) {
  8413. // src0 and dst are same shape => same indices
  8414. const int i3 = ir/(ne2*ne1);
  8415. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8416. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8417. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8418. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8419. assert(ne0 % 32 == 0);
  8420. // unquantize row from src0 to temp buffer
  8421. dequantize_row_q(src0_row, wdata, ne0);
  8422. // add src1
  8423. ggml_vec_acc1_f32(ne0, wdata, v);
  8424. // quantize row to dst
  8425. quantize_row_q(wdata, dst_row, ne0);
  8426. }
  8427. }
  8428. static void ggml_compute_forward_add1_bf16_f32(
  8429. const struct ggml_compute_params * params,
  8430. struct ggml_tensor * dst) {
  8431. const struct ggml_tensor * src0 = dst->src[0];
  8432. const struct ggml_tensor * src1 = dst->src[1];
  8433. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8434. GGML_ASSERT(ggml_is_scalar(src1));
  8435. // scalar to add
  8436. const float v = *(float *) src1->data;
  8437. const int ith = params->ith;
  8438. const int nth = params->nth;
  8439. const int nr = ggml_nrows(src0);
  8440. GGML_TENSOR_UNARY_OP_LOCALS
  8441. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8442. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8443. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8444. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8445. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8446. // rows per thread
  8447. const int dr = (nr + nth - 1)/nth;
  8448. // row range for this thread
  8449. const int ir0 = dr*ith;
  8450. const int ir1 = MIN(ir0 + dr, nr);
  8451. for (int ir = ir0; ir < ir1; ++ir) {
  8452. // src0 and dst are same shape => same indices
  8453. const int i3 = ir/(ne2*ne1);
  8454. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8455. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8456. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8457. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8458. for (int i = 0; i < ne0; i++) {
  8459. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8460. }
  8461. }
  8462. }
  8463. static void ggml_compute_forward_add1_bf16_bf16(
  8464. const struct ggml_compute_params * params,
  8465. struct ggml_tensor * dst) {
  8466. const struct ggml_tensor * src0 = dst->src[0];
  8467. const struct ggml_tensor * src1 = dst->src[1];
  8468. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8469. GGML_ASSERT(ggml_is_scalar(src1));
  8470. // scalar to add
  8471. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8472. const int ith = params->ith;
  8473. const int nth = params->nth;
  8474. const int nr = ggml_nrows(src0);
  8475. GGML_TENSOR_UNARY_OP_LOCALS
  8476. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8477. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8478. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8479. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8480. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8481. // rows per thread
  8482. const int dr = (nr + nth - 1)/nth;
  8483. // row range for this thread
  8484. const int ir0 = dr*ith;
  8485. const int ir1 = MIN(ir0 + dr, nr);
  8486. for (int ir = ir0; ir < ir1; ++ir) {
  8487. // src0 and dst are same shape => same indices
  8488. const int i3 = ir/(ne2*ne1);
  8489. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8490. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8491. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8492. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8493. for (int i = 0; i < ne0; i++) {
  8494. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8495. }
  8496. }
  8497. }
  8498. static void ggml_compute_forward_add1(
  8499. const struct ggml_compute_params * params,
  8500. struct ggml_tensor * dst) {
  8501. const struct ggml_tensor * src0 = dst->src[0];
  8502. const struct ggml_tensor * src1 = dst->src[1];
  8503. switch (src0->type) {
  8504. case GGML_TYPE_F32:
  8505. {
  8506. ggml_compute_forward_add1_f32(params, dst);
  8507. } break;
  8508. case GGML_TYPE_F16:
  8509. {
  8510. if (src1->type == GGML_TYPE_F16) {
  8511. ggml_compute_forward_add1_f16_f16(params, dst);
  8512. }
  8513. else if (src1->type == GGML_TYPE_F32) {
  8514. ggml_compute_forward_add1_f16_f32(params, dst);
  8515. }
  8516. else {
  8517. GGML_ABORT("fatal error");
  8518. }
  8519. } break;
  8520. case GGML_TYPE_BF16:
  8521. {
  8522. if (src1->type == GGML_TYPE_BF16) {
  8523. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8524. }
  8525. else if (src1->type == GGML_TYPE_F32) {
  8526. ggml_compute_forward_add1_bf16_f32(params, dst);
  8527. }
  8528. else {
  8529. GGML_ABORT("fatal error");
  8530. }
  8531. } break;
  8532. case GGML_TYPE_Q4_0:
  8533. case GGML_TYPE_Q4_1:
  8534. case GGML_TYPE_Q5_0:
  8535. case GGML_TYPE_Q5_1:
  8536. case GGML_TYPE_Q8_0:
  8537. case GGML_TYPE_Q8_1:
  8538. case GGML_TYPE_Q2_K:
  8539. case GGML_TYPE_Q3_K:
  8540. case GGML_TYPE_Q4_K:
  8541. case GGML_TYPE_Q5_K:
  8542. case GGML_TYPE_Q6_K:
  8543. case GGML_TYPE_IQ2_XXS:
  8544. case GGML_TYPE_IQ2_XS:
  8545. case GGML_TYPE_IQ3_XXS:
  8546. case GGML_TYPE_IQ1_S:
  8547. case GGML_TYPE_IQ1_M:
  8548. case GGML_TYPE_IQ4_NL:
  8549. case GGML_TYPE_IQ4_XS:
  8550. case GGML_TYPE_IQ3_S:
  8551. case GGML_TYPE_IQ2_S:
  8552. case GGML_TYPE_Q4_0_4_4:
  8553. case GGML_TYPE_Q4_0_4_8:
  8554. case GGML_TYPE_Q4_0_8_8:
  8555. {
  8556. ggml_compute_forward_add1_q_f32(params, dst);
  8557. } break;
  8558. default:
  8559. {
  8560. GGML_ABORT("fatal error");
  8561. }
  8562. }
  8563. }
  8564. // ggml_compute_forward_acc
  8565. static void ggml_compute_forward_acc_f32(
  8566. const struct ggml_compute_params * params,
  8567. struct ggml_tensor * dst) {
  8568. const struct ggml_tensor * src0 = dst->src[0];
  8569. const struct ggml_tensor * src1 = dst->src[1];
  8570. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8571. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8572. // view src0 and dst with these strides and data offset inbytes during acc
  8573. // nb0 is implicitly element_size because src0 and dst are contiguous
  8574. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8575. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8576. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8577. size_t offset = ((int32_t *) dst->op_params)[3];
  8578. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8579. if (!inplace) {
  8580. if (params->ith == 0) {
  8581. // memcpy needs to be synchronized across threads to avoid race conditions.
  8582. // => do it in INIT phase
  8583. memcpy(
  8584. ((char *) dst->data),
  8585. ((char *) src0->data),
  8586. ggml_nbytes(dst));
  8587. }
  8588. ggml_barrier(params->threadpool);
  8589. }
  8590. const int ith = params->ith;
  8591. const int nth = params->nth;
  8592. const int nr = ggml_nrows(src1);
  8593. const int nc = src1->ne[0];
  8594. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8595. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8596. // src0 and dst as viewed during acc
  8597. const size_t nb0 = ggml_element_size(src0);
  8598. const size_t nb00 = nb0;
  8599. const size_t nb01 = nb1;
  8600. const size_t nb02 = nb2;
  8601. const size_t nb03 = nb3;
  8602. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8603. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8604. GGML_ASSERT(nb10 == sizeof(float));
  8605. // rows per thread
  8606. const int dr = (nr + nth - 1)/nth;
  8607. // row range for this thread
  8608. const int ir0 = dr*ith;
  8609. const int ir1 = MIN(ir0 + dr, nr);
  8610. for (int ir = ir0; ir < ir1; ++ir) {
  8611. // src0 and dst are viewed with shape of src1 and offset
  8612. // => same indices
  8613. const int i3 = ir/(ne12*ne11);
  8614. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8615. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8616. #ifdef GGML_USE_ACCELERATE
  8617. vDSP_vadd(
  8618. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8619. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8620. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8621. #else
  8622. ggml_vec_add_f32(nc,
  8623. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8624. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8625. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8626. #endif
  8627. }
  8628. }
  8629. static void ggml_compute_forward_acc(
  8630. const struct ggml_compute_params * params,
  8631. struct ggml_tensor * dst) {
  8632. const struct ggml_tensor * src0 = dst->src[0];
  8633. switch (src0->type) {
  8634. case GGML_TYPE_F32:
  8635. {
  8636. ggml_compute_forward_acc_f32(params, dst);
  8637. } break;
  8638. case GGML_TYPE_F16:
  8639. case GGML_TYPE_BF16:
  8640. case GGML_TYPE_Q4_0:
  8641. case GGML_TYPE_Q4_1:
  8642. case GGML_TYPE_Q5_0:
  8643. case GGML_TYPE_Q5_1:
  8644. case GGML_TYPE_Q8_0:
  8645. case GGML_TYPE_Q8_1:
  8646. case GGML_TYPE_Q2_K:
  8647. case GGML_TYPE_Q3_K:
  8648. case GGML_TYPE_Q4_K:
  8649. case GGML_TYPE_Q5_K:
  8650. case GGML_TYPE_Q6_K:
  8651. case GGML_TYPE_IQ2_XXS:
  8652. case GGML_TYPE_IQ2_XS:
  8653. case GGML_TYPE_IQ3_XXS:
  8654. case GGML_TYPE_IQ1_S:
  8655. case GGML_TYPE_IQ1_M:
  8656. case GGML_TYPE_IQ4_NL:
  8657. case GGML_TYPE_IQ4_XS:
  8658. case GGML_TYPE_IQ3_S:
  8659. case GGML_TYPE_IQ2_S:
  8660. case GGML_TYPE_Q4_0_4_4:
  8661. case GGML_TYPE_Q4_0_4_8:
  8662. case GGML_TYPE_Q4_0_8_8:
  8663. default:
  8664. {
  8665. GGML_ABORT("fatal error");
  8666. }
  8667. }
  8668. }
  8669. // ggml_compute_forward_sub
  8670. static void ggml_compute_forward_sub_f32(
  8671. const struct ggml_compute_params * params,
  8672. struct ggml_tensor * dst) {
  8673. const struct ggml_tensor * src0 = dst->src[0];
  8674. const struct ggml_tensor * src1 = dst->src[1];
  8675. assert(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8676. const int ith = params->ith;
  8677. const int nth = params->nth;
  8678. const int nr = ggml_nrows(src0);
  8679. GGML_TENSOR_BINARY_OP_LOCALS
  8680. GGML_ASSERT( nb0 == sizeof(float));
  8681. GGML_ASSERT(nb00 == sizeof(float));
  8682. // rows per thread
  8683. const int dr = (nr + nth - 1)/nth;
  8684. // row range for this thread
  8685. const int ir0 = dr*ith;
  8686. const int ir1 = MIN(ir0 + dr, nr);
  8687. if (nb10 == sizeof(float)) {
  8688. for (int ir = ir0; ir < ir1; ++ir) {
  8689. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8690. const int64_t i03 = ir/(ne02*ne01);
  8691. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8692. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8693. const int64_t i13 = i03 % ne13;
  8694. const int64_t i12 = i02 % ne12;
  8695. const int64_t i11 = i01 % ne11;
  8696. const int64_t nr0 = ne00 / ne10;
  8697. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8698. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8699. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8700. for (int64_t r = 0; r < nr0; ++r) {
  8701. #ifdef GGML_USE_ACCELERATE
  8702. vDSP_vsub(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8703. #else
  8704. ggml_vec_sub_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8705. #endif
  8706. }
  8707. }
  8708. } else {
  8709. // src1 is not contiguous
  8710. for (int ir = ir0; ir < ir1; ++ir) {
  8711. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8712. const int64_t i03 = ir/(ne02*ne01);
  8713. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8714. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8715. const int64_t i13 = i03 % ne13;
  8716. const int64_t i12 = i02 % ne12;
  8717. const int64_t i11 = i01 % ne11;
  8718. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8719. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8720. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8721. const int64_t i10 = i0 % ne10;
  8722. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8723. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8724. }
  8725. }
  8726. }
  8727. }
  8728. static void ggml_compute_forward_sub(
  8729. const struct ggml_compute_params * params,
  8730. struct ggml_tensor * dst) {
  8731. const struct ggml_tensor * src0 = dst->src[0];
  8732. switch (src0->type) {
  8733. case GGML_TYPE_F32:
  8734. {
  8735. ggml_compute_forward_sub_f32(params, dst);
  8736. } break;
  8737. default:
  8738. {
  8739. GGML_ABORT("fatal error");
  8740. }
  8741. }
  8742. }
  8743. // ggml_compute_forward_mul
  8744. static void ggml_compute_forward_mul_f32(
  8745. const struct ggml_compute_params * params,
  8746. struct ggml_tensor * dst) {
  8747. const struct ggml_tensor * src0 = dst->src[0];
  8748. const struct ggml_tensor * src1 = dst->src[1];
  8749. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8750. const int ith = params->ith;
  8751. const int nth = params->nth;
  8752. const int64_t nr = ggml_nrows(src0);
  8753. GGML_TENSOR_BINARY_OP_LOCALS
  8754. GGML_ASSERT( nb0 == sizeof(float));
  8755. GGML_ASSERT(nb00 == sizeof(float));
  8756. if (nb10 == sizeof(float)) {
  8757. for (int64_t ir = ith; ir < nr; ir += nth) {
  8758. // src0 and dst are same shape => same indices
  8759. const int64_t i03 = ir/(ne02*ne01);
  8760. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8761. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8762. const int64_t i13 = i03 % ne13;
  8763. const int64_t i12 = i02 % ne12;
  8764. const int64_t i11 = i01 % ne11;
  8765. const int64_t nr0 = ne00 / ne10;
  8766. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8767. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8768. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8769. for (int64_t r = 0 ; r < nr0; ++r) {
  8770. #ifdef GGML_USE_ACCELERATE
  8771. UNUSED(ggml_vec_mul_f32);
  8772. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8773. #else
  8774. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8775. #endif
  8776. }
  8777. }
  8778. } else {
  8779. // src1 is not contiguous
  8780. for (int64_t ir = ith; ir < nr; ir += nth) {
  8781. // src0 and dst are same shape => same indices
  8782. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8783. const int64_t i03 = ir/(ne02*ne01);
  8784. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8785. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8786. const int64_t i13 = i03 % ne13;
  8787. const int64_t i12 = i02 % ne12;
  8788. const int64_t i11 = i01 % ne11;
  8789. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8790. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8791. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8792. const int64_t i10 = i0 % ne10;
  8793. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8794. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8795. }
  8796. }
  8797. }
  8798. }
  8799. static void ggml_compute_forward_mul(
  8800. const struct ggml_compute_params * params,
  8801. struct ggml_tensor * dst) {
  8802. const struct ggml_tensor * src0 = dst->src[0];
  8803. const struct ggml_tensor * src1 = dst->src[1];
  8804. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8805. switch (src0->type) {
  8806. case GGML_TYPE_F32:
  8807. {
  8808. ggml_compute_forward_mul_f32(params, dst);
  8809. } break;
  8810. default:
  8811. {
  8812. GGML_ABORT("fatal error");
  8813. }
  8814. }
  8815. }
  8816. // ggml_compute_forward_div
  8817. static void ggml_compute_forward_div_f32(
  8818. const struct ggml_compute_params * params,
  8819. struct ggml_tensor * dst) {
  8820. const struct ggml_tensor * src0 = dst->src[0];
  8821. const struct ggml_tensor * src1 = dst->src[1];
  8822. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8823. const int ith = params->ith;
  8824. const int nth = params->nth;
  8825. const int64_t nr = ggml_nrows(src0);
  8826. GGML_TENSOR_BINARY_OP_LOCALS
  8827. GGML_ASSERT( nb0 == sizeof(float));
  8828. GGML_ASSERT(nb00 == sizeof(float));
  8829. if (nb10 == sizeof(float)) {
  8830. for (int64_t ir = ith; ir < nr; ir += nth) {
  8831. // src0 and dst are same shape => same indices
  8832. const int64_t i03 = ir/(ne02*ne01);
  8833. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8834. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8835. const int64_t i13 = i03 % ne13;
  8836. const int64_t i12 = i02 % ne12;
  8837. const int64_t i11 = i01 % ne11;
  8838. const int64_t nr0 = ne00 / ne10;
  8839. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8840. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8841. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8842. for (int64_t r = 0; r < nr0; ++r) {
  8843. #ifdef GGML_USE_ACCELERATE
  8844. UNUSED(ggml_vec_div_f32);
  8845. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8846. #else
  8847. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8848. #endif
  8849. }
  8850. }
  8851. } else {
  8852. // src1 is not contiguous
  8853. for (int64_t ir = ith; ir < nr; ir += nth) {
  8854. // src0 and dst are same shape => same indices
  8855. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8856. const int64_t i03 = ir/(ne02*ne01);
  8857. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8858. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8859. const int64_t i13 = i03 % ne13;
  8860. const int64_t i12 = i02 % ne12;
  8861. const int64_t i11 = i01 % ne11;
  8862. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8863. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8864. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8865. const int64_t i10 = i0 % ne10;
  8866. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8867. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8868. }
  8869. }
  8870. }
  8871. }
  8872. static void ggml_compute_forward_div(
  8873. const struct ggml_compute_params * params,
  8874. struct ggml_tensor * dst) {
  8875. const struct ggml_tensor * src0 = dst->src[0];
  8876. switch (src0->type) {
  8877. case GGML_TYPE_F32:
  8878. {
  8879. ggml_compute_forward_div_f32(params, dst);
  8880. } break;
  8881. default:
  8882. {
  8883. GGML_ABORT("fatal error");
  8884. }
  8885. }
  8886. }
  8887. // ggml_compute_forward_sqr
  8888. static void ggml_compute_forward_sqr_f32(
  8889. const struct ggml_compute_params * params,
  8890. struct ggml_tensor * dst) {
  8891. const struct ggml_tensor * src0 = dst->src[0];
  8892. if (params->ith != 0) {
  8893. return;
  8894. }
  8895. assert(ggml_are_same_shape(src0, dst));
  8896. const int n = ggml_nrows(src0);
  8897. const int nc = src0->ne[0];
  8898. assert( dst->nb[0] == sizeof(float));
  8899. assert(src0->nb[0] == sizeof(float));
  8900. for (int i = 0; i < n; i++) {
  8901. ggml_vec_sqr_f32(nc,
  8902. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8903. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8904. }
  8905. }
  8906. static void ggml_compute_forward_sqr(
  8907. const struct ggml_compute_params * params,
  8908. struct ggml_tensor * dst) {
  8909. const struct ggml_tensor * src0 = dst->src[0];
  8910. switch (src0->type) {
  8911. case GGML_TYPE_F32:
  8912. {
  8913. ggml_compute_forward_sqr_f32(params, dst);
  8914. } break;
  8915. default:
  8916. {
  8917. GGML_ABORT("fatal error");
  8918. }
  8919. }
  8920. }
  8921. // ggml_compute_forward_sqrt
  8922. static void ggml_compute_forward_sqrt_f32(
  8923. const struct ggml_compute_params * params,
  8924. struct ggml_tensor * dst) {
  8925. const struct ggml_tensor * src0 = dst->src[0];
  8926. if (params->ith != 0) {
  8927. return;
  8928. }
  8929. assert(ggml_are_same_shape(src0, dst));
  8930. const int n = ggml_nrows(src0);
  8931. const int nc = src0->ne[0];
  8932. assert( dst->nb[0] == sizeof(float));
  8933. assert(src0->nb[0] == sizeof(float));
  8934. for (int i = 0; i < n; i++) {
  8935. ggml_vec_sqrt_f32(nc,
  8936. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8937. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8938. }
  8939. }
  8940. static void ggml_compute_forward_sqrt(
  8941. const struct ggml_compute_params * params,
  8942. struct ggml_tensor * dst) {
  8943. const struct ggml_tensor * src0 = dst->src[0];
  8944. switch (src0->type) {
  8945. case GGML_TYPE_F32:
  8946. {
  8947. ggml_compute_forward_sqrt_f32(params, dst);
  8948. } break;
  8949. default:
  8950. {
  8951. GGML_ABORT("fatal error");
  8952. }
  8953. }
  8954. }
  8955. // ggml_compute_forward_log
  8956. static void ggml_compute_forward_log_f32(
  8957. const struct ggml_compute_params * params,
  8958. struct ggml_tensor * dst) {
  8959. const struct ggml_tensor * src0 = dst->src[0];
  8960. if (params->ith != 0) {
  8961. return;
  8962. }
  8963. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8964. const int n = ggml_nrows(src0);
  8965. const int nc = src0->ne[0];
  8966. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8967. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8968. for (int i = 0; i < n; i++) {
  8969. ggml_vec_log_f32(nc,
  8970. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8971. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8972. }
  8973. }
  8974. static void ggml_compute_forward_log(
  8975. const struct ggml_compute_params * params,
  8976. struct ggml_tensor * dst) {
  8977. const struct ggml_tensor * src0 = dst->src[0];
  8978. switch (src0->type) {
  8979. case GGML_TYPE_F32:
  8980. {
  8981. ggml_compute_forward_log_f32(params, dst);
  8982. } break;
  8983. default:
  8984. {
  8985. GGML_ABORT("fatal error");
  8986. }
  8987. }
  8988. }
  8989. // ggml_compute_forward_sin
  8990. static void ggml_compute_forward_sin_f32(
  8991. const struct ggml_compute_params * params,
  8992. struct ggml_tensor * dst) {
  8993. const struct ggml_tensor * src0 = dst->src[0];
  8994. if (params->ith != 0) {
  8995. return;
  8996. }
  8997. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8998. const int n = ggml_nrows(src0);
  8999. const int nc = src0->ne[0];
  9000. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9001. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9002. for (int i = 0; i < n; i++) {
  9003. ggml_vec_sin_f32(nc,
  9004. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9005. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9006. }
  9007. }
  9008. static void ggml_compute_forward_sin(
  9009. const struct ggml_compute_params * params,
  9010. struct ggml_tensor * dst) {
  9011. const struct ggml_tensor * src0 = dst->src[0];
  9012. switch (src0->type) {
  9013. case GGML_TYPE_F32:
  9014. {
  9015. ggml_compute_forward_sin_f32(params, dst);
  9016. } break;
  9017. default:
  9018. {
  9019. GGML_ABORT("fatal error");
  9020. }
  9021. }
  9022. }
  9023. // ggml_compute_forward_cos
  9024. static void ggml_compute_forward_cos_f32(
  9025. const struct ggml_compute_params * params,
  9026. struct ggml_tensor * dst) {
  9027. const struct ggml_tensor * src0 = dst->src[0];
  9028. if (params->ith != 0) {
  9029. return;
  9030. }
  9031. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9032. const int n = ggml_nrows(src0);
  9033. const int nc = src0->ne[0];
  9034. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9035. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9036. for (int i = 0; i < n; i++) {
  9037. ggml_vec_cos_f32(nc,
  9038. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9039. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9040. }
  9041. }
  9042. static void ggml_compute_forward_cos(
  9043. const struct ggml_compute_params * params,
  9044. struct ggml_tensor * dst) {
  9045. const struct ggml_tensor * src0 = dst->src[0];
  9046. switch (src0->type) {
  9047. case GGML_TYPE_F32:
  9048. {
  9049. ggml_compute_forward_cos_f32(params, dst);
  9050. } break;
  9051. default:
  9052. {
  9053. GGML_ABORT("fatal error");
  9054. }
  9055. }
  9056. }
  9057. // ggml_compute_forward_sum
  9058. static void ggml_compute_forward_sum_f32(
  9059. const struct ggml_compute_params * params,
  9060. struct ggml_tensor * dst) {
  9061. const struct ggml_tensor * src0 = dst->src[0];
  9062. if (params->ith != 0) {
  9063. return;
  9064. }
  9065. assert(ggml_is_scalar(dst));
  9066. assert(ggml_is_scalar(dst));
  9067. assert(src0->nb[0] == sizeof(float));
  9068. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  9069. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  9070. ggml_float sum = 0;
  9071. ggml_float row_sum = 0;
  9072. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9073. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9074. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9075. ggml_vec_sum_f32_ggf(ne00,
  9076. &row_sum,
  9077. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  9078. sum += row_sum;
  9079. }
  9080. }
  9081. }
  9082. ((float *) dst->data)[0] = sum;
  9083. }
  9084. static void ggml_compute_forward_sum_f16(
  9085. const struct ggml_compute_params * params,
  9086. struct ggml_tensor * dst) {
  9087. const struct ggml_tensor * src0 = dst->src[0];
  9088. if (params->ith != 0) {
  9089. return;
  9090. }
  9091. assert(ggml_is_scalar(dst));
  9092. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9093. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  9094. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  9095. float sum = 0;
  9096. float row_sum = 0;
  9097. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9098. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9099. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9100. ggml_vec_sum_f16_ggf(ne00,
  9101. &row_sum,
  9102. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  9103. sum += row_sum;
  9104. }
  9105. }
  9106. }
  9107. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  9108. }
  9109. static void ggml_compute_forward_sum_bf16(
  9110. const struct ggml_compute_params * params,
  9111. struct ggml_tensor * dst) {
  9112. const struct ggml_tensor * src0 = dst->src[0];
  9113. if (params->ith != 0) {
  9114. return;
  9115. }
  9116. assert(ggml_is_scalar(dst));
  9117. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  9118. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  9119. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  9120. float sum = 0;
  9121. float row_sum = 0;
  9122. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9123. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9124. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9125. ggml_vec_sum_bf16_ggf(ne00,
  9126. &row_sum,
  9127. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  9128. sum += row_sum;
  9129. }
  9130. }
  9131. }
  9132. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  9133. }
  9134. static void ggml_compute_forward_sum(
  9135. const struct ggml_compute_params * params,
  9136. struct ggml_tensor * dst) {
  9137. const struct ggml_tensor * src0 = dst->src[0];
  9138. switch (src0->type) {
  9139. case GGML_TYPE_F32:
  9140. {
  9141. ggml_compute_forward_sum_f32(params, dst);
  9142. } break;
  9143. case GGML_TYPE_F16:
  9144. {
  9145. ggml_compute_forward_sum_f16(params, dst);
  9146. } break;
  9147. case GGML_TYPE_BF16:
  9148. {
  9149. ggml_compute_forward_sum_bf16(params, dst);
  9150. } break;
  9151. default:
  9152. {
  9153. GGML_ABORT("fatal error");
  9154. }
  9155. }
  9156. }
  9157. // ggml_compute_forward_sum_rows
  9158. static void ggml_compute_forward_sum_rows_f32(
  9159. const struct ggml_compute_params * params,
  9160. struct ggml_tensor * dst) {
  9161. const struct ggml_tensor * src0 = dst->src[0];
  9162. if (params->ith != 0) {
  9163. return;
  9164. }
  9165. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9166. GGML_ASSERT(dst->nb[0] == sizeof(float));
  9167. GGML_TENSOR_UNARY_OP_LOCALS
  9168. GGML_ASSERT(ne0 == 1);
  9169. GGML_ASSERT(ne1 == ne01);
  9170. GGML_ASSERT(ne2 == ne02);
  9171. GGML_ASSERT(ne3 == ne03);
  9172. for (int64_t i3 = 0; i3 < ne03; i3++) {
  9173. for (int64_t i2 = 0; i2 < ne02; i2++) {
  9174. for (int64_t i1 = 0; i1 < ne01; i1++) {
  9175. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  9176. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  9177. float row_sum = 0;
  9178. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  9179. dst_row[0] = row_sum;
  9180. }
  9181. }
  9182. }
  9183. }
  9184. static void ggml_compute_forward_sum_rows(
  9185. const struct ggml_compute_params * params,
  9186. struct ggml_tensor * dst) {
  9187. const struct ggml_tensor * src0 = dst->src[0];
  9188. switch (src0->type) {
  9189. case GGML_TYPE_F32:
  9190. {
  9191. ggml_compute_forward_sum_rows_f32(params, dst);
  9192. } break;
  9193. default:
  9194. {
  9195. GGML_ABORT("fatal error");
  9196. }
  9197. }
  9198. }
  9199. // ggml_compute_forward_mean
  9200. static void ggml_compute_forward_mean_f32(
  9201. const struct ggml_compute_params * params,
  9202. struct ggml_tensor * dst) {
  9203. const struct ggml_tensor * src0 = dst->src[0];
  9204. if (params->ith != 0) {
  9205. return;
  9206. }
  9207. assert(src0->nb[0] == sizeof(float));
  9208. GGML_TENSOR_UNARY_OP_LOCALS
  9209. assert(ne0 == 1);
  9210. assert(ne1 == ne01);
  9211. assert(ne2 == ne02);
  9212. assert(ne3 == ne03);
  9213. UNUSED(ne0);
  9214. UNUSED(ne1);
  9215. UNUSED(ne2);
  9216. UNUSED(ne3);
  9217. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9218. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9219. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9220. ggml_vec_sum_f32(ne00,
  9221. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  9222. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  9223. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  9224. }
  9225. }
  9226. }
  9227. }
  9228. static void ggml_compute_forward_mean(
  9229. const struct ggml_compute_params * params,
  9230. struct ggml_tensor * dst) {
  9231. const struct ggml_tensor * src0 = dst->src[0];
  9232. switch (src0->type) {
  9233. case GGML_TYPE_F32:
  9234. {
  9235. ggml_compute_forward_mean_f32(params, dst);
  9236. } break;
  9237. default:
  9238. {
  9239. GGML_ABORT("fatal error");
  9240. }
  9241. }
  9242. }
  9243. // ggml_compute_forward_argmax
  9244. static void ggml_compute_forward_argmax_f32(
  9245. const struct ggml_compute_params * params,
  9246. struct ggml_tensor * dst) {
  9247. const struct ggml_tensor * src0 = dst->src[0];
  9248. if (params->ith != 0) {
  9249. return;
  9250. }
  9251. assert(src0->nb[0] == sizeof(float));
  9252. assert(dst->nb[0] == sizeof(float));
  9253. const int64_t ne00 = src0->ne[0];
  9254. const int64_t ne01 = src0->ne[1];
  9255. const size_t nb01 = src0->nb[1];
  9256. const size_t nb0 = dst->nb[0];
  9257. for (int64_t i1 = 0; i1 < ne01; i1++) {
  9258. float * src = (float *) ((char *) src0->data + i1*nb01);
  9259. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  9260. int v = 0;
  9261. ggml_vec_argmax_f32(ne00, &v, src);
  9262. dst_[0] = v;
  9263. }
  9264. }
  9265. static void ggml_compute_forward_argmax(
  9266. const struct ggml_compute_params * params,
  9267. struct ggml_tensor * dst) {
  9268. const struct ggml_tensor * src0 = dst->src[0];
  9269. switch (src0->type) {
  9270. case GGML_TYPE_F32:
  9271. {
  9272. ggml_compute_forward_argmax_f32(params, dst);
  9273. } break;
  9274. default:
  9275. {
  9276. GGML_ABORT("fatal error");
  9277. }
  9278. }
  9279. }
  9280. // ggml_compute_forward_repeat
  9281. static void ggml_compute_forward_repeat_f32(
  9282. const struct ggml_compute_params * params,
  9283. struct ggml_tensor * dst) {
  9284. const struct ggml_tensor * src0 = dst->src[0];
  9285. if (params->ith != 0) {
  9286. return;
  9287. }
  9288. GGML_ASSERT(ggml_can_repeat(src0, dst));
  9289. GGML_TENSOR_UNARY_OP_LOCALS
  9290. // guaranteed to be an integer due to the check in ggml_can_repeat
  9291. const int nr0 = (int)(ne0/ne00);
  9292. const int nr1 = (int)(ne1/ne01);
  9293. const int nr2 = (int)(ne2/ne02);
  9294. const int nr3 = (int)(ne3/ne03);
  9295. // TODO: support for transposed / permuted tensors
  9296. GGML_ASSERT(nb0 == sizeof(float));
  9297. GGML_ASSERT(nb00 == sizeof(float));
  9298. // TODO: maybe this is not optimal?
  9299. for (int i3 = 0; i3 < nr3; i3++) {
  9300. for (int k3 = 0; k3 < ne03; k3++) {
  9301. for (int i2 = 0; i2 < nr2; i2++) {
  9302. for (int k2 = 0; k2 < ne02; k2++) {
  9303. for (int i1 = 0; i1 < nr1; i1++) {
  9304. for (int k1 = 0; k1 < ne01; k1++) {
  9305. for (int i0 = 0; i0 < nr0; i0++) {
  9306. ggml_vec_cpy_f32(ne00,
  9307. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  9308. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  9309. }
  9310. }
  9311. }
  9312. }
  9313. }
  9314. }
  9315. }
  9316. }
  9317. static void ggml_compute_forward_repeat_f16(
  9318. const struct ggml_compute_params * params,
  9319. struct ggml_tensor * dst) {
  9320. const struct ggml_tensor * src0 = dst->src[0];
  9321. if (params->ith != 0) {
  9322. return;
  9323. }
  9324. GGML_ASSERT(ggml_can_repeat(src0, dst));
  9325. GGML_TENSOR_UNARY_OP_LOCALS
  9326. // guaranteed to be an integer due to the check in ggml_can_repeat
  9327. const int nr0 = (int)(ne0/ne00);
  9328. const int nr1 = (int)(ne1/ne01);
  9329. const int nr2 = (int)(ne2/ne02);
  9330. const int nr3 = (int)(ne3/ne03);
  9331. // TODO: support for transposed / permuted tensors
  9332. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9333. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9334. // TODO: maybe this is not optimal?
  9335. for (int i3 = 0; i3 < nr3; i3++) {
  9336. for (int k3 = 0; k3 < ne03; k3++) {
  9337. for (int i2 = 0; i2 < nr2; i2++) {
  9338. for (int k2 = 0; k2 < ne02; k2++) {
  9339. for (int i1 = 0; i1 < nr1; i1++) {
  9340. for (int k1 = 0; k1 < ne01; k1++) {
  9341. for (int i0 = 0; i0 < nr0; i0++) {
  9342. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  9343. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  9344. // ggml_vec_cpy_f16(ne00, y, x)
  9345. for (int i = 0; i < ne00; ++i) {
  9346. y[i] = x[i];
  9347. }
  9348. }
  9349. }
  9350. }
  9351. }
  9352. }
  9353. }
  9354. }
  9355. }
  9356. static void ggml_compute_forward_repeat(
  9357. const struct ggml_compute_params * params,
  9358. struct ggml_tensor * dst) {
  9359. const struct ggml_tensor * src0 = dst->src[0];
  9360. switch (src0->type) {
  9361. case GGML_TYPE_F16:
  9362. case GGML_TYPE_BF16:
  9363. case GGML_TYPE_I16:
  9364. {
  9365. ggml_compute_forward_repeat_f16(params, dst);
  9366. } break;
  9367. case GGML_TYPE_F32:
  9368. case GGML_TYPE_I32:
  9369. {
  9370. ggml_compute_forward_repeat_f32(params, dst);
  9371. } break;
  9372. default:
  9373. {
  9374. GGML_ABORT("fatal error");
  9375. }
  9376. }
  9377. }
  9378. // ggml_compute_forward_repeat_back
  9379. static void ggml_compute_forward_repeat_back_f32(
  9380. const struct ggml_compute_params * params,
  9381. struct ggml_tensor * dst) {
  9382. const struct ggml_tensor * src0 = dst->src[0];
  9383. if (params->ith != 0) {
  9384. return;
  9385. }
  9386. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9387. GGML_TENSOR_UNARY_OP_LOCALS
  9388. // guaranteed to be an integer due to the check in ggml_can_repeat
  9389. const int nr0 = (int)(ne00/ne0);
  9390. const int nr1 = (int)(ne01/ne1);
  9391. const int nr2 = (int)(ne02/ne2);
  9392. const int nr3 = (int)(ne03/ne3);
  9393. // TODO: support for transposed / permuted tensors
  9394. GGML_ASSERT(nb0 == sizeof(float));
  9395. GGML_ASSERT(nb00 == sizeof(float));
  9396. if (ggml_is_contiguous(dst)) {
  9397. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9398. } else {
  9399. for (int k3 = 0; k3 < ne3; k3++) {
  9400. for (int k2 = 0; k2 < ne2; k2++) {
  9401. for (int k1 = 0; k1 < ne1; k1++) {
  9402. ggml_vec_set_f32(ne0,
  9403. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9404. 0);
  9405. }
  9406. }
  9407. }
  9408. }
  9409. // TODO: maybe this is not optimal?
  9410. for (int i3 = 0; i3 < nr3; i3++) {
  9411. for (int k3 = 0; k3 < ne3; k3++) {
  9412. for (int i2 = 0; i2 < nr2; i2++) {
  9413. for (int k2 = 0; k2 < ne2; k2++) {
  9414. for (int i1 = 0; i1 < nr1; i1++) {
  9415. for (int k1 = 0; k1 < ne1; k1++) {
  9416. for (int i0 = 0; i0 < nr0; i0++) {
  9417. ggml_vec_acc_f32(ne0,
  9418. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9419. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9420. }
  9421. }
  9422. }
  9423. }
  9424. }
  9425. }
  9426. }
  9427. }
  9428. static void ggml_compute_forward_repeat_back(
  9429. const struct ggml_compute_params * params,
  9430. struct ggml_tensor * dst) {
  9431. const struct ggml_tensor * src0 = dst->src[0];
  9432. switch (src0->type) {
  9433. case GGML_TYPE_F32:
  9434. {
  9435. ggml_compute_forward_repeat_back_f32(params, dst);
  9436. } break;
  9437. default:
  9438. {
  9439. GGML_ABORT("fatal error");
  9440. }
  9441. }
  9442. }
  9443. // ggml_compute_forward_concat
  9444. static void ggml_compute_forward_concat_f32(
  9445. const struct ggml_compute_params * params,
  9446. struct ggml_tensor * dst) {
  9447. const struct ggml_tensor * src0 = dst->src[0];
  9448. const struct ggml_tensor * src1 = dst->src[1];
  9449. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9450. const int ith = params->ith;
  9451. const int nth = params->nth;
  9452. GGML_TENSOR_BINARY_OP_LOCALS
  9453. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9454. GGML_ASSERT(dim >= 0 && dim < 4);
  9455. int64_t o[4] = {0, 0, 0, 0};
  9456. o[dim] = src0->ne[dim];
  9457. const float * x;
  9458. // TODO: smarter multi-theading
  9459. for (int i3 = 0; i3 < ne3; i3++) {
  9460. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9461. for (int i1 = 0; i1 < ne1; i1++) {
  9462. for (int i0 = 0; i0 < ne0; i0++) {
  9463. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9464. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9465. } else {
  9466. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9467. }
  9468. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9469. *y = *x;
  9470. }
  9471. }
  9472. }
  9473. }
  9474. }
  9475. static void ggml_compute_forward_concat(
  9476. const struct ggml_compute_params * params,
  9477. struct ggml_tensor * dst) {
  9478. const struct ggml_tensor * src0 = dst->src[0];
  9479. switch (src0->type) {
  9480. case GGML_TYPE_F32:
  9481. case GGML_TYPE_I32:
  9482. {
  9483. ggml_compute_forward_concat_f32(params, dst);
  9484. } break;
  9485. default:
  9486. {
  9487. GGML_ABORT("fatal error");
  9488. }
  9489. }
  9490. }
  9491. // ggml_compute_forward_abs
  9492. static void ggml_compute_forward_abs_f32(
  9493. const struct ggml_compute_params * params,
  9494. struct ggml_tensor * dst) {
  9495. const struct ggml_tensor * src0 = dst->src[0];
  9496. if (params->ith != 0) {
  9497. return;
  9498. }
  9499. assert(ggml_is_contiguous_1(src0));
  9500. assert(ggml_is_contiguous_1(dst));
  9501. assert(ggml_are_same_shape(src0, dst));
  9502. const int n = ggml_nrows(src0);
  9503. const int nc = src0->ne[0];
  9504. for (int i = 0; i < n; i++) {
  9505. ggml_vec_abs_f32(nc,
  9506. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9507. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9508. }
  9509. }
  9510. static void ggml_compute_forward_abs(
  9511. const struct ggml_compute_params * params,
  9512. struct ggml_tensor * dst) {
  9513. const struct ggml_tensor * src0 = dst->src[0];
  9514. switch (src0->type) {
  9515. case GGML_TYPE_F32:
  9516. {
  9517. ggml_compute_forward_abs_f32(params, dst);
  9518. } break;
  9519. default:
  9520. {
  9521. GGML_ABORT("fatal error");
  9522. }
  9523. }
  9524. }
  9525. // ggml_compute_forward_sgn
  9526. static void ggml_compute_forward_sgn_f32(
  9527. const struct ggml_compute_params * params,
  9528. struct ggml_tensor * dst) {
  9529. const struct ggml_tensor * src0 = dst->src[0];
  9530. if (params->ith != 0) {
  9531. return;
  9532. }
  9533. assert(ggml_is_contiguous_1(src0));
  9534. assert(ggml_is_contiguous_1(dst));
  9535. assert(ggml_are_same_shape(src0, dst));
  9536. const int n = ggml_nrows(src0);
  9537. const int nc = src0->ne[0];
  9538. for (int i = 0; i < n; i++) {
  9539. ggml_vec_sgn_f32(nc,
  9540. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9541. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9542. }
  9543. }
  9544. static void ggml_compute_forward_sgn(
  9545. const struct ggml_compute_params * params,
  9546. struct ggml_tensor * dst) {
  9547. const struct ggml_tensor * src0 = dst->src[0];
  9548. switch (src0->type) {
  9549. case GGML_TYPE_F32:
  9550. {
  9551. ggml_compute_forward_sgn_f32(params, dst);
  9552. } break;
  9553. default:
  9554. {
  9555. GGML_ABORT("fatal error");
  9556. }
  9557. }
  9558. }
  9559. // ggml_compute_forward_neg
  9560. static void ggml_compute_forward_neg_f32(
  9561. const struct ggml_compute_params * params,
  9562. struct ggml_tensor * dst) {
  9563. const struct ggml_tensor * src0 = dst->src[0];
  9564. if (params->ith != 0) {
  9565. return;
  9566. }
  9567. assert(ggml_is_contiguous_1(src0));
  9568. assert(ggml_is_contiguous_1(dst));
  9569. assert(ggml_are_same_shape(src0, dst));
  9570. const int n = ggml_nrows(src0);
  9571. const int nc = src0->ne[0];
  9572. for (int i = 0; i < n; i++) {
  9573. ggml_vec_neg_f32(nc,
  9574. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9575. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9576. }
  9577. }
  9578. static void ggml_compute_forward_neg(
  9579. const struct ggml_compute_params * params,
  9580. struct ggml_tensor * dst) {
  9581. const struct ggml_tensor * src0 = dst->src[0];
  9582. switch (src0->type) {
  9583. case GGML_TYPE_F32:
  9584. {
  9585. ggml_compute_forward_neg_f32(params, dst);
  9586. } break;
  9587. default:
  9588. {
  9589. GGML_ABORT("fatal error");
  9590. }
  9591. }
  9592. }
  9593. // ggml_compute_forward_step
  9594. static void ggml_compute_forward_step_f32(
  9595. const struct ggml_compute_params * params,
  9596. struct ggml_tensor * dst) {
  9597. const struct ggml_tensor * src0 = dst->src[0];
  9598. if (params->ith != 0) {
  9599. return;
  9600. }
  9601. assert(ggml_is_contiguous_1(src0));
  9602. assert(ggml_is_contiguous_1(dst));
  9603. assert(ggml_are_same_shape(src0, dst));
  9604. const int n = ggml_nrows(src0);
  9605. const int nc = src0->ne[0];
  9606. for (int i = 0; i < n; i++) {
  9607. ggml_vec_step_f32(nc,
  9608. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9609. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9610. }
  9611. }
  9612. static void ggml_compute_forward_step(
  9613. const struct ggml_compute_params * params,
  9614. struct ggml_tensor * dst) {
  9615. const struct ggml_tensor * src0 = dst->src[0];
  9616. switch (src0->type) {
  9617. case GGML_TYPE_F32:
  9618. {
  9619. ggml_compute_forward_step_f32(params, dst);
  9620. } break;
  9621. default:
  9622. {
  9623. GGML_ABORT("fatal error");
  9624. }
  9625. }
  9626. }
  9627. // ggml_compute_forward_tanh
  9628. static void ggml_compute_forward_tanh_f32(
  9629. const struct ggml_compute_params * params,
  9630. struct ggml_tensor * dst) {
  9631. const struct ggml_tensor * src0 = dst->src[0];
  9632. if (params->ith != 0) {
  9633. return;
  9634. }
  9635. assert(ggml_is_contiguous_1(src0));
  9636. assert(ggml_is_contiguous_1(dst));
  9637. assert(ggml_are_same_shape(src0, dst));
  9638. const int n = ggml_nrows(src0);
  9639. const int nc = src0->ne[0];
  9640. for (int i = 0; i < n; i++) {
  9641. ggml_vec_tanh_f32(nc,
  9642. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9643. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9644. }
  9645. }
  9646. static void ggml_compute_forward_tanh(
  9647. const struct ggml_compute_params * params,
  9648. struct ggml_tensor * dst) {
  9649. const struct ggml_tensor * src0 = dst->src[0];
  9650. switch (src0->type) {
  9651. case GGML_TYPE_F32:
  9652. {
  9653. ggml_compute_forward_tanh_f32(params, dst);
  9654. } break;
  9655. default:
  9656. {
  9657. GGML_ABORT("fatal error");
  9658. }
  9659. }
  9660. }
  9661. // ggml_compute_forward_elu
  9662. static void ggml_compute_forward_elu_f32(
  9663. const struct ggml_compute_params * params,
  9664. struct ggml_tensor * dst) {
  9665. const struct ggml_tensor * src0 = dst->src[0];
  9666. if (params->ith != 0) {
  9667. return;
  9668. }
  9669. assert(ggml_is_contiguous_1(src0));
  9670. assert(ggml_is_contiguous_1(dst));
  9671. assert(ggml_are_same_shape(src0, dst));
  9672. const int n = ggml_nrows(src0);
  9673. const int nc = src0->ne[0];
  9674. for (int i = 0; i < n; i++) {
  9675. ggml_vec_elu_f32(nc,
  9676. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9677. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9678. }
  9679. }
  9680. static void ggml_compute_forward_elu(
  9681. const struct ggml_compute_params * params,
  9682. struct ggml_tensor * dst) {
  9683. const struct ggml_tensor * src0 = dst->src[0];
  9684. switch (src0->type) {
  9685. case GGML_TYPE_F32:
  9686. {
  9687. ggml_compute_forward_elu_f32(params, dst);
  9688. } break;
  9689. default:
  9690. {
  9691. GGML_ABORT("fatal error");
  9692. }
  9693. }
  9694. }
  9695. // ggml_compute_forward_relu
  9696. static void ggml_compute_forward_relu_f32(
  9697. const struct ggml_compute_params * params,
  9698. struct ggml_tensor * dst) {
  9699. const struct ggml_tensor * src0 = dst->src[0];
  9700. if (params->ith != 0) {
  9701. return;
  9702. }
  9703. assert(ggml_is_contiguous_1(src0));
  9704. assert(ggml_is_contiguous_1(dst));
  9705. assert(ggml_are_same_shape(src0, dst));
  9706. const int n = ggml_nrows(src0);
  9707. const int nc = src0->ne[0];
  9708. for (int i = 0; i < n; i++) {
  9709. ggml_vec_relu_f32(nc,
  9710. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9711. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9712. }
  9713. }
  9714. static void ggml_compute_forward_relu(
  9715. const struct ggml_compute_params * params,
  9716. struct ggml_tensor * dst) {
  9717. const struct ggml_tensor * src0 = dst->src[0];
  9718. switch (src0->type) {
  9719. case GGML_TYPE_F32:
  9720. {
  9721. ggml_compute_forward_relu_f32(params, dst);
  9722. } break;
  9723. default:
  9724. {
  9725. GGML_ABORT("fatal error");
  9726. }
  9727. }
  9728. }
  9729. // ggml_compute_forward_sigmoid
  9730. static void ggml_compute_forward_sigmoid_f32(
  9731. const struct ggml_compute_params * params,
  9732. struct ggml_tensor * dst) {
  9733. const struct ggml_tensor * src0 = dst->src[0];
  9734. if (params->ith != 0) {
  9735. return;
  9736. }
  9737. assert(ggml_is_contiguous_1(src0));
  9738. assert(ggml_is_contiguous_1(dst));
  9739. assert(ggml_are_same_shape(src0, dst));
  9740. const int n = ggml_nrows(src0);
  9741. const int nc = src0->ne[0];
  9742. for (int i = 0; i < n; i++) {
  9743. ggml_vec_sigmoid_f32(nc,
  9744. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9745. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9746. }
  9747. }
  9748. static void ggml_compute_forward_sigmoid(
  9749. const struct ggml_compute_params * params,
  9750. struct ggml_tensor * dst) {
  9751. const struct ggml_tensor * src0 = dst->src[0];
  9752. switch (src0->type) {
  9753. case GGML_TYPE_F32:
  9754. {
  9755. ggml_compute_forward_sigmoid_f32(params, dst);
  9756. } break;
  9757. default:
  9758. {
  9759. GGML_ABORT("fatal error");
  9760. }
  9761. }
  9762. }
  9763. // ggml_compute_forward_gelu
  9764. static void ggml_compute_forward_gelu_f32(
  9765. const struct ggml_compute_params * params,
  9766. struct ggml_tensor * dst) {
  9767. const struct ggml_tensor * src0 = dst->src[0];
  9768. assert(ggml_is_contiguous_1(src0));
  9769. assert(ggml_is_contiguous_1(dst));
  9770. assert(ggml_are_same_shape(src0, dst));
  9771. const int ith = params->ith;
  9772. const int nth = params->nth;
  9773. const int nc = src0->ne[0];
  9774. const int nr = ggml_nrows(src0);
  9775. // rows per thread
  9776. const int dr = (nr + nth - 1)/nth;
  9777. // row range for this thread
  9778. const int ir0 = dr*ith;
  9779. const int ir1 = MIN(ir0 + dr, nr);
  9780. for (int i1 = ir0; i1 < ir1; i1++) {
  9781. ggml_vec_gelu_f32(nc,
  9782. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9783. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9784. #ifndef NDEBUG
  9785. for (int k = 0; k < nc; k++) {
  9786. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9787. UNUSED(x);
  9788. assert(!isnan(x));
  9789. assert(!isinf(x));
  9790. }
  9791. #endif
  9792. }
  9793. }
  9794. static void ggml_compute_forward_gelu(
  9795. const struct ggml_compute_params * params,
  9796. struct ggml_tensor * dst) {
  9797. const struct ggml_tensor * src0 = dst->src[0];
  9798. switch (src0->type) {
  9799. case GGML_TYPE_F32:
  9800. {
  9801. ggml_compute_forward_gelu_f32(params, dst);
  9802. } break;
  9803. default:
  9804. {
  9805. GGML_ABORT("fatal error");
  9806. }
  9807. }
  9808. }
  9809. // ggml_compute_forward_gelu_quick
  9810. static void ggml_compute_forward_gelu_quick_f32(
  9811. const struct ggml_compute_params * params,
  9812. struct ggml_tensor * dst) {
  9813. const struct ggml_tensor * src0 = dst->src[0];
  9814. assert(ggml_is_contiguous_1(src0));
  9815. assert(ggml_is_contiguous_1(dst));
  9816. assert(ggml_are_same_shape(src0, dst));
  9817. const int ith = params->ith;
  9818. const int nth = params->nth;
  9819. const int nc = src0->ne[0];
  9820. const int nr = ggml_nrows(src0);
  9821. // rows per thread
  9822. const int dr = (nr + nth - 1)/nth;
  9823. // row range for this thread
  9824. const int ir0 = dr*ith;
  9825. const int ir1 = MIN(ir0 + dr, nr);
  9826. for (int i1 = ir0; i1 < ir1; i1++) {
  9827. ggml_vec_gelu_quick_f32(nc,
  9828. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9829. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9830. #ifndef NDEBUG
  9831. for (int k = 0; k < nc; k++) {
  9832. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9833. UNUSED(x);
  9834. assert(!isnan(x));
  9835. assert(!isinf(x));
  9836. }
  9837. #endif
  9838. }
  9839. }
  9840. static void ggml_compute_forward_gelu_quick(
  9841. const struct ggml_compute_params * params,
  9842. struct ggml_tensor * dst) {
  9843. const struct ggml_tensor * src0 = dst->src[0];
  9844. switch (src0->type) {
  9845. case GGML_TYPE_F32:
  9846. {
  9847. ggml_compute_forward_gelu_quick_f32(params, dst);
  9848. } break;
  9849. default:
  9850. {
  9851. GGML_ABORT("fatal error");
  9852. }
  9853. }
  9854. }
  9855. // ggml_compute_forward_silu
  9856. static void ggml_compute_forward_silu_f32(
  9857. const struct ggml_compute_params * params,
  9858. struct ggml_tensor * dst) {
  9859. const struct ggml_tensor * src0 = dst->src[0];
  9860. assert(ggml_is_contiguous_1(src0));
  9861. assert(ggml_is_contiguous_1(dst));
  9862. assert(ggml_are_same_shape(src0, dst));
  9863. const int ith = params->ith;
  9864. const int nth = params->nth;
  9865. const int nc = src0->ne[0];
  9866. const int nr = ggml_nrows(src0);
  9867. // rows per thread
  9868. const int dr = (nr + nth - 1)/nth;
  9869. // row range for this thread
  9870. const int ir0 = dr*ith;
  9871. const int ir1 = MIN(ir0 + dr, nr);
  9872. for (int i1 = ir0; i1 < ir1; i1++) {
  9873. ggml_vec_silu_f32(nc,
  9874. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9875. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9876. #ifndef NDEBUG
  9877. for (int k = 0; k < nc; k++) {
  9878. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9879. UNUSED(x);
  9880. assert(!isnan(x));
  9881. assert(!isinf(x));
  9882. }
  9883. #endif
  9884. }
  9885. }
  9886. static void ggml_compute_forward_silu(
  9887. const struct ggml_compute_params * params,
  9888. struct ggml_tensor * dst) {
  9889. const struct ggml_tensor * src0 = dst->src[0];
  9890. switch (src0->type) {
  9891. case GGML_TYPE_F32:
  9892. {
  9893. ggml_compute_forward_silu_f32(params, dst);
  9894. } break;
  9895. default:
  9896. {
  9897. GGML_ABORT("fatal error");
  9898. }
  9899. }
  9900. }
  9901. // ggml_compute_forward_leaky_relu
  9902. static void ggml_compute_forward_leaky_relu_f32(
  9903. const struct ggml_compute_params * params,
  9904. struct ggml_tensor * dst) {
  9905. const struct ggml_tensor * src0 = dst->src[0];
  9906. if (params->ith != 0) {
  9907. return;
  9908. }
  9909. assert(ggml_is_contiguous_1(src0));
  9910. assert(ggml_is_contiguous_1(dst));
  9911. assert(ggml_are_same_shape(src0, dst));
  9912. const int n = ggml_nrows(src0);
  9913. const int nc = src0->ne[0];
  9914. float negative_slope;
  9915. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9916. assert(dst->nb[0] == sizeof(float));
  9917. assert(src0->nb[0] == sizeof(float));
  9918. for (int i = 0; i < n; i++) {
  9919. ggml_vec_leaky_relu_f32(nc,
  9920. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9921. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9922. }
  9923. }
  9924. static void ggml_compute_forward_leaky_relu(
  9925. const struct ggml_compute_params * params,
  9926. struct ggml_tensor * dst) {
  9927. const struct ggml_tensor * src0 = dst->src[0];
  9928. switch (src0->type) {
  9929. case GGML_TYPE_F32:
  9930. {
  9931. ggml_compute_forward_leaky_relu_f32(params, dst);
  9932. } break;
  9933. default:
  9934. {
  9935. GGML_ABORT("fatal error");
  9936. }
  9937. }
  9938. }
  9939. // ggml_compute_forward_silu_back
  9940. static void ggml_compute_forward_silu_back_f32(
  9941. const struct ggml_compute_params * params,
  9942. struct ggml_tensor * dst) {
  9943. const struct ggml_tensor * src0 = dst->src[0];
  9944. const struct ggml_tensor * grad = dst->src[1];
  9945. assert(ggml_is_contiguous_1(grad));
  9946. assert(ggml_is_contiguous_1(src0));
  9947. assert(ggml_is_contiguous_1(dst));
  9948. assert(ggml_are_same_shape(src0, dst));
  9949. assert(ggml_are_same_shape(src0, grad));
  9950. const int ith = params->ith;
  9951. const int nth = params->nth;
  9952. const int nc = src0->ne[0];
  9953. const int nr = ggml_nrows(src0);
  9954. // rows per thread
  9955. const int dr = (nr + nth - 1)/nth;
  9956. // row range for this thread
  9957. const int ir0 = dr*ith;
  9958. const int ir1 = MIN(ir0 + dr, nr);
  9959. for (int i1 = ir0; i1 < ir1; i1++) {
  9960. ggml_vec_silu_backward_f32(nc,
  9961. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9962. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9963. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9964. #ifndef NDEBUG
  9965. for (int k = 0; k < nc; k++) {
  9966. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9967. UNUSED(x);
  9968. assert(!isnan(x));
  9969. assert(!isinf(x));
  9970. }
  9971. #endif
  9972. }
  9973. }
  9974. static void ggml_compute_forward_silu_back(
  9975. const struct ggml_compute_params * params,
  9976. struct ggml_tensor * dst) {
  9977. const struct ggml_tensor * src0 = dst->src[0];
  9978. switch (src0->type) {
  9979. case GGML_TYPE_F32:
  9980. {
  9981. ggml_compute_forward_silu_back_f32(params, dst);
  9982. } break;
  9983. default:
  9984. {
  9985. GGML_ABORT("fatal error");
  9986. }
  9987. }
  9988. }
  9989. static void ggml_compute_forward_hardswish_f32(
  9990. const struct ggml_compute_params * params,
  9991. struct ggml_tensor * dst) {
  9992. const struct ggml_tensor * src0 = dst->src[0];
  9993. if (params->ith != 0) {
  9994. return;
  9995. }
  9996. assert(ggml_is_contiguous_1(src0));
  9997. assert(ggml_is_contiguous_1(dst));
  9998. assert(ggml_are_same_shape(src0, dst));
  9999. const int n = ggml_nrows(src0);
  10000. const int nc = src0->ne[0];
  10001. for (int i = 0; i < n; i++) {
  10002. ggml_vec_hardswish_f32(nc,
  10003. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10004. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10005. }
  10006. }
  10007. static void ggml_compute_forward_hardswish(
  10008. const struct ggml_compute_params * params,
  10009. struct ggml_tensor * dst) {
  10010. const struct ggml_tensor * src0 = dst->src[0];
  10011. switch (src0->type) {
  10012. case GGML_TYPE_F32:
  10013. {
  10014. ggml_compute_forward_hardswish_f32(params, dst);
  10015. } break;
  10016. default:
  10017. {
  10018. GGML_ABORT("fatal error");
  10019. }
  10020. }
  10021. }
  10022. static void ggml_compute_forward_hardsigmoid_f32(
  10023. const struct ggml_compute_params * params,
  10024. struct ggml_tensor * dst) {
  10025. const struct ggml_tensor * src0 = dst->src[0];
  10026. if (params->ith != 0) {
  10027. return;
  10028. }
  10029. assert(ggml_is_contiguous_1(src0));
  10030. assert(ggml_is_contiguous_1(dst));
  10031. assert(ggml_are_same_shape(src0, dst));
  10032. const int n = ggml_nrows(src0);
  10033. const int nc = src0->ne[0];
  10034. for (int i = 0; i < n; i++) {
  10035. ggml_vec_hardsigmoid_f32(nc,
  10036. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10037. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10038. }
  10039. }
  10040. static void ggml_compute_forward_hardsigmoid(
  10041. const struct ggml_compute_params * params,
  10042. struct ggml_tensor * dst) {
  10043. const struct ggml_tensor * src0 = dst->src[0];
  10044. switch (src0->type) {
  10045. case GGML_TYPE_F32:
  10046. {
  10047. ggml_compute_forward_hardsigmoid_f32(params, dst);
  10048. } break;
  10049. default:
  10050. {
  10051. GGML_ABORT("fatal error");
  10052. }
  10053. }
  10054. }
  10055. static void ggml_compute_forward_exp_f32(
  10056. const struct ggml_compute_params * params,
  10057. struct ggml_tensor * dst) {
  10058. const struct ggml_tensor * src0 = dst->src[0];
  10059. if (params->ith != 0) {
  10060. return;
  10061. }
  10062. assert(ggml_is_contiguous_1(src0));
  10063. assert(ggml_is_contiguous_1(dst));
  10064. assert(ggml_are_same_shape(src0, dst));
  10065. const int n = ggml_nrows(src0);
  10066. const int nc = src0->ne[0];
  10067. for (int i = 0; i < n; i++) {
  10068. ggml_vec_exp_f32(nc,
  10069. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10070. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10071. }
  10072. }
  10073. static void ggml_compute_forward_exp(
  10074. const struct ggml_compute_params * params,
  10075. struct ggml_tensor * dst) {
  10076. const struct ggml_tensor * src0 = dst->src[0];
  10077. switch (src0->type) {
  10078. case GGML_TYPE_F32:
  10079. {
  10080. ggml_compute_forward_exp_f32(params, dst);
  10081. } break;
  10082. default:
  10083. {
  10084. GGML_ABORT("fatal error");
  10085. }
  10086. }
  10087. }
  10088. // ggml_compute_forward_norm
  10089. static void ggml_compute_forward_norm_f32(
  10090. const struct ggml_compute_params * params,
  10091. struct ggml_tensor * dst) {
  10092. const struct ggml_tensor * src0 = dst->src[0];
  10093. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10094. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10095. const int ith = params->ith;
  10096. const int nth = params->nth;
  10097. GGML_TENSOR_UNARY_OP_LOCALS
  10098. float eps;
  10099. memcpy(&eps, dst->op_params, sizeof(float));
  10100. GGML_ASSERT(eps > 0.0f);
  10101. // TODO: optimize
  10102. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10103. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10104. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10105. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  10106. ggml_float sum = 0.0;
  10107. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10108. sum += (ggml_float)x[i00];
  10109. }
  10110. float mean = sum/ne00;
  10111. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  10112. ggml_float sum2 = 0.0;
  10113. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10114. float v = x[i00] - mean;
  10115. y[i00] = v;
  10116. sum2 += (ggml_float)(v*v);
  10117. }
  10118. float variance = sum2/ne00;
  10119. const float scale = 1.0f/sqrtf(variance + eps);
  10120. ggml_vec_scale_f32(ne00, y, scale);
  10121. }
  10122. }
  10123. }
  10124. }
  10125. static void ggml_compute_forward_norm(
  10126. const struct ggml_compute_params * params,
  10127. struct ggml_tensor * dst) {
  10128. const struct ggml_tensor * src0 = dst->src[0];
  10129. switch (src0->type) {
  10130. case GGML_TYPE_F32:
  10131. {
  10132. ggml_compute_forward_norm_f32(params, dst);
  10133. } break;
  10134. default:
  10135. {
  10136. GGML_ABORT("fatal error");
  10137. }
  10138. }
  10139. }
  10140. // ggml_compute_forward_group_rms_norm
  10141. static void ggml_compute_forward_rms_norm_f32(
  10142. const struct ggml_compute_params * params,
  10143. struct ggml_tensor * dst) {
  10144. const struct ggml_tensor * src0 = dst->src[0];
  10145. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10146. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10147. const int ith = params->ith;
  10148. const int nth = params->nth;
  10149. GGML_TENSOR_UNARY_OP_LOCALS
  10150. float eps;
  10151. memcpy(&eps, dst->op_params, sizeof(float));
  10152. GGML_ASSERT(eps > 0.0f);
  10153. // TODO: optimize
  10154. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10155. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10156. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10157. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  10158. ggml_float sum = 0.0;
  10159. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10160. sum += (ggml_float)(x[i00] * x[i00]);
  10161. }
  10162. const float mean = sum/ne00;
  10163. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  10164. memcpy(y, x, ne00 * sizeof(float));
  10165. // for (int i00 = 0; i00 < ne00; i00++) {
  10166. // y[i00] = x[i00];
  10167. // }
  10168. const float scale = 1.0f/sqrtf(mean + eps);
  10169. ggml_vec_scale_f32(ne00, y, scale);
  10170. }
  10171. }
  10172. }
  10173. }
  10174. static void ggml_compute_forward_rms_norm(
  10175. const struct ggml_compute_params * params,
  10176. struct ggml_tensor * dst) {
  10177. const struct ggml_tensor * src0 = dst->src[0];
  10178. switch (src0->type) {
  10179. case GGML_TYPE_F32:
  10180. {
  10181. ggml_compute_forward_rms_norm_f32(params, dst);
  10182. } break;
  10183. default:
  10184. {
  10185. GGML_ABORT("fatal error");
  10186. }
  10187. }
  10188. }
  10189. static void ggml_compute_forward_rms_norm_back_f32(
  10190. const struct ggml_compute_params * params,
  10191. struct ggml_tensor * dst) {
  10192. const struct ggml_tensor * src0 = dst->src[0];
  10193. const struct ggml_tensor * src1 = dst->src[1];
  10194. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  10195. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10196. const int ith = params->ith;
  10197. const int nth = params->nth;
  10198. GGML_TENSOR_BINARY_OP_LOCALS
  10199. float eps;
  10200. memcpy(&eps, dst->op_params, sizeof(float));
  10201. // TODO: optimize
  10202. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10203. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10204. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10205. // src1 is same shape as src0 => same indices
  10206. const int64_t i11 = i01;
  10207. const int64_t i12 = i02;
  10208. const int64_t i13 = i03;
  10209. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  10210. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  10211. ggml_float sum_xx = 0.0;
  10212. ggml_float sum_xdz = 0.0;
  10213. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10214. sum_xx += (ggml_float)(x[i00] * x[i00]);
  10215. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  10216. }
  10217. //const float mean = (float)(sum_xx)/ne00;
  10218. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  10219. const float sum_eps = (float)(sum_xx) + eps*ne00;
  10220. //const float mean_xdz = (float)(sum_xdz)/ne00;
  10221. // we could cache rms from forward pass to improve performance.
  10222. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  10223. //const float rms = sqrtf(mean_eps);
  10224. const float rrms = 1.0f / sqrtf(mean_eps);
  10225. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  10226. {
  10227. // z = rms_norm(x)
  10228. //
  10229. // rms_norm(src0) =
  10230. // scale(
  10231. // src0,
  10232. // div(
  10233. // 1,
  10234. // sqrt(
  10235. // add(
  10236. // scale(
  10237. // sum(
  10238. // sqr(
  10239. // src0)),
  10240. // (1.0/N)),
  10241. // eps))));
  10242. // postorder:
  10243. // ## op args grad
  10244. // 00 param src0 grad[#00]
  10245. // 01 const 1
  10246. // 02 sqr (#00) grad[#02]
  10247. // 03 sum (#02) grad[#03]
  10248. // 04 const 1/N
  10249. // 05 scale (#03, #04) grad[#05]
  10250. // 06 const eps
  10251. // 07 add (#05, #06) grad[#07]
  10252. // 08 sqrt (#07) grad[#08]
  10253. // 09 div (#01,#08) grad[#09]
  10254. // 10 scale (#00,#09) grad[#10]
  10255. //
  10256. // backward pass, given grad[#10]
  10257. // #10: scale
  10258. // grad[#00] += scale(grad[#10],#09)
  10259. // grad[#09] += sum(mul(grad[#10],#00))
  10260. // #09: div
  10261. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  10262. // #08: sqrt
  10263. // grad[#07] += mul(grad[#08], div(0.5, #08))
  10264. // #07: add
  10265. // grad[#05] += grad[#07]
  10266. // #05: scale
  10267. // grad[#03] += scale(grad[#05],#04)
  10268. // #03: sum
  10269. // grad[#02] += repeat(grad[#03], #02)
  10270. // #02:
  10271. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  10272. //
  10273. // substitute and simplify:
  10274. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  10275. // grad[#02] = repeat(grad[#03], #02)
  10276. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  10277. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  10278. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  10279. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  10280. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  10281. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  10282. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  10283. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  10284. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  10285. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  10286. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  10287. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  10288. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  10289. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  10290. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  10291. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  10292. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  10293. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  10294. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  10295. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  10296. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  10297. // a = b*c + d*e
  10298. // a = b*c*f/f + d*e*f/f
  10299. // a = (b*c*f + d*e*f)*(1/f)
  10300. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  10301. // a = (b + d*e/c)*c
  10302. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  10303. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  10304. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  10305. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  10306. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  10307. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  10308. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  10309. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  10310. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10311. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10312. }
  10313. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10314. // post-order:
  10315. // dx := x
  10316. // dx := scale(dx,-mean_xdz/mean_eps)
  10317. // dx := add(dx, dz)
  10318. // dx := scale(dx, rrms)
  10319. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  10320. ggml_vec_cpy_f32 (ne00, dx, x);
  10321. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  10322. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  10323. ggml_vec_acc_f32 (ne00, dx, dz);
  10324. ggml_vec_scale_f32(ne00, dx, rrms);
  10325. }
  10326. }
  10327. }
  10328. }
  10329. static void ggml_compute_forward_rms_norm_back(
  10330. const struct ggml_compute_params * params,
  10331. struct ggml_tensor * dst) {
  10332. const struct ggml_tensor * src0 = dst->src[0];
  10333. switch (src0->type) {
  10334. case GGML_TYPE_F32:
  10335. {
  10336. ggml_compute_forward_rms_norm_back_f32(params, dst);
  10337. } break;
  10338. default:
  10339. {
  10340. GGML_ABORT("fatal error");
  10341. }
  10342. }
  10343. }
  10344. // ggml_compute_forward_group_norm
  10345. static void ggml_compute_forward_group_norm_f32(
  10346. const struct ggml_compute_params * params,
  10347. struct ggml_tensor * dst) {
  10348. const struct ggml_tensor * src0 = dst->src[0];
  10349. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10350. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10351. const int ith = params->ith;
  10352. const int nth = params->nth;
  10353. GGML_TENSOR_UNARY_OP_LOCALS
  10354. // TODO: optimize
  10355. float eps;
  10356. memcpy(&eps, dst->op_params + 1, sizeof(float));
  10357. int n_channels = src0->ne[2];
  10358. int n_groups = dst->op_params[0];
  10359. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  10360. for (int i = ith; i < n_groups; i += nth) {
  10361. int start = i * n_channels_per_group;
  10362. int end = start + n_channels_per_group;
  10363. if (end > n_channels) {
  10364. end = n_channels;
  10365. }
  10366. int step = end - start;
  10367. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10368. ggml_float sum = 0.0;
  10369. for (int64_t i02 = start; i02 < end; i02++) {
  10370. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10371. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10372. ggml_float sumr = 0.0;
  10373. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10374. sumr += (ggml_float)x[i00];
  10375. }
  10376. sum += sumr;
  10377. }
  10378. }
  10379. const float mean = sum / (ne00 * ne01 * step);
  10380. ggml_float sum2 = 0.0;
  10381. for (int64_t i02 = start; i02 < end; i02++) {
  10382. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10383. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10384. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10385. ggml_float sumr = 0.0;
  10386. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10387. float v = x[i00] - mean;
  10388. y[i00] = v;
  10389. sumr += (ggml_float)(v * v);
  10390. }
  10391. sum2 += sumr;
  10392. }
  10393. }
  10394. const float variance = sum2 / (ne00 * ne01 * step);
  10395. const float scale = 1.0f / sqrtf(variance + eps);
  10396. for (int64_t i02 = start; i02 < end; i02++) {
  10397. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10398. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10399. ggml_vec_scale_f32(ne00, y, scale);
  10400. }
  10401. }
  10402. }
  10403. }
  10404. }
  10405. static void ggml_compute_forward_group_norm(
  10406. const struct ggml_compute_params * params,
  10407. struct ggml_tensor * dst) {
  10408. const struct ggml_tensor * src0 = dst->src[0];
  10409. switch (src0->type) {
  10410. case GGML_TYPE_F32:
  10411. {
  10412. ggml_compute_forward_group_norm_f32(params, dst);
  10413. } break;
  10414. default:
  10415. {
  10416. GGML_ABORT("fatal error");
  10417. }
  10418. }
  10419. }
  10420. // ggml_compute_forward_mul_mat
  10421. static void ggml_compute_forward_mul_mat_one_chunk(
  10422. const struct ggml_compute_params * params,
  10423. struct ggml_tensor * dst,
  10424. const int64_t num_rows_per_vec_dot,
  10425. const int64_t ir0_start,
  10426. const int64_t ir0_end,
  10427. const int64_t ir1_start,
  10428. const int64_t ir1_end) {
  10429. const struct ggml_tensor * src0 = dst->src[0];
  10430. const struct ggml_tensor * src1 = dst->src[1];
  10431. GGML_TENSOR_BINARY_OP_LOCALS
  10432. const enum ggml_type type = src0->type;
  10433. const bool src1_cont = ggml_is_contiguous(src1);
  10434. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10435. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10436. // broadcast factors
  10437. const int64_t r2 = ne12 / ne02;
  10438. const int64_t r3 = ne13 / ne03;
  10439. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10440. // threads with no work simply yield (not sure if it helps)
  10441. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10442. return;
  10443. }
  10444. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10445. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10446. assert(ne12 % ne02 == 0);
  10447. assert(ne13 % ne03 == 0);
  10448. // block-tiling attempt
  10449. const int64_t blck_0 = 16;
  10450. const int64_t blck_1 = 16;
  10451. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10452. // attempt to reduce false-sharing (does not seem to make a difference)
  10453. // 16 * 2, accounting for mmla kernels
  10454. float tmp[32];
  10455. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10456. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10457. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10458. const int64_t i13 = (ir1 / (ne12 * ne1));
  10459. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10460. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10461. // broadcast src0 into src1
  10462. const int64_t i03 = i13 / r3;
  10463. const int64_t i02 = i12 / r2;
  10464. const int64_t i1 = i11;
  10465. const int64_t i2 = i12;
  10466. const int64_t i3 = i13;
  10467. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10468. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10469. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10470. // the original src1 data pointer, so we should index using the indices directly
  10471. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10472. const char * src1_col = (const char*)wdata +
  10473. (src1_cont || src1->type != vec_dot_type
  10474. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10475. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10476. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10477. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10478. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10479. //}
  10480. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10481. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10482. }
  10483. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10484. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10485. }
  10486. }
  10487. }
  10488. }
  10489. }
  10490. static void ggml_compute_forward_mul_mat(
  10491. const struct ggml_compute_params * params,
  10492. struct ggml_tensor * dst) {
  10493. const struct ggml_tensor * src0 = dst->src[0];
  10494. const struct ggml_tensor * src1 = dst->src[1];
  10495. GGML_TENSOR_BINARY_OP_LOCALS
  10496. const int ith = params->ith;
  10497. const int nth = params->nth;
  10498. const enum ggml_type type = src0->type;
  10499. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10500. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10501. ggml_from_float_to_mat_t const from_float_to_mat = type_traits[vec_dot_type].from_float_to_mat;
  10502. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10503. int64_t const matmul_num_cols = type_traits[type].ncols;
  10504. int64_t const blck_size_interleave = type_traits[type].blck_size_interleave;
  10505. ggml_gemv_t const gemv = type_traits[type].gemv;
  10506. ggml_gemm_t const gemm = type_traits[type].gemm;
  10507. GGML_ASSERT(ne0 == ne01);
  10508. GGML_ASSERT(ne1 == ne11);
  10509. GGML_ASSERT(ne2 == ne12);
  10510. GGML_ASSERT(ne3 == ne13);
  10511. // we don't support permuted src0 or src1
  10512. GGML_ASSERT(nb00 == ggml_type_size(type));
  10513. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10514. // dst cannot be transposed or permuted
  10515. GGML_ASSERT(nb0 == sizeof(float));
  10516. GGML_ASSERT(nb0 <= nb1);
  10517. GGML_ASSERT(nb1 <= nb2);
  10518. GGML_ASSERT(nb2 <= nb3);
  10519. // nb01 >= nb00 - src0 is not transposed
  10520. // compute by src0 rows
  10521. #if GGML_USE_LLAMAFILE
  10522. // broadcast factors
  10523. const int64_t r2 = ne12 / ne02;
  10524. const int64_t r3 = ne13 / ne03;
  10525. const bool src1_cont = ggml_is_contiguous(src1);
  10526. if (src1_cont) {
  10527. for (int64_t i13 = 0; i13 < ne13; i13++)
  10528. for (int64_t i12 = 0; i12 < ne12; i12++)
  10529. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10530. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10531. nb01/ggml_type_size(src0->type),
  10532. (const char *)src1->data + i12*nb12 + i13*nb13,
  10533. nb11/ggml_type_size(src1->type),
  10534. (char *)dst->data + i12*nb2 + i13*nb3,
  10535. nb1/ggml_type_size(dst->type),
  10536. ith, nth,
  10537. src0->type,
  10538. src1->type,
  10539. dst->type))
  10540. goto UseGgmlGemm1;
  10541. return;
  10542. }
  10543. UseGgmlGemm1:;
  10544. #endif
  10545. if (src1->type != vec_dot_type) {
  10546. char * wdata = params->wdata;
  10547. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10548. const size_t nbw2 = nbw1*ne11;
  10549. const size_t nbw3 = nbw2*ne12;
  10550. assert(params->wsize >= ne13*nbw3);
  10551. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10552. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10553. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10554. int64_t i11_processed = 0;
  10555. if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
  10556. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  10557. from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10558. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10559. 4, ne10, blck_size_interleave);
  10560. }
  10561. i11_processed = ne11 - ne11 % 4;
  10562. }
  10563. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  10564. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10565. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10566. ne10);
  10567. }
  10568. }
  10569. }
  10570. }
  10571. if (ith == 0) {
  10572. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10573. atomic_store_explicit(&params->threadpool->current_chunk, nth, memory_order_relaxed);
  10574. }
  10575. ggml_barrier(params->threadpool);
  10576. #if GGML_USE_LLAMAFILE
  10577. if (src1->type != vec_dot_type) {
  10578. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10579. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10580. for (int64_t i13 = 0; i13 < ne13; i13++)
  10581. for (int64_t i12 = 0; i12 < ne12; i12++)
  10582. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10583. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10584. nb01/ggml_type_size(src0->type),
  10585. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10586. row_size/ggml_type_size(vec_dot_type),
  10587. (char *)dst->data + i12*nb2 + i13*nb3,
  10588. nb1/ggml_type_size(dst->type),
  10589. ith, nth,
  10590. src0->type,
  10591. vec_dot_type,
  10592. dst->type))
  10593. goto UseGgmlGemm2;
  10594. return;
  10595. }
  10596. UseGgmlGemm2:;
  10597. #endif
  10598. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10599. const int64_t nr0 = ne0;
  10600. // This is the size of the rest of the dimensions of the result
  10601. const int64_t nr1 = ne1 * ne2 * ne3;
  10602. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10603. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10604. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10605. // this check can be removed once they are extended to support odd numbered rows/cols too
  10606. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10607. num_rows_per_vec_dot = 1;
  10608. }
  10609. // Now select a reasonable chunk size.
  10610. int chunk_size = 16;
  10611. // We need to step up the size if it's small
  10612. if (nr0 == 1 || nr1 == 1) {
  10613. chunk_size = 64;
  10614. }
  10615. // distribute the work across the inner or outer loop based on which one is larger
  10616. // The number of chunks in the 0/1 dim.
  10617. // CEIL(nr0/chunk_size)
  10618. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10619. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10620. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10621. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10622. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10623. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10624. // distribute the thread work across the inner or outer loop based on which one is larger
  10625. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10626. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10627. }
  10628. // The number of elements in each chunk
  10629. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10630. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10631. if ((ggml_n_dims(src0) == 2) && gemv) {
  10632. const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10633. const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
  10634. int64_t src0_start = (ith * ne01) / nth;
  10635. int64_t src0_end = ((ith + 1) * ne01) / nth;
  10636. src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
  10637. src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
  10638. if (src0_start >= src0_end) return;
  10639. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  10640. if (gemm && (ne11 > 3)) {
  10641. gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
  10642. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  10643. }
  10644. for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
  10645. gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  10646. (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
  10647. src0_end - src0_start);
  10648. }
  10649. return;
  10650. }
  10651. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10652. int current_chunk = ith;
  10653. while (current_chunk < nchunk0 * nchunk1) {
  10654. const int64_t ith0 = current_chunk % nchunk0;
  10655. const int64_t ith1 = current_chunk / nchunk0;
  10656. const int64_t ir0_start = dr0 * ith0;
  10657. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10658. const int64_t ir1_start = dr1 * ith1;
  10659. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10660. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10661. if (nth >= nchunk0 * nchunk1) {
  10662. break;
  10663. }
  10664. current_chunk = atomic_fetch_add_explicit(&params->threadpool->current_chunk, 1, memory_order_relaxed);
  10665. }
  10666. }
  10667. // ggml_compute_forward_mul_mat_id
  10668. static void ggml_compute_forward_mul_mat_id(
  10669. const struct ggml_compute_params * params,
  10670. struct ggml_tensor * dst) {
  10671. const struct ggml_tensor * src0 = dst->src[0];
  10672. const struct ggml_tensor * src1 = dst->src[1];
  10673. const struct ggml_tensor * ids = dst->src[2];
  10674. GGML_TENSOR_BINARY_OP_LOCALS
  10675. const int ith = params->ith;
  10676. const int nth = params->nth;
  10677. const enum ggml_type type = src0->type;
  10678. const bool src1_cont = ggml_is_contiguous(src1);
  10679. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10680. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10681. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10682. int64_t const matmul_num_cols = type_traits[type].ncols;
  10683. ggml_gemv_t const gemv = type_traits[type].gemv;
  10684. // we don't support permuted src0 or src1
  10685. GGML_ASSERT(nb00 == ggml_type_size(type));
  10686. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10687. // dst cannot be transposed or permuted
  10688. GGML_ASSERT(nb0 == sizeof(float));
  10689. GGML_ASSERT(nb0 <= nb1);
  10690. GGML_ASSERT(nb1 <= nb2);
  10691. GGML_ASSERT(nb2 <= nb3);
  10692. // row groups
  10693. const int n_ids = ids->ne[0]; // n_expert_used
  10694. const int n_as = ne02; // n_expert
  10695. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10696. (char *) params->wdata :
  10697. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10698. struct mmid_row_mapping {
  10699. int32_t i1;
  10700. int32_t i2;
  10701. };
  10702. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10703. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10704. if (src1->type != vec_dot_type) {
  10705. char * wdata = params->wdata;
  10706. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10707. const size_t nbw2 = nbw1*ne11;
  10708. const size_t nbw3 = nbw2*ne12;
  10709. assert(params->wsize >= ne13*nbw3);
  10710. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10711. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10712. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10713. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  10714. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10715. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10716. ne10);
  10717. }
  10718. }
  10719. }
  10720. }
  10721. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10722. if (ith == 0) {
  10723. // initialize matrix_row_counts
  10724. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10725. // group rows by src0 matrix
  10726. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10727. for (int id = 0; id < n_ids; ++id) {
  10728. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10729. assert(i02 >= 0 && i02 < n_as);
  10730. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10731. matrix_row_counts[i02] += 1;
  10732. }
  10733. }
  10734. }
  10735. ggml_barrier(params->threadpool);
  10736. // compute each matrix multiplication in sequence
  10737. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10738. const int64_t cne1 = matrix_row_counts[cur_a];
  10739. if (cne1 == 0) {
  10740. continue;
  10741. }
  10742. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10743. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10744. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10745. const int64_t nr0 = ne01; // src0 rows
  10746. const int64_t nr1 = cne1; // src1 rows
  10747. if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
  10748. int64_t src0_cur_start = (ith * ne01) / nth;
  10749. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  10750. src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
  10751. src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
  10752. if (src0_cur_start >= src0_cur_end) return;
  10753. for (int ir1 = 0; ir1 < nr1; ir1++) {
  10754. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  10755. const int id = row_mapping.i1; // selected expert index
  10756. const int64_t i11 = id % ne11;
  10757. const int64_t i12 = row_mapping.i2; // row index in src1
  10758. const int64_t i1 = id; // selected expert index
  10759. const int64_t i2 = i12; // row
  10760. const char * src1_col = (const char *) wdata +
  10761. (src1_cont || src1->type != vec_dot_type
  10762. ? (i11 + i12 * ne11) * row_size
  10763. : (i11 * nb11 + i12 * nb12));
  10764. gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  10765. (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
  10766. }
  10767. continue;
  10768. }
  10769. // distribute the thread work across the inner or outer loop based on which one is larger
  10770. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10771. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10772. const int64_t ith0 = ith % nth0;
  10773. const int64_t ith1 = ith / nth0;
  10774. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10775. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10776. const int64_t ir010 = dr0*ith0;
  10777. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10778. const int64_t ir110 = dr1*ith1;
  10779. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10780. // threads with no work simply yield (not sure if it helps)
  10781. //if (ir010 >= ir011 || ir110 >= ir111) {
  10782. // sched_yield();
  10783. // continue;
  10784. //}
  10785. // block-tiling attempt
  10786. const int64_t blck_0 = 16;
  10787. const int64_t blck_1 = 16;
  10788. // attempt to reduce false-sharing (does not seem to make a difference)
  10789. float tmp[16];
  10790. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10791. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10792. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10793. const int64_t _i12 = ir1; // logical row index for this expert
  10794. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10795. const int id = row_mapping.i1; // selected expert index
  10796. const int64_t i11 = id % ne11;
  10797. const int64_t i12 = row_mapping.i2; // row index in src1
  10798. const int64_t i1 = id; // selected expert index
  10799. const int64_t i2 = i12; // row
  10800. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10801. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10802. // the original src1 data pointer, so we should index using the indices directly
  10803. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10804. const char * src1_col = (const char *) wdata +
  10805. (src1_cont || src1->type != vec_dot_type
  10806. ? (i11 + i12*ne11)*row_size
  10807. : (i11*nb11 + i12*nb12));
  10808. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10809. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10810. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10811. //}
  10812. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10813. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10814. }
  10815. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10816. }
  10817. }
  10818. }
  10819. }
  10820. #undef MMID_MATRIX_ROW
  10821. }
  10822. // ggml_compute_forward_out_prod
  10823. static void ggml_compute_forward_out_prod_f32(
  10824. const struct ggml_compute_params * params,
  10825. struct ggml_tensor * dst) {
  10826. const struct ggml_tensor * src0 = dst->src[0];
  10827. const struct ggml_tensor * src1 = dst->src[1];
  10828. GGML_TENSOR_BINARY_OP_LOCALS
  10829. const int ith = params->ith;
  10830. const int nth = params->nth;
  10831. GGML_ASSERT(ne0 == ne00);
  10832. GGML_ASSERT(ne1 == ne10);
  10833. GGML_ASSERT(ne2 == ne02);
  10834. GGML_ASSERT(ne02 == ne12);
  10835. GGML_ASSERT(ne3 == ne13);
  10836. GGML_ASSERT(ne03 == ne13);
  10837. // we don't support permuted src0 or src1
  10838. GGML_ASSERT(nb00 == sizeof(float));
  10839. // dst cannot be transposed or permuted
  10840. GGML_ASSERT(nb0 == sizeof(float));
  10841. // GGML_ASSERT(nb0 <= nb1);
  10842. // GGML_ASSERT(nb1 <= nb2);
  10843. // GGML_ASSERT(nb2 <= nb3);
  10844. // nb01 >= nb00 - src0 is not transposed
  10845. // compute by src0 rows
  10846. if (ith == 0) {
  10847. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10848. }
  10849. ggml_barrier(params->threadpool);
  10850. // dst[:,:,:,:] = 0
  10851. // for i2,i3:
  10852. // for i1:
  10853. // for i01:
  10854. // for i0:
  10855. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10856. // parallelize by last three dimensions
  10857. // total rows in dst
  10858. const int64_t nr = ne1*ne2*ne3;
  10859. // rows per thread
  10860. const int64_t dr = (nr + nth - 1)/nth;
  10861. // row range for this thread
  10862. const int64_t ir0 = dr*ith;
  10863. const int64_t ir1 = MIN(ir0 + dr, nr);
  10864. // block-tiling attempt
  10865. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10866. const int64_t blck_1 = 16;
  10867. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10868. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10869. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10870. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10871. for (int64_t ir = bir; ir < bir1; ++ir) {
  10872. // dst indices
  10873. const int64_t i3 = ir/(ne2*ne1);
  10874. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10875. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10876. const int64_t i02 = i2;
  10877. const int64_t i03 = i3;
  10878. //const int64_t i10 = i1;
  10879. const int64_t i12 = i2;
  10880. const int64_t i13 = i3;
  10881. #if GGML_VEC_MAD_UNROLL > 2
  10882. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10883. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10884. const int64_t i11 = i01;
  10885. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10886. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10887. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10888. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10889. }
  10890. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10891. const int64_t i11 = i01;
  10892. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10893. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10894. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10895. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10896. }
  10897. #else
  10898. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10899. const int64_t i11 = i01;
  10900. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10901. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10902. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10903. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10904. }
  10905. #endif
  10906. }
  10907. }
  10908. }
  10909. }
  10910. static void ggml_compute_forward_out_prod_q_f32(
  10911. const struct ggml_compute_params * params,
  10912. struct ggml_tensor * dst) {
  10913. const struct ggml_tensor * src0 = dst->src[0];
  10914. const struct ggml_tensor * src1 = dst->src[1];
  10915. GGML_TENSOR_BINARY_OP_LOCALS;
  10916. const int ith = params->ith;
  10917. const int nth = params->nth;
  10918. const enum ggml_type type = src0->type;
  10919. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10920. GGML_ASSERT(ne02 == ne12);
  10921. GGML_ASSERT(ne03 == ne13);
  10922. GGML_ASSERT(ne2 == ne12);
  10923. GGML_ASSERT(ne3 == ne13);
  10924. // we don't support permuted src0 dim0
  10925. GGML_ASSERT(nb00 == ggml_type_size(type));
  10926. // dst dim0 cannot be transposed or permuted
  10927. GGML_ASSERT(nb0 == sizeof(float));
  10928. // GGML_ASSERT(nb0 <= nb1);
  10929. // GGML_ASSERT(nb1 <= nb2);
  10930. // GGML_ASSERT(nb2 <= nb3);
  10931. GGML_ASSERT(ne0 == ne00);
  10932. GGML_ASSERT(ne1 == ne10);
  10933. GGML_ASSERT(ne2 == ne02);
  10934. GGML_ASSERT(ne3 == ne03);
  10935. // nb01 >= nb00 - src0 is not transposed
  10936. // compute by src0 rows
  10937. if (ith == 0) {
  10938. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10939. }
  10940. ggml_barrier(params->threadpool);
  10941. // parallelize by last three dimensions
  10942. // total rows in dst
  10943. const int64_t nr = ne1*ne2*ne3;
  10944. // rows per thread
  10945. const int64_t dr = (nr + nth - 1)/nth;
  10946. // row range for this thread
  10947. const int64_t ir0 = dr*ith;
  10948. const int64_t ir1 = MIN(ir0 + dr, nr);
  10949. // dst[:,:,:,:] = 0
  10950. // for i2,i3:
  10951. // for i1:
  10952. // for i01:
  10953. // for i0:
  10954. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10955. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10956. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10957. // dst indices
  10958. const int64_t i3 = ir/(ne2*ne1);
  10959. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10960. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10961. const int64_t i02 = i2;
  10962. const int64_t i03 = i3;
  10963. //const int64_t i10 = i1;
  10964. const int64_t i12 = i2;
  10965. const int64_t i13 = i3;
  10966. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10967. const int64_t i11 = i01;
  10968. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10969. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10970. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10971. dequantize_row_q(s0, wdata, ne0);
  10972. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10973. }
  10974. }
  10975. }
  10976. static void ggml_compute_forward_out_prod(
  10977. const struct ggml_compute_params * params,
  10978. struct ggml_tensor * dst) {
  10979. const struct ggml_tensor * src0 = dst->src[0];
  10980. switch (src0->type) {
  10981. case GGML_TYPE_Q4_0:
  10982. case GGML_TYPE_Q4_1:
  10983. case GGML_TYPE_Q5_0:
  10984. case GGML_TYPE_Q5_1:
  10985. case GGML_TYPE_Q8_0:
  10986. case GGML_TYPE_Q2_K:
  10987. case GGML_TYPE_Q3_K:
  10988. case GGML_TYPE_Q4_K:
  10989. case GGML_TYPE_Q5_K:
  10990. case GGML_TYPE_Q6_K:
  10991. case GGML_TYPE_IQ2_XXS:
  10992. case GGML_TYPE_IQ2_XS:
  10993. case GGML_TYPE_IQ3_XXS:
  10994. case GGML_TYPE_IQ1_S:
  10995. case GGML_TYPE_IQ1_M:
  10996. case GGML_TYPE_IQ4_NL:
  10997. case GGML_TYPE_IQ4_XS:
  10998. case GGML_TYPE_IQ3_S:
  10999. case GGML_TYPE_IQ2_S:
  11000. case GGML_TYPE_Q4_0_4_4:
  11001. case GGML_TYPE_Q4_0_4_8:
  11002. case GGML_TYPE_Q4_0_8_8:
  11003. {
  11004. ggml_compute_forward_out_prod_q_f32(params, dst);
  11005. } break;
  11006. case GGML_TYPE_F16:
  11007. {
  11008. GGML_ABORT("fatal error"); // todo
  11009. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  11010. }
  11011. case GGML_TYPE_F32:
  11012. {
  11013. ggml_compute_forward_out_prod_f32(params, dst);
  11014. } break;
  11015. default:
  11016. {
  11017. GGML_ABORT("fatal error");
  11018. }
  11019. }
  11020. }
  11021. // ggml_compute_forward_scale
  11022. static void ggml_compute_forward_scale_f32(
  11023. const struct ggml_compute_params * params,
  11024. struct ggml_tensor * dst) {
  11025. const struct ggml_tensor * src0 = dst->src[0];
  11026. GGML_ASSERT(ggml_is_contiguous(src0));
  11027. GGML_ASSERT(ggml_is_contiguous(dst));
  11028. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11029. // scale factor
  11030. float v;
  11031. memcpy(&v, dst->op_params, sizeof(float));
  11032. const int ith = params->ith;
  11033. const int nth = params->nth;
  11034. const int nc = src0->ne[0];
  11035. const int nr = ggml_nrows(src0);
  11036. // rows per thread
  11037. const int dr = (nr + nth - 1)/nth;
  11038. // row range for this thread
  11039. const int ir0 = dr*ith;
  11040. const int ir1 = MIN(ir0 + dr, nr);
  11041. const size_t nb01 = src0->nb[1];
  11042. const size_t nb1 = dst->nb[1];
  11043. for (int i1 = ir0; i1 < ir1; i1++) {
  11044. if (dst->data != src0->data) {
  11045. // src0 is same shape as dst => same indices
  11046. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  11047. }
  11048. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  11049. }
  11050. }
  11051. static void ggml_compute_forward_scale(
  11052. const struct ggml_compute_params * params,
  11053. struct ggml_tensor * dst) {
  11054. const struct ggml_tensor * src0 = dst->src[0];
  11055. switch (src0->type) {
  11056. case GGML_TYPE_F32:
  11057. {
  11058. ggml_compute_forward_scale_f32(params, dst);
  11059. } break;
  11060. default:
  11061. {
  11062. GGML_ABORT("fatal error");
  11063. }
  11064. }
  11065. }
  11066. // ggml_compute_forward_set
  11067. static void ggml_compute_forward_set_f32(
  11068. const struct ggml_compute_params * params,
  11069. struct ggml_tensor * dst) {
  11070. const struct ggml_tensor * src0 = dst->src[0];
  11071. const struct ggml_tensor * src1 = dst->src[1];
  11072. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11073. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11074. // view src0 and dst with these strides and data offset inbytes during set
  11075. // nb0 is implicitly element_size because src0 and dst are contiguous
  11076. size_t nb1 = ((int32_t *) dst->op_params)[0];
  11077. size_t nb2 = ((int32_t *) dst->op_params)[1];
  11078. size_t nb3 = ((int32_t *) dst->op_params)[2];
  11079. size_t offset = ((int32_t *) dst->op_params)[3];
  11080. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  11081. if (!inplace) {
  11082. if (params->ith == 0) {
  11083. // memcpy needs to be synchronized across threads to avoid race conditions.
  11084. // => do it in INIT phase
  11085. memcpy(
  11086. ((char *) dst->data),
  11087. ((char *) src0->data),
  11088. ggml_nbytes(dst));
  11089. }
  11090. ggml_barrier(params->threadpool);
  11091. }
  11092. const int ith = params->ith;
  11093. const int nth = params->nth;
  11094. const int nr = ggml_nrows(src1);
  11095. const int nc = src1->ne[0];
  11096. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  11097. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  11098. // src0 and dst as viewed during set
  11099. const size_t nb0 = ggml_element_size(src0);
  11100. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  11101. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  11102. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  11103. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  11104. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  11105. GGML_ASSERT(nb10 == sizeof(float));
  11106. // rows per thread
  11107. const int dr = (nr + nth - 1)/nth;
  11108. // row range for this thread
  11109. const int ir0 = dr*ith;
  11110. const int ir1 = MIN(ir0 + dr, nr);
  11111. for (int ir = ir0; ir < ir1; ++ir) {
  11112. // src0 and dst are viewed with shape of src1 and offset
  11113. // => same indices
  11114. const int i3 = ir/(ne12*ne11);
  11115. const int i2 = (ir - i3*ne12*ne11)/ne11;
  11116. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  11117. ggml_vec_cpy_f32(nc,
  11118. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  11119. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  11120. }
  11121. }
  11122. static void ggml_compute_forward_set(
  11123. const struct ggml_compute_params * params,
  11124. struct ggml_tensor * dst) {
  11125. const struct ggml_tensor * src0 = dst->src[0];
  11126. switch (src0->type) {
  11127. case GGML_TYPE_F32:
  11128. {
  11129. ggml_compute_forward_set_f32(params, dst);
  11130. } break;
  11131. case GGML_TYPE_F16:
  11132. case GGML_TYPE_BF16:
  11133. case GGML_TYPE_Q4_0:
  11134. case GGML_TYPE_Q4_1:
  11135. case GGML_TYPE_Q5_0:
  11136. case GGML_TYPE_Q5_1:
  11137. case GGML_TYPE_Q8_0:
  11138. case GGML_TYPE_Q8_1:
  11139. case GGML_TYPE_Q2_K:
  11140. case GGML_TYPE_Q3_K:
  11141. case GGML_TYPE_Q4_K:
  11142. case GGML_TYPE_Q5_K:
  11143. case GGML_TYPE_Q6_K:
  11144. case GGML_TYPE_IQ2_XXS:
  11145. case GGML_TYPE_IQ2_XS:
  11146. case GGML_TYPE_IQ3_XXS:
  11147. case GGML_TYPE_IQ1_S:
  11148. case GGML_TYPE_IQ1_M:
  11149. case GGML_TYPE_IQ4_NL:
  11150. case GGML_TYPE_IQ4_XS:
  11151. case GGML_TYPE_IQ3_S:
  11152. case GGML_TYPE_IQ2_S:
  11153. case GGML_TYPE_Q4_0_4_4:
  11154. case GGML_TYPE_Q4_0_4_8:
  11155. case GGML_TYPE_Q4_0_8_8:
  11156. default:
  11157. {
  11158. GGML_ABORT("fatal error");
  11159. }
  11160. }
  11161. }
  11162. // ggml_compute_forward_cpy
  11163. static void ggml_compute_forward_cpy(
  11164. const struct ggml_compute_params * params,
  11165. struct ggml_tensor * dst) {
  11166. ggml_compute_forward_dup(params, dst);
  11167. }
  11168. // ggml_compute_forward_cont
  11169. static void ggml_compute_forward_cont(
  11170. const struct ggml_compute_params * params,
  11171. struct ggml_tensor * dst) {
  11172. ggml_compute_forward_dup(params, dst);
  11173. }
  11174. // ggml_compute_forward_reshape
  11175. static void ggml_compute_forward_reshape(
  11176. const struct ggml_compute_params * params,
  11177. struct ggml_tensor * dst) {
  11178. // NOP
  11179. UNUSED(params);
  11180. UNUSED(dst);
  11181. }
  11182. // ggml_compute_forward_view
  11183. static void ggml_compute_forward_view(
  11184. const struct ggml_compute_params * params,
  11185. const struct ggml_tensor * dst) {
  11186. // NOP
  11187. UNUSED(params);
  11188. UNUSED(dst);
  11189. }
  11190. // ggml_compute_forward_permute
  11191. static void ggml_compute_forward_permute(
  11192. const struct ggml_compute_params * params,
  11193. const struct ggml_tensor * dst) {
  11194. // NOP
  11195. UNUSED(params);
  11196. UNUSED(dst);
  11197. }
  11198. // ggml_compute_forward_transpose
  11199. static void ggml_compute_forward_transpose(
  11200. const struct ggml_compute_params * params,
  11201. const struct ggml_tensor * dst) {
  11202. // NOP
  11203. UNUSED(params);
  11204. UNUSED(dst);
  11205. }
  11206. // ggml_compute_forward_get_rows
  11207. static void ggml_compute_forward_get_rows_q(
  11208. const struct ggml_compute_params * params,
  11209. struct ggml_tensor * dst) {
  11210. const struct ggml_tensor * src0 = dst->src[0];
  11211. const struct ggml_tensor * src1 = dst->src[1];
  11212. GGML_TENSOR_BINARY_OP_LOCALS
  11213. const int64_t nc = ne00;
  11214. const int64_t nr = ggml_nelements(src1);
  11215. const enum ggml_type type = src0->type;
  11216. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  11217. assert(ne0 == nc);
  11218. assert(ne02 == ne11);
  11219. assert(nb00 == ggml_type_size(type));
  11220. assert(ggml_nrows(dst) == nr);
  11221. const int ith = params->ith;
  11222. const int nth = params->nth;
  11223. // rows per thread
  11224. const int dr = (nr + nth - 1)/nth;
  11225. // row range for this thread
  11226. const int ir0 = dr*ith;
  11227. const int ir1 = MIN(ir0 + dr, nr);
  11228. for (int64_t i = ir0; i < ir1; ++i) {
  11229. const int64_t i12 = i/(ne11*ne10);
  11230. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11231. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11232. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11233. assert(i01 >= 0 && i01 < ne01);
  11234. dequantize_row_q(
  11235. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11236. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11237. }
  11238. }
  11239. static void ggml_compute_forward_get_rows_f16(
  11240. const struct ggml_compute_params * params,
  11241. struct ggml_tensor * dst) {
  11242. const struct ggml_tensor * src0 = dst->src[0];
  11243. const struct ggml_tensor * src1 = dst->src[1];
  11244. GGML_TENSOR_BINARY_OP_LOCALS
  11245. const int64_t nc = ne00;
  11246. const int64_t nr = ggml_nelements(src1);
  11247. assert(ne0 == nc);
  11248. assert(ne02 == ne11);
  11249. assert(nb00 == sizeof(ggml_fp16_t));
  11250. assert(ggml_nrows(dst) == nr);
  11251. const int ith = params->ith;
  11252. const int nth = params->nth;
  11253. // rows per thread
  11254. const int dr = (nr + nth - 1)/nth;
  11255. // row range for this thread
  11256. const int ir0 = dr*ith;
  11257. const int ir1 = MIN(ir0 + dr, nr);
  11258. for (int64_t i = ir0; i < ir1; ++i) {
  11259. const int64_t i12 = i/(ne11*ne10);
  11260. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11261. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11262. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11263. assert(i01 >= 0 && i01 < ne01);
  11264. ggml_fp16_to_fp32_row(
  11265. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11266. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11267. }
  11268. }
  11269. static void ggml_compute_forward_get_rows_bf16(
  11270. const struct ggml_compute_params * params,
  11271. struct ggml_tensor * dst) {
  11272. const struct ggml_tensor * src0 = dst->src[0];
  11273. const struct ggml_tensor * src1 = dst->src[1];
  11274. GGML_TENSOR_BINARY_OP_LOCALS
  11275. const int64_t nc = ne00;
  11276. const int64_t nr = ggml_nelements(src1);
  11277. assert(ne0 == nc);
  11278. assert(ne02 == ne11);
  11279. assert(nb00 == sizeof(ggml_bf16_t));
  11280. assert(ggml_nrows(dst) == nr);
  11281. const int ith = params->ith;
  11282. const int nth = params->nth;
  11283. // rows per thread
  11284. const int dr = (nr + nth - 1)/nth;
  11285. // row range for this thread
  11286. const int ir0 = dr*ith;
  11287. const int ir1 = MIN(ir0 + dr, nr);
  11288. for (int64_t i = ir0; i < ir1; ++i) {
  11289. const int64_t i12 = i/(ne11*ne10);
  11290. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11291. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11292. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11293. assert(i01 >= 0 && i01 < ne01);
  11294. ggml_bf16_to_fp32_row(
  11295. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11296. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11297. }
  11298. }
  11299. static void ggml_compute_forward_get_rows_f32(
  11300. const struct ggml_compute_params * params,
  11301. struct ggml_tensor * dst) {
  11302. const struct ggml_tensor * src0 = dst->src[0];
  11303. const struct ggml_tensor * src1 = dst->src[1];
  11304. GGML_TENSOR_BINARY_OP_LOCALS
  11305. const int64_t nc = ne00;
  11306. const int64_t nr = ggml_nelements(src1);
  11307. assert(ne0 == nc);
  11308. assert(ne02 == ne11);
  11309. assert(nb00 == sizeof(float));
  11310. assert(ggml_nrows(dst) == nr);
  11311. const int ith = params->ith;
  11312. const int nth = params->nth;
  11313. // rows per thread
  11314. const int dr = (nr + nth - 1)/nth;
  11315. // row range for this thread
  11316. const int ir0 = dr*ith;
  11317. const int ir1 = MIN(ir0 + dr, nr);
  11318. for (int64_t i = ir0; i < ir1; ++i) {
  11319. const int64_t i12 = i/(ne11*ne10);
  11320. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11321. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11322. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11323. assert(i01 >= 0 && i01 < ne01);
  11324. ggml_vec_cpy_f32(nc,
  11325. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11326. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11327. }
  11328. }
  11329. static void ggml_compute_forward_get_rows(
  11330. const struct ggml_compute_params * params,
  11331. struct ggml_tensor * dst) {
  11332. const struct ggml_tensor * src0 = dst->src[0];
  11333. switch (src0->type) {
  11334. case GGML_TYPE_Q4_0:
  11335. case GGML_TYPE_Q4_1:
  11336. case GGML_TYPE_Q5_0:
  11337. case GGML_TYPE_Q5_1:
  11338. case GGML_TYPE_Q8_0:
  11339. case GGML_TYPE_Q8_1:
  11340. case GGML_TYPE_Q2_K:
  11341. case GGML_TYPE_Q3_K:
  11342. case GGML_TYPE_Q4_K:
  11343. case GGML_TYPE_Q5_K:
  11344. case GGML_TYPE_Q6_K:
  11345. case GGML_TYPE_IQ2_XXS:
  11346. case GGML_TYPE_IQ2_XS:
  11347. case GGML_TYPE_IQ3_XXS:
  11348. case GGML_TYPE_IQ1_S:
  11349. case GGML_TYPE_IQ1_M:
  11350. case GGML_TYPE_IQ4_NL:
  11351. case GGML_TYPE_IQ4_XS:
  11352. case GGML_TYPE_IQ3_S:
  11353. case GGML_TYPE_IQ2_S:
  11354. case GGML_TYPE_Q4_0_4_4:
  11355. case GGML_TYPE_Q4_0_4_8:
  11356. case GGML_TYPE_Q4_0_8_8:
  11357. {
  11358. ggml_compute_forward_get_rows_q(params, dst);
  11359. } break;
  11360. case GGML_TYPE_F16:
  11361. {
  11362. ggml_compute_forward_get_rows_f16(params, dst);
  11363. } break;
  11364. case GGML_TYPE_BF16:
  11365. {
  11366. ggml_compute_forward_get_rows_bf16(params, dst);
  11367. } break;
  11368. case GGML_TYPE_F32:
  11369. case GGML_TYPE_I32:
  11370. {
  11371. ggml_compute_forward_get_rows_f32(params, dst);
  11372. } break;
  11373. default:
  11374. {
  11375. GGML_ABORT("fatal error");
  11376. }
  11377. }
  11378. //static bool first = true;
  11379. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11380. //if (first) {
  11381. // first = false;
  11382. //} else {
  11383. // for (int k = 0; k < dst->ne[1]; ++k) {
  11384. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11385. // for (int i = 0; i < 16; ++i) {
  11386. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11387. // }
  11388. // printf("\n");
  11389. // }
  11390. // printf("\n");
  11391. // }
  11392. // printf("\n");
  11393. // exit(0);
  11394. //}
  11395. }
  11396. // ggml_compute_forward_get_rows_back
  11397. static void ggml_compute_forward_get_rows_back_f32_f16(
  11398. const struct ggml_compute_params * params,
  11399. struct ggml_tensor * dst) {
  11400. const struct ggml_tensor * src0 = dst->src[0];
  11401. const struct ggml_tensor * src1 = dst->src[1];
  11402. if (params->ith != 0) {
  11403. return;
  11404. }
  11405. GGML_ASSERT(ggml_is_contiguous(dst));
  11406. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11407. memset(dst->data, 0, ggml_nbytes(dst));
  11408. const int nc = src0->ne[0];
  11409. const int nr = ggml_nelements(src1);
  11410. GGML_ASSERT( dst->ne[0] == nc);
  11411. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11412. for (int i = 0; i < nr; ++i) {
  11413. const int r = ((int32_t *) src1->data)[i];
  11414. for (int j = 0; j < nc; ++j) {
  11415. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11416. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11417. }
  11418. }
  11419. }
  11420. static void ggml_compute_forward_get_rows_back_f32(
  11421. const struct ggml_compute_params * params,
  11422. struct ggml_tensor * dst) {
  11423. const struct ggml_tensor * src0 = dst->src[0];
  11424. const struct ggml_tensor * src1 = dst->src[1];
  11425. if (params->ith != 0) {
  11426. return;
  11427. }
  11428. GGML_ASSERT(ggml_is_contiguous(dst));
  11429. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11430. memset(dst->data, 0, ggml_nbytes(dst));
  11431. const int nc = src0->ne[0];
  11432. const int nr = ggml_nelements(src1);
  11433. GGML_ASSERT( dst->ne[0] == nc);
  11434. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11435. for (int i = 0; i < nr; ++i) {
  11436. const int r = ((int32_t *) src1->data)[i];
  11437. ggml_vec_add_f32(nc,
  11438. (float *) ((char *) dst->data + r*dst->nb[1]),
  11439. (float *) ((char *) dst->data + r*dst->nb[1]),
  11440. (float *) ((char *) src0->data + i*src0->nb[1]));
  11441. }
  11442. }
  11443. static void ggml_compute_forward_get_rows_back(
  11444. const struct ggml_compute_params * params,
  11445. struct ggml_tensor * dst) {
  11446. const struct ggml_tensor * src0 = dst->src[0];
  11447. switch (src0->type) {
  11448. case GGML_TYPE_F16:
  11449. {
  11450. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11451. } break;
  11452. case GGML_TYPE_F32:
  11453. {
  11454. ggml_compute_forward_get_rows_back_f32(params, dst);
  11455. } break;
  11456. default:
  11457. {
  11458. GGML_ABORT("fatal error");
  11459. }
  11460. }
  11461. //static bool first = true;
  11462. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11463. //if (first) {
  11464. // first = false;
  11465. //} else {
  11466. // for (int k = 0; k < dst->ne[1]; ++k) {
  11467. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11468. // for (int i = 0; i < 16; ++i) {
  11469. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11470. // }
  11471. // printf("\n");
  11472. // }
  11473. // printf("\n");
  11474. // }
  11475. // printf("\n");
  11476. // exit(0);
  11477. //}
  11478. }
  11479. // ggml_compute_forward_diag
  11480. static void ggml_compute_forward_diag_f32(
  11481. const struct ggml_compute_params * params,
  11482. struct ggml_tensor * dst) {
  11483. const struct ggml_tensor * src0 = dst->src[0];
  11484. if (params->ith != 0) {
  11485. return;
  11486. }
  11487. // TODO: handle transposed/permuted matrices
  11488. GGML_TENSOR_UNARY_OP_LOCALS
  11489. GGML_ASSERT(ne00 == ne0);
  11490. GGML_ASSERT(ne00 == ne1);
  11491. GGML_ASSERT(ne01 == 1);
  11492. GGML_ASSERT(ne02 == ne2);
  11493. GGML_ASSERT(ne03 == ne3);
  11494. GGML_ASSERT(nb00 == sizeof(float));
  11495. GGML_ASSERT(nb0 == sizeof(float));
  11496. for (int i3 = 0; i3 < ne3; i3++) {
  11497. for (int i2 = 0; i2 < ne2; i2++) {
  11498. for (int i1 = 0; i1 < ne1; i1++) {
  11499. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11500. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11501. for (int i0 = 0; i0 < i1; i0++) {
  11502. d[i0] = 0;
  11503. }
  11504. d[i1] = s[i1];
  11505. for (int i0 = i1+1; i0 < ne0; i0++) {
  11506. d[i0] = 0;
  11507. }
  11508. }
  11509. }
  11510. }
  11511. }
  11512. static void ggml_compute_forward_diag(
  11513. const struct ggml_compute_params * params,
  11514. struct ggml_tensor * dst) {
  11515. const struct ggml_tensor * src0 = dst->src[0];
  11516. switch (src0->type) {
  11517. case GGML_TYPE_F32:
  11518. {
  11519. ggml_compute_forward_diag_f32(params, dst);
  11520. } break;
  11521. default:
  11522. {
  11523. GGML_ABORT("fatal error");
  11524. }
  11525. }
  11526. }
  11527. // ggml_compute_forward_diag_mask_inf
  11528. static void ggml_compute_forward_diag_mask_f32(
  11529. const struct ggml_compute_params * params,
  11530. struct ggml_tensor * dst,
  11531. const float value) {
  11532. const struct ggml_tensor * src0 = dst->src[0];
  11533. const int ith = params->ith;
  11534. const int nth = params->nth;
  11535. const int n_past = ((int32_t *) dst->op_params)[0];
  11536. const bool inplace = src0->data == dst->data;
  11537. GGML_ASSERT(n_past >= 0);
  11538. if (!inplace) {
  11539. if (ith == 0) {
  11540. // memcpy needs to be synchronized across threads to avoid race conditions.
  11541. // => do it in INIT phase
  11542. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11543. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11544. memcpy(
  11545. ((char *) dst->data),
  11546. ((char *) src0->data),
  11547. ggml_nbytes(dst));
  11548. }
  11549. ggml_barrier(params->threadpool);
  11550. }
  11551. // TODO: handle transposed/permuted matrices
  11552. const int n = ggml_nrows(src0);
  11553. const int nc = src0->ne[0];
  11554. const int nr = src0->ne[1];
  11555. const int nz = n/nr;
  11556. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11557. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11558. for (int k = 0; k < nz; k++) {
  11559. for (int j = ith; j < nr; j += nth) {
  11560. for (int i = n_past; i < nc; i++) {
  11561. if (i > n_past + j) {
  11562. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11563. }
  11564. }
  11565. }
  11566. }
  11567. }
  11568. static void ggml_compute_forward_diag_mask_inf(
  11569. const struct ggml_compute_params * params,
  11570. struct ggml_tensor * dst) {
  11571. const struct ggml_tensor * src0 = dst->src[0];
  11572. switch (src0->type) {
  11573. case GGML_TYPE_F32:
  11574. {
  11575. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11576. } break;
  11577. default:
  11578. {
  11579. GGML_ABORT("fatal error");
  11580. }
  11581. }
  11582. }
  11583. static void ggml_compute_forward_diag_mask_zero(
  11584. const struct ggml_compute_params * params,
  11585. struct ggml_tensor * dst) {
  11586. const struct ggml_tensor * src0 = dst->src[0];
  11587. switch (src0->type) {
  11588. case GGML_TYPE_F32:
  11589. {
  11590. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11591. } break;
  11592. default:
  11593. {
  11594. GGML_ABORT("fatal error");
  11595. }
  11596. }
  11597. }
  11598. // ggml_compute_forward_soft_max
  11599. static void ggml_compute_forward_soft_max_f32(
  11600. const struct ggml_compute_params * params,
  11601. struct ggml_tensor * dst) {
  11602. const struct ggml_tensor * src0 = dst->src[0];
  11603. const struct ggml_tensor * src1 = dst->src[1];
  11604. assert(ggml_is_contiguous(dst));
  11605. assert(ggml_are_same_shape(src0, dst));
  11606. float scale = 1.0f;
  11607. float max_bias = 0.0f;
  11608. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11609. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11610. // TODO: handle transposed/permuted matrices
  11611. const int ith = params->ith;
  11612. const int nth = params->nth;
  11613. GGML_TENSOR_UNARY_OP_LOCALS
  11614. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11615. // TODO: is this supposed to be ceil instead of floor?
  11616. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11617. const uint32_t n_head = ne02;
  11618. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11619. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11620. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11621. const int nc = src0->ne[0];
  11622. const int nr = ggml_nrows(src0);
  11623. // rows per thread
  11624. const int dr = (nr + nth - 1)/nth;
  11625. // row range for this thread
  11626. const int ir0 = dr*ith;
  11627. const int ir1 = MIN(ir0 + dr, nr);
  11628. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11629. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11630. for (int i1 = ir0; i1 < ir1; i1++) {
  11631. // ALiBi
  11632. const uint32_t h = (i1/ne01)%ne02; // head
  11633. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11634. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11635. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11636. // broadcast the mask across rows
  11637. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11638. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11639. ggml_vec_cpy_f32 (nc, wp, sp);
  11640. ggml_vec_scale_f32(nc, wp, scale);
  11641. if (mp_f32) {
  11642. if (use_f16) {
  11643. for (int i = 0; i < nc; ++i) {
  11644. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11645. }
  11646. } else {
  11647. for (int i = 0; i < nc; ++i) {
  11648. wp[i] += slope*mp_f32[i];
  11649. }
  11650. }
  11651. }
  11652. #ifndef NDEBUG
  11653. for (int i = 0; i < nc; ++i) {
  11654. //printf("p[%d] = %f\n", i, p[i]);
  11655. assert(!isnan(wp[i]));
  11656. }
  11657. #endif
  11658. float max = -INFINITY;
  11659. ggml_vec_max_f32(nc, &max, wp);
  11660. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11661. assert(sum > 0.0);
  11662. sum = 1.0/sum;
  11663. ggml_vec_scale_f32(nc, dp, sum);
  11664. #ifndef NDEBUG
  11665. for (int i = 0; i < nc; ++i) {
  11666. assert(!isnan(dp[i]));
  11667. assert(!isinf(dp[i]));
  11668. }
  11669. #endif
  11670. }
  11671. }
  11672. static void ggml_compute_forward_soft_max(
  11673. const struct ggml_compute_params * params,
  11674. struct ggml_tensor * dst) {
  11675. const struct ggml_tensor * src0 = dst->src[0];
  11676. switch (src0->type) {
  11677. case GGML_TYPE_F32:
  11678. {
  11679. ggml_compute_forward_soft_max_f32(params, dst);
  11680. } break;
  11681. default:
  11682. {
  11683. GGML_ABORT("fatal error");
  11684. }
  11685. }
  11686. }
  11687. // ggml_compute_forward_soft_max_back
  11688. static void ggml_compute_forward_soft_max_back_f32(
  11689. const struct ggml_compute_params * params,
  11690. struct ggml_tensor * dst) {
  11691. const struct ggml_tensor * src0 = dst->src[0];
  11692. const struct ggml_tensor * src1 = dst->src[1];
  11693. GGML_ASSERT(ggml_is_contiguous(src0));
  11694. GGML_ASSERT(ggml_is_contiguous(src1));
  11695. GGML_ASSERT(ggml_is_contiguous(dst));
  11696. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11697. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11698. // TODO: handle transposed/permuted matrices
  11699. const int ith = params->ith;
  11700. const int nth = params->nth;
  11701. const int nc = src0->ne[0];
  11702. const int nr = ggml_nrows(src0);
  11703. // rows per thread
  11704. const int dr = (nr + nth - 1)/nth;
  11705. // row range for this thread
  11706. const int ir0 = dr*ith;
  11707. const int ir1 = MIN(ir0 + dr, nr);
  11708. for (int i1 = ir0; i1 < ir1; i1++) {
  11709. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11710. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11711. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11712. #ifndef NDEBUG
  11713. for (int i = 0; i < nc; ++i) {
  11714. //printf("p[%d] = %f\n", i, p[i]);
  11715. assert(!isnan(dy[i]));
  11716. assert(!isnan(y[i]));
  11717. }
  11718. #endif
  11719. // Jii = yi - yi*yi
  11720. // Jij = -yi*yj
  11721. // J = diag(y)-y.T*y
  11722. // dx = J * dy
  11723. // dxk = sum_i(Jki * dyi)
  11724. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11725. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11726. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11727. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11728. // dxk = -yk * dot(y, dy) + yk*dyk
  11729. // dxk = yk * (- dot(y, dy) + dyk)
  11730. // dxk = yk * (dyk - dot(y, dy))
  11731. //
  11732. // post-order:
  11733. // dot_y_dy := dot(y, dy)
  11734. // dx := dy
  11735. // dx := dx - dot_y_dy
  11736. // dx := dx * y
  11737. // linear runtime, no additional memory
  11738. float dot_y_dy = 0;
  11739. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11740. ggml_vec_cpy_f32 (nc, dx, dy);
  11741. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11742. ggml_vec_mul_f32 (nc, dx, dx, y);
  11743. #ifndef NDEBUG
  11744. for (int i = 0; i < nc; ++i) {
  11745. assert(!isnan(dx[i]));
  11746. assert(!isinf(dx[i]));
  11747. }
  11748. #endif
  11749. }
  11750. }
  11751. static void ggml_compute_forward_soft_max_back(
  11752. const struct ggml_compute_params * params,
  11753. struct ggml_tensor * dst) {
  11754. const struct ggml_tensor * src0 = dst->src[0];
  11755. switch (src0->type) {
  11756. case GGML_TYPE_F32:
  11757. {
  11758. ggml_compute_forward_soft_max_back_f32(params, dst);
  11759. } break;
  11760. default:
  11761. {
  11762. GGML_ABORT("fatal error");
  11763. }
  11764. }
  11765. }
  11766. // ggml_compute_forward_clamp
  11767. static void ggml_compute_forward_clamp_f32(
  11768. const struct ggml_compute_params * params,
  11769. struct ggml_tensor * dst) {
  11770. const struct ggml_tensor * src0 = dst->src[0];
  11771. if (params->ith != 0) {
  11772. return;
  11773. }
  11774. float min;
  11775. float max;
  11776. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11777. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11778. const int ith = params->ith;
  11779. const int nth = params->nth;
  11780. const int n = ggml_nrows(src0);
  11781. const int nc = src0->ne[0];
  11782. const size_t nb00 = src0->nb[0];
  11783. const size_t nb01 = src0->nb[1];
  11784. const size_t nb0 = dst->nb[0];
  11785. const size_t nb1 = dst->nb[1];
  11786. GGML_ASSERT( nb0 == sizeof(float));
  11787. GGML_ASSERT(nb00 == sizeof(float));
  11788. for (int j = ith; j < n; j += nth) {
  11789. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11790. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11791. for (int i = 0; i < nc; i++) {
  11792. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11793. }
  11794. }
  11795. }
  11796. static void ggml_compute_forward_clamp(
  11797. const struct ggml_compute_params * params,
  11798. struct ggml_tensor * dst) {
  11799. const struct ggml_tensor * src0 = dst->src[0];
  11800. switch (src0->type) {
  11801. case GGML_TYPE_F32:
  11802. {
  11803. ggml_compute_forward_clamp_f32(params, dst);
  11804. } break;
  11805. case GGML_TYPE_F16:
  11806. case GGML_TYPE_BF16:
  11807. case GGML_TYPE_Q4_0:
  11808. case GGML_TYPE_Q4_1:
  11809. case GGML_TYPE_Q5_0:
  11810. case GGML_TYPE_Q5_1:
  11811. case GGML_TYPE_Q8_0:
  11812. case GGML_TYPE_Q8_1:
  11813. case GGML_TYPE_Q2_K:
  11814. case GGML_TYPE_Q3_K:
  11815. case GGML_TYPE_Q4_K:
  11816. case GGML_TYPE_Q5_K:
  11817. case GGML_TYPE_Q6_K:
  11818. case GGML_TYPE_IQ2_XXS:
  11819. case GGML_TYPE_IQ2_XS:
  11820. case GGML_TYPE_IQ3_XXS:
  11821. case GGML_TYPE_IQ1_S:
  11822. case GGML_TYPE_IQ1_M:
  11823. case GGML_TYPE_IQ4_NL:
  11824. case GGML_TYPE_IQ4_XS:
  11825. case GGML_TYPE_IQ3_S:
  11826. case GGML_TYPE_IQ2_S:
  11827. case GGML_TYPE_Q8_K:
  11828. case GGML_TYPE_Q4_0_4_4:
  11829. case GGML_TYPE_Q4_0_4_8:
  11830. case GGML_TYPE_Q4_0_8_8:
  11831. case GGML_TYPE_I8:
  11832. case GGML_TYPE_I16:
  11833. case GGML_TYPE_I32:
  11834. case GGML_TYPE_I64:
  11835. case GGML_TYPE_F64:
  11836. case GGML_TYPE_COUNT:
  11837. {
  11838. GGML_ABORT("fatal error");
  11839. }
  11840. }
  11841. }
  11842. // ggml_compute_forward_rope
  11843. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11844. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11845. return 1 - MIN(1, MAX(0, y));
  11846. }
  11847. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11848. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11849. static void rope_yarn(
  11850. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11851. float * cos_theta, float * sin_theta) {
  11852. // Get n-d rotational scaling corrected for extrapolation
  11853. float theta_interp = freq_scale * theta_extrap;
  11854. float theta = theta_interp;
  11855. if (ext_factor != 0.0f) {
  11856. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11857. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11858. // Get n-d magnitude scaling corrected for interpolation
  11859. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11860. }
  11861. *cos_theta = cosf(theta) * mscale;
  11862. *sin_theta = sinf(theta) * mscale;
  11863. }
  11864. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11865. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11866. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11867. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11868. }
  11869. static void ggml_rope_cache_init(
  11870. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11871. float * cache, float sin_sign, float theta_scale) {
  11872. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11873. float theta = theta_base;
  11874. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11875. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11876. rope_yarn(
  11877. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11878. );
  11879. cache[i0 + 1] *= sin_sign;
  11880. theta *= theta_scale;
  11881. }
  11882. }
  11883. GGML_CALL void ggml_rope_yarn_corr_dims(
  11884. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11885. ) {
  11886. // start and end correction dims
  11887. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11888. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11889. dims[0] = MAX(0, start);
  11890. dims[1] = MIN(n_dims - 1, end);
  11891. }
  11892. static void ggml_compute_forward_rope_f32(
  11893. const struct ggml_compute_params * params,
  11894. struct ggml_tensor * dst,
  11895. const bool forward) {
  11896. const struct ggml_tensor * src0 = dst->src[0];
  11897. const struct ggml_tensor * src1 = dst->src[1];
  11898. const struct ggml_tensor * src2 = dst->src[2];
  11899. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11900. //const int n_past = ((int32_t *) dst->op_params)[0];
  11901. const int n_dims = ((int32_t *) dst->op_params)[1];
  11902. const int mode = ((int32_t *) dst->op_params)[2];
  11903. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11904. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11905. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11906. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11907. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11908. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11909. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11910. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11911. GGML_TENSOR_UNARY_OP_LOCALS
  11912. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11913. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11914. GGML_ASSERT(nb00 == sizeof(float));
  11915. const int ith = params->ith;
  11916. const int nth = params->nth;
  11917. const int nr = ggml_nrows(dst);
  11918. GGML_ASSERT(n_dims <= ne0);
  11919. GGML_ASSERT(n_dims % 2 == 0);
  11920. // rows per thread
  11921. const int dr = (nr + nth - 1)/nth;
  11922. // row range for this thread
  11923. const int ir0 = dr*ith;
  11924. const int ir1 = MIN(ir0 + dr, nr);
  11925. // row index used to determine which thread to use
  11926. int ir = 0;
  11927. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11928. float corr_dims[2];
  11929. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11930. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  11931. const float * freq_factors = NULL;
  11932. if (src2 != NULL) {
  11933. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11934. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11935. freq_factors = (const float *) src2->data;
  11936. }
  11937. // backward process uses inverse rotation by cos and sin.
  11938. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11939. // this essentially just switches the sign of sin.
  11940. const float sin_sign = forward ? 1.0f : -1.0f;
  11941. const int32_t * pos = (const int32_t *) src1->data;
  11942. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11943. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11944. const int64_t p = pos[i2];
  11945. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11946. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11947. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11948. if (ir++ < ir0) continue;
  11949. if (ir > ir1) break;
  11950. if (!is_neox) {
  11951. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11952. const float cos_theta = cache[i0 + 0];
  11953. const float sin_theta = cache[i0 + 1];
  11954. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11955. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11956. const float x0 = src[0];
  11957. const float x1 = src[1];
  11958. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11959. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11960. }
  11961. } else {
  11962. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11963. const int64_t ic = i0/2;
  11964. const float cos_theta = cache[i0 + 0];
  11965. const float sin_theta = cache[i0 + 1];
  11966. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11967. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11968. const float x0 = src[0];
  11969. const float x1 = src[n_dims/2];
  11970. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11971. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11972. }
  11973. }
  11974. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11975. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11976. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11977. dst_data[0] = src[0];
  11978. dst_data[1] = src[1];
  11979. }
  11980. }
  11981. }
  11982. }
  11983. }
  11984. // TODO: deduplicate f16/f32 code
  11985. static void ggml_compute_forward_rope_f16(
  11986. const struct ggml_compute_params * params,
  11987. struct ggml_tensor * dst,
  11988. const bool forward) {
  11989. const struct ggml_tensor * src0 = dst->src[0];
  11990. const struct ggml_tensor * src1 = dst->src[1];
  11991. const struct ggml_tensor * src2 = dst->src[2];
  11992. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11993. //const int n_past = ((int32_t *) dst->op_params)[0];
  11994. const int n_dims = ((int32_t *) dst->op_params)[1];
  11995. const int mode = ((int32_t *) dst->op_params)[2];
  11996. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11997. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11998. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11999. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  12000. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  12001. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  12002. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  12003. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  12004. GGML_TENSOR_UNARY_OP_LOCALS
  12005. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  12006. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  12007. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  12008. const int ith = params->ith;
  12009. const int nth = params->nth;
  12010. const int nr = ggml_nrows(dst);
  12011. GGML_ASSERT(n_dims <= ne0);
  12012. GGML_ASSERT(n_dims % 2 == 0);
  12013. // rows per thread
  12014. const int dr = (nr + nth - 1)/nth;
  12015. // row range for this thread
  12016. const int ir0 = dr*ith;
  12017. const int ir1 = MIN(ir0 + dr, nr);
  12018. // row index used to determine which thread to use
  12019. int ir = 0;
  12020. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  12021. float corr_dims[2];
  12022. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  12023. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  12024. const float * freq_factors = NULL;
  12025. if (src2 != NULL) {
  12026. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  12027. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  12028. freq_factors = (const float *) src2->data;
  12029. }
  12030. // backward process uses inverse rotation by cos and sin.
  12031. // cos and sin build a rotation matrix, where the inverse is the transpose.
  12032. // this essentially just switches the sign of sin.
  12033. const float sin_sign = forward ? 1.0f : -1.0f;
  12034. const int32_t * pos = (const int32_t *) src1->data;
  12035. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12036. for (int64_t i2 = 0; i2 < ne2; i2++) {
  12037. const int64_t p = pos[i2];
  12038. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  12039. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  12040. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12041. if (ir++ < ir0) continue;
  12042. if (ir > ir1) break;
  12043. if (!is_neox) {
  12044. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  12045. const float cos_theta = cache[i0 + 0];
  12046. const float sin_theta = cache[i0 + 1];
  12047. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12048. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  12049. const float x0 = GGML_FP16_TO_FP32(src[0]);
  12050. const float x1 = GGML_FP16_TO_FP32(src[1]);
  12051. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  12052. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  12053. }
  12054. } else {
  12055. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  12056. const int64_t ic = i0/2;
  12057. const float cos_theta = cache[i0 + 0];
  12058. const float sin_theta = cache[i0 + 1];
  12059. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  12060. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  12061. const float x0 = GGML_FP16_TO_FP32(src[0]);
  12062. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  12063. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  12064. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  12065. }
  12066. }
  12067. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  12068. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12069. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  12070. dst_data[0] = src[0];
  12071. dst_data[1] = src[1];
  12072. }
  12073. }
  12074. }
  12075. }
  12076. }
  12077. static void ggml_compute_forward_rope(
  12078. const struct ggml_compute_params * params,
  12079. struct ggml_tensor * dst) {
  12080. const struct ggml_tensor * src0 = dst->src[0];
  12081. switch (src0->type) {
  12082. case GGML_TYPE_F16:
  12083. {
  12084. ggml_compute_forward_rope_f16(params, dst, true);
  12085. } break;
  12086. case GGML_TYPE_F32:
  12087. {
  12088. ggml_compute_forward_rope_f32(params, dst, true);
  12089. } break;
  12090. default:
  12091. {
  12092. GGML_ABORT("fatal error");
  12093. }
  12094. }
  12095. }
  12096. // ggml_compute_forward_rope_back
  12097. static void ggml_compute_forward_rope_back(
  12098. const struct ggml_compute_params * params,
  12099. struct ggml_tensor * dst) {
  12100. const struct ggml_tensor * src0 = dst->src[0];
  12101. switch (src0->type) {
  12102. case GGML_TYPE_F16:
  12103. {
  12104. ggml_compute_forward_rope_f16(params, dst, false);
  12105. } break;
  12106. case GGML_TYPE_F32:
  12107. {
  12108. ggml_compute_forward_rope_f32(params, dst, false);
  12109. } break;
  12110. default:
  12111. {
  12112. GGML_ABORT("fatal error");
  12113. }
  12114. }
  12115. }
  12116. // ggml_compute_forward_conv_transpose_1d
  12117. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  12118. const struct ggml_compute_params * params,
  12119. struct ggml_tensor * dst) {
  12120. const struct ggml_tensor * src0 = dst->src[0];
  12121. const struct ggml_tensor * src1 = dst->src[1];
  12122. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12123. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12124. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12125. GGML_TENSOR_BINARY_OP_LOCALS
  12126. const int ith = params->ith;
  12127. const int nth = params->nth;
  12128. const int nk = ne00*ne01*ne02;
  12129. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12130. GGML_ASSERT(nb10 == sizeof(float));
  12131. if (ith == 0) {
  12132. memset(params->wdata, 0, params->wsize);
  12133. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12134. {
  12135. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12136. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12137. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12138. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  12139. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12140. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12141. dst_data[i00*ne02 + i02] = src[i00];
  12142. }
  12143. }
  12144. }
  12145. }
  12146. // permute source data (src1) from (L x Cin) to (Cin x L)
  12147. {
  12148. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12149. ggml_fp16_t * dst_data = wdata;
  12150. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12151. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12152. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12153. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12154. }
  12155. }
  12156. }
  12157. // need to zero dst since we are accumulating into it
  12158. memset(dst->data, 0, ggml_nbytes(dst));
  12159. }
  12160. ggml_barrier(params->threadpool);
  12161. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12162. // total rows in dst
  12163. const int nr = ne1;
  12164. // rows per thread
  12165. const int dr = (nr + nth - 1)/nth;
  12166. // row range for this thread
  12167. const int ir0 = dr*ith;
  12168. const int ir1 = MIN(ir0 + dr, nr);
  12169. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12170. ggml_fp16_t * const wdata_src = wdata + nk;
  12171. for (int i1 = ir0; i1 < ir1; i1++) {
  12172. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12173. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12174. for (int i10 = 0; i10 < ne10; i10++) {
  12175. const int i1n = i10*ne11;
  12176. for (int i00 = 0; i00 < ne00; i00++) {
  12177. float v = 0;
  12178. ggml_vec_dot_f16(ne02, &v, 0,
  12179. (ggml_fp16_t *) wdata_src + i1n, 0,
  12180. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12181. dst_data[i10*s0 + i00] += v;
  12182. }
  12183. }
  12184. }
  12185. }
  12186. static void ggml_compute_forward_conv_transpose_1d_f32(
  12187. const struct ggml_compute_params * params,
  12188. struct ggml_tensor * dst) {
  12189. const struct ggml_tensor * src0 = dst->src[0];
  12190. const struct ggml_tensor * src1 = dst->src[1];
  12191. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12192. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12193. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12194. GGML_TENSOR_BINARY_OP_LOCALS
  12195. const int ith = params->ith;
  12196. const int nth = params->nth;
  12197. const int nk = ne00*ne01*ne02;
  12198. GGML_ASSERT(nb00 == sizeof(float));
  12199. GGML_ASSERT(nb10 == sizeof(float));
  12200. if (ith == 0) {
  12201. memset(params->wdata, 0, params->wsize);
  12202. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12203. {
  12204. float * const wdata = (float *) params->wdata + 0;
  12205. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12206. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12207. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12208. float * dst_data = wdata + i01*ne00*ne02;
  12209. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12210. dst_data[i00*ne02 + i02] = src[i00];
  12211. }
  12212. }
  12213. }
  12214. }
  12215. // prepare source data (src1)
  12216. {
  12217. float * const wdata = (float *) params->wdata + nk;
  12218. float * dst_data = wdata;
  12219. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12220. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12221. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12222. dst_data[i10*ne11 + i11] = src[i10];
  12223. }
  12224. }
  12225. }
  12226. // need to zero dst since we are accumulating into it
  12227. memset(dst->data, 0, ggml_nbytes(dst));
  12228. }
  12229. ggml_barrier(params->threadpool);
  12230. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12231. // total rows in dst
  12232. const int nr = ne1;
  12233. // rows per thread
  12234. const int dr = (nr + nth - 1)/nth;
  12235. // row range for this thread
  12236. const int ir0 = dr*ith;
  12237. const int ir1 = MIN(ir0 + dr, nr);
  12238. float * const wdata = (float *) params->wdata + 0;
  12239. float * const wdata_src = wdata + nk;
  12240. for (int i1 = ir0; i1 < ir1; i1++) {
  12241. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12242. float * wdata_kernel = wdata + i1*ne02*ne00;
  12243. for (int i10 = 0; i10 < ne10; i10++) {
  12244. const int i1n = i10*ne11;
  12245. for (int i00 = 0; i00 < ne00; i00++) {
  12246. float v = 0;
  12247. ggml_vec_dot_f32(ne02, &v, 0,
  12248. wdata_src + i1n, 0,
  12249. wdata_kernel + i00*ne02, 0, 1);
  12250. dst_data[i10*s0 + i00] += v;
  12251. }
  12252. }
  12253. }
  12254. }
  12255. static void ggml_compute_forward_conv_transpose_1d(
  12256. const struct ggml_compute_params * params,
  12257. struct ggml_tensor * dst) {
  12258. const struct ggml_tensor * src0 = dst->src[0];
  12259. switch (src0->type) {
  12260. case GGML_TYPE_F16:
  12261. {
  12262. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12263. } break;
  12264. case GGML_TYPE_F32:
  12265. {
  12266. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12267. } break;
  12268. default:
  12269. {
  12270. GGML_ABORT("fatal error");
  12271. }
  12272. }
  12273. }
  12274. // ggml_compute_forward_im2col_f32
  12275. // src0: kernel [OC, IC, KH, KW]
  12276. // src1: image [N, IC, IH, IW]
  12277. // dst: result [N, OH, OW, IC*KH*KW]
  12278. static void ggml_compute_forward_im2col_f32(
  12279. const struct ggml_compute_params * params,
  12280. struct ggml_tensor * dst) {
  12281. const struct ggml_tensor * src0 = dst->src[0];
  12282. const struct ggml_tensor * src1 = dst->src[1];
  12283. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12284. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12285. GGML_TENSOR_BINARY_OP_LOCALS;
  12286. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12287. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12288. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12289. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12290. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12291. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12292. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12293. const int ith = params->ith;
  12294. const int nth = params->nth;
  12295. const int64_t N = is_2D ? ne13 : ne12;
  12296. const int64_t IC = is_2D ? ne12 : ne11;
  12297. const int64_t IH = is_2D ? ne11 : 1;
  12298. const int64_t IW = ne10;
  12299. const int64_t KH = is_2D ? ne01 : 1;
  12300. const int64_t KW = ne00;
  12301. const int64_t OH = is_2D ? ne2 : 1;
  12302. const int64_t OW = ne1;
  12303. int ofs0 = is_2D ? nb13 : nb12;
  12304. int ofs1 = is_2D ? nb12 : nb11;
  12305. GGML_ASSERT(nb10 == sizeof(float));
  12306. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12307. {
  12308. float * const wdata = (float *) dst->data;
  12309. for (int64_t in = 0; in < N; in++) {
  12310. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12311. for (int64_t iow = 0; iow < OW; iow++) {
  12312. for (int64_t iic = ith; iic < IC; iic += nth) {
  12313. // micro kernel
  12314. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12315. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12316. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12317. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12318. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12319. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12320. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12321. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12322. } else {
  12323. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12324. }
  12325. }
  12326. }
  12327. }
  12328. }
  12329. }
  12330. }
  12331. }
  12332. }
  12333. // ggml_compute_forward_im2col_f16
  12334. // src0: kernel [OC, IC, KH, KW]
  12335. // src1: image [N, IC, IH, IW]
  12336. // dst: result [N, OH, OW, IC*KH*KW]
  12337. static void ggml_compute_forward_im2col_f16(
  12338. const struct ggml_compute_params * params,
  12339. struct ggml_tensor * dst) {
  12340. const struct ggml_tensor * src0 = dst->src[0];
  12341. const struct ggml_tensor * src1 = dst->src[1];
  12342. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12343. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12344. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12345. GGML_TENSOR_BINARY_OP_LOCALS;
  12346. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12347. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12348. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12349. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12350. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12351. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12352. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12353. const int ith = params->ith;
  12354. const int nth = params->nth;
  12355. const int64_t N = is_2D ? ne13 : ne12;
  12356. const int64_t IC = is_2D ? ne12 : ne11;
  12357. const int64_t IH = is_2D ? ne11 : 1;
  12358. const int64_t IW = ne10;
  12359. const int64_t KH = is_2D ? ne01 : 1;
  12360. const int64_t KW = ne00;
  12361. const int64_t OH = is_2D ? ne2 : 1;
  12362. const int64_t OW = ne1;
  12363. int ofs0 = is_2D ? nb13 : nb12;
  12364. int ofs1 = is_2D ? nb12 : nb11;
  12365. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12366. GGML_ASSERT(nb10 == sizeof(float));
  12367. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12368. {
  12369. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12370. for (int64_t in = 0; in < N; in++) {
  12371. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12372. for (int64_t iow = 0; iow < OW; iow++) {
  12373. for (int64_t iic = ith; iic < IC; iic += nth) {
  12374. // micro kernel
  12375. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12376. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12377. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12378. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12379. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12380. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12381. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12382. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12383. } else {
  12384. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12385. }
  12386. }
  12387. }
  12388. }
  12389. }
  12390. }
  12391. }
  12392. }
  12393. }
  12394. static void ggml_compute_forward_im2col(
  12395. const struct ggml_compute_params * params,
  12396. struct ggml_tensor * dst) {
  12397. switch (dst->type) {
  12398. case GGML_TYPE_F16:
  12399. {
  12400. ggml_compute_forward_im2col_f16(params, dst);
  12401. } break;
  12402. case GGML_TYPE_F32:
  12403. {
  12404. ggml_compute_forward_im2col_f32(params, dst);
  12405. } break;
  12406. default:
  12407. {
  12408. GGML_ABORT("fatal error");
  12409. }
  12410. }
  12411. }
  12412. // ggml_compute_forward_im2col_back_f32
  12413. static void ggml_compute_forward_im2col_back_f32(
  12414. const struct ggml_compute_params * params,
  12415. struct ggml_tensor * dst) {
  12416. const struct ggml_tensor * src0 = dst->src[0];
  12417. const struct ggml_tensor * src1 = dst->src[1];
  12418. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12419. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12420. GGML_TENSOR_BINARY_OP_LOCALS;
  12421. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12422. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12423. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12424. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12425. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12426. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12427. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12428. const int ith = params->ith;
  12429. const int nth = params->nth;
  12430. const int64_t N = is_2D ? ne3 : ne2;
  12431. const int64_t IC = is_2D ? ne2 : ne1;
  12432. const int64_t IH = is_2D ? ne1 : 1;
  12433. const int64_t IW = ne0;
  12434. const int64_t KH = is_2D ? ne01 : 1;
  12435. const int64_t KW = ne00;
  12436. const int64_t OH = is_2D ? ne12 : 1;
  12437. const int64_t OW = ne11;
  12438. int ofs0 = is_2D ? nb3 : nb2;
  12439. int ofs1 = is_2D ? nb2 : nb1;
  12440. GGML_ASSERT(nb0 == sizeof(float));
  12441. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12442. {
  12443. float * const wdata = (float *) dst->data;
  12444. for (int64_t in = 0; in < N; in++) {
  12445. for (int64_t iic = ith; iic < IC; iic += nth) {
  12446. for (int64_t iih = 0; iih < IH; iih++) {
  12447. for (int64_t iiw = 0; iiw < IW; iiw++) {
  12448. // micro kernel
  12449. float grad = 0.0f;
  12450. for (int64_t ikh = 0; ikh < KH; ikh++) {
  12451. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12452. // For s0 > 1 some values were skipped over in the forward pass.
  12453. // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
  12454. const int64_t tmpw = (iiw + p0 - ikw*d0);
  12455. if (tmpw % s0 != 0) {
  12456. continue;
  12457. }
  12458. const int64_t iow = tmpw / s0;
  12459. // Equivalent logic as above except for s1.
  12460. int64_t ioh;
  12461. if (is_2D) {
  12462. const int64_t tmph = iih + p1 - ikh*d1;
  12463. if (tmph % s1 != 0) {
  12464. continue;
  12465. }
  12466. ioh = tmph / s1;
  12467. } else {
  12468. ioh = 0;
  12469. }
  12470. if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
  12471. continue;
  12472. }
  12473. const float * const src_data = (const float *) src1->data
  12474. + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12475. grad += src_data[iic*(KH*KW) + ikh*KW + ikw];
  12476. }
  12477. }
  12478. float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
  12479. dst_data[iih*IW + iiw] = grad;
  12480. }
  12481. }
  12482. }
  12483. }
  12484. }
  12485. }
  12486. // ggml_compute_forward_conv_transpose_2d
  12487. static void ggml_compute_forward_conv_transpose_2d(
  12488. const struct ggml_compute_params * params,
  12489. struct ggml_tensor * dst) {
  12490. const struct ggml_tensor * src0 = dst->src[0];
  12491. const struct ggml_tensor * src1 = dst->src[1];
  12492. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12493. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12494. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12495. GGML_TENSOR_BINARY_OP_LOCALS
  12496. const int ith = params->ith;
  12497. const int nth = params->nth;
  12498. const int nk = ne00*ne01*ne02*ne03;
  12499. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12500. GGML_ASSERT(nb10 == sizeof(float));
  12501. if (ith == 0) {
  12502. memset(params->wdata, 0, params->wsize);
  12503. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12504. {
  12505. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12506. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12507. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12508. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12509. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12510. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12511. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12512. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12513. }
  12514. }
  12515. }
  12516. }
  12517. }
  12518. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12519. {
  12520. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12521. for (int i12 = 0; i12 < ne12; i12++) {
  12522. for (int i11 = 0; i11 < ne11; i11++) {
  12523. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12524. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12525. for (int i10 = 0; i10 < ne10; i10++) {
  12526. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12527. }
  12528. }
  12529. }
  12530. }
  12531. memset(dst->data, 0, ggml_nbytes(dst));
  12532. }
  12533. ggml_barrier(params->threadpool);
  12534. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12535. // total patches in dst
  12536. const int np = ne2;
  12537. // patches per thread
  12538. const int dp = (np + nth - 1)/nth;
  12539. // patch range for this thread
  12540. const int ip0 = dp*ith;
  12541. const int ip1 = MIN(ip0 + dp, np);
  12542. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12543. ggml_fp16_t * const wdata_src = wdata + nk;
  12544. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12545. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12546. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12547. for (int i11 = 0; i11 < ne11; i11++) {
  12548. for (int i10 = 0; i10 < ne10; i10++) {
  12549. const int i1n = i11*ne10*ne12 + i10*ne12;
  12550. for (int i01 = 0; i01 < ne01; i01++) {
  12551. for (int i00 = 0; i00 < ne00; i00++) {
  12552. float v = 0;
  12553. ggml_vec_dot_f16(ne03, &v, 0,
  12554. wdata_src + i1n, 0,
  12555. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12556. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12557. }
  12558. }
  12559. }
  12560. }
  12561. }
  12562. }
  12563. // ggml_compute_forward_pool_1d_sk_p0
  12564. static void ggml_compute_forward_pool_1d_sk_p0(
  12565. const struct ggml_compute_params * params,
  12566. const enum ggml_op_pool op,
  12567. const int k,
  12568. struct ggml_tensor * dst) {
  12569. const struct ggml_tensor * src = dst->src[0];
  12570. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12571. if (params->ith != 0) {
  12572. return;
  12573. }
  12574. const char * cdata = (const char *)src->data;
  12575. const char * const data_end = cdata + ggml_nbytes(src);
  12576. float * drow = (float *)dst->data;
  12577. const int64_t rs = dst->ne[0];
  12578. while (cdata < data_end) {
  12579. const void * srow = (const void *)cdata;
  12580. int j = 0;
  12581. for (int64_t i = 0; i < rs; ++i) {
  12582. switch (op) {
  12583. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12584. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12585. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12586. }
  12587. for (int ki = 0; ki < k; ++ki) {
  12588. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12589. switch (op) {
  12590. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  12591. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  12592. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12593. }
  12594. ++j;
  12595. }
  12596. switch (op) {
  12597. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12598. case GGML_OP_POOL_MAX: break;
  12599. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12600. }
  12601. }
  12602. cdata += src->nb[1];
  12603. drow += rs;
  12604. }
  12605. }
  12606. // ggml_compute_forward_pool_1d
  12607. static void ggml_compute_forward_pool_1d(
  12608. const struct ggml_compute_params * params,
  12609. struct ggml_tensor * dst) {
  12610. const int32_t * opts = (const int32_t *)dst->op_params;
  12611. enum ggml_op_pool op = opts[0];
  12612. const int k0 = opts[1];
  12613. const int s0 = opts[2];
  12614. const int p0 = opts[3];
  12615. GGML_ASSERT(p0 == 0); // padding not supported
  12616. GGML_ASSERT(k0 == s0); // only s = k supported
  12617. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12618. }
  12619. // ggml_compute_forward_pool_2d
  12620. static void ggml_compute_forward_pool_2d(
  12621. const struct ggml_compute_params * params,
  12622. struct ggml_tensor * dst) {
  12623. const struct ggml_tensor * src = dst->src[0];
  12624. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12625. if (params->ith != 0) {
  12626. return;
  12627. }
  12628. const int32_t * opts = (const int32_t *)dst->op_params;
  12629. enum ggml_op_pool op = opts[0];
  12630. const int k0 = opts[1];
  12631. const int k1 = opts[2];
  12632. const int s0 = opts[3];
  12633. const int s1 = opts[4];
  12634. const int p0 = opts[5];
  12635. const int p1 = opts[6];
  12636. const char * cdata = (const char*)src->data;
  12637. const char * const data_end = cdata + ggml_nbytes(src);
  12638. const int64_t px = dst->ne[0];
  12639. const int64_t py = dst->ne[1];
  12640. const int64_t pa = px * py;
  12641. float * dplane = (float *)dst->data;
  12642. const int ka = k0 * k1;
  12643. const int offset0 = -p0;
  12644. const int offset1 = -p1;
  12645. while (cdata < data_end) {
  12646. for (int oy = 0; oy < py; ++oy) {
  12647. float * const drow = dplane + oy * px;
  12648. for (int ox = 0; ox < px; ++ox) {
  12649. float * const out = drow + ox;
  12650. switch (op) {
  12651. case GGML_OP_POOL_AVG: *out = 0; break;
  12652. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12653. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12654. }
  12655. const int ix = offset0 + ox * s0;
  12656. const int iy = offset1 + oy * s1;
  12657. for (int ky = 0; ky < k1; ++ky) {
  12658. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12659. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  12660. for (int kx = 0; kx < k0; ++kx) {
  12661. int j = ix + kx;
  12662. if (j < 0 || j >= src->ne[0]) continue;
  12663. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12664. switch (op) {
  12665. case GGML_OP_POOL_AVG: *out += srow_j; break;
  12666. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  12667. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12668. }
  12669. }
  12670. }
  12671. switch (op) {
  12672. case GGML_OP_POOL_AVG: *out /= ka; break;
  12673. case GGML_OP_POOL_MAX: break;
  12674. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12675. }
  12676. }
  12677. }
  12678. cdata += src->nb[2];
  12679. dplane += pa;
  12680. }
  12681. }
  12682. // ggml_compute_forward_pool_2d_back
  12683. static void ggml_compute_forward_pool_2d_back(
  12684. const struct ggml_compute_params * params,
  12685. struct ggml_tensor * dst) {
  12686. const struct ggml_tensor * src = dst->src[0];
  12687. const struct ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
  12688. assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
  12689. if (params->ith != 0) {
  12690. return;
  12691. }
  12692. const int32_t * opts = (const int32_t *)dst->op_params;
  12693. enum ggml_op_pool op = opts[0];
  12694. const int k0 = opts[1];
  12695. const int k1 = opts[2];
  12696. const int s0 = opts[3];
  12697. const int s1 = opts[4];
  12698. const int p0 = opts[5];
  12699. const int p1 = opts[6];
  12700. char * cdata = (char *) dst->data;
  12701. const char * cdataf = (const char *) dstf->data;
  12702. const char * const data_end = cdata + ggml_nbytes(dst);
  12703. GGML_ASSERT(params->ith == 0);
  12704. memset(cdata, 0, ggml_nbytes(dst));
  12705. const int64_t px = src->ne[0];
  12706. const int64_t py = src->ne[1];
  12707. const int64_t pa = px * py;
  12708. const float * splane = (const float *) src->data;
  12709. const int ka = k0 * k1;
  12710. const int offset0 = -p0;
  12711. const int offset1 = -p1;
  12712. while (cdata < data_end) {
  12713. for (int oy = 0; oy < py; ++oy) {
  12714. const float * const srow = splane + oy * px;
  12715. for (int ox = 0; ox < px; ++ox) {
  12716. const float grad0 = srow[ox];
  12717. const int ix = offset0 + ox * s0;
  12718. const int iy = offset1 + oy * s1;
  12719. if (op == GGML_OP_POOL_MAX) {
  12720. float maxval = -FLT_MAX;
  12721. int kxmax = -1;
  12722. int kymax = -1;
  12723. for (int ky = 0; ky < k1; ++ky) {
  12724. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  12725. continue;
  12726. }
  12727. const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
  12728. for (int kx = 0; kx < k0; ++kx) {
  12729. int j = ix + kx;
  12730. if (j < 0 || j >= dst->ne[0]) {
  12731. continue;
  12732. }
  12733. const float val = dst->type == GGML_TYPE_F32 ?
  12734. ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
  12735. if (val <= maxval) {
  12736. continue;
  12737. }
  12738. maxval = val;
  12739. kxmax = kx;
  12740. kymax = ky;
  12741. }
  12742. }
  12743. if (kxmax == -1 || kymax == -1) {
  12744. continue;
  12745. }
  12746. void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
  12747. const int j = ix + kxmax;
  12748. if (dst->type == GGML_TYPE_F32) {
  12749. ((float *) drow)[j] += grad0;
  12750. } else {
  12751. ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
  12752. }
  12753. } else if (op == GGML_OP_POOL_AVG) {
  12754. const float grad = grad0 / ka;
  12755. for (int ky = 0; ky < k1; ++ky) {
  12756. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  12757. continue;
  12758. }
  12759. void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
  12760. for (int kx = 0; kx < k0; ++kx) {
  12761. int j = ix + kx;
  12762. if (j < 0 || j >= dst->ne[0]) {
  12763. continue;
  12764. }
  12765. if (dst->type == GGML_TYPE_F32) {
  12766. ((float *) drow)[j] += grad;
  12767. } else {
  12768. ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
  12769. }
  12770. }
  12771. }
  12772. } else {
  12773. GGML_ASSERT(false);
  12774. }
  12775. }
  12776. }
  12777. cdata += dst->nb[2];
  12778. cdataf += dst->nb[2];
  12779. splane += pa;
  12780. }
  12781. }
  12782. // ggml_compute_forward_upscale
  12783. static void ggml_compute_forward_upscale_f32(
  12784. const struct ggml_compute_params * params,
  12785. struct ggml_tensor * dst) {
  12786. const struct ggml_tensor * src0 = dst->src[0];
  12787. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12788. const int ith = params->ith;
  12789. const int nth = params->nth;
  12790. GGML_TENSOR_UNARY_OP_LOCALS
  12791. const float sf0 = (float)ne0/src0->ne[0];
  12792. const float sf1 = (float)ne1/src0->ne[1];
  12793. const float sf2 = (float)ne2/src0->ne[2];
  12794. const float sf3 = (float)ne3/src0->ne[3];
  12795. // TODO: optimize
  12796. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12797. const int64_t i03 = i3 / sf3;
  12798. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12799. const int64_t i02 = i2 / sf2;
  12800. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12801. const int64_t i01 = i1 / sf1;
  12802. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12803. const int64_t i00 = i0 / sf0;
  12804. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12805. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12806. *y = *x;
  12807. }
  12808. }
  12809. }
  12810. }
  12811. }
  12812. static void ggml_compute_forward_upscale(
  12813. const struct ggml_compute_params * params,
  12814. struct ggml_tensor * dst) {
  12815. const struct ggml_tensor * src0 = dst->src[0];
  12816. switch (src0->type) {
  12817. case GGML_TYPE_F32:
  12818. {
  12819. ggml_compute_forward_upscale_f32(params, dst);
  12820. } break;
  12821. default:
  12822. {
  12823. GGML_ABORT("fatal error");
  12824. }
  12825. }
  12826. }
  12827. // ggml_compute_forward_pad
  12828. static void ggml_compute_forward_pad_f32(
  12829. const struct ggml_compute_params * params,
  12830. struct ggml_tensor * dst) {
  12831. const struct ggml_tensor * src0 = dst->src[0];
  12832. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12833. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12834. const int ith = params->ith;
  12835. const int nth = params->nth;
  12836. GGML_TENSOR_UNARY_OP_LOCALS
  12837. float * dst_ptr = (float *) dst->data;
  12838. // TODO: optimize
  12839. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12840. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12841. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12842. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12843. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12844. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12845. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12846. dst_ptr[dst_idx] = *src_ptr;
  12847. } else {
  12848. dst_ptr[dst_idx] = 0;
  12849. }
  12850. }
  12851. }
  12852. }
  12853. }
  12854. }
  12855. static void ggml_compute_forward_pad(
  12856. const struct ggml_compute_params * params,
  12857. struct ggml_tensor * dst) {
  12858. const struct ggml_tensor * src0 = dst->src[0];
  12859. switch (src0->type) {
  12860. case GGML_TYPE_F32:
  12861. {
  12862. ggml_compute_forward_pad_f32(params, dst);
  12863. } break;
  12864. default:
  12865. {
  12866. GGML_ABORT("fatal error");
  12867. }
  12868. }
  12869. }
  12870. // ggml_compute_forward_arange
  12871. static void ggml_compute_forward_arange_f32(
  12872. const struct ggml_compute_params * params,
  12873. struct ggml_tensor * dst) {
  12874. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12875. const int ith = params->ith;
  12876. const int nth = params->nth;
  12877. const float start = ggml_get_op_params_f32(dst, 0);
  12878. const float stop = ggml_get_op_params_f32(dst, 1);
  12879. const float step = ggml_get_op_params_f32(dst, 2);
  12880. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12881. GGML_ASSERT(ggml_nelements(dst) == steps);
  12882. for (int64_t i = ith; i < steps; i+= nth) {
  12883. float value = start + step * i;
  12884. ((float *)dst->data)[i] = value;
  12885. }
  12886. }
  12887. static void ggml_compute_forward_arange(
  12888. const struct ggml_compute_params * params,
  12889. struct ggml_tensor * dst) {
  12890. switch (dst->type) {
  12891. case GGML_TYPE_F32:
  12892. {
  12893. ggml_compute_forward_arange_f32(params, dst);
  12894. } break;
  12895. default:
  12896. {
  12897. GGML_ABORT("fatal error");
  12898. }
  12899. }
  12900. }
  12901. static void ggml_compute_forward_timestep_embedding_f32(
  12902. const struct ggml_compute_params * params,
  12903. struct ggml_tensor * dst) {
  12904. const struct ggml_tensor * src0 = dst->src[0];
  12905. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12906. const int ith = params->ith;
  12907. const int nth = params->nth;
  12908. GGML_TENSOR_UNARY_OP_LOCALS
  12909. const int dim = ggml_get_op_params_i32(dst, 0);
  12910. const int max_period = ggml_get_op_params_i32(dst, 1);
  12911. int half = dim / 2;
  12912. for (int64_t i = 0; i < ne00; i++) {
  12913. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12914. for (int64_t j = ith; j < half; j += nth) {
  12915. float timestep = ((float *)src0->data)[i];
  12916. float freq = (float)expf(-logf(max_period) * j / half);
  12917. float arg = timestep * freq;
  12918. embed_data[j] = cosf(arg);
  12919. embed_data[j + half] = sinf(arg);
  12920. }
  12921. if (dim % 2 != 0 && ith == 0) {
  12922. embed_data[dim] = 0.f;
  12923. }
  12924. }
  12925. }
  12926. static void ggml_compute_forward_timestep_embedding(
  12927. const struct ggml_compute_params * params,
  12928. struct ggml_tensor * dst) {
  12929. const struct ggml_tensor * src0 = dst->src[0];
  12930. switch (src0->type) {
  12931. case GGML_TYPE_F32:
  12932. {
  12933. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12934. } break;
  12935. default:
  12936. {
  12937. GGML_ABORT("fatal error");
  12938. }
  12939. }
  12940. }
  12941. // ggml_compute_forward_argsort
  12942. static void ggml_compute_forward_argsort_f32(
  12943. const struct ggml_compute_params * params,
  12944. struct ggml_tensor * dst) {
  12945. const struct ggml_tensor * src0 = dst->src[0];
  12946. GGML_TENSOR_UNARY_OP_LOCALS
  12947. GGML_ASSERT(nb0 == sizeof(float));
  12948. const int ith = params->ith;
  12949. const int nth = params->nth;
  12950. const int64_t nr = ggml_nrows(src0);
  12951. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12952. for (int64_t i = ith; i < nr; i += nth) {
  12953. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12954. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12955. for (int64_t j = 0; j < ne0; j++) {
  12956. dst_data[j] = j;
  12957. }
  12958. // C doesn't have a functional sort, so we do a bubble sort instead
  12959. for (int64_t j = 0; j < ne0; j++) {
  12960. for (int64_t k = j + 1; k < ne0; k++) {
  12961. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12962. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12963. int32_t tmp = dst_data[j];
  12964. dst_data[j] = dst_data[k];
  12965. dst_data[k] = tmp;
  12966. }
  12967. }
  12968. }
  12969. }
  12970. }
  12971. static void ggml_compute_forward_argsort(
  12972. const struct ggml_compute_params * params,
  12973. struct ggml_tensor * dst) {
  12974. const struct ggml_tensor * src0 = dst->src[0];
  12975. switch (src0->type) {
  12976. case GGML_TYPE_F32:
  12977. {
  12978. ggml_compute_forward_argsort_f32(params, dst);
  12979. } break;
  12980. default:
  12981. {
  12982. GGML_ABORT("fatal error");
  12983. }
  12984. }
  12985. }
  12986. // ggml_compute_forward_flash_attn_ext
  12987. static void ggml_compute_forward_flash_attn_ext_f16(
  12988. const struct ggml_compute_params * params,
  12989. const struct ggml_tensor * q,
  12990. const struct ggml_tensor * k,
  12991. const struct ggml_tensor * v,
  12992. const struct ggml_tensor * mask,
  12993. struct ggml_tensor * dst) {
  12994. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12995. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12996. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12997. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12998. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12999. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13000. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13001. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13002. const int ith = params->ith;
  13003. const int nth = params->nth;
  13004. const int64_t D = neq0;
  13005. const int64_t N = neq1;
  13006. GGML_ASSERT(ne0 == D);
  13007. GGML_ASSERT(ne2 == N);
  13008. // input tensor rows must be contiguous
  13009. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  13010. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  13011. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  13012. GGML_ASSERT(neq0 == D);
  13013. GGML_ASSERT(nek0 == D);
  13014. GGML_ASSERT(nev0 == D);
  13015. GGML_ASSERT(neq1 == N);
  13016. GGML_ASSERT(nev0 == D);
  13017. // dst cannot be transposed or permuted
  13018. GGML_ASSERT(nb0 == sizeof(float));
  13019. GGML_ASSERT(nb0 <= nb1);
  13020. GGML_ASSERT(nb1 <= nb2);
  13021. GGML_ASSERT(nb2 <= nb3);
  13022. // broadcast factors
  13023. const int64_t rk2 = neq2/nek2;
  13024. const int64_t rk3 = neq3/nek3;
  13025. const int64_t rv2 = neq2/nev2;
  13026. const int64_t rv3 = neq3/nev3;
  13027. // parallelize by q rows using ggml_vec_dot_f32
  13028. // total rows in q
  13029. const int nr = neq1*neq2*neq3;
  13030. // rows per thread
  13031. const int dr = (nr + nth - 1)/nth;
  13032. // row range for this thread
  13033. const int ir0 = dr*ith;
  13034. const int ir1 = MIN(ir0 + dr, nr);
  13035. float scale = 1.0f;
  13036. float max_bias = 0.0f;
  13037. float logit_softcap = 0.0f;
  13038. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  13039. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  13040. memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
  13041. if (logit_softcap != 0) {
  13042. scale /= logit_softcap;
  13043. }
  13044. const uint32_t n_head = neq2;
  13045. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  13046. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  13047. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  13048. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  13049. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  13050. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  13051. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  13052. // loop over n_batch and n_head
  13053. for (int ir = ir0; ir < ir1; ++ir) {
  13054. // q indices
  13055. const int iq3 = ir/(neq2*neq1);
  13056. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  13057. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  13058. const uint32_t h = iq2; // head index
  13059. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  13060. float S = 0.0f; // sum
  13061. float M = -INFINITY; // maximum KQ value
  13062. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  13063. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  13064. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  13065. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  13066. if (v->type == GGML_TYPE_F16) {
  13067. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  13068. } else {
  13069. memset(VKQ32, 0, D*sizeof(float));
  13070. }
  13071. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  13072. // k indices
  13073. const int ik3 = iq3 / rk3;
  13074. const int ik2 = iq2 / rk2;
  13075. // v indices
  13076. const int iv3 = iq3 / rv3;
  13077. const int iv2 = iq2 / rv2;
  13078. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  13079. q_to_vec_dot(pq, Q_q, D);
  13080. // online softmax / attention
  13081. // loop over n_kv and n_head_kv
  13082. // ref: https://arxiv.org/pdf/2112.05682.pdf
  13083. for (int64_t ic = 0; ic < nek1; ++ic) {
  13084. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  13085. if (mv == -INFINITY) {
  13086. continue;
  13087. }
  13088. float s; // KQ value
  13089. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  13090. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  13091. s = s*scale; // scale KQ value
  13092. if (logit_softcap != 0.0f) {
  13093. s = logit_softcap*tanhf(s);
  13094. }
  13095. s += mv; // apply mask
  13096. const float Mold = M;
  13097. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  13098. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  13099. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  13100. if (v->type == GGML_TYPE_F16) {
  13101. if (s > M) {
  13102. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  13103. M = s;
  13104. ms = expf(Mold - M);
  13105. // V = V*expf(Mold - M)
  13106. ggml_vec_scale_f16(D, VKQ16, ms);
  13107. } else {
  13108. // no new maximum, ms == 1.0f, vs != 1.0f
  13109. vs = expf(s - M);
  13110. }
  13111. // V += v*expf(s - M)
  13112. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  13113. } else {
  13114. if (s > M) {
  13115. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  13116. M = s;
  13117. ms = expf(Mold - M);
  13118. // V = V*expf(Mold - M)
  13119. ggml_vec_scale_f32(D, VKQ32, ms);
  13120. } else {
  13121. // no new maximum, ms == 1.0f, vs != 1.0f
  13122. vs = expf(s - M);
  13123. }
  13124. v_to_float(v_data, V32, D);
  13125. // V += v*expf(s - M)
  13126. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  13127. }
  13128. S = S*ms + vs; // scale and increment sum with partial sum
  13129. }
  13130. if (v->type == GGML_TYPE_F16) {
  13131. for (int64_t d = 0; d < D; ++d) {
  13132. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  13133. }
  13134. }
  13135. // V /= S
  13136. const float S_inv = 1.0f/S;
  13137. ggml_vec_scale_f32(D, VKQ32, S_inv);
  13138. // dst indices
  13139. const int i1 = iq1;
  13140. const int i2 = iq2;
  13141. const int i3 = iq3;
  13142. // original
  13143. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  13144. // permute(0, 2, 1, 3)
  13145. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  13146. }
  13147. }
  13148. static void ggml_compute_forward_flash_attn_ext(
  13149. const struct ggml_compute_params * params,
  13150. const struct ggml_tensor * q,
  13151. const struct ggml_tensor * k,
  13152. const struct ggml_tensor * v,
  13153. const struct ggml_tensor * mask,
  13154. struct ggml_tensor * dst) {
  13155. switch (dst->op_params[3]) {
  13156. case GGML_PREC_DEFAULT:
  13157. case GGML_PREC_F32:
  13158. {
  13159. // uses F32 accumulators
  13160. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  13161. } break;
  13162. default:
  13163. {
  13164. GGML_ABORT("fatal error");
  13165. }
  13166. }
  13167. }
  13168. // ggml_compute_forward_flash_attn_back
  13169. static void ggml_compute_forward_flash_attn_back_f32(
  13170. const struct ggml_compute_params * params,
  13171. const bool masked,
  13172. struct ggml_tensor * dst) {
  13173. const struct ggml_tensor * q = dst->src[0];
  13174. const struct ggml_tensor * k = dst->src[1];
  13175. const struct ggml_tensor * v = dst->src[2];
  13176. const struct ggml_tensor * d = dst->src[3];
  13177. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13178. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13179. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13180. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13181. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13182. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13183. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  13184. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  13185. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13186. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13187. const int ith = params->ith;
  13188. const int nth = params->nth;
  13189. const int64_t D = neq0;
  13190. const int64_t N = neq1;
  13191. const int64_t P = nek1 - N;
  13192. const int64_t M = P + N;
  13193. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  13194. const int mxDM = MAX(D, Mup);
  13195. // GGML_ASSERT(ne0 == D);
  13196. // GGML_ASSERT(ne1 == N);
  13197. GGML_ASSERT(P >= 0);
  13198. GGML_ASSERT(nbq0 == sizeof(float));
  13199. GGML_ASSERT(nbk0 == sizeof(float));
  13200. GGML_ASSERT(nbv0 == sizeof(float));
  13201. GGML_ASSERT(neq0 == D);
  13202. GGML_ASSERT(nek0 == D);
  13203. GGML_ASSERT(nev1 == D);
  13204. GGML_ASSERT(ned0 == D);
  13205. GGML_ASSERT(neq1 == N);
  13206. GGML_ASSERT(nek1 == N + P);
  13207. GGML_ASSERT(nev1 == D);
  13208. GGML_ASSERT(ned1 == N);
  13209. // dst cannot be transposed or permuted
  13210. GGML_ASSERT(nb0 == sizeof(float));
  13211. GGML_ASSERT(nb0 <= nb1);
  13212. GGML_ASSERT(nb1 <= nb2);
  13213. GGML_ASSERT(nb2 <= nb3);
  13214. if (ith == 0) {
  13215. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  13216. }
  13217. ggml_barrier(params->threadpool);
  13218. const int64_t elem_q = ggml_nelements(q);
  13219. const int64_t elem_k = ggml_nelements(k);
  13220. enum ggml_type result_type = dst->type;
  13221. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13222. const size_t tsize = ggml_type_size(result_type);
  13223. const size_t offs_q = 0;
  13224. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13225. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13226. void * grad_q = (char *) dst->data;
  13227. void * grad_k = (char *) dst->data + offs_k;
  13228. void * grad_v = (char *) dst->data + offs_v;
  13229. const size_t nbgq1 = nb0*neq0;
  13230. const size_t nbgq2 = nb0*neq0*neq1;
  13231. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13232. const size_t nbgk1 = nb0*nek0;
  13233. const size_t nbgk2 = nb0*nek0*nek1;
  13234. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13235. const size_t nbgv1 = nb0*nev0;
  13236. const size_t nbgv2 = nb0*nev0*nev1;
  13237. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13238. // parallelize by k rows using ggml_vec_dot_f32
  13239. // total rows in k
  13240. const int nr = nek2*nek3;
  13241. // rows per thread
  13242. const int dr = (nr + nth - 1)/nth;
  13243. // row range for this thread
  13244. const int ir0 = dr*ith;
  13245. const int ir1 = MIN(ir0 + dr, nr);
  13246. const float scale = 1.0f/sqrtf(D);
  13247. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13248. // how often k2 (and v2) is repeated in q2
  13249. int nrep = neq2/nek2;
  13250. for (int ir = ir0; ir < ir1; ++ir) {
  13251. // q indices
  13252. const int ik3 = ir/(nek2);
  13253. const int ik2 = ir - ik3*nek2;
  13254. const int iq3 = ik3;
  13255. const int id3 = ik3;
  13256. const int iv3 = ik3;
  13257. const int iv2 = ik2;
  13258. for (int irep = 0; irep < nrep; ++irep) {
  13259. const int iq2 = ik2 + irep*nek2;
  13260. const int id2 = iq2;
  13261. // (ik2 + irep*nek2) % nek2 == ik2
  13262. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13263. const int id1 = iq1;
  13264. // not sure about CACHE_LINE_SIZE_F32..
  13265. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13266. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13267. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13268. for (int i = M; i < Mup; ++i) {
  13269. S[i] = -INFINITY;
  13270. }
  13271. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13272. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13273. // k indices
  13274. const int ik1 = ic;
  13275. // S indices
  13276. const int i1 = ik1;
  13277. ggml_vec_dot_f32(neq0,
  13278. S + i1, 0,
  13279. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13280. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13281. }
  13282. // scale
  13283. ggml_vec_scale_f32(masked_begin, S, scale);
  13284. for (int64_t i = masked_begin; i < M; i++) {
  13285. S[i] = -INFINITY;
  13286. }
  13287. // softmax
  13288. // exclude known -INF S[..] values from max and loop
  13289. // dont forget to set their SM values to zero
  13290. {
  13291. float max = -INFINITY;
  13292. ggml_vec_max_f32(masked_begin, &max, S);
  13293. ggml_float sum = 0.0;
  13294. {
  13295. #ifdef GGML_SOFT_MAX_ACCELERATE
  13296. max = -max;
  13297. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13298. vvexpf(SM, SM, &Mup);
  13299. ggml_vec_sum_f32(Mup, &sum, SM);
  13300. #else
  13301. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13302. #endif
  13303. }
  13304. assert(sum > 0.0);
  13305. sum = 1.0/sum;
  13306. ggml_vec_scale_f32(masked_begin, SM, sum);
  13307. }
  13308. // step-by-step explanation
  13309. {
  13310. // forward-process shape grads from backward process
  13311. // parallel_for ik2,ik3:
  13312. // for irep:
  13313. // iq2 = ik2 + irep*nek2
  13314. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13315. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13316. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13317. // for iq1:
  13318. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13319. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13320. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13321. // S0 = -Inf [D,1,1,1]
  13322. // ~S1[i] = dot(kcur[:D,i], qcur)
  13323. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13324. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13325. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13326. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13327. // ~S5[i] = dot(vcur[:,i], S4)
  13328. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13329. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13330. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13331. // dst backward-/ grad[dst] = d
  13332. //
  13333. // output gradients with their dependencies:
  13334. //
  13335. // grad[kcur] = grad[S1].T @ qcur
  13336. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13337. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13338. // grad[S4] = grad[S5] @ vcur
  13339. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13340. // grad[qcur] = grad[S1] @ kcur
  13341. // grad[vcur] = grad[S5].T @ S4
  13342. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13343. //
  13344. // in post-order:
  13345. //
  13346. // S1 = qcur @ kcur.T
  13347. // S2 = S1 * scale
  13348. // S3 = diag_mask_inf(S2, P)
  13349. // S4 = softmax(S3)
  13350. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13351. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13352. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13353. // grad[qcur] = grad[S1] @ kcur
  13354. // grad[kcur] = grad[S1].T @ qcur
  13355. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13356. //
  13357. // using less variables (SM=S4):
  13358. //
  13359. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13360. // SM = softmax(S)
  13361. // S = d[:D,iq1,iq2,iq3] @ vcur
  13362. // dot_SM_gradSM = dot(SM, S)
  13363. // S = SM * (S - dot(SM, S))
  13364. // S = diag_mask_zero(S, P) * scale
  13365. //
  13366. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13367. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13368. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13369. }
  13370. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13371. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13372. // for ic:
  13373. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13374. // exclude known future zero S[..] values from operation
  13375. ggml_vec_set_f32(masked_begin, S, 0);
  13376. for (int64_t ic = 0; ic < D; ++ic) {
  13377. ggml_vec_mad_f32(masked_begin,
  13378. S,
  13379. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13380. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13381. }
  13382. // S = SM * (S - dot(SM, S))
  13383. float dot_SM_gradSM = 0;
  13384. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13385. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13386. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13387. // S = diag_mask_zero(S, P) * scale
  13388. // already done by above ggml_vec_set_f32
  13389. // exclude known zero S[..] values from operation
  13390. ggml_vec_scale_f32(masked_begin, S, scale);
  13391. // S shape [M,1]
  13392. // SM shape [M,1]
  13393. // kcur shape [D,M]
  13394. // qcur shape [D,1]
  13395. // vcur shape [M,D]
  13396. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13397. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13398. // for ic:
  13399. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13400. // exclude known zero S[..] values from loop
  13401. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13402. ggml_vec_mad_f32(D,
  13403. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13404. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13405. S[ic]);
  13406. }
  13407. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13408. // for ic:
  13409. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13410. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13411. // exclude known zero S[..] values from loop
  13412. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13413. ggml_vec_mad_f32(D,
  13414. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13415. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13416. S[ic]);
  13417. }
  13418. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13419. // for ic:
  13420. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13421. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13422. // exclude known zero SM[..] values from mad
  13423. for (int64_t ic = 0; ic < D; ++ic) {
  13424. ggml_vec_mad_f32(masked_begin,
  13425. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13426. SM,
  13427. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13428. }
  13429. }
  13430. }
  13431. }
  13432. }
  13433. static void ggml_compute_forward_flash_attn_back(
  13434. const struct ggml_compute_params * params,
  13435. const bool masked,
  13436. struct ggml_tensor * dst) {
  13437. const struct ggml_tensor * q = dst->src[0];
  13438. switch (q->type) {
  13439. case GGML_TYPE_F32:
  13440. {
  13441. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13442. } break;
  13443. default:
  13444. {
  13445. GGML_ABORT("fatal error");
  13446. }
  13447. }
  13448. }
  13449. // ggml_compute_forward_ssm_conv
  13450. static void ggml_compute_forward_ssm_conv_f32(
  13451. const struct ggml_compute_params * params,
  13452. struct ggml_tensor * dst) {
  13453. const struct ggml_tensor * src0 = dst->src[0]; // conv_x
  13454. const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
  13455. const int ith = params->ith;
  13456. const int nth = params->nth;
  13457. const int nc = src1->ne[0]; // d_conv
  13458. const int ncs = src0->ne[0]; // d_conv - 1 + n_t
  13459. const int nr = src0->ne[1]; // d_inner
  13460. const int n_t = dst->ne[1]; // tokens per sequence
  13461. const int n_s = dst->ne[2]; // number of sequences in the batch
  13462. GGML_ASSERT( dst->ne[0] == nr);
  13463. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13464. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13465. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13466. // rows per thread
  13467. const int dr = (nr + nth - 1)/nth;
  13468. // row range for this thread
  13469. const int ir0 = dr*ith;
  13470. const int ir1 = MIN(ir0 + dr, nr);
  13471. const int ir = ir1 - ir0;
  13472. for (int i3 = 0; i3 < n_s; ++i3) {
  13473. for (int i2 = 0; i2 < n_t; ++i2) {
  13474. // {d_conv - 1 + n_t, d_inner, n_seqs}
  13475. // sliding window
  13476. const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
  13477. const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
  13478. float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
  13479. // TODO: transpose the output for smaller strides for big batches?
  13480. // d_inner
  13481. for (int i1 = 0; i1 < ir; ++i1) {
  13482. // rowwise dot product
  13483. // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
  13484. float sumf = 0.0f;
  13485. // d_conv
  13486. for (int i0 = 0; i0 < nc; ++i0) {
  13487. sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
  13488. }
  13489. x[i1] = sumf;
  13490. }
  13491. }
  13492. }
  13493. }
  13494. static void ggml_compute_forward_ssm_conv(
  13495. const struct ggml_compute_params * params,
  13496. struct ggml_tensor * dst) {
  13497. switch (dst->src[0]->type) {
  13498. case GGML_TYPE_F32:
  13499. {
  13500. ggml_compute_forward_ssm_conv_f32(params, dst);
  13501. } break;
  13502. default:
  13503. {
  13504. GGML_ABORT("fatal error");
  13505. }
  13506. }
  13507. }
  13508. // ggml_compute_forward_ssm_scan
  13509. static void ggml_compute_forward_ssm_scan_f32(
  13510. const struct ggml_compute_params * params,
  13511. struct ggml_tensor * dst) {
  13512. const struct ggml_tensor * src0 = dst->src[0]; // s
  13513. const struct ggml_tensor * src1 = dst->src[1]; // x
  13514. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13515. const struct ggml_tensor * src3 = dst->src[3]; // A
  13516. const struct ggml_tensor * src4 = dst->src[4]; // B
  13517. const struct ggml_tensor * src5 = dst->src[5]; // C
  13518. const int ith = params->ith;
  13519. const int nth = params->nth;
  13520. const int64_t nc = src0->ne[0]; // d_state
  13521. const int64_t nr = src0->ne[1]; // d_inner
  13522. const int64_t n_t = src1->ne[1]; // number of tokens per sequence
  13523. const int64_t n_s = src0->ne[2]; // number of sequences in the batch
  13524. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13525. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13526. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13527. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13528. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13529. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13530. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13531. // required for the dot product between s and C
  13532. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13533. // required for per-sequence offsets for states
  13534. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13535. // required to get correct offset for state destination (i.e. src1->nb[3])
  13536. GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
  13537. // rows per thread
  13538. const int dr = (nr + nth - 1)/nth;
  13539. // row range for this thread
  13540. const int ir0 = dr*ith;
  13541. const int ir1 = MIN(ir0 + dr, nr);
  13542. const int ir = ir1 - ir0;
  13543. for (int i3 = 0; i3 < n_s; ++i3) {
  13544. for (int i2 = 0; i2 < n_t; ++i2) {
  13545. const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
  13546. const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  13547. const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
  13548. const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13549. const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
  13550. const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
  13551. float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  13552. float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
  13553. // use the output as the source for the next token-wise iterations
  13554. if (i2 > 0) { s0 = s; }
  13555. // d_inner
  13556. for (int i1 = 0; i1 < ir; ++i1) {
  13557. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13558. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13559. float x_dt = x[i1] * dt_soft_plus;
  13560. float sumf = 0.0f;
  13561. // d_state
  13562. for (int i0 = 0; i0 < nc; ++i0) {
  13563. int i = i0 + i1*nc;
  13564. // state = prev_state * dA + dB * x
  13565. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13566. // y = rowwise_dotprod(state, C)
  13567. sumf += state * C[i0];
  13568. s[i] = state;
  13569. }
  13570. y[i1] = sumf;
  13571. }
  13572. }
  13573. }
  13574. }
  13575. static void ggml_compute_forward_ssm_scan(
  13576. const struct ggml_compute_params * params,
  13577. struct ggml_tensor * dst) {
  13578. switch (dst->src[0]->type) {
  13579. case GGML_TYPE_F32:
  13580. {
  13581. ggml_compute_forward_ssm_scan_f32(params, dst);
  13582. } break;
  13583. default:
  13584. {
  13585. GGML_ABORT("fatal error");
  13586. }
  13587. }
  13588. }
  13589. // ggml_compute_forward_win_part
  13590. static void ggml_compute_forward_win_part_f32(
  13591. const struct ggml_compute_params * params,
  13592. struct ggml_tensor * dst) {
  13593. UNUSED(params);
  13594. const struct ggml_tensor * src0 = dst->src[0];
  13595. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13596. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13597. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13598. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13599. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13600. assert(ne00 == ne0);
  13601. assert(ne3 == nep0*nep1);
  13602. // TODO: optimize / multi-thread
  13603. for (int py = 0; py < nep1; ++py) {
  13604. for (int px = 0; px < nep0; ++px) {
  13605. const int64_t i3 = py*nep0 + px;
  13606. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13607. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13608. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13609. const int64_t i02 = py*w + i2;
  13610. const int64_t i01 = px*w + i1;
  13611. const int64_t i00 = i0;
  13612. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13613. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13614. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13615. ((float *) dst->data)[i] = 0.0f;
  13616. } else {
  13617. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13618. }
  13619. }
  13620. }
  13621. }
  13622. }
  13623. }
  13624. }
  13625. static void ggml_compute_forward_win_part(
  13626. const struct ggml_compute_params * params,
  13627. struct ggml_tensor * dst) {
  13628. const struct ggml_tensor * src0 = dst->src[0];
  13629. switch (src0->type) {
  13630. case GGML_TYPE_F32:
  13631. {
  13632. ggml_compute_forward_win_part_f32(params, dst);
  13633. } break;
  13634. default:
  13635. {
  13636. GGML_ABORT("fatal error");
  13637. }
  13638. }
  13639. }
  13640. // ggml_compute_forward_win_unpart
  13641. static void ggml_compute_forward_win_unpart_f32(
  13642. const struct ggml_compute_params * params,
  13643. struct ggml_tensor * dst) {
  13644. UNUSED(params);
  13645. const struct ggml_tensor * src0 = dst->src[0];
  13646. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13647. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13648. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13649. // padding
  13650. const int px = (w - ne1%w)%w;
  13651. //const int py = (w - ne2%w)%w;
  13652. const int npx = (px + ne1)/w;
  13653. //const int npy = (py + ne2)/w;
  13654. assert(ne0 == ne00);
  13655. // TODO: optimize / multi-thread
  13656. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13657. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13658. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13659. const int ip2 = i2/w;
  13660. const int ip1 = i1/w;
  13661. const int64_t i02 = i2%w;
  13662. const int64_t i01 = i1%w;
  13663. const int64_t i00 = i0;
  13664. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13665. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13666. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13667. }
  13668. }
  13669. }
  13670. }
  13671. static void ggml_compute_forward_win_unpart(
  13672. const struct ggml_compute_params * params,
  13673. struct ggml_tensor * dst) {
  13674. const struct ggml_tensor * src0 = dst->src[0];
  13675. switch (src0->type) {
  13676. case GGML_TYPE_F32:
  13677. {
  13678. ggml_compute_forward_win_unpart_f32(params, dst);
  13679. } break;
  13680. default:
  13681. {
  13682. GGML_ABORT("fatal error");
  13683. }
  13684. }
  13685. }
  13686. //gmml_compute_forward_unary
  13687. static void ggml_compute_forward_unary(
  13688. const struct ggml_compute_params * params,
  13689. struct ggml_tensor * dst) {
  13690. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13691. switch (op) {
  13692. case GGML_UNARY_OP_ABS:
  13693. {
  13694. ggml_compute_forward_abs(params, dst);
  13695. } break;
  13696. case GGML_UNARY_OP_SGN:
  13697. {
  13698. ggml_compute_forward_sgn(params, dst);
  13699. } break;
  13700. case GGML_UNARY_OP_NEG:
  13701. {
  13702. ggml_compute_forward_neg(params, dst);
  13703. } break;
  13704. case GGML_UNARY_OP_STEP:
  13705. {
  13706. ggml_compute_forward_step(params, dst);
  13707. } break;
  13708. case GGML_UNARY_OP_TANH:
  13709. {
  13710. ggml_compute_forward_tanh(params, dst);
  13711. } break;
  13712. case GGML_UNARY_OP_ELU:
  13713. {
  13714. ggml_compute_forward_elu(params, dst);
  13715. } break;
  13716. case GGML_UNARY_OP_RELU:
  13717. {
  13718. ggml_compute_forward_relu(params, dst);
  13719. } break;
  13720. case GGML_UNARY_OP_SIGMOID:
  13721. {
  13722. ggml_compute_forward_sigmoid(params, dst);
  13723. } break;
  13724. case GGML_UNARY_OP_GELU:
  13725. {
  13726. ggml_compute_forward_gelu(params, dst);
  13727. } break;
  13728. case GGML_UNARY_OP_GELU_QUICK:
  13729. {
  13730. ggml_compute_forward_gelu_quick(params, dst);
  13731. } break;
  13732. case GGML_UNARY_OP_SILU:
  13733. {
  13734. ggml_compute_forward_silu(params, dst);
  13735. } break;
  13736. case GGML_UNARY_OP_HARDSWISH:
  13737. {
  13738. ggml_compute_forward_hardswish(params, dst);
  13739. } break;
  13740. case GGML_UNARY_OP_HARDSIGMOID:
  13741. {
  13742. ggml_compute_forward_hardsigmoid(params, dst);
  13743. } break;
  13744. case GGML_UNARY_OP_EXP:
  13745. {
  13746. ggml_compute_forward_exp(params, dst);
  13747. } break;
  13748. default:
  13749. {
  13750. GGML_ABORT("fatal error");
  13751. }
  13752. }
  13753. }
  13754. // ggml_compute_forward_get_rel_pos
  13755. static void ggml_compute_forward_get_rel_pos_f16(
  13756. const struct ggml_compute_params * params,
  13757. struct ggml_tensor * dst) {
  13758. UNUSED(params);
  13759. const struct ggml_tensor * src0 = dst->src[0];
  13760. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13761. GGML_TENSOR_UNARY_OP_LOCALS
  13762. const int64_t w = ne1;
  13763. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13764. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13765. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13766. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13767. const int64_t pos = (w - i1 - 1) + i2;
  13768. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13769. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13770. }
  13771. }
  13772. }
  13773. }
  13774. static void ggml_compute_forward_get_rel_pos(
  13775. const struct ggml_compute_params * params,
  13776. struct ggml_tensor * dst) {
  13777. const struct ggml_tensor * src0 = dst->src[0];
  13778. switch (src0->type) {
  13779. case GGML_TYPE_F16:
  13780. case GGML_TYPE_BF16:
  13781. {
  13782. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13783. } break;
  13784. default:
  13785. {
  13786. GGML_ABORT("fatal error");
  13787. }
  13788. }
  13789. }
  13790. // ggml_compute_forward_add_rel_pos
  13791. static void ggml_compute_forward_add_rel_pos_f32(
  13792. const struct ggml_compute_params * params,
  13793. struct ggml_tensor * dst) {
  13794. const struct ggml_tensor * src0 = dst->src[0];
  13795. const struct ggml_tensor * src1 = dst->src[1];
  13796. const struct ggml_tensor * src2 = dst->src[2];
  13797. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13798. if (!inplace) {
  13799. if (params->ith == 0) {
  13800. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13801. }
  13802. ggml_barrier(params->threadpool);
  13803. }
  13804. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13805. float * src1_data = (float *) src1->data;
  13806. float * src2_data = (float *) src2->data;
  13807. float * dst_data = (float *) dst->data;
  13808. const int64_t ne10 = src1->ne[0];
  13809. const int64_t ne11 = src1->ne[1];
  13810. const int64_t ne12 = src1->ne[2];
  13811. const int64_t ne13 = src1->ne[3];
  13812. const int ith = params->ith;
  13813. const int nth = params->nth;
  13814. // total patches in dst
  13815. const int np = ne13;
  13816. // patches per thread
  13817. const int dp = (np + nth - 1)/nth;
  13818. // patch range for this thread
  13819. const int ip0 = dp*ith;
  13820. const int ip1 = MIN(ip0 + dp, np);
  13821. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13822. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13823. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13824. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13825. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13826. const int64_t jp0 = jp1 + i10;
  13827. const float src1_e = src1_data[jp0];
  13828. const float src2_e = src2_data[jp0];
  13829. const int64_t jdh = jp0 * ne10;
  13830. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13831. for (int64_t j = 0; j < ne10; ++j) {
  13832. dst_data[jdh + j ] += src2_e;
  13833. dst_data[jdw + j*ne10] += src1_e;
  13834. }
  13835. }
  13836. }
  13837. }
  13838. }
  13839. }
  13840. static void ggml_compute_forward_add_rel_pos(
  13841. const struct ggml_compute_params * params,
  13842. struct ggml_tensor * dst) {
  13843. const struct ggml_tensor * src0 = dst->src[0];
  13844. switch (src0->type) {
  13845. case GGML_TYPE_F32:
  13846. {
  13847. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13848. } break;
  13849. default:
  13850. {
  13851. GGML_ABORT("fatal error");
  13852. }
  13853. }
  13854. }
  13855. // ggml_compute_forward_rwkv_wkv
  13856. static void ggml_compute_forward_rwkv_wkv_f32(
  13857. const struct ggml_compute_params * params,
  13858. struct ggml_tensor * dst) {
  13859. const size_t T = dst->src[1]->ne[3];
  13860. const size_t C = dst->ne[0];
  13861. const size_t H = dst->src[1]->ne[2];
  13862. const size_t n_seqs = dst->src[5]->ne[1];
  13863. float * dst_data = (float *) dst->data;
  13864. float * state = ((float *) dst->data) + C * T;
  13865. if (params->ith != 0) {
  13866. return;
  13867. }
  13868. memset(dst_data, 0, T * C * sizeof(float));
  13869. float * k = (float *) dst->src[0]->data;
  13870. float * v = (float *) dst->src[1]->data;
  13871. float * r = (float *) dst->src[2]->data;
  13872. float * time_faaaa = (float *) dst->src[3]->data;
  13873. float * time_decay = (float *) dst->src[4]->data;
  13874. size_t t_stride = H * (C / H);
  13875. size_t h_stride = C / H;
  13876. size_t h_stride_2d = (C / H) * (C / H);
  13877. // basically fused operations:
  13878. // dst = r @ (time_faaaa * (k @ v) + state),
  13879. // state = time_decay * state + (k @ v),
  13880. // recursive through each token
  13881. for (size_t t = 0; t < T; t++) {
  13882. size_t t_offset = t * t_stride;
  13883. size_t state_offset = (C / H) * C * (t / (T / n_seqs));
  13884. float * state_cur = state + state_offset;
  13885. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  13886. for (size_t h = 0; h < H; h++) {
  13887. size_t h_offset = h * h_stride;
  13888. size_t t_h_offset = t_offset + h_offset;
  13889. size_t h_2d_offset = h * h_stride_2d;
  13890. for (size_t i = 0; i < C / H; i++) {
  13891. size_t t_h_i_offset = t_h_offset + i;
  13892. size_t h_i_offset = h_offset + i;
  13893. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  13894. float k_val = k[t_h_i_offset];
  13895. float r_val = r[t_h_i_offset];
  13896. float time_faaaa_val = time_faaaa[h_i_offset];
  13897. // RWKV v6: different time_decay for each token.
  13898. float time_decay_val = time_decay[t_h_i_offset];
  13899. for (size_t j = 0; j < C / H; j ++) {
  13900. size_t t_h_j_offset = t_h_offset + j;
  13901. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  13902. float v_val = v[t_h_j_offset];
  13903. float kv_val = v_val * k_val;
  13904. float prev_state_val = state_prev[h_2d_i_j_offset];
  13905. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  13906. dst_data[t_h_j_offset] += temp_val * r_val;
  13907. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  13908. }
  13909. }
  13910. }
  13911. }
  13912. }
  13913. static void ggml_compute_forward_rwkv_wkv(
  13914. const struct ggml_compute_params * params,
  13915. struct ggml_tensor * dst) {
  13916. const struct ggml_tensor * src0 = dst->src[0];
  13917. switch (src0->type) {
  13918. case GGML_TYPE_F32:
  13919. {
  13920. ggml_compute_forward_rwkv_wkv_f32(params, dst);
  13921. } break;
  13922. default:
  13923. {
  13924. GGML_ABORT("fatal error");
  13925. }
  13926. }
  13927. }
  13928. // ggml_compute_forward_map_unary
  13929. static void ggml_compute_forward_map_unary_f32(
  13930. const struct ggml_compute_params * params,
  13931. struct ggml_tensor * dst,
  13932. const ggml_unary_op_f32_t fun) {
  13933. const struct ggml_tensor * src0 = dst->src[0];
  13934. if (params->ith != 0) {
  13935. return;
  13936. }
  13937. assert(ggml_is_contiguous_1(src0));
  13938. assert(ggml_is_contiguous_1(dst));
  13939. assert(ggml_are_same_shape(src0, dst));
  13940. const int n = ggml_nrows(src0);
  13941. const int nc = src0->ne[0];
  13942. for (int i = 0; i < n; i++) {
  13943. fun(nc,
  13944. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13945. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13946. }
  13947. }
  13948. static void ggml_compute_forward_map_unary(
  13949. const struct ggml_compute_params * params,
  13950. struct ggml_tensor * dst,
  13951. const ggml_unary_op_f32_t fun) {
  13952. const struct ggml_tensor * src0 = dst->src[0];
  13953. switch (src0->type) {
  13954. case GGML_TYPE_F32:
  13955. {
  13956. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13957. } break;
  13958. default:
  13959. {
  13960. GGML_ABORT("fatal error");
  13961. }
  13962. }
  13963. }
  13964. // ggml_compute_forward_map_binary
  13965. static void ggml_compute_forward_map_binary_f32(
  13966. const struct ggml_compute_params * params,
  13967. struct ggml_tensor * dst,
  13968. const ggml_binary_op_f32_t fun) {
  13969. const struct ggml_tensor * src0 = dst->src[0];
  13970. const struct ggml_tensor * src1 = dst->src[1];
  13971. if (params->ith != 0) {
  13972. return;
  13973. }
  13974. assert(ggml_is_contiguous_1(src0));
  13975. assert(ggml_is_contiguous_1(src1));
  13976. assert(ggml_is_contiguous_1(dst));
  13977. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13978. const int n = ggml_nrows(src0);
  13979. const int nc = src0->ne[0];
  13980. for (int i = 0; i < n; i++) {
  13981. fun(nc,
  13982. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13983. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13984. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13985. }
  13986. }
  13987. static void ggml_compute_forward_map_binary(
  13988. const struct ggml_compute_params * params,
  13989. struct ggml_tensor * dst,
  13990. const ggml_binary_op_f32_t fun) {
  13991. const struct ggml_tensor * src0 = dst->src[0];
  13992. switch (src0->type) {
  13993. case GGML_TYPE_F32:
  13994. {
  13995. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13996. } break;
  13997. default:
  13998. {
  13999. GGML_ABORT("fatal error");
  14000. }
  14001. }
  14002. }
  14003. // ggml_compute_forward_map_custom1
  14004. static void ggml_compute_forward_map_custom1_f32(
  14005. const struct ggml_compute_params * params,
  14006. struct ggml_tensor * dst,
  14007. const ggml_custom1_op_f32_t fun) {
  14008. const struct ggml_tensor * a = dst->src[0];
  14009. if (params->ith != 0) {
  14010. return;
  14011. }
  14012. fun(dst, a);
  14013. }
  14014. // ggml_compute_forward_map_custom2
  14015. static void ggml_compute_forward_map_custom2_f32(
  14016. const struct ggml_compute_params * params,
  14017. struct ggml_tensor * dst,
  14018. const ggml_custom2_op_f32_t fun) {
  14019. const struct ggml_tensor * a = dst->src[0];
  14020. const struct ggml_tensor * b = dst->src[1];
  14021. if (params->ith != 0) {
  14022. return;
  14023. }
  14024. fun(dst, a, b);
  14025. }
  14026. // ggml_compute_forward_map_custom3
  14027. static void ggml_compute_forward_map_custom3_f32(
  14028. const struct ggml_compute_params * params,
  14029. struct ggml_tensor * dst,
  14030. const ggml_custom3_op_f32_t fun) {
  14031. const struct ggml_tensor * a = dst->src[0];
  14032. const struct ggml_tensor * b = dst->src[1];
  14033. const struct ggml_tensor * c = dst->src[1];
  14034. if (params->ith != 0) {
  14035. return;
  14036. }
  14037. fun(dst, a, b, c);
  14038. }
  14039. // ggml_compute_forward_map_custom1
  14040. static void ggml_compute_forward_map_custom1(
  14041. const struct ggml_compute_params * params,
  14042. struct ggml_tensor * dst) {
  14043. const struct ggml_tensor * a = dst->src[0];
  14044. struct ggml_map_custom1_op_params p;
  14045. memcpy(&p, dst->op_params, sizeof(p));
  14046. p.fun(dst, a, params->ith, params->nth, p.userdata);
  14047. }
  14048. // ggml_compute_forward_map_custom2
  14049. static void ggml_compute_forward_map_custom2(
  14050. const struct ggml_compute_params * params,
  14051. struct ggml_tensor * dst) {
  14052. const struct ggml_tensor * a = dst->src[0];
  14053. const struct ggml_tensor * b = dst->src[1];
  14054. struct ggml_map_custom2_op_params p;
  14055. memcpy(&p, dst->op_params, sizeof(p));
  14056. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  14057. }
  14058. // ggml_compute_forward_map_custom3
  14059. static void ggml_compute_forward_map_custom3(
  14060. const struct ggml_compute_params * params,
  14061. struct ggml_tensor * dst) {
  14062. const struct ggml_tensor * a = dst->src[0];
  14063. const struct ggml_tensor * b = dst->src[1];
  14064. const struct ggml_tensor * c = dst->src[2];
  14065. struct ggml_map_custom3_op_params p;
  14066. memcpy(&p, dst->op_params, sizeof(p));
  14067. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  14068. }
  14069. // ggml_compute_forward_cross_entropy_loss
  14070. static void ggml_compute_forward_cross_entropy_loss_f32(
  14071. const struct ggml_compute_params * params,
  14072. struct ggml_tensor * dst) {
  14073. const struct ggml_tensor * src0 = dst->src[0];
  14074. const struct ggml_tensor * src1 = dst->src[1];
  14075. GGML_ASSERT(ggml_is_contiguous(src0));
  14076. GGML_ASSERT(ggml_is_contiguous(src1));
  14077. GGML_ASSERT(ggml_is_scalar(dst));
  14078. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  14079. const int ith = params->ith;
  14080. const int nth = params->nth;
  14081. float * sums = (float *) params->wdata;
  14082. // TODO: handle transposed/permuted matrices
  14083. const int nc = src0->ne[0];
  14084. const int nr = ggml_nrows(src0);
  14085. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  14086. if (ith == 0) {
  14087. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  14088. }
  14089. ggml_barrier(params->threadpool);
  14090. // rows per thread
  14091. const int dr = (nr + nth - 1)/nth;
  14092. // row range for this thread
  14093. const int ir0 = dr*ith;
  14094. const int ir1 = MIN(ir0 + dr, nr);
  14095. for (int i1 = ir0; i1 < ir1; i1++) {
  14096. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14097. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14098. float * st = ((float *) params->wdata) + nth + ith*nc;
  14099. #ifndef NDEBUG
  14100. for (int i = 0; i < nc; ++i) {
  14101. //printf("p[%d] = %f\n", i, p[i]);
  14102. assert(!isnan(s0[i]));
  14103. assert(!isnan(s1[i]));
  14104. }
  14105. #endif
  14106. float max = -INFINITY;
  14107. ggml_vec_max_f32(nc, &max, s0);
  14108. ggml_float sum = ggml_vec_log_soft_max_f32(nc, st, s0, max);
  14109. assert(sum >= 0.0);
  14110. ggml_vec_add1_f32(nc, st, st, -sum);
  14111. ggml_vec_mul_f32(nc, st, st, s1);
  14112. float st_sum = 0.0f;
  14113. ggml_vec_sum_f32(nc, &st_sum, st);
  14114. sums[ith] += st_sum;
  14115. #ifndef NDEBUG
  14116. for (int i = 0; i < nc; ++i) {
  14117. assert(!isnan(st[i]));
  14118. assert(!isinf(st[i]));
  14119. }
  14120. #endif
  14121. }
  14122. ggml_barrier(params->threadpool);
  14123. if (ith == 0) {
  14124. float * dp = (float *) dst->data;
  14125. ggml_vec_sum_f32(nth, dp, sums);
  14126. dp[0] *= -1.0f / (float) nr;
  14127. }
  14128. }
  14129. static void ggml_compute_forward_cross_entropy_loss(
  14130. const struct ggml_compute_params * params,
  14131. struct ggml_tensor * dst) {
  14132. const struct ggml_tensor * src0 = dst->src[0];
  14133. switch (src0->type) {
  14134. case GGML_TYPE_F32:
  14135. {
  14136. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  14137. } break;
  14138. default:
  14139. {
  14140. GGML_ABORT("fatal error");
  14141. }
  14142. }
  14143. }
  14144. // ggml_compute_forward_cross_entropy_loss_back
  14145. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  14146. const struct ggml_compute_params * params,
  14147. struct ggml_tensor * dst) {
  14148. const struct ggml_tensor * src0 = dst->src[0];
  14149. const struct ggml_tensor * src1 = dst->src[1];
  14150. const struct ggml_tensor * opt0 = dst->src[2];
  14151. GGML_ASSERT(ggml_is_contiguous(dst));
  14152. GGML_ASSERT(ggml_is_contiguous(src0));
  14153. GGML_ASSERT(ggml_is_contiguous(src1));
  14154. GGML_ASSERT(ggml_is_contiguous(opt0));
  14155. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14156. const int64_t ith = params->ith;
  14157. const int64_t nth = params->nth;
  14158. // TODO: handle transposed/permuted matrices
  14159. const int64_t nc = src0->ne[0];
  14160. const int64_t nr = ggml_nrows(src0);
  14161. // rows per thread
  14162. const int64_t dr = (nr + nth - 1)/nth;
  14163. // row range for this thread
  14164. const int64_t ir0 = dr*ith;
  14165. const int64_t ir1 = MIN(ir0 + dr, nr);
  14166. float * d = (float *) opt0->data;
  14167. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  14168. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  14169. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14170. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14171. #ifndef NDEBUG
  14172. for (int i = 0; i < nc; ++i) {
  14173. //printf("p[%d] = %f\n", i, p[i]);
  14174. assert(!isnan(s0[i]));
  14175. assert(!isnan(s1[i]));
  14176. }
  14177. #endif
  14178. // soft_max
  14179. float max = -INFINITY;
  14180. ggml_vec_max_f32(nc, &max, s0);
  14181. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14182. assert(sum > 0.0);
  14183. ggml_vec_scale_f32(nc, ds0, 1.0/sum);
  14184. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14185. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14186. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14187. #ifndef NDEBUG
  14188. for (int i = 0; i < nc; ++i) {
  14189. assert(!isnan(ds0[i]));
  14190. assert(!isinf(ds0[i]));
  14191. }
  14192. #endif
  14193. }
  14194. }
  14195. static void ggml_compute_forward_cross_entropy_loss_back(
  14196. const struct ggml_compute_params * params,
  14197. struct ggml_tensor * dst) {
  14198. const struct ggml_tensor * src0 = dst->src[0];
  14199. switch (src0->type) {
  14200. case GGML_TYPE_F32:
  14201. {
  14202. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14203. } break;
  14204. default:
  14205. {
  14206. GGML_ABORT("fatal error");
  14207. }
  14208. }
  14209. }
  14210. /////////////////////////////////
  14211. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  14212. GGML_ASSERT(params);
  14213. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14214. return;
  14215. }
  14216. switch (tensor->op) {
  14217. case GGML_OP_DUP:
  14218. {
  14219. ggml_compute_forward_dup(params, tensor);
  14220. } break;
  14221. case GGML_OP_ADD:
  14222. {
  14223. ggml_compute_forward_add(params, tensor);
  14224. } break;
  14225. case GGML_OP_ADD1:
  14226. {
  14227. ggml_compute_forward_add1(params, tensor);
  14228. } break;
  14229. case GGML_OP_ACC:
  14230. {
  14231. ggml_compute_forward_acc(params, tensor);
  14232. } break;
  14233. case GGML_OP_SUB:
  14234. {
  14235. ggml_compute_forward_sub(params, tensor);
  14236. } break;
  14237. case GGML_OP_MUL:
  14238. {
  14239. ggml_compute_forward_mul(params, tensor);
  14240. } break;
  14241. case GGML_OP_DIV:
  14242. {
  14243. ggml_compute_forward_div(params, tensor);
  14244. } break;
  14245. case GGML_OP_SQR:
  14246. {
  14247. ggml_compute_forward_sqr(params, tensor);
  14248. } break;
  14249. case GGML_OP_SQRT:
  14250. {
  14251. ggml_compute_forward_sqrt(params, tensor);
  14252. } break;
  14253. case GGML_OP_LOG:
  14254. {
  14255. ggml_compute_forward_log(params, tensor);
  14256. } break;
  14257. case GGML_OP_SIN:
  14258. {
  14259. ggml_compute_forward_sin(params, tensor);
  14260. } break;
  14261. case GGML_OP_COS:
  14262. {
  14263. ggml_compute_forward_cos(params, tensor);
  14264. } break;
  14265. case GGML_OP_SUM:
  14266. {
  14267. ggml_compute_forward_sum(params, tensor);
  14268. } break;
  14269. case GGML_OP_SUM_ROWS:
  14270. {
  14271. ggml_compute_forward_sum_rows(params, tensor);
  14272. } break;
  14273. case GGML_OP_MEAN:
  14274. {
  14275. ggml_compute_forward_mean(params, tensor);
  14276. } break;
  14277. case GGML_OP_ARGMAX:
  14278. {
  14279. ggml_compute_forward_argmax(params, tensor);
  14280. } break;
  14281. case GGML_OP_REPEAT:
  14282. {
  14283. ggml_compute_forward_repeat(params, tensor);
  14284. } break;
  14285. case GGML_OP_REPEAT_BACK:
  14286. {
  14287. ggml_compute_forward_repeat_back(params, tensor);
  14288. } break;
  14289. case GGML_OP_CONCAT:
  14290. {
  14291. ggml_compute_forward_concat(params, tensor);
  14292. } break;
  14293. case GGML_OP_SILU_BACK:
  14294. {
  14295. ggml_compute_forward_silu_back(params, tensor);
  14296. } break;
  14297. case GGML_OP_NORM:
  14298. {
  14299. ggml_compute_forward_norm(params, tensor);
  14300. } break;
  14301. case GGML_OP_RMS_NORM:
  14302. {
  14303. ggml_compute_forward_rms_norm(params, tensor);
  14304. } break;
  14305. case GGML_OP_RMS_NORM_BACK:
  14306. {
  14307. ggml_compute_forward_rms_norm_back(params, tensor);
  14308. } break;
  14309. case GGML_OP_GROUP_NORM:
  14310. {
  14311. ggml_compute_forward_group_norm(params, tensor);
  14312. } break;
  14313. case GGML_OP_MUL_MAT:
  14314. {
  14315. ggml_compute_forward_mul_mat(params, tensor);
  14316. } break;
  14317. case GGML_OP_MUL_MAT_ID:
  14318. {
  14319. ggml_compute_forward_mul_mat_id(params, tensor);
  14320. } break;
  14321. case GGML_OP_OUT_PROD:
  14322. {
  14323. ggml_compute_forward_out_prod(params, tensor);
  14324. } break;
  14325. case GGML_OP_SCALE:
  14326. {
  14327. ggml_compute_forward_scale(params, tensor);
  14328. } break;
  14329. case GGML_OP_SET:
  14330. {
  14331. ggml_compute_forward_set(params, tensor);
  14332. } break;
  14333. case GGML_OP_CPY:
  14334. {
  14335. ggml_compute_forward_cpy(params, tensor);
  14336. } break;
  14337. case GGML_OP_CONT:
  14338. {
  14339. ggml_compute_forward_cont(params, tensor);
  14340. } break;
  14341. case GGML_OP_RESHAPE:
  14342. {
  14343. ggml_compute_forward_reshape(params, tensor);
  14344. } break;
  14345. case GGML_OP_VIEW:
  14346. {
  14347. ggml_compute_forward_view(params, tensor);
  14348. } break;
  14349. case GGML_OP_PERMUTE:
  14350. {
  14351. ggml_compute_forward_permute(params, tensor);
  14352. } break;
  14353. case GGML_OP_TRANSPOSE:
  14354. {
  14355. ggml_compute_forward_transpose(params, tensor);
  14356. } break;
  14357. case GGML_OP_GET_ROWS:
  14358. {
  14359. ggml_compute_forward_get_rows(params, tensor);
  14360. } break;
  14361. case GGML_OP_GET_ROWS_BACK:
  14362. {
  14363. ggml_compute_forward_get_rows_back(params, tensor);
  14364. } break;
  14365. case GGML_OP_DIAG:
  14366. {
  14367. ggml_compute_forward_diag(params, tensor);
  14368. } break;
  14369. case GGML_OP_DIAG_MASK_INF:
  14370. {
  14371. ggml_compute_forward_diag_mask_inf(params, tensor);
  14372. } break;
  14373. case GGML_OP_DIAG_MASK_ZERO:
  14374. {
  14375. ggml_compute_forward_diag_mask_zero(params, tensor);
  14376. } break;
  14377. case GGML_OP_SOFT_MAX:
  14378. {
  14379. ggml_compute_forward_soft_max(params, tensor);
  14380. } break;
  14381. case GGML_OP_SOFT_MAX_BACK:
  14382. {
  14383. ggml_compute_forward_soft_max_back(params, tensor);
  14384. } break;
  14385. case GGML_OP_ROPE:
  14386. {
  14387. ggml_compute_forward_rope(params, tensor);
  14388. } break;
  14389. case GGML_OP_ROPE_BACK:
  14390. {
  14391. ggml_compute_forward_rope_back(params, tensor);
  14392. } break;
  14393. case GGML_OP_CLAMP:
  14394. {
  14395. ggml_compute_forward_clamp(params, tensor);
  14396. } break;
  14397. case GGML_OP_CONV_TRANSPOSE_1D:
  14398. {
  14399. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14400. } break;
  14401. case GGML_OP_IM2COL:
  14402. {
  14403. ggml_compute_forward_im2col(params, tensor);
  14404. } break;
  14405. case GGML_OP_IM2COL_BACK:
  14406. {
  14407. ggml_compute_forward_im2col_back_f32(params, tensor);
  14408. } break;
  14409. case GGML_OP_CONV_TRANSPOSE_2D:
  14410. {
  14411. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14412. } break;
  14413. case GGML_OP_POOL_1D:
  14414. {
  14415. ggml_compute_forward_pool_1d(params, tensor);
  14416. } break;
  14417. case GGML_OP_POOL_2D:
  14418. {
  14419. ggml_compute_forward_pool_2d(params, tensor);
  14420. } break;
  14421. case GGML_OP_POOL_2D_BACK:
  14422. {
  14423. ggml_compute_forward_pool_2d_back(params, tensor);
  14424. } break;
  14425. case GGML_OP_UPSCALE:
  14426. {
  14427. ggml_compute_forward_upscale(params, tensor);
  14428. } break;
  14429. case GGML_OP_PAD:
  14430. {
  14431. ggml_compute_forward_pad(params, tensor);
  14432. } break;
  14433. case GGML_OP_ARANGE:
  14434. {
  14435. ggml_compute_forward_arange(params, tensor);
  14436. } break;
  14437. case GGML_OP_TIMESTEP_EMBEDDING:
  14438. {
  14439. ggml_compute_forward_timestep_embedding(params, tensor);
  14440. } break;
  14441. case GGML_OP_ARGSORT:
  14442. {
  14443. ggml_compute_forward_argsort(params, tensor);
  14444. } break;
  14445. case GGML_OP_LEAKY_RELU:
  14446. {
  14447. ggml_compute_forward_leaky_relu(params, tensor);
  14448. } break;
  14449. case GGML_OP_FLASH_ATTN_EXT:
  14450. {
  14451. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14452. } break;
  14453. case GGML_OP_FLASH_ATTN_BACK:
  14454. {
  14455. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14456. GGML_ASSERT(t == 0 || t == 1);
  14457. bool masked = t != 0;
  14458. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14459. } break;
  14460. case GGML_OP_SSM_CONV:
  14461. {
  14462. ggml_compute_forward_ssm_conv(params, tensor);
  14463. } break;
  14464. case GGML_OP_SSM_SCAN:
  14465. {
  14466. ggml_compute_forward_ssm_scan(params, tensor);
  14467. } break;
  14468. case GGML_OP_WIN_PART:
  14469. {
  14470. ggml_compute_forward_win_part(params, tensor);
  14471. } break;
  14472. case GGML_OP_WIN_UNPART:
  14473. {
  14474. ggml_compute_forward_win_unpart(params, tensor);
  14475. } break;
  14476. case GGML_OP_UNARY:
  14477. {
  14478. ggml_compute_forward_unary(params, tensor);
  14479. } break;
  14480. case GGML_OP_GET_REL_POS:
  14481. {
  14482. ggml_compute_forward_get_rel_pos(params, tensor);
  14483. } break;
  14484. case GGML_OP_ADD_REL_POS:
  14485. {
  14486. ggml_compute_forward_add_rel_pos(params, tensor);
  14487. } break;
  14488. case GGML_OP_RWKV_WKV:
  14489. {
  14490. ggml_compute_forward_rwkv_wkv(params, tensor);
  14491. } break;
  14492. case GGML_OP_MAP_UNARY:
  14493. {
  14494. ggml_unary_op_f32_t fun;
  14495. memcpy(&fun, tensor->op_params, sizeof(fun));
  14496. ggml_compute_forward_map_unary(params, tensor, fun);
  14497. }
  14498. break;
  14499. case GGML_OP_MAP_BINARY:
  14500. {
  14501. ggml_binary_op_f32_t fun;
  14502. memcpy(&fun, tensor->op_params, sizeof(fun));
  14503. ggml_compute_forward_map_binary(params, tensor, fun);
  14504. }
  14505. break;
  14506. case GGML_OP_MAP_CUSTOM1_F32:
  14507. {
  14508. ggml_custom1_op_f32_t fun;
  14509. memcpy(&fun, tensor->op_params, sizeof(fun));
  14510. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14511. }
  14512. break;
  14513. case GGML_OP_MAP_CUSTOM2_F32:
  14514. {
  14515. ggml_custom2_op_f32_t fun;
  14516. memcpy(&fun, tensor->op_params, sizeof(fun));
  14517. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14518. }
  14519. break;
  14520. case GGML_OP_MAP_CUSTOM3_F32:
  14521. {
  14522. ggml_custom3_op_f32_t fun;
  14523. memcpy(&fun, tensor->op_params, sizeof(fun));
  14524. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14525. }
  14526. break;
  14527. case GGML_OP_MAP_CUSTOM1:
  14528. {
  14529. ggml_compute_forward_map_custom1(params, tensor);
  14530. }
  14531. break;
  14532. case GGML_OP_MAP_CUSTOM2:
  14533. {
  14534. ggml_compute_forward_map_custom2(params, tensor);
  14535. }
  14536. break;
  14537. case GGML_OP_MAP_CUSTOM3:
  14538. {
  14539. ggml_compute_forward_map_custom3(params, tensor);
  14540. }
  14541. break;
  14542. case GGML_OP_CROSS_ENTROPY_LOSS:
  14543. {
  14544. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14545. }
  14546. break;
  14547. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14548. {
  14549. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14550. }
  14551. break;
  14552. case GGML_OP_NONE:
  14553. {
  14554. // nop
  14555. } break;
  14556. case GGML_OP_COUNT:
  14557. {
  14558. GGML_ABORT("fatal error");
  14559. }
  14560. }
  14561. }
  14562. ////////////////////////////////////////////////////////////////////////////////
  14563. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14564. size = ggml_hash_size(size);
  14565. struct ggml_hash_set result;
  14566. result.size = size;
  14567. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14568. result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
  14569. return result;
  14570. }
  14571. void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
  14572. memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
  14573. }
  14574. void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
  14575. GGML_FREE(hash_set->used);
  14576. GGML_FREE(hash_set->keys);
  14577. }
  14578. size_t ggml_hash_size(size_t min_sz) {
  14579. // next primes after powers of two
  14580. static const size_t primes[] = {
  14581. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14582. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14583. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14584. 16777259, 33554467, 67108879, 134217757, 268435459,
  14585. 536870923, 1073741827, 2147483659
  14586. };
  14587. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14588. // find the smallest prime that is larger or equal than min_sz
  14589. size_t l = 0;
  14590. size_t r = n_primes;
  14591. while (l < r) {
  14592. size_t m = (l + r)/2;
  14593. if (primes[m] < min_sz) {
  14594. l = m + 1;
  14595. } else {
  14596. r = m;
  14597. }
  14598. }
  14599. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14600. return sz;
  14601. }
  14602. struct hash_map {
  14603. struct ggml_hash_set set;
  14604. struct ggml_tensor ** vals;
  14605. };
  14606. static struct hash_map * ggml_new_hash_map(size_t size) {
  14607. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14608. result->set = ggml_hash_set_new(size);
  14609. result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
  14610. return result;
  14611. }
  14612. static void ggml_hash_map_free(struct hash_map * map) {
  14613. ggml_hash_set_free(&map->set);
  14614. GGML_FREE(map->vals);
  14615. GGML_FREE(map);
  14616. }
  14617. // gradient checkpointing
  14618. static struct ggml_tensor * ggml_recompute_graph_node(
  14619. struct ggml_context * ctx,
  14620. struct ggml_cgraph * graph,
  14621. struct hash_map * replacements,
  14622. struct ggml_tensor * node) {
  14623. if (node == NULL) {
  14624. return NULL;
  14625. }
  14626. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14627. return node;
  14628. }
  14629. if (!ggml_hash_contains(&graph->visited_hash_set, node)) {
  14630. return node;
  14631. }
  14632. int count_children = 0;
  14633. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14634. if (node->src[k]) {
  14635. ++count_children;
  14636. }
  14637. }
  14638. if (count_children == 0) {
  14639. return node;
  14640. }
  14641. size_t i = ggml_hash_find(&replacements->set, node);
  14642. GGML_ASSERT(i != GGML_HASHSET_FULL); // assert that not full
  14643. if (replacements->set.keys[i] == node) {
  14644. return replacements->vals[i];
  14645. }
  14646. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14647. // insert clone into replacements
  14648. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14649. replacements->set.keys[i] = node;
  14650. replacements->vals[i] = clone;
  14651. clone->op = node->op;
  14652. clone->grad = node->grad;
  14653. clone->flags = node->flags;
  14654. clone->extra = node->extra;
  14655. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14656. clone->nb[k] = node->nb[k];
  14657. }
  14658. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14659. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14660. }
  14661. if (node->view_src != NULL) {
  14662. clone->data = (node->view_src->data == NULL)
  14663. ? NULL // view_src not yet allocated
  14664. : (char *) node->view_src->data // view_src already allocated
  14665. + node->view_offs;
  14666. clone->view_src = node->view_src;
  14667. clone->view_offs = node->view_offs;
  14668. }
  14669. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14670. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14671. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14672. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14673. return clone;
  14674. }
  14675. void ggml_build_backward_gradient_checkpointing(
  14676. struct ggml_context * ctx,
  14677. struct ggml_cgraph * gf,
  14678. struct ggml_cgraph * gb,
  14679. struct ggml_cgraph * gb_tmp,
  14680. struct ggml_tensor * * checkpoints,
  14681. int n_checkpoints) {
  14682. ggml_graph_cpy(gf, gb_tmp);
  14683. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14684. if (n_checkpoints <= 0) {
  14685. ggml_graph_cpy(gb_tmp, gb);
  14686. return;
  14687. }
  14688. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14689. // insert checkpoints in replacements
  14690. for (int i = 0; i < n_checkpoints; ++i) {
  14691. size_t k = ggml_hash_find(&replacements->set, checkpoints[i]);
  14692. GGML_ASSERT(k != GGML_HASHSET_FULL); // assert that not full
  14693. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14694. replacements->set.keys[k] = checkpoints[i];
  14695. replacements->vals[k] = checkpoints[i];
  14696. }
  14697. ggml_graph_cpy(gf, gb);
  14698. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14699. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14700. // by recomputing them from checkpoints
  14701. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14702. struct ggml_tensor * node = gb_tmp->nodes[i];
  14703. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14704. // insert new tensors recomputing src, reusing already made replacements,
  14705. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14706. // recurse for input tensors,
  14707. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14708. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14709. }
  14710. // insert rewritten backward node with replacements made into resulting backward graph gb
  14711. ggml_build_forward_expand(gb, node);
  14712. }
  14713. ggml_hash_map_free(replacements);
  14714. }
  14715. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14716. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
  14717. if (ggml_hash_contains(zero_table, a)) {
  14718. return b;
  14719. } else {
  14720. return ggml_add_impl(ctx, a, b, false);
  14721. }
  14722. }
  14723. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set * zero_table) {
  14724. if (ggml_hash_contains(zero_table, a)) {
  14725. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14726. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14727. } else {
  14728. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14729. }
  14730. }
  14731. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
  14732. if (ggml_hash_contains(zero_table, a)) {
  14733. return ggml_repeat(ctx, b, a);
  14734. } else {
  14735. return ggml_add1_impl(ctx, a, b, false);
  14736. }
  14737. }
  14738. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
  14739. if (ggml_hash_contains(zero_table, a)) {
  14740. return ggml_neg(ctx, b);
  14741. } else {
  14742. return ggml_sub_impl(ctx, a, b, false);
  14743. }
  14744. }
  14745. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table) {
  14746. struct ggml_tensor * src0 = tensor->src[0];
  14747. struct ggml_tensor * src1 = tensor->src[1];
  14748. struct ggml_tensor * src2 = tensor->src[2];
  14749. switch (tensor->op) {
  14750. case GGML_OP_DUP:
  14751. {
  14752. if (src0->grad) {
  14753. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14754. }
  14755. } break;
  14756. case GGML_OP_ADD:
  14757. {
  14758. if (src0->grad) {
  14759. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14760. }
  14761. if (src1->grad) {
  14762. if (ggml_are_same_shape(src0, src1)) {
  14763. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14764. } else {
  14765. src1->grad = ggml_add_or_set(ctx, src1->grad, ggml_repeat_back(ctx, tensor->grad, src1), zero_table);
  14766. }
  14767. }
  14768. } break;
  14769. case GGML_OP_ADD1:
  14770. {
  14771. if (src0->grad) {
  14772. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14773. }
  14774. if (src1->grad) {
  14775. src1->grad = ggml_add_or_set(ctx,
  14776. src1->grad,
  14777. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14778. zero_table);
  14779. }
  14780. } break;
  14781. case GGML_OP_ACC:
  14782. {
  14783. if (src0->grad) {
  14784. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14785. }
  14786. if (src1->grad) {
  14787. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14788. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14789. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14790. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14791. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14792. tensor->grad,
  14793. src1->grad->ne[0],
  14794. src1->grad->ne[1],
  14795. src1->grad->ne[2],
  14796. src1->grad->ne[3],
  14797. nb1, nb2, nb3, offset);
  14798. src1->grad =
  14799. ggml_add_or_set(ctx,
  14800. src1->grad,
  14801. ggml_reshape(ctx,
  14802. ggml_cont(ctx, tensor_grad_view),
  14803. src1->grad),
  14804. zero_table);
  14805. }
  14806. } break;
  14807. case GGML_OP_SUB:
  14808. {
  14809. if (src0->grad) {
  14810. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14811. }
  14812. if (src1->grad) {
  14813. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14814. }
  14815. } break;
  14816. case GGML_OP_MUL:
  14817. {
  14818. if (src0->grad) {
  14819. src0->grad =
  14820. ggml_add_or_set(ctx,
  14821. src0->grad,
  14822. ggml_mul(ctx, src1, tensor->grad),
  14823. zero_table);
  14824. }
  14825. if (src1->grad) {
  14826. src1->grad =
  14827. ggml_add_or_set(ctx,
  14828. src1->grad,
  14829. ggml_mul(ctx, src0, tensor->grad),
  14830. zero_table);
  14831. }
  14832. } break;
  14833. case GGML_OP_DIV:
  14834. {
  14835. if (src0->grad) {
  14836. src0->grad =
  14837. ggml_add_or_set(ctx,
  14838. src0->grad,
  14839. ggml_div(ctx, tensor->grad, src1),
  14840. zero_table);
  14841. }
  14842. if (src1->grad) {
  14843. src1->grad =
  14844. ggml_sub_or_set(ctx,
  14845. src1->grad,
  14846. ggml_mul(ctx,
  14847. tensor->grad,
  14848. ggml_div(ctx, tensor, src1)),
  14849. zero_table);
  14850. }
  14851. } break;
  14852. case GGML_OP_SQR:
  14853. {
  14854. if (src0->grad) {
  14855. src0->grad =
  14856. ggml_add_or_set(ctx,
  14857. src0->grad,
  14858. ggml_scale(ctx,
  14859. ggml_mul(ctx, src0, tensor->grad),
  14860. 2.0f),
  14861. zero_table);
  14862. }
  14863. } break;
  14864. case GGML_OP_SQRT:
  14865. {
  14866. if (src0->grad) {
  14867. src0->grad =
  14868. ggml_add_or_set(ctx,
  14869. src0->grad,
  14870. ggml_scale(ctx,
  14871. ggml_div(ctx,
  14872. tensor->grad,
  14873. tensor),
  14874. 0.5f),
  14875. zero_table);
  14876. }
  14877. } break;
  14878. case GGML_OP_LOG:
  14879. {
  14880. if (src0->grad) {
  14881. src0->grad =
  14882. ggml_add_or_set(ctx,
  14883. src0->grad,
  14884. ggml_div(ctx,
  14885. tensor->grad,
  14886. src0),
  14887. zero_table);
  14888. }
  14889. } break;
  14890. case GGML_OP_SIN:
  14891. {
  14892. if (src0->grad) {
  14893. src0->grad =
  14894. ggml_add_or_set(ctx,
  14895. src0->grad,
  14896. ggml_mul(ctx,
  14897. tensor->grad,
  14898. ggml_cos(ctx, src0)),
  14899. zero_table);
  14900. }
  14901. } break;
  14902. case GGML_OP_COS:
  14903. {
  14904. if (src0->grad) {
  14905. src0->grad =
  14906. ggml_sub_or_set(ctx,
  14907. src0->grad,
  14908. ggml_mul(ctx,
  14909. tensor->grad,
  14910. ggml_sin(ctx, src0)),
  14911. zero_table);
  14912. }
  14913. } break;
  14914. case GGML_OP_SUM:
  14915. {
  14916. if (src0->grad) {
  14917. src0->grad =
  14918. ggml_add1_or_set(ctx,
  14919. src0->grad,
  14920. tensor->grad,
  14921. zero_table);
  14922. }
  14923. } break;
  14924. case GGML_OP_SUM_ROWS:
  14925. {
  14926. if (src0->grad) {
  14927. src0->grad =
  14928. ggml_add_or_set(ctx,
  14929. src0->grad,
  14930. ggml_repeat(ctx,
  14931. tensor->grad,
  14932. src0->grad),
  14933. zero_table);
  14934. }
  14935. } break;
  14936. case GGML_OP_MEAN:
  14937. case GGML_OP_ARGMAX:
  14938. {
  14939. GGML_ABORT("fatal error"); // TODO: implement
  14940. }
  14941. case GGML_OP_REPEAT:
  14942. {
  14943. // necessary for llama
  14944. if (src0->grad) {
  14945. src0->grad = ggml_add_or_set(ctx,
  14946. src0->grad,
  14947. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14948. zero_table);
  14949. }
  14950. } break;
  14951. case GGML_OP_REPEAT_BACK:
  14952. {
  14953. if (src0->grad) {
  14954. // TODO: test this
  14955. src0->grad = ggml_add_or_set(ctx,
  14956. src0->grad,
  14957. ggml_repeat(ctx, tensor->grad, src0->grad),
  14958. zero_table);
  14959. }
  14960. } break;
  14961. case GGML_OP_CONCAT:
  14962. {
  14963. GGML_ABORT("fatal error"); // TODO: implement
  14964. }
  14965. case GGML_OP_SILU_BACK:
  14966. {
  14967. GGML_ABORT("fatal error"); // TODO: not implemented
  14968. }
  14969. case GGML_OP_NORM:
  14970. {
  14971. GGML_ABORT("fatal error"); // TODO: not implemented
  14972. }
  14973. case GGML_OP_RMS_NORM:
  14974. {
  14975. // necessary for llama
  14976. if (src0->grad) {
  14977. float eps;
  14978. memcpy(&eps, tensor->op_params, sizeof(float));
  14979. src0->grad = ggml_add_or_set(ctx,
  14980. src0->grad,
  14981. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14982. zero_table);
  14983. }
  14984. } break;
  14985. case GGML_OP_RMS_NORM_BACK:
  14986. {
  14987. GGML_ABORT("fatal error"); // TODO: not implemented
  14988. }
  14989. case GGML_OP_GROUP_NORM:
  14990. {
  14991. GGML_ABORT("fatal error"); // TODO: not implemented
  14992. }
  14993. case GGML_OP_MUL_MAT:
  14994. {
  14995. // https://cs231n.github.io/optimization-2/#staged
  14996. // # forward pass
  14997. // s0 = np.random.randn(5, 10)
  14998. // s1 = np.random.randn(10, 3)
  14999. // t = s0.dot(s1)
  15000. // # now suppose we had the gradient on t from above in the circuit
  15001. // dt = np.random.randn(*t.shape) # same shape as t
  15002. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  15003. // ds1 = t.T.dot(dt)
  15004. // tensor.shape [m,p,qq,rr]
  15005. // src0.shape [n,m,q1,r1]
  15006. // src1.shape [n,p,qq,rr]
  15007. // necessary for llama
  15008. if (src0->grad) {
  15009. struct ggml_tensor * s1_tg =
  15010. ggml_out_prod(ctx, // [n,m,qq,rr]
  15011. src1, // [n,p,qq,rr]
  15012. tensor->grad); // [m,p,qq,rr]
  15013. const int64_t qq = s1_tg->ne[2];
  15014. const int64_t rr = s1_tg->ne[3];
  15015. const int64_t q1 = src0->ne[2];
  15016. const int64_t r1 = src0->ne[3];
  15017. const bool ne2_broadcasted = qq > q1;
  15018. const bool ne3_broadcasted = rr > r1;
  15019. if (ne2_broadcasted || ne3_broadcasted) {
  15020. // sum broadcast repetitions of s1_tg into shape of src0
  15021. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  15022. }
  15023. src0->grad =
  15024. ggml_add_or_set(ctx,
  15025. src0->grad, // [n,m,q1,r1]
  15026. s1_tg, // [n,m,q1,r1]
  15027. zero_table);
  15028. }
  15029. if (src1->grad) {
  15030. src1->grad =
  15031. ggml_add_or_set(ctx,
  15032. src1->grad, // [n,p,qq,rr]
  15033. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  15034. // ggml_cont(ctx, // [m,n,q1,r1]
  15035. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  15036. // tensor->grad), // [m,p,qq,rr]
  15037. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  15038. // // avoid transpose of src0, rather transpose smaller tensor->grad
  15039. // // and then use ggml_out_prod
  15040. ggml_out_prod(ctx, // [n,p,qq,rr]
  15041. src0, // [n,m,q1,r1]
  15042. ggml_transpose(ctx, // [p,m,qq,rr]
  15043. tensor->grad)), // [m,p,qq,rr]
  15044. zero_table);
  15045. }
  15046. } break;
  15047. case GGML_OP_MUL_MAT_ID:
  15048. {
  15049. GGML_ABORT("fatal error"); // TODO: not implemented
  15050. }
  15051. case GGML_OP_OUT_PROD:
  15052. {
  15053. GGML_ABORT("fatal error"); // TODO: not implemented
  15054. }
  15055. case GGML_OP_SCALE:
  15056. {
  15057. // necessary for llama
  15058. if (src0->grad) {
  15059. float s;
  15060. memcpy(&s, tensor->op_params, sizeof(float));
  15061. src0->grad =
  15062. ggml_add_or_set(ctx,
  15063. src0->grad,
  15064. ggml_scale_impl(ctx, tensor->grad, s, false),
  15065. zero_table);
  15066. }
  15067. } break;
  15068. case GGML_OP_SET:
  15069. {
  15070. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15071. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15072. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15073. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15074. struct ggml_tensor * tensor_grad_view = NULL;
  15075. if (src0->grad || src1->grad) {
  15076. GGML_ASSERT(src0->type == tensor->type);
  15077. GGML_ASSERT(tensor->grad->type == tensor->type);
  15078. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  15079. tensor_grad_view = ggml_view_4d(ctx,
  15080. tensor->grad,
  15081. src1->grad->ne[0],
  15082. src1->grad->ne[1],
  15083. src1->grad->ne[2],
  15084. src1->grad->ne[3],
  15085. nb1, nb2, nb3, offset);
  15086. }
  15087. if (src0->grad) {
  15088. src0->grad = ggml_add_or_set(ctx,
  15089. src0->grad,
  15090. ggml_acc_impl(ctx,
  15091. tensor->grad,
  15092. ggml_neg(ctx, tensor_grad_view),
  15093. nb1, nb2, nb3, offset, false),
  15094. zero_table);
  15095. }
  15096. if (src1->grad) {
  15097. src1->grad =
  15098. ggml_add_or_set(ctx,
  15099. src1->grad,
  15100. ggml_reshape(ctx,
  15101. ggml_cont(ctx, tensor_grad_view),
  15102. src1->grad),
  15103. zero_table);
  15104. }
  15105. } break;
  15106. case GGML_OP_CPY:
  15107. {
  15108. // necessary for llama
  15109. // cpy overwrites value of src1 by src0 and returns view(src1)
  15110. // the overwriting is mathematically equivalent to:
  15111. // tensor = src0 * 1 + src1 * 0
  15112. if (src0->grad) {
  15113. // dsrc0 = dtensor * 1
  15114. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15115. }
  15116. if (src1->grad) {
  15117. // dsrc1 = dtensor * 0 -> noop
  15118. }
  15119. } break;
  15120. case GGML_OP_CONT:
  15121. {
  15122. // same as cpy
  15123. if (src0->grad) {
  15124. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  15125. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  15126. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15127. }
  15128. } break;
  15129. case GGML_OP_RESHAPE:
  15130. {
  15131. // necessary for llama
  15132. if (src0->grad) {
  15133. src0->grad =
  15134. ggml_add_or_set(ctx, src0->grad,
  15135. ggml_reshape(ctx,
  15136. ggml_is_contiguous(tensor->grad)
  15137. ? tensor->grad
  15138. : ggml_cont(ctx, tensor->grad),
  15139. src0->grad),
  15140. zero_table);
  15141. }
  15142. } break;
  15143. case GGML_OP_VIEW:
  15144. {
  15145. // necessary for llama
  15146. if (src0->grad) {
  15147. size_t offset;
  15148. memcpy(&offset, tensor->op_params, sizeof(offset));
  15149. size_t nb1 = tensor->nb[1];
  15150. size_t nb2 = tensor->nb[2];
  15151. size_t nb3 = tensor->nb[3];
  15152. if (src0->type != src0->grad->type) {
  15153. // gradient is typically F32, but src0 could be other type
  15154. size_t ng = ggml_element_size(src0->grad);
  15155. size_t n0 = ggml_element_size(src0);
  15156. GGML_ASSERT(offset % n0 == 0);
  15157. GGML_ASSERT(nb1 % n0 == 0);
  15158. GGML_ASSERT(nb2 % n0 == 0);
  15159. GGML_ASSERT(nb3 % n0 == 0);
  15160. offset = (offset / n0) * ng;
  15161. nb1 = (nb1 / n0) * ng;
  15162. nb2 = (nb2 / n0) * ng;
  15163. nb3 = (nb3 / n0) * ng;
  15164. }
  15165. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  15166. }
  15167. } break;
  15168. case GGML_OP_PERMUTE:
  15169. {
  15170. // necessary for llama
  15171. if (src0->grad) {
  15172. int32_t * axes = (int32_t *) tensor->op_params;
  15173. int axis0 = axes[0] & 0x3;
  15174. int axis1 = axes[1] & 0x3;
  15175. int axis2 = axes[2] & 0x3;
  15176. int axis3 = axes[3] & 0x3;
  15177. int axes_backward[4] = {0,0,0,0};
  15178. axes_backward[axis0] = 0;
  15179. axes_backward[axis1] = 1;
  15180. axes_backward[axis2] = 2;
  15181. axes_backward[axis3] = 3;
  15182. src0->grad =
  15183. ggml_add_or_set(ctx, src0->grad,
  15184. ggml_permute(ctx,
  15185. tensor->grad,
  15186. axes_backward[0],
  15187. axes_backward[1],
  15188. axes_backward[2],
  15189. axes_backward[3]),
  15190. zero_table);
  15191. }
  15192. } break;
  15193. case GGML_OP_TRANSPOSE:
  15194. {
  15195. // necessary for llama
  15196. if (src0->grad) {
  15197. src0->grad =
  15198. ggml_add_or_set(ctx, src0->grad,
  15199. ggml_transpose(ctx, tensor->grad),
  15200. zero_table);
  15201. }
  15202. } break;
  15203. case GGML_OP_GET_ROWS:
  15204. {
  15205. // necessary for llama (only for tokenizer)
  15206. if (src0->grad) {
  15207. src0->grad =
  15208. ggml_add_or_set(ctx, src0->grad,
  15209. // last ggml_get_rows_back argument src0->grad is only
  15210. // necessary to setup correct output shape
  15211. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15212. zero_table);
  15213. }
  15214. if (src1->grad) {
  15215. // noop
  15216. }
  15217. } break;
  15218. case GGML_OP_GET_ROWS_BACK:
  15219. {
  15220. GGML_ABORT("fatal error"); // TODO: not implemented
  15221. }
  15222. case GGML_OP_DIAG:
  15223. {
  15224. GGML_ABORT("fatal error"); // TODO: not implemented
  15225. }
  15226. case GGML_OP_DIAG_MASK_INF:
  15227. {
  15228. // necessary for llama
  15229. if (src0->grad) {
  15230. const int n_past = ((int32_t *) tensor->op_params)[0];
  15231. src0->grad =
  15232. ggml_add_or_set(ctx, src0->grad,
  15233. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15234. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15235. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15236. zero_table);
  15237. }
  15238. } break;
  15239. case GGML_OP_DIAG_MASK_ZERO:
  15240. {
  15241. // necessary for llama
  15242. if (src0->grad) {
  15243. const int n_past = ((int32_t *) tensor->op_params)[0];
  15244. src0->grad =
  15245. ggml_add_or_set(ctx, src0->grad,
  15246. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15247. zero_table);
  15248. }
  15249. } break;
  15250. case GGML_OP_SOFT_MAX:
  15251. {
  15252. // necessary for llama
  15253. if (src0->grad) {
  15254. src0->grad =
  15255. ggml_add_or_set(ctx, src0->grad,
  15256. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15257. zero_table);
  15258. }
  15259. } break;
  15260. case GGML_OP_SOFT_MAX_BACK:
  15261. {
  15262. GGML_ABORT("fatal error"); // TODO: not implemented
  15263. }
  15264. case GGML_OP_ROPE:
  15265. {
  15266. // necessary for llama
  15267. if (src0->grad) {
  15268. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15269. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15270. const int mode = ((int32_t *) tensor->op_params)[2];
  15271. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15272. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  15273. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  15274. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15275. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15276. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15277. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15278. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15279. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15280. src0->grad = ggml_add_or_set(ctx,
  15281. src0->grad,
  15282. ggml_rope_back(ctx,
  15283. tensor->grad,
  15284. src1,
  15285. src2,
  15286. n_dims,
  15287. mode,
  15288. n_ctx_orig,
  15289. freq_base,
  15290. freq_scale,
  15291. ext_factor,
  15292. attn_factor,
  15293. beta_fast,
  15294. beta_slow),
  15295. zero_table);
  15296. }
  15297. } break;
  15298. case GGML_OP_ROPE_BACK:
  15299. {
  15300. if (src0->grad) {
  15301. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15302. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15303. const int mode = ((int32_t *) tensor->op_params)[2];
  15304. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15305. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  15306. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  15307. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15308. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15309. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15310. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15311. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15312. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15313. src0->grad = ggml_add_or_set(ctx,
  15314. src0->grad,
  15315. ggml_rope_impl(ctx,
  15316. tensor->grad,
  15317. src1,
  15318. src2,
  15319. n_dims,
  15320. mode,
  15321. n_ctx_orig,
  15322. freq_base,
  15323. freq_scale,
  15324. ext_factor,
  15325. attn_factor,
  15326. beta_fast,
  15327. beta_slow,
  15328. false),
  15329. zero_table);
  15330. }
  15331. } break;
  15332. case GGML_OP_CLAMP:
  15333. {
  15334. GGML_ABORT("fatal error"); // TODO: not implemented
  15335. }
  15336. case GGML_OP_CONV_TRANSPOSE_1D:
  15337. {
  15338. GGML_ABORT("fatal error"); // TODO: not implemented
  15339. }
  15340. case GGML_OP_IM2COL:
  15341. {
  15342. if (src1->grad) {
  15343. const int32_t s0 = ggml_get_op_params_i32(tensor, 0);
  15344. const int32_t s1 = ggml_get_op_params_i32(tensor, 1);
  15345. const int32_t p0 = ggml_get_op_params_i32(tensor, 2);
  15346. const int32_t p1 = ggml_get_op_params_i32(tensor, 3);
  15347. const int32_t d0 = ggml_get_op_params_i32(tensor, 4);
  15348. const int32_t d1 = ggml_get_op_params_i32(tensor, 5);
  15349. const bool is_2D = ggml_get_op_params_i32(tensor, 6) == 1;
  15350. src1->grad = ggml_add_or_set(ctx,
  15351. src1->grad,
  15352. ggml_im2col_back(ctx, src0, tensor->grad, src1->ne, s0, s1, p0, p1, d0, d1, is_2D),
  15353. zero_table);
  15354. }
  15355. } break;
  15356. case GGML_OP_IM2COL_BACK:
  15357. {
  15358. GGML_ABORT("fatal error"); // TODO: not implemented
  15359. }
  15360. case GGML_OP_CONV_TRANSPOSE_2D:
  15361. {
  15362. GGML_ABORT("fatal error"); // TODO: not implemented
  15363. }
  15364. case GGML_OP_POOL_1D:
  15365. {
  15366. GGML_ABORT("fatal error"); // TODO: not implemented
  15367. }
  15368. case GGML_OP_POOL_2D:
  15369. {
  15370. if (src0->grad) {
  15371. const enum ggml_op_pool op = ggml_get_op_params_i32(tensor, 0);
  15372. const int32_t k0 = ggml_get_op_params_i32(tensor, 1);
  15373. const int32_t k1 = ggml_get_op_params_i32(tensor, 2);
  15374. const int32_t s0 = ggml_get_op_params_i32(tensor, 3);
  15375. const int32_t s1 = ggml_get_op_params_i32(tensor, 4);
  15376. const int32_t p0 = ggml_get_op_params_i32(tensor, 5);
  15377. const int32_t p1 = ggml_get_op_params_i32(tensor, 6);
  15378. src0->grad = ggml_add_or_set(ctx,
  15379. src0->grad,
  15380. ggml_pool_2d_back(ctx, tensor->grad, src0, op, k0, k1, s0, s1, p0, p1),
  15381. zero_table);
  15382. }
  15383. } break;
  15384. case GGML_OP_POOL_2D_BACK:
  15385. {
  15386. GGML_ABORT("fatal error"); // TODO: not implemented
  15387. }
  15388. case GGML_OP_UPSCALE:
  15389. {
  15390. GGML_ABORT("fatal error"); // TODO: not implemented
  15391. }
  15392. case GGML_OP_PAD:
  15393. {
  15394. GGML_ABORT("fatal error"); // TODO: not implemented
  15395. }
  15396. case GGML_OP_ARANGE:
  15397. {
  15398. GGML_ABORT("fatal error"); // TODO: not implemented
  15399. }
  15400. case GGML_OP_TIMESTEP_EMBEDDING:
  15401. {
  15402. GGML_ABORT("fatal error"); // TODO: not implemented
  15403. }
  15404. case GGML_OP_ARGSORT:
  15405. {
  15406. GGML_ABORT("fatal error"); // TODO: not implemented
  15407. }
  15408. case GGML_OP_LEAKY_RELU:
  15409. {
  15410. GGML_ABORT("fatal error"); // TODO: not implemented
  15411. }
  15412. case GGML_OP_FLASH_ATTN_EXT:
  15413. {
  15414. struct ggml_tensor * flash_grad = NULL;
  15415. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15416. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15417. GGML_ASSERT(t == 0 || t == 1);
  15418. bool masked = t != 0;
  15419. flash_grad =
  15420. ggml_flash_attn_back(ctx,
  15421. src0,
  15422. src1,
  15423. tensor->src[2],
  15424. tensor->grad,
  15425. masked);
  15426. }
  15427. const int64_t elem_q = ggml_nelements(src0);
  15428. const int64_t elem_k = ggml_nelements(src1);
  15429. const int64_t elem_v = ggml_nelements(src2);
  15430. enum ggml_type result_type = flash_grad->type;
  15431. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15432. const size_t tsize = ggml_type_size(result_type);
  15433. const size_t offs_q = 0;
  15434. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15435. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15436. if (src0->grad) {
  15437. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15438. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15439. src0->grad = ggml_add_or_set(ctx,
  15440. src0->grad,
  15441. grad_q,
  15442. zero_table);
  15443. }
  15444. if (src1->grad) {
  15445. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15446. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15447. src1->grad = ggml_add_or_set(ctx,
  15448. src1->grad,
  15449. grad_k,
  15450. zero_table);
  15451. }
  15452. if (src2->grad) {
  15453. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15454. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15455. src2->grad = ggml_add_or_set(ctx,
  15456. src2->grad,
  15457. grad_v,
  15458. zero_table);
  15459. }
  15460. } break;
  15461. case GGML_OP_FLASH_ATTN_BACK:
  15462. {
  15463. GGML_ABORT("fatal error"); // not supported
  15464. }
  15465. case GGML_OP_SSM_CONV:
  15466. case GGML_OP_SSM_SCAN:
  15467. {
  15468. GGML_ABORT("fatal error"); // TODO: not implemented
  15469. }
  15470. case GGML_OP_WIN_PART:
  15471. case GGML_OP_WIN_UNPART:
  15472. case GGML_OP_UNARY:
  15473. {
  15474. switch (ggml_get_unary_op(tensor)) {
  15475. case GGML_UNARY_OP_ABS:
  15476. {
  15477. if (src0->grad) {
  15478. src0->grad =
  15479. ggml_add_or_set(ctx,
  15480. src0->grad,
  15481. ggml_mul(ctx,
  15482. ggml_sgn(ctx, src0),
  15483. tensor->grad),
  15484. zero_table);
  15485. }
  15486. } break;
  15487. case GGML_UNARY_OP_SGN:
  15488. {
  15489. if (src0->grad) {
  15490. // noop
  15491. }
  15492. } break;
  15493. case GGML_UNARY_OP_NEG:
  15494. {
  15495. if (src0->grad) {
  15496. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15497. }
  15498. } break;
  15499. case GGML_UNARY_OP_STEP:
  15500. {
  15501. if (src0->grad) {
  15502. // noop
  15503. }
  15504. } break;
  15505. case GGML_UNARY_OP_TANH:
  15506. {
  15507. GGML_ABORT("fatal error"); // TODO: not implemented
  15508. }
  15509. case GGML_UNARY_OP_ELU:
  15510. {
  15511. GGML_ABORT("fatal error"); // TODO: not implemented
  15512. }
  15513. case GGML_UNARY_OP_RELU:
  15514. {
  15515. if (src0->grad) {
  15516. src0->grad = ggml_add_or_set(ctx,
  15517. src0->grad,
  15518. ggml_mul(ctx,
  15519. ggml_step(ctx, src0),
  15520. tensor->grad),
  15521. zero_table);
  15522. }
  15523. } break;
  15524. case GGML_UNARY_OP_SIGMOID:
  15525. {
  15526. GGML_ABORT("fatal error"); // TODO: not implemented
  15527. }
  15528. case GGML_UNARY_OP_GELU:
  15529. {
  15530. GGML_ABORT("fatal error"); // TODO: not implemented
  15531. }
  15532. case GGML_UNARY_OP_GELU_QUICK:
  15533. {
  15534. GGML_ABORT("fatal error"); // TODO: not implemented
  15535. }
  15536. case GGML_UNARY_OP_SILU:
  15537. {
  15538. // necessary for llama
  15539. if (src0->grad) {
  15540. src0->grad = ggml_add_or_set(ctx,
  15541. src0->grad,
  15542. ggml_silu_back(ctx, src0, tensor->grad),
  15543. zero_table);
  15544. }
  15545. } break;
  15546. case GGML_UNARY_OP_EXP:
  15547. {
  15548. if (src0->grad) {
  15549. src0->grad = ggml_add_or_set(ctx,
  15550. src0->grad,
  15551. ggml_mul(ctx, tensor, tensor->grad),
  15552. zero_table);
  15553. }
  15554. } break;
  15555. default:
  15556. GGML_ABORT("fatal error");
  15557. }
  15558. } break;
  15559. case GGML_OP_GET_REL_POS:
  15560. case GGML_OP_ADD_REL_POS:
  15561. case GGML_OP_RWKV_WKV:
  15562. case GGML_OP_MAP_UNARY:
  15563. case GGML_OP_MAP_BINARY:
  15564. case GGML_OP_MAP_CUSTOM1_F32:
  15565. case GGML_OP_MAP_CUSTOM2_F32:
  15566. case GGML_OP_MAP_CUSTOM3_F32:
  15567. case GGML_OP_MAP_CUSTOM1:
  15568. case GGML_OP_MAP_CUSTOM2:
  15569. case GGML_OP_MAP_CUSTOM3:
  15570. {
  15571. GGML_ABORT("fatal error"); // not supported
  15572. }
  15573. case GGML_OP_CROSS_ENTROPY_LOSS:
  15574. {
  15575. if (src0->grad) {
  15576. src0->grad = ggml_add_or_set(ctx,
  15577. src0->grad,
  15578. ggml_cross_entropy_loss_back(ctx,
  15579. src0,
  15580. src1,
  15581. tensor->grad),
  15582. zero_table);
  15583. }
  15584. } break;
  15585. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15586. {
  15587. GGML_ABORT("fatal error"); // not supported
  15588. }
  15589. case GGML_OP_NONE:
  15590. {
  15591. // nop
  15592. } break;
  15593. case GGML_OP_COUNT:
  15594. {
  15595. GGML_ABORT("fatal error");
  15596. }
  15597. }
  15598. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15599. if (tensor->src[i] && tensor->src[i]->grad) {
  15600. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15601. }
  15602. }
  15603. }
  15604. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15605. if (node->grad == NULL) {
  15606. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15607. // it can also happen during forward pass, if the user performs computations with constants
  15608. if (node->op != GGML_OP_NONE) {
  15609. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15610. }
  15611. }
  15612. // check if already visited
  15613. if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) {
  15614. return;
  15615. }
  15616. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15617. const int k =
  15618. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15619. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15620. /* unknown order, just fall back to using i*/ i;
  15621. if (node->src[k]) {
  15622. ggml_visit_parents(cgraph, node->src[k]);
  15623. }
  15624. }
  15625. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15626. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15627. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15628. if (strlen(node->name) == 0) {
  15629. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15630. }
  15631. cgraph->leafs[cgraph->n_leafs] = node;
  15632. cgraph->n_leafs++;
  15633. } else {
  15634. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15635. if (strlen(node->name) == 0) {
  15636. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15637. }
  15638. cgraph->nodes[cgraph->n_nodes] = node;
  15639. if (cgraph->grads) {
  15640. cgraph->grads[cgraph->n_nodes] = node->grad;
  15641. }
  15642. cgraph->n_nodes++;
  15643. }
  15644. }
  15645. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15646. if (!expand) {
  15647. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15648. ggml_graph_clear(cgraph);
  15649. }
  15650. const int n0 = cgraph->n_nodes;
  15651. ggml_visit_parents(cgraph, tensor);
  15652. const int n_new = cgraph->n_nodes - n0;
  15653. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15654. if (n_new > 0) {
  15655. // the last added node should always be starting point
  15656. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15657. }
  15658. }
  15659. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15660. ggml_build_forward_impl(cgraph, tensor, true);
  15661. }
  15662. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15663. GGML_ASSERT(gf->n_nodes > 0);
  15664. GGML_ASSERT(gf->grads);
  15665. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15666. if (keep) {
  15667. for (int i = 0; i < gf->n_nodes; i++) {
  15668. struct ggml_tensor * node = gf->nodes[i];
  15669. if (node->grad) {
  15670. node->grad = ggml_dup_tensor(ctx, node);
  15671. gf->grads[i] = node->grad;
  15672. }
  15673. }
  15674. }
  15675. // remember original gradients which start with zero values
  15676. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15677. for (int i = 0; i < gf->n_nodes; i++) {
  15678. if (gf->grads[i]) {
  15679. ggml_hash_insert(&zero_table, gf->grads[i]);
  15680. }
  15681. }
  15682. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15683. struct ggml_tensor * node = gf->nodes[i];
  15684. // inplace operations to add gradients are not created by ggml_compute_backward
  15685. // use allocator to automatically make inplace operations
  15686. if (node->grad) {
  15687. ggml_compute_backward(ctx, node, &zero_table);
  15688. }
  15689. }
  15690. for (int i = 0; i < gf->n_nodes; i++) {
  15691. struct ggml_tensor * node = gf->nodes[i];
  15692. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15693. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15694. ggml_build_forward_expand(gb, node->grad);
  15695. }
  15696. }
  15697. ggml_hash_set_free(&zero_table);
  15698. }
  15699. static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
  15700. void * ptr = *p;
  15701. ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
  15702. *p = (void *) ((char *) ptr + size);
  15703. return ptr;
  15704. }
  15705. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15706. size_t hash_size = ggml_hash_size(size * 2);
  15707. void * p = 0;
  15708. incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
  15709. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
  15710. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
  15711. incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
  15712. if (grads) {
  15713. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
  15714. }
  15715. incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15716. size_t nbytes = (size_t) p;
  15717. return nbytes;
  15718. }
  15719. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15720. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15721. }
  15722. size_t ggml_graph_overhead(void) {
  15723. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15724. }
  15725. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15726. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15727. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15728. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15729. // the size of the hash table is doubled since it needs to hold both nodes and leafs
  15730. size_t hash_size = ggml_hash_size(size * 2);
  15731. void * p = cgraph + 1;
  15732. struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15733. struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15734. struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15735. struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
  15736. ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15737. // check that we allocated the correct amount of memory
  15738. assert(obj_size == (size_t)((char *)p - (char *)cgraph));
  15739. *cgraph = (struct ggml_cgraph) {
  15740. /*.size =*/ size,
  15741. /*.n_nodes =*/ 0,
  15742. /*.n_leafs =*/ 0,
  15743. /*.nodes =*/ nodes_ptr,
  15744. /*.grads =*/ grads_ptr,
  15745. /*.leafs =*/ leafs_ptr,
  15746. /*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
  15747. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15748. };
  15749. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15750. return cgraph;
  15751. }
  15752. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15753. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15754. }
  15755. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15756. struct ggml_cgraph cgraph = {
  15757. /*.size =*/ 0,
  15758. /*.n_nodes =*/ i1 - i0,
  15759. /*.n_leafs =*/ 0,
  15760. /*.nodes =*/ cgraph0->nodes + i0,
  15761. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15762. /*.leafs =*/ NULL,
  15763. /*.hash_table =*/ { 0, NULL, NULL },
  15764. /*.order =*/ cgraph0->order,
  15765. };
  15766. return cgraph;
  15767. }
  15768. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15769. GGML_ASSERT(dst->size >= src->n_leafs);
  15770. GGML_ASSERT(dst->size >= src->n_nodes);
  15771. GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
  15772. dst->n_leafs = src->n_leafs;
  15773. dst->n_nodes = src->n_nodes;
  15774. dst->order = src->order;
  15775. for (int i = 0; i < src->n_leafs; ++i) {
  15776. dst->leafs[i] = src->leafs[i];
  15777. }
  15778. for (int i = 0; i < src->n_nodes; ++i) {
  15779. dst->nodes[i] = src->nodes[i];
  15780. }
  15781. if (src->grads) {
  15782. GGML_ASSERT(dst->grads != NULL);
  15783. for (int i = 0; i < src->n_nodes; ++i) {
  15784. dst->grads[i] = src->grads[i];
  15785. }
  15786. }
  15787. for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
  15788. if (src->visited_hash_set.keys[i]) {
  15789. ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
  15790. }
  15791. }
  15792. }
  15793. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15794. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15795. ggml_graph_cpy(cgraph, result);
  15796. return result;
  15797. }
  15798. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15799. GGML_ASSERT(cgraph->grads != NULL);
  15800. for (int i = 0; i < cgraph->n_nodes; i++) {
  15801. struct ggml_tensor * grad = cgraph->grads[i];
  15802. if (grad) {
  15803. ggml_set_zero(grad);
  15804. }
  15805. }
  15806. }
  15807. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15808. cgraph->n_leafs = 0;
  15809. cgraph->n_nodes = 0;
  15810. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15811. }
  15812. // Android's libc implementation "bionic" does not support setting affinity
  15813. #if defined(__gnu_linux__)
  15814. static void set_numa_thread_affinity(int thread_n) {
  15815. if (!ggml_is_numa()) {
  15816. return;
  15817. }
  15818. int node_num;
  15819. int rv;
  15820. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15821. switch(g_state.numa.numa_strategy) {
  15822. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15823. // run thread on node_num thread_n / (threads per node)
  15824. node_num = thread_n % g_state.numa.n_nodes;
  15825. break;
  15826. case GGML_NUMA_STRATEGY_ISOLATE:
  15827. // run thread on current_node
  15828. node_num = g_state.numa.current_node;
  15829. break;
  15830. case GGML_NUMA_STRATEGY_NUMACTL:
  15831. // use the cpuset that numactl gave us
  15832. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15833. if (rv) {
  15834. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15835. }
  15836. return;
  15837. default:
  15838. return;
  15839. }
  15840. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15841. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15842. CPU_ZERO_S(setsize, cpus);
  15843. for (size_t i = 0; i < node->n_cpus; ++i) {
  15844. CPU_SET_S(node->cpus[i], setsize, cpus);
  15845. }
  15846. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15847. if (rv) {
  15848. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15849. }
  15850. CPU_FREE(cpus);
  15851. }
  15852. static void clear_numa_thread_affinity(void) {
  15853. if (!ggml_is_numa()) {
  15854. return;
  15855. }
  15856. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15857. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15858. CPU_ZERO_S(setsize, cpus);
  15859. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15860. CPU_SET_S(i, setsize, cpus);
  15861. }
  15862. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15863. if (rv) {
  15864. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15865. }
  15866. CPU_FREE(cpus);
  15867. }
  15868. #else
  15869. // TODO: Windows etc.
  15870. // (the linux implementation may also work on BSD, someone should test)
  15871. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15872. static void clear_numa_thread_affinity(void) {}
  15873. #endif
  15874. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  15875. int n_tasks = 0;
  15876. if (ggml_is_empty(node)) {
  15877. // no need to multi-thread a no-op
  15878. n_tasks = 1;
  15879. return n_tasks;
  15880. }
  15881. switch (node->op) {
  15882. case GGML_OP_CPY:
  15883. case GGML_OP_DUP:
  15884. case GGML_OP_CONT:
  15885. case GGML_OP_ADD:
  15886. case GGML_OP_ADD1:
  15887. case GGML_OP_ACC:
  15888. {
  15889. n_tasks = n_threads;
  15890. } break;
  15891. case GGML_OP_SUB:
  15892. case GGML_OP_SQR:
  15893. case GGML_OP_SQRT:
  15894. case GGML_OP_LOG:
  15895. case GGML_OP_SIN:
  15896. case GGML_OP_COS:
  15897. case GGML_OP_SUM:
  15898. case GGML_OP_SUM_ROWS:
  15899. case GGML_OP_MEAN:
  15900. case GGML_OP_ARGMAX:
  15901. case GGML_OP_REPEAT:
  15902. case GGML_OP_REPEAT_BACK:
  15903. case GGML_OP_LEAKY_RELU:
  15904. {
  15905. n_tasks = 1;
  15906. } break;
  15907. case GGML_OP_UNARY:
  15908. switch (ggml_get_unary_op(node)) {
  15909. case GGML_UNARY_OP_ABS:
  15910. case GGML_UNARY_OP_SGN:
  15911. case GGML_UNARY_OP_NEG:
  15912. case GGML_UNARY_OP_STEP:
  15913. case GGML_UNARY_OP_TANH:
  15914. case GGML_UNARY_OP_ELU:
  15915. case GGML_UNARY_OP_RELU:
  15916. case GGML_UNARY_OP_SIGMOID:
  15917. case GGML_UNARY_OP_HARDSWISH:
  15918. case GGML_UNARY_OP_HARDSIGMOID:
  15919. case GGML_UNARY_OP_EXP:
  15920. {
  15921. n_tasks = 1;
  15922. } break;
  15923. case GGML_UNARY_OP_GELU:
  15924. case GGML_UNARY_OP_GELU_QUICK:
  15925. case GGML_UNARY_OP_SILU:
  15926. {
  15927. n_tasks = n_threads;
  15928. } break;
  15929. default:
  15930. GGML_ABORT("fatal error");
  15931. }
  15932. break;
  15933. case GGML_OP_SILU_BACK:
  15934. case GGML_OP_MUL:
  15935. case GGML_OP_DIV:
  15936. case GGML_OP_NORM:
  15937. case GGML_OP_RMS_NORM:
  15938. case GGML_OP_RMS_NORM_BACK:
  15939. case GGML_OP_GROUP_NORM:
  15940. case GGML_OP_CONCAT:
  15941. case GGML_OP_MUL_MAT:
  15942. case GGML_OP_MUL_MAT_ID:
  15943. case GGML_OP_OUT_PROD:
  15944. {
  15945. n_tasks = n_threads;
  15946. } break;
  15947. case GGML_OP_GET_ROWS:
  15948. {
  15949. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  15950. // decreases performance with GPU offloading
  15951. //n_tasks = n_threads;
  15952. n_tasks = 1;
  15953. } break;
  15954. case GGML_OP_SCALE:
  15955. case GGML_OP_SET:
  15956. case GGML_OP_RESHAPE:
  15957. case GGML_OP_VIEW:
  15958. case GGML_OP_PERMUTE:
  15959. case GGML_OP_TRANSPOSE:
  15960. case GGML_OP_GET_ROWS_BACK:
  15961. case GGML_OP_DIAG:
  15962. {
  15963. n_tasks = 1;
  15964. } break;
  15965. case GGML_OP_DIAG_MASK_ZERO:
  15966. case GGML_OP_DIAG_MASK_INF:
  15967. case GGML_OP_SOFT_MAX_BACK:
  15968. case GGML_OP_ROPE:
  15969. case GGML_OP_ROPE_BACK:
  15970. case GGML_OP_ADD_REL_POS:
  15971. {
  15972. n_tasks = n_threads;
  15973. } break;
  15974. case GGML_OP_CLAMP:
  15975. {
  15976. n_tasks = 1; //TODO
  15977. } break;
  15978. case GGML_OP_SOFT_MAX:
  15979. {
  15980. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15981. } break;
  15982. case GGML_OP_IM2COL:
  15983. case GGML_OP_IM2COL_BACK:
  15984. case GGML_OP_CONV_TRANSPOSE_1D:
  15985. case GGML_OP_CONV_TRANSPOSE_2D:
  15986. {
  15987. n_tasks = n_threads;
  15988. } break;
  15989. case GGML_OP_POOL_1D:
  15990. case GGML_OP_POOL_2D:
  15991. case GGML_OP_POOL_2D_BACK:
  15992. {
  15993. n_tasks = 1;
  15994. } break;
  15995. case GGML_OP_UPSCALE:
  15996. case GGML_OP_PAD:
  15997. case GGML_OP_ARANGE:
  15998. case GGML_OP_TIMESTEP_EMBEDDING:
  15999. case GGML_OP_ARGSORT:
  16000. case GGML_OP_FLASH_ATTN_EXT:
  16001. case GGML_OP_FLASH_ATTN_BACK:
  16002. case GGML_OP_SSM_CONV:
  16003. case GGML_OP_SSM_SCAN:
  16004. {
  16005. n_tasks = n_threads;
  16006. } break;
  16007. case GGML_OP_WIN_PART:
  16008. case GGML_OP_WIN_UNPART:
  16009. case GGML_OP_GET_REL_POS:
  16010. case GGML_OP_RWKV_WKV:
  16011. case GGML_OP_MAP_UNARY:
  16012. case GGML_OP_MAP_BINARY:
  16013. case GGML_OP_MAP_CUSTOM1_F32:
  16014. case GGML_OP_MAP_CUSTOM2_F32:
  16015. case GGML_OP_MAP_CUSTOM3_F32:
  16016. {
  16017. n_tasks = 1;
  16018. } break;
  16019. case GGML_OP_MAP_CUSTOM1:
  16020. {
  16021. struct ggml_map_custom1_op_params p;
  16022. memcpy(&p, node->op_params, sizeof(p));
  16023. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16024. n_tasks = n_threads;
  16025. } else {
  16026. n_tasks = MIN(p.n_tasks, n_threads);
  16027. }
  16028. } break;
  16029. case GGML_OP_MAP_CUSTOM2:
  16030. {
  16031. struct ggml_map_custom2_op_params p;
  16032. memcpy(&p, node->op_params, sizeof(p));
  16033. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16034. n_tasks = n_threads;
  16035. } else {
  16036. n_tasks = MIN(p.n_tasks, n_threads);
  16037. }
  16038. } break;
  16039. case GGML_OP_MAP_CUSTOM3:
  16040. {
  16041. struct ggml_map_custom3_op_params p;
  16042. memcpy(&p, node->op_params, sizeof(p));
  16043. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16044. n_tasks = n_threads;
  16045. } else {
  16046. n_tasks = MIN(p.n_tasks, n_threads);
  16047. }
  16048. } break;
  16049. case GGML_OP_CROSS_ENTROPY_LOSS:
  16050. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16051. {
  16052. n_tasks = n_threads;
  16053. } break;
  16054. case GGML_OP_NONE:
  16055. {
  16056. n_tasks = 1;
  16057. } break;
  16058. case GGML_OP_COUNT:
  16059. {
  16060. GGML_ABORT("fatal error");
  16061. }
  16062. default:
  16063. {
  16064. fprintf(stderr, "%s: op not implemented: ", __func__);
  16065. if (node->op < GGML_OP_COUNT) {
  16066. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16067. } else {
  16068. fprintf(stderr, "%d\n", node->op);
  16069. }
  16070. GGML_ABORT("fatal error");
  16071. }
  16072. }
  16073. assert(n_tasks > 0);
  16074. return n_tasks;
  16075. }
  16076. static thread_ret_t ggml_graph_compute_secondary_thread(void* data);
  16077. #if defined(_WIN32)
  16078. #include "windows.h"
  16079. // TODO: support > 64 CPUs
  16080. bool ggml_thread_apply_affinity(bool * mask) {
  16081. HANDLE h = GetCurrentThread();
  16082. uint64_t bitmask = 0ULL;
  16083. assert(GGML_MAX_N_THREADS >= 64);
  16084. for (int32_t i = 0; i < 8; i++) {
  16085. int32_t idx = i * 8;
  16086. uint8_t val = 0;
  16087. val |= mask[idx + 0] << 0;
  16088. val |= mask[idx + 1] << 1;
  16089. val |= mask[idx + 2] << 2;
  16090. val |= mask[idx + 3] << 3;
  16091. val |= mask[idx + 4] << 4;
  16092. val |= mask[idx + 5] << 5;
  16093. val |= mask[idx + 6] << 6;
  16094. val |= mask[idx + 7] << 7;
  16095. bitmask |= (uint64_t)val << idx;
  16096. }
  16097. for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) {
  16098. if (mask[i]) {
  16099. fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n");
  16100. break;
  16101. }
  16102. }
  16103. DWORD_PTR m = (DWORD_PTR)bitmask;
  16104. m = SetThreadAffinityMask(h, m);
  16105. return m != 0;
  16106. }
  16107. static bool ggml_thread_apply_priority(int32_t prio) {
  16108. // Note that on Windows the Process Priority Class must be updated in order to set Thread priority.
  16109. // This is up to the applications.
  16110. DWORD p = THREAD_PRIORITY_NORMAL;
  16111. switch (prio) {
  16112. case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
  16113. case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
  16114. case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
  16115. case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
  16116. }
  16117. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16118. // Keep inherited policy/priority
  16119. return true;
  16120. }
  16121. if (!SetThreadPriority(GetCurrentThread(), p)) {
  16122. fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError());
  16123. return false;
  16124. }
  16125. return true;
  16126. }
  16127. #elif defined(__APPLE__)
  16128. #include <sys/types.h>
  16129. #include <sys/resource.h>
  16130. static bool ggml_thread_apply_affinity(const bool * mask) {
  16131. // Not supported on Apple platforms
  16132. UNUSED(mask);
  16133. return true;
  16134. }
  16135. static bool ggml_thread_apply_priority(int32_t prio) {
  16136. struct sched_param p;
  16137. int32_t policy = SCHED_OTHER;
  16138. switch (prio) {
  16139. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  16140. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  16141. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  16142. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  16143. }
  16144. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16145. // Keep inherited policy/priority
  16146. return true;
  16147. }
  16148. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  16149. if (err != 0) {
  16150. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  16151. return false;
  16152. }
  16153. return true;
  16154. }
  16155. #else // posix?
  16156. static bool ggml_thread_apply_affinity(const bool * mask) {
  16157. cpu_set_t cpuset;
  16158. int err;
  16159. CPU_ZERO(&cpuset);
  16160. for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  16161. if (mask[i]) {
  16162. GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i);
  16163. CPU_SET(i, &cpuset);
  16164. }
  16165. }
  16166. #ifdef __ANDROID__
  16167. err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
  16168. if (err < 0) {
  16169. err = errno;
  16170. }
  16171. #else
  16172. err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
  16173. #endif
  16174. if (err != 0) {
  16175. fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err);
  16176. return false;
  16177. }
  16178. return true;
  16179. }
  16180. static bool ggml_thread_apply_priority(int32_t prio) {
  16181. struct sched_param p;
  16182. int32_t policy = SCHED_OTHER;
  16183. switch (prio) {
  16184. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  16185. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  16186. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  16187. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  16188. }
  16189. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16190. // Keep inherited policy/priority
  16191. return true;
  16192. }
  16193. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  16194. if (err != 0) {
  16195. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  16196. return false;
  16197. }
  16198. return true;
  16199. }
  16200. #endif
  16201. static bool ggml_thread_cpumask_is_valid(const bool * mask) {
  16202. for (int i = 0; i < GGML_MAX_N_THREADS; i++) {
  16203. if (mask[i]) { return true; }
  16204. }
  16205. return false;
  16206. }
  16207. static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) {
  16208. if (!strict) {
  16209. memcpy(local_mask, global_mask, GGML_MAX_N_THREADS);
  16210. return;
  16211. } else {
  16212. memset(local_mask, 0, GGML_MAX_N_THREADS);
  16213. int32_t base_idx = *iter;
  16214. for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  16215. int32_t idx = base_idx + i;
  16216. if (idx >= GGML_MAX_N_THREADS) {
  16217. // Just a cheaper modulo
  16218. idx -= GGML_MAX_N_THREADS;
  16219. }
  16220. if (global_mask[idx]) {
  16221. local_mask[idx] = 1;
  16222. *iter = idx + 1;
  16223. return;
  16224. }
  16225. }
  16226. }
  16227. }
  16228. void ggml_threadpool_free(struct ggml_threadpool* threadpool) {
  16229. if (!threadpool) return;
  16230. #ifndef GGML_USE_OPENMP
  16231. struct ggml_compute_state* workers = threadpool->workers;
  16232. const int n_threads = threadpool->n_threads_max;
  16233. ggml_mutex_lock(&threadpool->mutex);
  16234. threadpool->stop = true;
  16235. threadpool->pause = false;
  16236. ggml_cond_broadcast(&threadpool->cond);
  16237. ggml_mutex_unlock(&threadpool->mutex);
  16238. for (int j = 1; j < n_threads; j++) {
  16239. int32_t rc = ggml_thread_join(workers[j].thrd, NULL);
  16240. GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED);
  16241. UNUSED(rc);
  16242. }
  16243. ggml_mutex_destroy(&threadpool->mutex);
  16244. ggml_cond_destroy(&threadpool->cond);
  16245. #endif // GGML_USE_OPENMP
  16246. GGML_ALIGNED_FREE(threadpool->workers);
  16247. GGML_ALIGNED_FREE(threadpool);
  16248. }
  16249. #ifndef GGML_USE_OPENMP
  16250. // pause/resume must be called under mutex
  16251. static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) {
  16252. GGML_PRINT_DEBUG("Pausing threadpool\n");
  16253. threadpool->pause = true;
  16254. ggml_cond_broadcast(&threadpool->cond);
  16255. }
  16256. static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) {
  16257. GGML_PRINT_DEBUG("Resuming threadpool\n");
  16258. threadpool->pause = false;
  16259. ggml_cond_broadcast(&threadpool->cond);
  16260. }
  16261. #endif
  16262. void ggml_threadpool_pause(struct ggml_threadpool * threadpool) {
  16263. #ifndef GGML_USE_OPENMP
  16264. ggml_mutex_lock(&threadpool->mutex);
  16265. if (!threadpool->pause) {
  16266. ggml_threadpool_pause_locked(threadpool);
  16267. }
  16268. ggml_mutex_unlock(&threadpool->mutex);
  16269. #else
  16270. UNUSED(threadpool);
  16271. #endif
  16272. }
  16273. void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
  16274. #ifndef GGML_USE_OPENMP
  16275. ggml_mutex_lock(&threadpool->mutex);
  16276. if (threadpool->pause) {
  16277. ggml_threadpool_resume_locked(threadpool);
  16278. }
  16279. ggml_mutex_unlock(&threadpool->mutex);
  16280. #else
  16281. UNUSED(threadpool);
  16282. #endif
  16283. }
  16284. struct ggml_cplan ggml_graph_plan(
  16285. const struct ggml_cgraph * cgraph,
  16286. int n_threads,
  16287. struct ggml_threadpool * threadpool) {
  16288. if (threadpool == NULL) {
  16289. GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  16290. }
  16291. if (n_threads <= 0) {
  16292. n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
  16293. }
  16294. size_t work_size = 0;
  16295. struct ggml_cplan cplan;
  16296. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16297. int max_tasks = 1;
  16298. // thread scheduling for the different operations + work buffer size estimation
  16299. for (int i = 0; i < cgraph->n_nodes; i++) {
  16300. struct ggml_tensor * node = cgraph->nodes[i];
  16301. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  16302. max_tasks = MAX(max_tasks, n_tasks);
  16303. size_t cur = 0;
  16304. switch (node->op) {
  16305. case GGML_OP_CPY:
  16306. case GGML_OP_DUP:
  16307. {
  16308. if (ggml_is_quantized(node->type) ||
  16309. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16310. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16311. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16312. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16313. }
  16314. } break;
  16315. case GGML_OP_ADD:
  16316. case GGML_OP_ADD1:
  16317. {
  16318. if (ggml_is_quantized(node->src[0]->type)) {
  16319. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16320. }
  16321. } break;
  16322. case GGML_OP_ACC:
  16323. {
  16324. if (ggml_is_quantized(node->src[0]->type)) {
  16325. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16326. }
  16327. } break;
  16328. case GGML_OP_MUL_MAT:
  16329. {
  16330. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16331. if (node->src[1]->type != vec_dot_type) {
  16332. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16333. }
  16334. } break;
  16335. case GGML_OP_MUL_MAT_ID:
  16336. {
  16337. cur = 0;
  16338. const struct ggml_tensor * src0 = node->src[0];
  16339. const struct ggml_tensor * src1 = node->src[1];
  16340. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16341. if (src1->type != vec_dot_type) {
  16342. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16343. }
  16344. const int n_as = src0->ne[2];
  16345. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16346. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16347. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16348. } break;
  16349. case GGML_OP_OUT_PROD:
  16350. {
  16351. if (ggml_is_quantized(node->src[0]->type)) {
  16352. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16353. }
  16354. } break;
  16355. case GGML_OP_SOFT_MAX:
  16356. case GGML_OP_ROPE:
  16357. {
  16358. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16359. } break;
  16360. case GGML_OP_CONV_TRANSPOSE_1D:
  16361. {
  16362. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16363. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16364. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16365. const int64_t ne00 = node->src[0]->ne[0]; // K
  16366. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16367. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16368. const int64_t ne10 = node->src[1]->ne[0]; // L
  16369. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16370. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16371. node->src[0]->type == GGML_TYPE_BF16) &&
  16372. node->src[1]->type == GGML_TYPE_F32) {
  16373. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16374. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16375. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16376. node->src[1]->type == GGML_TYPE_F32) {
  16377. cur += sizeof(float)*ne00*ne01*ne02;
  16378. cur += sizeof(float)*ne10*ne11;
  16379. } else {
  16380. GGML_ABORT("fatal error");
  16381. }
  16382. } break;
  16383. case GGML_OP_CONV_TRANSPOSE_2D:
  16384. {
  16385. const int64_t ne00 = node->src[0]->ne[0]; // W
  16386. const int64_t ne01 = node->src[0]->ne[1]; // H
  16387. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16388. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16389. const int64_t ne10 = node->src[1]->ne[0]; // W
  16390. const int64_t ne11 = node->src[1]->ne[1]; // H
  16391. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16392. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16393. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16394. } break;
  16395. case GGML_OP_FLASH_ATTN_EXT:
  16396. {
  16397. const int64_t ne00 = node->src[0]->ne[0]; // D
  16398. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16399. } break;
  16400. case GGML_OP_FLASH_ATTN_BACK:
  16401. {
  16402. const int64_t D = node->src[0]->ne[0];
  16403. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16404. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16405. if (node->src[1]->type == GGML_TYPE_F32) {
  16406. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16407. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16408. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16409. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16410. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16411. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16412. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16413. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16414. }
  16415. } break;
  16416. case GGML_OP_CROSS_ENTROPY_LOSS:
  16417. {
  16418. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16419. } break;
  16420. case GGML_OP_COUNT:
  16421. {
  16422. GGML_ABORT("fatal error");
  16423. }
  16424. default:
  16425. break;
  16426. }
  16427. work_size = MAX(work_size, cur);
  16428. }
  16429. if (work_size > 0) {
  16430. work_size += CACHE_LINE_SIZE*(n_threads);
  16431. }
  16432. cplan.threadpool = threadpool;
  16433. cplan.n_threads = MIN(max_tasks, n_threads);
  16434. cplan.work_size = work_size;
  16435. cplan.work_data = NULL;
  16436. return cplan;
  16437. }
  16438. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16439. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16440. const struct ggml_cgraph * cgraph = state->threadpool->cgraph;
  16441. const struct ggml_cplan * cplan = state->threadpool->cplan;
  16442. set_numa_thread_affinity(state->ith);
  16443. struct ggml_compute_params params = {
  16444. /*.ith =*/ state->ith,
  16445. /*.nth =*/ state->threadpool->n_threads_cur,
  16446. /*.wsize =*/ cplan->work_size,
  16447. /*.wdata =*/ cplan->work_data,
  16448. /*.threadpool=*/ state->threadpool,
  16449. };
  16450. for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
  16451. struct ggml_tensor * node = cgraph->nodes[node_n];
  16452. ggml_compute_forward(&params, node);
  16453. if (state->ith == 0 && cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16454. state->threadpool->ec = GGML_STATUS_ABORTED;
  16455. }
  16456. ggml_barrier(state->threadpool);
  16457. if (state->threadpool->ec != GGML_STATUS_SUCCESS) {
  16458. break;
  16459. }
  16460. }
  16461. return 0;
  16462. }
  16463. #ifndef GGML_USE_OPENMP
  16464. static inline bool ggml_graph_compute_ready(struct ggml_compute_state * state) {
  16465. struct ggml_threadpool * threadpool = state->threadpool;
  16466. if (state->pending || threadpool->stop || threadpool->pause) { return true; }
  16467. // check for new graph/work
  16468. int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed);
  16469. if (new_graph != state->last_graph) {
  16470. state->pending = (state->ith < threadpool->n_threads_cur);
  16471. state->last_graph = new_graph;
  16472. }
  16473. return state->pending;
  16474. }
  16475. static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) {
  16476. struct ggml_threadpool * threadpool = state->threadpool;
  16477. // This seems to make 0 ... 100 a decent range for polling level across modern processors.
  16478. // Perhaps, we can adjust it dynamically based on load and things.
  16479. const uint64_t n_rounds = 1024UL * 128 * threadpool->poll;
  16480. for (uint64_t i=0; !ggml_graph_compute_ready(state) && i<n_rounds; i++) {
  16481. // No new work. Keep polling.
  16482. ggml_thread_cpu_relax();
  16483. }
  16484. return state->pending;
  16485. }
  16486. static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) {
  16487. struct ggml_threadpool * threadpool = state->threadpool;
  16488. if (ggml_graph_compute_poll_for_work(state)) {
  16489. return state->pending;
  16490. }
  16491. ggml_mutex_lock_shared(&threadpool->mutex);
  16492. while (!ggml_graph_compute_ready(state)) {
  16493. // No new work. Wait for the signal.
  16494. GGML_PRINT_DEBUG("thread #%d waiting for work\n", state->ith);
  16495. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  16496. }
  16497. ggml_mutex_unlock_shared(&threadpool->mutex);
  16498. return state->pending;
  16499. }
  16500. static thread_ret_t ggml_graph_compute_secondary_thread(void* data) {
  16501. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16502. struct ggml_threadpool * threadpool = state->threadpool;
  16503. ggml_thread_apply_priority(threadpool->prio);
  16504. if (ggml_thread_cpumask_is_valid(state->cpumask)) {
  16505. ggml_thread_apply_affinity(state->cpumask);
  16506. }
  16507. while (true) {
  16508. // Check if we need to sleep
  16509. while (threadpool->pause) {
  16510. GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith);
  16511. ggml_mutex_lock_shared(&threadpool->mutex);
  16512. if (threadpool->pause) {
  16513. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  16514. }
  16515. GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith);
  16516. ggml_mutex_unlock_shared(&threadpool->mutex);
  16517. }
  16518. // This needs to be checked for after the cond_wait
  16519. if (threadpool->stop) break;
  16520. // Check if there is new work
  16521. // The main thread is the only one that can dispatch new work
  16522. ggml_graph_compute_check_for_work(state);
  16523. if (state->pending) {
  16524. state->pending = false;
  16525. ggml_graph_compute_thread(state);
  16526. }
  16527. }
  16528. return (thread_ret_t) 0;
  16529. }
  16530. // Start processing new graph
  16531. static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool)
  16532. {
  16533. // always take the mutex here because the worker threads are doing hybrid poll/wait
  16534. ggml_mutex_lock(&threadpool->mutex);
  16535. atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_relaxed);
  16536. if (threadpool->pause) {
  16537. // Update main thread prio and affinity to match the threadpool settings
  16538. ggml_thread_apply_priority(threadpool->prio);
  16539. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  16540. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  16541. }
  16542. // resume does cond broadcast
  16543. ggml_threadpool_resume_locked(threadpool);
  16544. } else {
  16545. ggml_cond_broadcast(&threadpool->cond);
  16546. }
  16547. ggml_mutex_unlock(&threadpool->mutex);
  16548. }
  16549. #endif // GGML_USE_OPENMP
  16550. void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) {
  16551. p->n_threads = n_threads;
  16552. p->prio = 0; // default priority (usually means normal or inherited)
  16553. p->poll = 50; // hybrid-polling enabled
  16554. p->strict_cpu = false; // no strict placement (all threads share same cpumask)
  16555. p->paused = false; // threads are ready to go
  16556. memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited)
  16557. }
  16558. struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) {
  16559. struct ggml_threadpool_params p;
  16560. ggml_threadpool_params_init(&p, n_threads);
  16561. return p;
  16562. }
  16563. bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) {
  16564. if (p0->n_threads != p1->n_threads ) return false;
  16565. if (p0->prio != p1->prio ) return false;
  16566. if (p0->poll != p1->poll ) return false;
  16567. if (p0->strict_cpu != p1->strict_cpu ) return false;
  16568. return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0;
  16569. }
  16570. static struct ggml_threadpool * ggml_threadpool_new_impl(
  16571. struct ggml_threadpool_params * tpp,
  16572. struct ggml_cgraph * cgraph,
  16573. struct ggml_cplan * cplan) {
  16574. struct ggml_threadpool * threadpool =
  16575. GGML_ALIGNED_MALLOC(sizeof(struct ggml_threadpool));
  16576. {
  16577. threadpool->cgraph = cgraph;
  16578. threadpool->cplan = cplan;
  16579. threadpool->n_graph = 0;
  16580. threadpool->n_barrier = 0;
  16581. threadpool->n_barrier_passed = 0;
  16582. threadpool->current_chunk = 0;
  16583. threadpool->stop = false;
  16584. threadpool->pause = tpp->paused;
  16585. threadpool->workers = NULL;
  16586. threadpool->n_threads_max = tpp->n_threads;
  16587. threadpool->n_threads_cur = tpp->n_threads;
  16588. threadpool->poll = tpp->poll;
  16589. threadpool->prio = tpp->prio;
  16590. threadpool->ec = GGML_STATUS_SUCCESS;
  16591. }
  16592. // Allocate and init workers state
  16593. const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads;
  16594. struct ggml_compute_state * workers = GGML_ALIGNED_MALLOC(workers_size);
  16595. memset(workers, 0, workers_size);
  16596. for (int j = 0; j < tpp->n_threads; j++) {
  16597. workers[j].threadpool = threadpool;
  16598. workers[j].ith = j;
  16599. }
  16600. threadpool->workers = workers;
  16601. #ifndef GGML_USE_OPENMP
  16602. ggml_mutex_init(&threadpool->mutex);
  16603. ggml_cond_init(&threadpool->cond);
  16604. // Spin the threads for all workers, and update CPU placements.
  16605. // Place the main thread last (towards the higher numbered CPU cores).
  16606. int32_t cpumask_iter = 0;
  16607. for (int j = 1; j < tpp->n_threads; j++) {
  16608. ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
  16609. int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]);
  16610. GGML_ASSERT(rc == 0);
  16611. }
  16612. ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter);
  16613. if (!threadpool->pause) {
  16614. // Update main thread prio and affinity at the start, otherwise we'll do it in resume
  16615. ggml_thread_apply_priority(threadpool->prio);
  16616. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  16617. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  16618. }
  16619. }
  16620. #endif // GGML_USE_OPENMP
  16621. return threadpool;
  16622. }
  16623. struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
  16624. return ggml_threadpool_new_impl(tpp, NULL, NULL);
  16625. }
  16626. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16627. GGML_ASSERT(cplan);
  16628. GGML_ASSERT(cplan->n_threads > 0);
  16629. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  16630. int n_threads = cplan->n_threads;
  16631. struct ggml_threadpool * threadpool = cplan->threadpool;
  16632. bool disposable_threadpool = false;
  16633. if (threadpool == NULL) {
  16634. GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  16635. disposable_threadpool = true;
  16636. struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
  16637. threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan);
  16638. } else {
  16639. // Reset some of the parameters that need resetting
  16640. // No worker threads should be accessing the parameters below at this stage
  16641. threadpool->cgraph = cgraph;
  16642. threadpool->cplan = cplan;
  16643. threadpool->n_threads_cur = n_threads;
  16644. threadpool->current_chunk = 0;
  16645. threadpool->ec = GGML_STATUS_SUCCESS;
  16646. }
  16647. if (n_threads > threadpool->n_threads_max) {
  16648. GGML_PRINT("WARNING: cplan is requesting more threads than the threadpool contains. Expect a bad time!\n");
  16649. }
  16650. #ifdef GGML_USE_OPENMP
  16651. if (n_threads > 1) {
  16652. #pragma omp parallel num_threads(n_threads)
  16653. {
  16654. #pragma omp single
  16655. {
  16656. // update the number of threads from the actual number of threads that we got from OpenMP
  16657. n_threads = omp_get_num_threads();
  16658. threadpool->n_threads_cur = n_threads;
  16659. }
  16660. ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]);
  16661. }
  16662. } else {
  16663. ggml_graph_compute_thread(&threadpool->workers[0]);
  16664. }
  16665. #else
  16666. // Kick all threads to start the new graph
  16667. ggml_graph_compute_kickoff(threadpool);
  16668. // This is a work thread too
  16669. ggml_graph_compute_thread(&threadpool->workers[0]);
  16670. #endif
  16671. // don't leave affinity set on the main thread
  16672. clear_numa_thread_affinity();
  16673. enum ggml_status ret = threadpool->ec;
  16674. if (disposable_threadpool) {
  16675. ggml_threadpool_free(threadpool);
  16676. }
  16677. return ret;
  16678. }
  16679. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16680. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL);
  16681. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16682. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16683. return ggml_graph_compute(cgraph, &cplan);
  16684. }
  16685. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16686. for (int i = 0; i < cgraph->n_leafs; i++) {
  16687. struct ggml_tensor * leaf = cgraph->leafs[i];
  16688. if (strcmp(leaf->name, name) == 0) {
  16689. return leaf;
  16690. }
  16691. }
  16692. for (int i = 0; i < cgraph->n_nodes; i++) {
  16693. struct ggml_tensor * node = cgraph->nodes[i];
  16694. if (strcmp(node->name, name) == 0) {
  16695. return node;
  16696. }
  16697. }
  16698. return NULL;
  16699. }
  16700. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16701. const int64_t * ne = tensor->ne;
  16702. const size_t * nb = tensor->nb;
  16703. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16704. ggml_type_name(tensor->type),
  16705. ggml_op_name (tensor->op),
  16706. ggml_n_dims(tensor),
  16707. ne[0], ne[1], ne[2], ne[3],
  16708. nb[0], nb[1], nb[2], nb[3],
  16709. tensor->data,
  16710. tensor->name);
  16711. }
  16712. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16713. const int64_t * ne = tensor->ne;
  16714. const size_t * nb = tensor->nb;
  16715. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16716. arg,
  16717. ggml_type_name(tensor->type),
  16718. ggml_op_name (tensor->op),
  16719. ggml_n_dims(tensor),
  16720. ne[0], ne[1], ne[2], ne[3],
  16721. nb[0], nb[1], nb[2], nb[3],
  16722. tensor->data,
  16723. tensor->name);
  16724. }
  16725. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16726. uint64_t size_eval = 0;
  16727. // compute size of intermediate results
  16728. // TODO: does not take into account scratch buffers !!!!
  16729. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16730. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16731. }
  16732. // print
  16733. {
  16734. FILE * fout = stdout;
  16735. fprintf(fout, "\n");
  16736. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16737. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16738. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16739. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16740. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16741. // header
  16742. fprintf(fout, "\n");
  16743. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16744. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16745. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16746. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16747. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16748. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16749. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16750. }
  16751. // header
  16752. fprintf(fout, "\n");
  16753. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16754. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16755. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16756. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16757. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16758. if (cgraph->nodes[i]->src[j]) {
  16759. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16760. }
  16761. }
  16762. fprintf(fout, "\n");
  16763. }
  16764. fprintf(fout, "\n");
  16765. }
  16766. // write binary data
  16767. {
  16768. FILE * fout = ggml_fopen(fname, "wb");
  16769. if (!fout) {
  16770. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  16771. return;
  16772. }
  16773. // header
  16774. {
  16775. const uint32_t magic = GGML_FILE_MAGIC;
  16776. const uint32_t version = GGML_FILE_VERSION;
  16777. const uint32_t n_leafs = cgraph->n_leafs;
  16778. const uint32_t n_nodes = cgraph->n_nodes;
  16779. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16780. fwrite(&version, sizeof(uint32_t), 1, fout);
  16781. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16782. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16783. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16784. }
  16785. // leafs
  16786. {
  16787. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16788. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16789. const uint32_t type = tensor->type;
  16790. const uint32_t op = tensor->op;
  16791. const int32_t flags = tensor->flags;
  16792. fwrite(&type, sizeof(uint32_t), 1, fout);
  16793. fwrite(&op, sizeof(uint32_t), 1, fout);
  16794. fwrite(&flags, sizeof(int32_t), 1, fout);
  16795. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16796. const uint64_t ne = tensor->ne[j];
  16797. const uint64_t nb = tensor->nb[j];
  16798. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16799. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16800. }
  16801. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16802. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16803. // dump the data
  16804. // TODO: pad this to 32 byte boundary
  16805. {
  16806. const size_t size = ggml_nbytes(tensor);
  16807. fwrite(tensor->data, sizeof(char), size, fout);
  16808. }
  16809. }
  16810. }
  16811. // nodes
  16812. {
  16813. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16814. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16815. const uint32_t type = tensor->type;
  16816. const uint32_t op = tensor->op;
  16817. const int32_t flags = tensor->flags;
  16818. fwrite(&type, sizeof(uint32_t), 1, fout);
  16819. fwrite(&op, sizeof(uint32_t), 1, fout);
  16820. fwrite(&flags, sizeof(int32_t), 1, fout);
  16821. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16822. const uint64_t ne = tensor->ne[j];
  16823. const uint64_t nb = tensor->nb[j];
  16824. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16825. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16826. }
  16827. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16828. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16829. // output the op arguments
  16830. {
  16831. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16832. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16833. args[j] = tensor->src[j];
  16834. }
  16835. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16836. if (args[j]) {
  16837. int32_t idx = -1;
  16838. // check if leaf
  16839. {
  16840. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16841. if (args[j] == cgraph->leafs[k]) {
  16842. idx = k;
  16843. break;
  16844. }
  16845. }
  16846. }
  16847. // check if node
  16848. if (idx == -1) {
  16849. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16850. if (args[j] == cgraph->nodes[k]) {
  16851. idx = cgraph->n_leafs + k;
  16852. break;
  16853. }
  16854. }
  16855. }
  16856. if (idx == -1) {
  16857. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16858. fclose(fout);
  16859. return;
  16860. }
  16861. fwrite(&idx, sizeof(int32_t), 1, fout);
  16862. } else {
  16863. const int32_t nul = -1;
  16864. fwrite(&nul, sizeof(int32_t), 1, fout);
  16865. }
  16866. }
  16867. }
  16868. // dump the data
  16869. // TODO: pad this to 32 byte boundary
  16870. if ((flags & GGML_TENSOR_FLAG_PARAM)) {
  16871. const size_t size = ggml_nbytes(tensor);
  16872. fwrite(tensor->data, sizeof(char), size, fout);
  16873. }
  16874. }
  16875. }
  16876. fclose(fout);
  16877. }
  16878. }
  16879. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16880. assert(*ctx_data == NULL);
  16881. assert(*ctx_eval == NULL);
  16882. struct ggml_cgraph * result = NULL;
  16883. struct ggml_tensor * data = NULL;
  16884. // read file into data
  16885. {
  16886. FILE * fin = ggml_fopen(fname, "rb");
  16887. if (!fin) {
  16888. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  16889. return result;
  16890. }
  16891. size_t fsize = 0;
  16892. fseek(fin, 0, SEEK_END);
  16893. fsize = ftell(fin);
  16894. fseek(fin, 0, SEEK_SET);
  16895. // create the data context
  16896. {
  16897. const size_t overhead = 1*ggml_tensor_overhead();
  16898. struct ggml_init_params params = {
  16899. .mem_size = fsize + overhead,
  16900. .mem_buffer = NULL,
  16901. .no_alloc = false,
  16902. };
  16903. *ctx_data = ggml_init(params);
  16904. if (!*ctx_data) {
  16905. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16906. fclose(fin);
  16907. return result;
  16908. }
  16909. }
  16910. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16911. {
  16912. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16913. if (ret != fsize) {
  16914. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16915. fclose(fin);
  16916. return result;
  16917. }
  16918. }
  16919. fclose(fin);
  16920. }
  16921. // populate result
  16922. {
  16923. char * ptr = (char *) data->data;
  16924. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16925. if (magic != GGML_FILE_MAGIC) {
  16926. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16927. return result;
  16928. }
  16929. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16930. if (version != GGML_FILE_VERSION) {
  16931. fprintf(stderr, "%s: invalid version number\n", __func__);
  16932. return result;
  16933. }
  16934. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16935. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16936. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16937. const int graph_size = MAX(n_leafs, n_nodes);
  16938. // create the data context
  16939. {
  16940. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16941. struct ggml_init_params params = {
  16942. .mem_size = size_eval + overhead,
  16943. .mem_buffer = NULL,
  16944. .no_alloc = true,
  16945. };
  16946. *ctx_eval = ggml_init(params);
  16947. if (!*ctx_eval) {
  16948. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16949. return result;
  16950. }
  16951. }
  16952. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16953. result->n_leafs = n_leafs;
  16954. result->n_nodes = n_nodes;
  16955. // leafs
  16956. {
  16957. uint32_t type;
  16958. uint32_t op;
  16959. int32_t flags;
  16960. for (uint32_t i = 0; i < n_leafs; ++i) {
  16961. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16962. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16963. flags = *(const int32_t *) ptr; ptr += sizeof(flags);
  16964. int64_t ne[GGML_MAX_DIMS];
  16965. size_t nb[GGML_MAX_DIMS];
  16966. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16967. uint64_t ne_cur;
  16968. uint64_t nb_cur;
  16969. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16970. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16971. ne[j] = ne_cur;
  16972. nb[j] = nb_cur;
  16973. }
  16974. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16975. tensor->op = (enum ggml_op) op;
  16976. tensor->flags = flags;
  16977. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16978. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16979. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16980. tensor->nb[j] = nb[j];
  16981. }
  16982. tensor->data = (void *) ptr; ptr += ggml_nbytes(tensor);
  16983. result->leafs[i] = tensor;
  16984. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16985. }
  16986. }
  16987. ggml_set_no_alloc(*ctx_eval, false);
  16988. // nodes
  16989. {
  16990. uint32_t type;
  16991. uint32_t op;
  16992. int32_t flags;
  16993. for (uint32_t i = 0; i < n_nodes; ++i) {
  16994. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16995. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16996. flags = *(const int32_t *) ptr; ptr += sizeof(flags);
  16997. enum ggml_op eop = (enum ggml_op) op;
  16998. int64_t ne[GGML_MAX_DIMS];
  16999. size_t nb[GGML_MAX_DIMS];
  17000. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17001. uint64_t ne_cur;
  17002. uint64_t nb_cur;
  17003. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17004. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17005. ne[j] = ne_cur;
  17006. nb[j] = nb_cur;
  17007. }
  17008. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  17009. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  17010. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  17011. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  17012. // parse args
  17013. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17014. const int32_t arg_idx = ptr_arg_idx[j];
  17015. if (arg_idx == -1) {
  17016. continue;
  17017. }
  17018. if (arg_idx < result->n_leafs) {
  17019. args[j] = result->leafs[arg_idx];
  17020. } else {
  17021. args[j] = result->nodes[arg_idx - result->n_leafs];
  17022. }
  17023. }
  17024. // create the tensor
  17025. // "view" operations are handled differently
  17026. // TODO: handle inplace ops - currently a copy is always made
  17027. struct ggml_tensor * tensor = NULL;
  17028. switch (eop) {
  17029. // TODO: implement other view ops
  17030. case GGML_OP_RESHAPE:
  17031. {
  17032. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  17033. } break;
  17034. case GGML_OP_VIEW:
  17035. {
  17036. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17037. size_t offs;
  17038. memcpy(&offs, ptr_op_params, sizeof(offs));
  17039. tensor->data = ((char *) tensor->data) + offs;
  17040. } break;
  17041. case GGML_OP_TRANSPOSE:
  17042. {
  17043. tensor = ggml_transpose(*ctx_eval, args[0]);
  17044. } break;
  17045. case GGML_OP_PERMUTE:
  17046. {
  17047. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17048. } break;
  17049. default:
  17050. {
  17051. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17052. tensor->op = eop;
  17053. } break;
  17054. }
  17055. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  17056. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  17057. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17058. tensor->nb[j] = nb[j];
  17059. }
  17060. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17061. tensor->src[j] = args[j];
  17062. }
  17063. result->nodes[i] = tensor;
  17064. // TODO tensor data is be duplicated due to ggml_new_tensor call above
  17065. if (flags & GGML_TENSOR_FLAG_PARAM) {
  17066. tensor->data = (void *) ptr; ptr += ggml_nbytes(tensor);
  17067. }
  17068. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17069. }
  17070. }
  17071. }
  17072. return result;
  17073. }
  17074. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  17075. GGML_PRINT("=== GRAPH ===\n");
  17076. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  17077. for (int i = 0; i < cgraph->n_nodes; i++) {
  17078. struct ggml_tensor * node = cgraph->nodes[i];
  17079. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
  17080. i,
  17081. node->ne[0], node->ne[1], node->ne[2],
  17082. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ");
  17083. }
  17084. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  17085. for (int i = 0; i < cgraph->n_leafs; i++) {
  17086. struct ggml_tensor * node = cgraph->leafs[i];
  17087. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  17088. i,
  17089. node->ne[0], node->ne[1],
  17090. ggml_op_name(node->op),
  17091. ggml_get_name(node));
  17092. }
  17093. GGML_PRINT("========================================\n");
  17094. }
  17095. // check if node is part of the graph
  17096. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17097. if (cgraph == NULL) {
  17098. return true;
  17099. }
  17100. for (int i = 0; i < cgraph->n_nodes; i++) {
  17101. if (cgraph->nodes[i] == node) {
  17102. return true;
  17103. }
  17104. }
  17105. return false;
  17106. }
  17107. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17108. for (int i = 0; i < cgraph->n_nodes; i++) {
  17109. struct ggml_tensor * parent = cgraph->nodes[i];
  17110. if (parent->grad == node) {
  17111. return parent;
  17112. }
  17113. }
  17114. return NULL;
  17115. }
  17116. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17117. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  17118. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  17119. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  17120. gparent0 ? (void *) gparent0 : (void *) parent,
  17121. gparent0 ? "g" : "x",
  17122. gparent ? (void *) gparent : (void *) node,
  17123. gparent ? "g" : "x",
  17124. gparent ? "empty" : "vee",
  17125. gparent ? "dashed" : "solid",
  17126. label);
  17127. }
  17128. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17129. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  17130. (void *) parent, "x",
  17131. (void *) node, "x",
  17132. label);
  17133. }
  17134. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  17135. char color[16];
  17136. FILE * fp = ggml_fopen(filename, "w");
  17137. GGML_ASSERT(fp);
  17138. fprintf(fp, "digraph G {\n");
  17139. fprintf(fp, " newrank = true;\n");
  17140. fprintf(fp, " rankdir = TB;\n");
  17141. for (int i = 0; i < gb->n_nodes; i++) {
  17142. struct ggml_tensor * node = gb->nodes[i];
  17143. if (ggml_graph_get_parent(gb, node) != NULL) {
  17144. continue;
  17145. }
  17146. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  17147. snprintf(color, sizeof(color), "yellow");
  17148. } else if (node->grad) {
  17149. if (ggml_graph_find(gf, node)) {
  17150. snprintf(color, sizeof(color), "green");
  17151. } else {
  17152. snprintf(color, sizeof(color), "lightblue");
  17153. }
  17154. } else {
  17155. snprintf(color, sizeof(color), "white");
  17156. }
  17157. fprintf(fp, " \"%p\" [ "
  17158. "style = filled; fillcolor = %s; shape = record; "
  17159. "label=\"",
  17160. (void *) node, color);
  17161. if (strlen(node->name) > 0) {
  17162. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17163. } else {
  17164. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17165. }
  17166. if (ggml_is_matrix(node)) {
  17167. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  17168. } else {
  17169. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  17170. }
  17171. if (node->grad) {
  17172. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  17173. } else {
  17174. fprintf(fp, "\"; ]\n");
  17175. }
  17176. }
  17177. for (int i = 0; i < gb->n_leafs; i++) {
  17178. struct ggml_tensor * node = gb->leafs[i];
  17179. snprintf(color, sizeof(color), "pink");
  17180. fprintf(fp, " \"%p\" [ "
  17181. "style = filled; fillcolor = %s; shape = record; "
  17182. "label=\"<x>",
  17183. (void *) node, color);
  17184. if (strlen(node->name) > 0) {
  17185. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17186. } else {
  17187. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17188. }
  17189. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  17190. if (ggml_nelements(node) < 5 && node->data != NULL) {
  17191. fprintf(fp, " | (");
  17192. for (int j = 0; j < ggml_nelements(node); j++) {
  17193. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  17194. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  17195. }
  17196. else if (node->type == GGML_TYPE_F32 ||
  17197. node->type == GGML_TYPE_F16 ||
  17198. node->type == GGML_TYPE_BF16) {
  17199. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  17200. }
  17201. else {
  17202. fprintf(fp, "#");
  17203. }
  17204. if (j < ggml_nelements(node) - 1) {
  17205. fprintf(fp, ", ");
  17206. }
  17207. }
  17208. fprintf(fp, ")");
  17209. }
  17210. fprintf(fp, "\"; ]\n");
  17211. }
  17212. for (int i = 0; i < gb->n_nodes; i++) {
  17213. struct ggml_tensor * node = gb->nodes[i];
  17214. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17215. if (node->src[j]) {
  17216. char label[16];
  17217. snprintf(label, sizeof(label), "src %d", j);
  17218. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  17219. }
  17220. }
  17221. }
  17222. for (int i = 0; i < gb->n_leafs; i++) {
  17223. struct ggml_tensor * node = gb->leafs[i];
  17224. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17225. if (node->src[j]) {
  17226. char label[16];
  17227. snprintf(label, sizeof(label), "src %d", j);
  17228. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  17229. }
  17230. }
  17231. }
  17232. fprintf(fp, "}\n");
  17233. fclose(fp);
  17234. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  17235. }
  17236. ////////////////////////////////////////////////////////////////////////////////
  17237. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  17238. int i = 0;
  17239. for (int p = 0; p < np; ++p) {
  17240. const int64_t ne = ggml_nelements(ps[p]) ;
  17241. // TODO: add function to set tensor from array
  17242. for (int64_t j = 0; j < ne; ++j) {
  17243. ggml_set_f32_1d(ps[p], j, x[i++]);
  17244. }
  17245. }
  17246. }
  17247. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  17248. int i = 0;
  17249. for (int p = 0; p < np; ++p) {
  17250. const int64_t ne = ggml_nelements(ps[p]) ;
  17251. // TODO: add function to get all elements at once
  17252. for (int64_t j = 0; j < ne; ++j) {
  17253. x[i++] = ggml_get_f32_1d(ps[p], j);
  17254. }
  17255. }
  17256. }
  17257. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  17258. int64_t i = 0;
  17259. for (int p = 0; p < np; ++p) {
  17260. const int64_t ne = ggml_nelements(ps[p]) ;
  17261. // TODO: add function to get all elements at once
  17262. for (int64_t j = 0; j < ne; ++j) {
  17263. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17264. }
  17265. }
  17266. }
  17267. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17268. int64_t i = 0;
  17269. for (int p = 0; p < np; ++p) {
  17270. const int64_t ne = ggml_nelements(ps[p]) ;
  17271. // TODO: add function to get all elements at once
  17272. for (int64_t j = 0; j < ne; ++j) {
  17273. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17274. }
  17275. }
  17276. }
  17277. //
  17278. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17279. //
  17280. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17281. //
  17282. static enum ggml_opt_result ggml_opt_adam(
  17283. struct ggml_context * ctx,
  17284. struct ggml_opt_context * opt,
  17285. struct ggml_opt_params params,
  17286. struct ggml_tensor * f,
  17287. struct ggml_cgraph * gf,
  17288. struct ggml_cgraph * gb,
  17289. ggml_opt_callback callback,
  17290. void * callback_data) {
  17291. GGML_ASSERT(ggml_is_scalar(f));
  17292. GGML_ASSERT(f->type == GGML_TYPE_F32);
  17293. // these will store the parameters we want to optimize
  17294. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17295. int np = 0;
  17296. int64_t nx = 0;
  17297. for (int i = 0; i < gf->n_nodes; ++i) {
  17298. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17299. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17300. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17301. ps[np++] = gf->nodes[i];
  17302. nx += ggml_nelements(gf->nodes[i]);
  17303. }
  17304. }
  17305. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17306. int iter = opt->iter;
  17307. ggml_opt_init(opt->ctx, opt, params, nx);
  17308. opt->iter = iter;
  17309. }
  17310. // constants
  17311. float sched = params.adam.sched;
  17312. const float alpha = params.adam.alpha;
  17313. const float decay = params.adam.decay * alpha;
  17314. const float beta1 = params.adam.beta1;
  17315. const float beta2 = params.adam.beta2;
  17316. const float eps = params.adam.eps;
  17317. const float gclip = params.adam.gclip;
  17318. const int decay_min_ndim = params.adam.decay_min_ndim;
  17319. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17320. const float accum_norm = 1.0f / (float) n_accum;
  17321. float * g = opt->adam.g->data; // gradients
  17322. float * m = opt->adam.m->data; // first moment
  17323. float * v = opt->adam.v->data; // second moment
  17324. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17325. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL);
  17326. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17327. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17328. bool cancel = false;
  17329. // compute the function value
  17330. float fx = 0;
  17331. ggml_set_zero(opt->adam.g);
  17332. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17333. if (callback) {
  17334. callback(callback_data, accum_step, &sched, &cancel);
  17335. if (cancel) {
  17336. return GGML_OPT_RESULT_CANCEL;
  17337. }
  17338. }
  17339. // ggml_graph_reset (gf);
  17340. ggml_set_f32 (f->grad, 1.0f);
  17341. ggml_graph_compute(gb, &cplan);
  17342. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17343. fx += ggml_get_f32_1d(f, 0);
  17344. }
  17345. fx *= accum_norm;
  17346. opt->adam.fx_prev = fx;
  17347. opt->adam.fx_best = opt->adam.fx_prev;
  17348. if (pf) {
  17349. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17350. }
  17351. opt->loss_before = opt->adam.fx_prev;
  17352. opt->loss_after = opt->adam.fx_prev;
  17353. // initialize
  17354. if (opt->just_initialized) {
  17355. opt->adam.n_no_improvement = 0;
  17356. opt->just_initialized = false;
  17357. }
  17358. float * fx_best = &opt->adam.fx_best;
  17359. float * fx_prev = &opt->adam.fx_prev;
  17360. int * n_no_improvement = &opt->adam.n_no_improvement;
  17361. int iter0 = opt->iter;
  17362. // run the optimizer
  17363. for (int t = 0; t < params.adam.n_iter; ++t) {
  17364. opt->iter = iter0 + t + 1;
  17365. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17366. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17367. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17368. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17369. for (int i = 0; i < np; ++i) {
  17370. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17371. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17372. }
  17373. const int64_t t_start_wall = ggml_time_us();
  17374. const int64_t t_start_cpu = ggml_cycles();
  17375. UNUSED(t_start_wall);
  17376. UNUSED(t_start_cpu);
  17377. {
  17378. float gnorm = 1.0f;
  17379. if (gclip > 0.0f) {
  17380. // gradient clipping
  17381. ggml_float sum = 0.0;
  17382. for (int64_t i = 0; i < nx; ++i) {
  17383. sum += (ggml_float)(g[i]*g[i]);
  17384. }
  17385. ggml_float norm = sqrt(sum);
  17386. if (norm > (ggml_float) gclip) {
  17387. gnorm = (float) ((ggml_float) gclip / norm);
  17388. }
  17389. }
  17390. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17391. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17392. int64_t i = 0;
  17393. for (int p = 0; p < np; ++p) {
  17394. const int64_t ne = ggml_nelements(ps[p]);
  17395. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17396. for (int64_t j = 0; j < ne; ++j) {
  17397. float x = ggml_get_f32_1d(ps[p], j);
  17398. float g_ = g[i]*gnorm;
  17399. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17400. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17401. float mh = m[i]*beta1h;
  17402. float vh = v[i]*beta2h;
  17403. vh = sqrtf(vh) + eps;
  17404. x = x*(1.0f - p_decay) - mh/vh;
  17405. ggml_set_f32_1d(ps[p], j, x);
  17406. ++i;
  17407. }
  17408. }
  17409. }
  17410. fx = 0;
  17411. ggml_set_zero(opt->adam.g);
  17412. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17413. if (callback) {
  17414. callback(callback_data, accum_step, &sched, &cancel);
  17415. if (cancel) {
  17416. return GGML_OPT_RESULT_CANCEL;;
  17417. }
  17418. }
  17419. // ggml_graph_reset (gf);
  17420. ggml_set_f32 (f->grad, 1.0f);
  17421. ggml_graph_compute(gb, &cplan);
  17422. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17423. fx += ggml_get_f32_1d(f, 0);
  17424. }
  17425. fx *= accum_norm;
  17426. opt->loss_after = fx;
  17427. // check convergence
  17428. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17429. GGML_PRINT_DEBUG("converged\n");
  17430. return GGML_OPT_RESULT_OK;
  17431. }
  17432. // delta-based convergence test
  17433. if (pf != NULL) {
  17434. // need at least params.past iterations to start checking for convergence
  17435. if (params.past <= iter0 + t) {
  17436. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17437. if (fabsf(rate) < params.delta) {
  17438. return GGML_OPT_RESULT_OK;
  17439. }
  17440. }
  17441. pf[(iter0 + t)%params.past] = fx;
  17442. }
  17443. // check for improvement
  17444. if (params.max_no_improvement > 0) {
  17445. if (fx_best[0] > fx) {
  17446. fx_best[0] = fx;
  17447. n_no_improvement[0] = 0;
  17448. } else {
  17449. ++n_no_improvement[0];
  17450. if (n_no_improvement[0] >= params.max_no_improvement) {
  17451. return GGML_OPT_RESULT_OK;
  17452. }
  17453. }
  17454. }
  17455. fx_prev[0] = fx;
  17456. {
  17457. const int64_t t_end_cpu = ggml_cycles();
  17458. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17459. UNUSED(t_end_cpu);
  17460. const int64_t t_end_wall = ggml_time_us();
  17461. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17462. UNUSED(t_end_wall);
  17463. }
  17464. }
  17465. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17466. }
  17467. //
  17468. // L-BFGS
  17469. //
  17470. // the L-BFGS implementation below is based on the following implementation:
  17471. //
  17472. // https://github.com/chokkan/liblbfgs
  17473. //
  17474. struct ggml_lbfgs_iteration_data {
  17475. float alpha;
  17476. float ys;
  17477. float * s;
  17478. float * y;
  17479. };
  17480. static enum ggml_opt_result linesearch_backtracking(
  17481. const struct ggml_opt_params * params,
  17482. int nx,
  17483. float * x,
  17484. float * fx,
  17485. float * g,
  17486. float * d,
  17487. float * step,
  17488. const float * xp,
  17489. struct ggml_tensor * f,
  17490. struct ggml_cgraph * gb,
  17491. struct ggml_cplan * cplan,
  17492. const int np,
  17493. struct ggml_tensor * ps[],
  17494. bool * cancel,
  17495. ggml_opt_callback callback,
  17496. void * callback_data) {
  17497. int count = 0;
  17498. float width = 0.0f;
  17499. float dg = 0.0f;
  17500. float finit = 0.0f;
  17501. float dginit = 0.0f;
  17502. float dgtest = 0.0f;
  17503. const float dec = 0.5f;
  17504. const float inc = 2.1f;
  17505. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17506. const float accum_norm = 1.0f / (float) n_accum;
  17507. if (*step <= 0.f) {
  17508. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17509. }
  17510. // compute the initial gradient in the search direction
  17511. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17512. // make sure that d points to a descent direction
  17513. if (0 < dginit) {
  17514. return GGML_LINESEARCH_FAIL;
  17515. }
  17516. // initialize local variables
  17517. finit = *fx;
  17518. dgtest = params->lbfgs.ftol*dginit;
  17519. while (true) {
  17520. ggml_vec_cpy_f32(nx, x, xp);
  17521. ggml_vec_mad_f32(nx, x, d, *step);
  17522. // evaluate the function and gradient values
  17523. {
  17524. ggml_opt_set_params(np, ps, x);
  17525. *fx = 0;
  17526. memset(g, 0, sizeof(float)*nx);
  17527. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17528. if (callback) {
  17529. // LBFG-S does not support learning rate -> ignore learning schedule
  17530. float sched = 0;
  17531. callback(callback_data, accum_step, &sched, cancel);
  17532. if (*cancel) {
  17533. return GGML_OPT_RESULT_CANCEL;
  17534. }
  17535. }
  17536. // ggml_graph_reset (gf);
  17537. ggml_set_f32 (f->grad, 1.0f);
  17538. ggml_graph_compute(gb, cplan);
  17539. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17540. *fx += ggml_get_f32_1d(f, 0);
  17541. }
  17542. *fx *= accum_norm;
  17543. }
  17544. ++count;
  17545. if (*fx > finit + (*step)*dgtest) {
  17546. width = dec;
  17547. } else {
  17548. // Armijo condition is satisfied
  17549. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17550. return count;
  17551. }
  17552. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17553. // check the Wolfe condition
  17554. if (dg < params->lbfgs.wolfe * dginit) {
  17555. width = inc;
  17556. } else {
  17557. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17558. // regular Wolfe conditions
  17559. return count;
  17560. }
  17561. if(dg > -params->lbfgs.wolfe*dginit) {
  17562. width = dec;
  17563. } else {
  17564. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17565. return count;
  17566. }
  17567. }
  17568. }
  17569. if (*step < params->lbfgs.min_step) {
  17570. return GGML_LINESEARCH_MINIMUM_STEP;
  17571. }
  17572. if (*step > params->lbfgs.max_step) {
  17573. return GGML_LINESEARCH_MAXIMUM_STEP;
  17574. }
  17575. if (params->lbfgs.max_linesearch <= count) {
  17576. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17577. }
  17578. (*step) *= width;
  17579. }
  17580. GGML_ABORT("line search failed");
  17581. //return GGML_LINESEARCH_FAIL;
  17582. }
  17583. static enum ggml_opt_result ggml_opt_lbfgs(
  17584. struct ggml_context * ctx,
  17585. struct ggml_opt_context * opt,
  17586. struct ggml_opt_params params,
  17587. struct ggml_tensor * f,
  17588. struct ggml_cgraph * gf,
  17589. struct ggml_cgraph * gb,
  17590. ggml_opt_callback callback,
  17591. void * callback_data) {
  17592. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17593. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17594. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17595. return GGML_OPT_RESULT_INVALID_WOLFE;
  17596. }
  17597. }
  17598. const int m = params.lbfgs.m;
  17599. // these will store the parameters we want to optimize
  17600. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17601. int np = 0;
  17602. int nx = 0;
  17603. for (int i = 0; i < gf->n_nodes; ++i) {
  17604. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17605. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17606. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17607. ps[np++] = gf->nodes[i];
  17608. nx += ggml_nelements(gf->nodes[i]);
  17609. }
  17610. }
  17611. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17612. int iter = opt->iter;
  17613. ggml_opt_init(ctx, opt, params, nx);
  17614. opt->iter = iter;
  17615. }
  17616. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL);
  17617. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17618. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17619. float * x = opt->lbfgs.x->data; // current parameters
  17620. float * xp = opt->lbfgs.xp->data; // previous parameters
  17621. float * g = opt->lbfgs.g->data; // current gradient
  17622. float * gp = opt->lbfgs.gp->data; // previous gradient
  17623. float * d = opt->lbfgs.d->data; // search direction
  17624. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17625. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17626. const float accum_norm = 1.0f / (float) n_accum;
  17627. float fx = 0.0f; // cost function value
  17628. float xnorm = 0.0f; // ||x||
  17629. float gnorm = 0.0f; // ||g||
  17630. // initialize x from the graph nodes
  17631. ggml_opt_get_params(np, ps, x);
  17632. // the L-BFGS memory
  17633. float * lm_alpha = opt->lbfgs.lmal->data;
  17634. float * lm_ys = opt->lbfgs.lmys->data;
  17635. float * lm_s = opt->lbfgs.lms->data;
  17636. float * lm_y = opt->lbfgs.lmy->data;
  17637. bool cancel = false;
  17638. // evaluate the function value and its gradient
  17639. {
  17640. ggml_opt_set_params(np, ps, x);
  17641. fx = 0;
  17642. memset(g, 0, sizeof(float)*nx);
  17643. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17644. if (callback) {
  17645. // LBFG-S does not support learning rate -> ignore learning schedule
  17646. float sched = 0;
  17647. callback(callback_data, accum_step, &sched, &cancel);
  17648. if (cancel) {
  17649. return GGML_OPT_RESULT_CANCEL;
  17650. }
  17651. }
  17652. // ggml_graph_reset (gf);
  17653. ggml_set_f32 (f->grad, 1.0f);
  17654. ggml_graph_compute(gb, &cplan);
  17655. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17656. fx += ggml_get_f32_1d(f, 0);
  17657. }
  17658. fx *= accum_norm;
  17659. opt->loss_before = fx;
  17660. opt->loss_after = fx;
  17661. }
  17662. // search direction = -gradient
  17663. ggml_vec_neg_f32(nx, d, g);
  17664. // ||x||, ||g||
  17665. ggml_vec_norm_f32(nx, &xnorm, x);
  17666. ggml_vec_norm_f32(nx, &gnorm, g);
  17667. if (xnorm < 1.0f) {
  17668. xnorm = 1.0f;
  17669. }
  17670. // already optimized
  17671. if (gnorm/xnorm <= params.lbfgs.eps) {
  17672. return GGML_OPT_RESULT_OK;
  17673. }
  17674. if (opt->just_initialized) {
  17675. if (pf) {
  17676. pf[0] = fx;
  17677. }
  17678. opt->lbfgs.fx_best = fx;
  17679. // initial step
  17680. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17681. opt->lbfgs.j = 0;
  17682. opt->lbfgs.k = 1;
  17683. opt->lbfgs.end = 0;
  17684. opt->lbfgs.n_no_improvement = 0;
  17685. opt->just_initialized = false;
  17686. }
  17687. float * fx_best = &opt->lbfgs.fx_best;
  17688. float * step = &opt->lbfgs.step;
  17689. int * j = &opt->lbfgs.j;
  17690. int * k = &opt->lbfgs.k;
  17691. int * end = &opt->lbfgs.end;
  17692. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17693. int ls = 0;
  17694. int bound = 0;
  17695. float ys = 0.0f;
  17696. float yy = 0.0f;
  17697. float beta = 0.0f;
  17698. int it = 0;
  17699. while (true) {
  17700. // store the current position and gradient vectors
  17701. ggml_vec_cpy_f32(nx, xp, x);
  17702. ggml_vec_cpy_f32(nx, gp, g);
  17703. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17704. // to determine if the optimization should be cancelled
  17705. // this is a simple change, but not doing this atm, since I don't have a nice
  17706. // way to test and don't want to break something with so many changes lined up
  17707. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17708. if (cancel) {
  17709. return GGML_OPT_RESULT_CANCEL;
  17710. }
  17711. if (ls < 0) {
  17712. // linesearch failed - go back to the previous point and return
  17713. ggml_vec_cpy_f32(nx, x, xp);
  17714. ggml_vec_cpy_f32(nx, g, gp);
  17715. return ls;
  17716. }
  17717. opt->loss_after = fx;
  17718. ggml_vec_norm_f32(nx, &xnorm, x);
  17719. ggml_vec_norm_f32(nx, &gnorm, g);
  17720. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17721. if (xnorm < 1.0f) {
  17722. xnorm = 1.0f;
  17723. }
  17724. if (gnorm/xnorm <= params.lbfgs.eps) {
  17725. // converged
  17726. return GGML_OPT_RESULT_OK;
  17727. }
  17728. // delta-based convergence test
  17729. if (pf != NULL) {
  17730. // need at least params.past iterations to start checking for convergence
  17731. if (params.past <= k[0]) {
  17732. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17733. if (fabsf(rate) < params.delta) {
  17734. return GGML_OPT_RESULT_OK;
  17735. }
  17736. }
  17737. pf[k[0]%params.past] = fx;
  17738. }
  17739. // check for improvement
  17740. if (params.max_no_improvement > 0) {
  17741. if (fx < fx_best[0]) {
  17742. fx_best[0] = fx;
  17743. n_no_improvement[0] = 0;
  17744. } else {
  17745. n_no_improvement[0]++;
  17746. if (n_no_improvement[0] >= params.max_no_improvement) {
  17747. return GGML_OPT_RESULT_OK;
  17748. }
  17749. }
  17750. }
  17751. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17752. // reached the maximum number of iterations
  17753. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17754. }
  17755. // update vectors s and y:
  17756. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17757. // y_{k+1} = g_{k+1} - g_{k}.
  17758. //
  17759. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17760. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17761. // compute scalars ys and yy:
  17762. // ys = y^t \cdot s -> 1 / \rho.
  17763. // yy = y^t \cdot y.
  17764. //
  17765. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17766. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17767. lm_ys[end[0]] = ys;
  17768. // find new search direction
  17769. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17770. bound = (m <= k[0]) ? m : k[0];
  17771. k[0]++;
  17772. it++;
  17773. end[0] = (end[0] + 1)%m;
  17774. // initialize search direction with -g
  17775. ggml_vec_neg_f32(nx, d, g);
  17776. j[0] = end[0];
  17777. for (int i = 0; i < bound; ++i) {
  17778. j[0] = (j[0] + m - 1) % m;
  17779. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17780. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17781. lm_alpha[j[0]] /= lm_ys[j[0]];
  17782. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17783. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17784. }
  17785. ggml_vec_scale_f32(nx, d, ys/yy);
  17786. for (int i = 0; i < bound; ++i) {
  17787. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17788. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17789. beta /= lm_ys[j[0]];
  17790. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17791. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17792. j[0] = (j[0] + 1)%m;
  17793. }
  17794. step[0] = 1.0;
  17795. }
  17796. GGML_ABORT("lbfgs failed");
  17797. //return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17798. }
  17799. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17800. struct ggml_opt_params result;
  17801. switch (type) {
  17802. case GGML_OPT_TYPE_ADAM:
  17803. {
  17804. result = (struct ggml_opt_params) {
  17805. .type = GGML_OPT_TYPE_ADAM,
  17806. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17807. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17808. .past = 0,
  17809. .delta = 1e-5f,
  17810. .max_no_improvement = 100,
  17811. .print_forward_graph = true,
  17812. .print_backward_graph = true,
  17813. .n_gradient_accumulation = 1,
  17814. .adam = {
  17815. .n_iter = 10000,
  17816. .sched = 1.000f,
  17817. .decay = 0.0f,
  17818. .decay_min_ndim = 2,
  17819. .alpha = 0.001f,
  17820. .beta1 = 0.9f,
  17821. .beta2 = 0.999f,
  17822. .eps = 1e-8f,
  17823. .eps_f = 1e-5f,
  17824. .eps_g = 1e-3f,
  17825. .gclip = 0.0f,
  17826. },
  17827. };
  17828. } break;
  17829. case GGML_OPT_TYPE_LBFGS:
  17830. {
  17831. result = (struct ggml_opt_params) {
  17832. .type = GGML_OPT_TYPE_LBFGS,
  17833. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17834. .n_threads = 1,
  17835. .past = 0,
  17836. .delta = 1e-5f,
  17837. .max_no_improvement = 0,
  17838. .print_forward_graph = true,
  17839. .print_backward_graph = true,
  17840. .n_gradient_accumulation = 1,
  17841. .lbfgs = {
  17842. .m = 6,
  17843. .n_iter = 100,
  17844. .max_linesearch = 20,
  17845. .eps = 1e-5f,
  17846. .ftol = 1e-4f,
  17847. .wolfe = 0.9f,
  17848. .min_step = 1e-20f,
  17849. .max_step = 1e+20f,
  17850. .linesearch = GGML_LINESEARCH_DEFAULT,
  17851. },
  17852. };
  17853. } break;
  17854. }
  17855. return result;
  17856. }
  17857. GGML_API void ggml_opt_init(
  17858. struct ggml_context * ctx,
  17859. struct ggml_opt_context * opt,
  17860. struct ggml_opt_params params,
  17861. int64_t nx) {
  17862. opt->ctx = ctx;
  17863. opt->params = params;
  17864. opt->iter = 0;
  17865. opt->nx = nx;
  17866. opt->just_initialized = true;
  17867. if (opt->ctx == NULL) {
  17868. struct ggml_init_params ctx_opt_params;
  17869. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17870. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17871. if (opt->params.past > 0) {
  17872. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17873. }
  17874. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17875. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17876. if (opt->params.past > 0) {
  17877. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17878. }
  17879. }
  17880. ctx_opt_params.mem_buffer = NULL;
  17881. ctx_opt_params.no_alloc = false;
  17882. opt->ctx = ggml_init(ctx_opt_params);
  17883. }
  17884. switch (opt->params.type) {
  17885. case GGML_OPT_TYPE_ADAM:
  17886. {
  17887. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17888. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17889. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17890. opt->adam.pf = params.past > 0
  17891. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17892. : NULL;
  17893. ggml_set_zero(opt->adam.m);
  17894. ggml_set_zero(opt->adam.v);
  17895. if (opt->adam.pf) {
  17896. ggml_set_zero(opt->adam.pf);
  17897. }
  17898. } break;
  17899. case GGML_OPT_TYPE_LBFGS:
  17900. {
  17901. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17902. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17903. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17904. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17905. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17906. opt->lbfgs.pf = params.past > 0
  17907. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17908. : NULL;
  17909. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17910. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17911. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17912. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17913. ggml_set_zero(opt->lbfgs.x);
  17914. ggml_set_zero(opt->lbfgs.xp);
  17915. ggml_set_zero(opt->lbfgs.g);
  17916. ggml_set_zero(opt->lbfgs.gp);
  17917. ggml_set_zero(opt->lbfgs.d);
  17918. if (opt->lbfgs.pf) {
  17919. ggml_set_zero(opt->lbfgs.pf);
  17920. }
  17921. ggml_set_zero(opt->lbfgs.lmal);
  17922. ggml_set_zero(opt->lbfgs.lmys);
  17923. ggml_set_zero(opt->lbfgs.lms);
  17924. ggml_set_zero(opt->lbfgs.lmy);
  17925. } break;
  17926. }
  17927. }
  17928. enum ggml_opt_result ggml_opt(
  17929. struct ggml_context * ctx,
  17930. struct ggml_opt_params params,
  17931. struct ggml_tensor * f) {
  17932. GGML_ASSERT(f->grad && "ggml_set_param called for at least one parent tensor.");
  17933. bool free_ctx = false;
  17934. if (ctx == NULL) {
  17935. struct ggml_init_params params_ctx = {
  17936. .mem_size = 16*1024*1024,
  17937. .mem_buffer = NULL,
  17938. .no_alloc = false,
  17939. };
  17940. ctx = ggml_init(params_ctx);
  17941. if (ctx == NULL) {
  17942. return GGML_OPT_RESULT_NO_CONTEXT;
  17943. }
  17944. free_ctx = true;
  17945. }
  17946. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17947. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17948. ggml_opt_init(ctx, opt, params, 0);
  17949. result = ggml_opt_resume(ctx, opt, f);
  17950. if (free_ctx) {
  17951. ggml_free(ctx);
  17952. }
  17953. return result;
  17954. }
  17955. enum ggml_opt_result ggml_opt_resume(
  17956. struct ggml_context * ctx,
  17957. struct ggml_opt_context * opt,
  17958. struct ggml_tensor * f) {
  17959. // build forward + backward compute graphs
  17960. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17961. ggml_build_forward_expand(gf, f);
  17962. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17963. ggml_build_backward_expand(ctx, gf, gb, true);
  17964. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17965. }
  17966. enum ggml_opt_result ggml_opt_resume_g(
  17967. struct ggml_context * ctx,
  17968. struct ggml_opt_context * opt,
  17969. struct ggml_tensor * f,
  17970. struct ggml_cgraph * gf,
  17971. struct ggml_cgraph * gb,
  17972. ggml_opt_callback callback,
  17973. void * callback_data) {
  17974. GGML_ASSERT(f->grad && "ggml_set_param must be called for at least one ancestor");
  17975. // build forward + backward compute graphs
  17976. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17977. switch (opt->params.type) {
  17978. case GGML_OPT_TYPE_ADAM:
  17979. {
  17980. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17981. } break;
  17982. case GGML_OPT_TYPE_LBFGS:
  17983. {
  17984. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17985. } break;
  17986. }
  17987. if (opt->params.print_forward_graph) {
  17988. ggml_graph_print (gf);
  17989. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17990. }
  17991. if (opt->params.print_backward_graph) {
  17992. ggml_graph_print (gb);
  17993. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17994. }
  17995. return result;
  17996. }
  17997. ////////////////////////////////////////////////////////////////////////////////
  17998. void ggml_set_input(struct ggml_tensor * tensor) {
  17999. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  18000. }
  18001. void ggml_set_output(struct ggml_tensor * tensor) {
  18002. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  18003. }
  18004. ////////////////////////////////////////////////////////////////////////////////
  18005. void ggml_quantize_init(enum ggml_type type) {
  18006. ggml_critical_section_start();
  18007. switch (type) {
  18008. case GGML_TYPE_IQ2_XXS:
  18009. case GGML_TYPE_IQ2_XS:
  18010. case GGML_TYPE_IQ2_S:
  18011. case GGML_TYPE_IQ1_S:
  18012. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  18013. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  18014. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  18015. default: // nothing
  18016. break;
  18017. }
  18018. ggml_critical_section_end();
  18019. }
  18020. void ggml_quantize_free(void) {
  18021. ggml_critical_section_start();
  18022. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  18023. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  18024. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  18025. iq3xs_free_impl(256);
  18026. ggml_critical_section_end();
  18027. }
  18028. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  18029. return
  18030. type == GGML_TYPE_IQ2_XXS ||
  18031. type == GGML_TYPE_IQ2_XS ||
  18032. type == GGML_TYPE_IQ1_S;// ||
  18033. //type == GGML_TYPE_IQ1_M;
  18034. }
  18035. size_t ggml_quantize_chunk(
  18036. enum ggml_type type,
  18037. const float * src,
  18038. void * dst,
  18039. int64_t start,
  18040. int64_t nrows,
  18041. int64_t n_per_row,
  18042. const float * imatrix) {
  18043. const int64_t n = (int64_t) nrows * n_per_row;
  18044. if (ggml_quantize_requires_imatrix(type)) {
  18045. GGML_ASSERT(imatrix != NULL);
  18046. }
  18047. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  18048. GGML_ASSERT(start % n_per_row == 0);
  18049. ggml_quantize_init(type); // this is noop if already initialized
  18050. const size_t start_row = start / n_per_row;
  18051. const size_t row_size = ggml_row_size(type, n_per_row);
  18052. size_t result = 0;
  18053. switch (type) {
  18054. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18055. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18056. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18057. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18058. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18059. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18060. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18061. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18062. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18063. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18064. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18065. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18066. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18067. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18068. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18069. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18070. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18071. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18072. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18073. case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18074. case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18075. case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18076. case GGML_TYPE_F16:
  18077. {
  18078. size_t elemsize = sizeof(ggml_fp16_t);
  18079. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  18080. result = n * elemsize;
  18081. } break;
  18082. case GGML_TYPE_BF16:
  18083. {
  18084. size_t elemsize = sizeof(ggml_bf16_t);
  18085. ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
  18086. result = n * elemsize;
  18087. } break;
  18088. case GGML_TYPE_F32:
  18089. {
  18090. size_t elemsize = sizeof(float);
  18091. result = n * elemsize;
  18092. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  18093. } break;
  18094. default:
  18095. assert(false);
  18096. }
  18097. GGML_ASSERT(result == nrows * row_size);
  18098. return result;
  18099. }
  18100. ////////////////////////////////////////////////////////////////////////////////
  18101. struct gguf_str {
  18102. uint64_t n; // GGUFv2
  18103. char * data;
  18104. };
  18105. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  18106. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  18107. [GGUF_TYPE_INT8] = sizeof(int8_t),
  18108. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  18109. [GGUF_TYPE_INT16] = sizeof(int16_t),
  18110. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  18111. [GGUF_TYPE_INT32] = sizeof(int32_t),
  18112. [GGUF_TYPE_FLOAT32] = sizeof(float),
  18113. [GGUF_TYPE_BOOL] = sizeof(bool),
  18114. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  18115. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  18116. [GGUF_TYPE_INT64] = sizeof(int64_t),
  18117. [GGUF_TYPE_FLOAT64] = sizeof(double),
  18118. [GGUF_TYPE_ARRAY] = 0, // undefined
  18119. };
  18120. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18121. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  18122. [GGUF_TYPE_UINT8] = "u8",
  18123. [GGUF_TYPE_INT8] = "i8",
  18124. [GGUF_TYPE_UINT16] = "u16",
  18125. [GGUF_TYPE_INT16] = "i16",
  18126. [GGUF_TYPE_UINT32] = "u32",
  18127. [GGUF_TYPE_INT32] = "i32",
  18128. [GGUF_TYPE_FLOAT32] = "f32",
  18129. [GGUF_TYPE_BOOL] = "bool",
  18130. [GGUF_TYPE_STRING] = "str",
  18131. [GGUF_TYPE_ARRAY] = "arr",
  18132. [GGUF_TYPE_UINT64] = "u64",
  18133. [GGUF_TYPE_INT64] = "i64",
  18134. [GGUF_TYPE_FLOAT64] = "f64",
  18135. };
  18136. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18137. union gguf_value {
  18138. uint8_t uint8;
  18139. int8_t int8;
  18140. uint16_t uint16;
  18141. int16_t int16;
  18142. uint32_t uint32;
  18143. int32_t int32;
  18144. float float32;
  18145. uint64_t uint64;
  18146. int64_t int64;
  18147. double float64;
  18148. bool bool_;
  18149. struct gguf_str str;
  18150. struct {
  18151. enum gguf_type type;
  18152. uint64_t n; // GGUFv2
  18153. void * data;
  18154. } arr;
  18155. };
  18156. struct gguf_kv {
  18157. struct gguf_str key;
  18158. enum gguf_type type;
  18159. union gguf_value value;
  18160. };
  18161. struct gguf_header {
  18162. char magic[4];
  18163. uint32_t version;
  18164. uint64_t n_tensors; // GGUFv2
  18165. uint64_t n_kv; // GGUFv2
  18166. };
  18167. struct gguf_tensor_info {
  18168. struct gguf_str name;
  18169. uint32_t n_dims;
  18170. uint64_t ne[GGML_MAX_DIMS];
  18171. enum ggml_type type;
  18172. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  18173. // for writing API
  18174. const void * data;
  18175. size_t size;
  18176. };
  18177. struct gguf_context {
  18178. struct gguf_header header;
  18179. struct gguf_kv * kv;
  18180. struct gguf_tensor_info * infos;
  18181. size_t alignment;
  18182. size_t offset; // offset of `data` from beginning of file
  18183. size_t size; // size of `data` in bytes
  18184. //uint8_t * padding;
  18185. void * data;
  18186. };
  18187. static size_t gguf_type_size(enum gguf_type type) {
  18188. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  18189. return GGUF_TYPE_SIZE[type];
  18190. }
  18191. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  18192. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  18193. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  18194. for (uint32_t i = 0; i < info->n_dims; ++i) {
  18195. GGML_ASSERT(info->ne[i] > 0);
  18196. }
  18197. // prevent overflow for total number of elements
  18198. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  18199. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  18200. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  18201. }
  18202. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  18203. const size_t n = fread(dst, 1, size, file);
  18204. *offset += n;
  18205. return n == size;
  18206. }
  18207. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  18208. p->n = 0;
  18209. p->data = NULL;
  18210. bool ok = true;
  18211. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  18212. // early exit if string length is invalid, prevents from integer overflow
  18213. if (p->n == SIZE_MAX) {
  18214. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  18215. return false;
  18216. }
  18217. p->data = GGML_CALLOC(p->n + 1, 1);
  18218. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  18219. return ok;
  18220. }
  18221. static void gguf_free_kv(struct gguf_kv * kv) {
  18222. if (kv->key.data) {
  18223. GGML_FREE(kv->key.data);
  18224. }
  18225. if (kv->type == GGUF_TYPE_STRING) {
  18226. if (kv->value.str.data) {
  18227. GGML_FREE(kv->value.str.data);
  18228. }
  18229. }
  18230. if (kv->type == GGUF_TYPE_ARRAY) {
  18231. if (kv->value.arr.data) {
  18232. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  18233. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18234. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  18235. if (str->data) {
  18236. GGML_FREE(str->data);
  18237. }
  18238. }
  18239. }
  18240. GGML_FREE(kv->value.arr.data);
  18241. }
  18242. }
  18243. }
  18244. struct gguf_context * gguf_init_empty(void) {
  18245. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18246. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  18247. ctx->header.version = GGUF_VERSION;
  18248. ctx->header.n_tensors = 0;
  18249. ctx->header.n_kv = 0;
  18250. ctx->kv = NULL;
  18251. ctx->infos = NULL;
  18252. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18253. ctx->offset = 0;
  18254. ctx->size = 0;
  18255. ctx->data = NULL;
  18256. return ctx;
  18257. }
  18258. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  18259. FILE * file = ggml_fopen(fname, "rb");
  18260. if (!file) {
  18261. fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
  18262. return NULL;
  18263. }
  18264. // offset from start of file
  18265. size_t offset = 0;
  18266. char magic[4];
  18267. // check the magic before making allocations
  18268. {
  18269. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18270. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18271. if (magic[i] != GGUF_MAGIC[i]) {
  18272. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18273. fclose(file);
  18274. return NULL;
  18275. }
  18276. }
  18277. }
  18278. bool ok = true;
  18279. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18280. // read the header
  18281. {
  18282. strncpy(ctx->header.magic, magic, 4);
  18283. ctx->kv = NULL;
  18284. ctx->infos = NULL;
  18285. ctx->data = NULL;
  18286. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18287. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18288. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18289. if (ctx->header.version == 1) {
  18290. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18291. fclose(file);
  18292. gguf_free(ctx);
  18293. return NULL;
  18294. }
  18295. // sanity-checks to prevent from integer/buffer overflows
  18296. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18297. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18298. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18299. if (!ok) {
  18300. fprintf(stderr, "%s: failed to read header\n", __func__);
  18301. fclose(file);
  18302. gguf_free(ctx);
  18303. return NULL;
  18304. }
  18305. }
  18306. // read the kv pairs
  18307. {
  18308. const uint64_t n_kv = ctx->header.n_kv;
  18309. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18310. ctx->header.n_kv = 0;
  18311. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18312. for (uint64_t i = 0; i < n_kv; ++i) {
  18313. struct gguf_kv * kv = &ctx->kv[i];
  18314. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18315. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18316. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18317. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18318. switch (kv->type) {
  18319. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18320. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18321. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18322. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18323. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18324. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18325. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18326. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18327. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18328. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18329. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18330. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18331. case GGUF_TYPE_ARRAY:
  18332. {
  18333. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18334. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18335. switch (kv->value.arr.type) {
  18336. case GGUF_TYPE_UINT8:
  18337. case GGUF_TYPE_INT8:
  18338. case GGUF_TYPE_UINT16:
  18339. case GGUF_TYPE_INT16:
  18340. case GGUF_TYPE_UINT32:
  18341. case GGUF_TYPE_INT32:
  18342. case GGUF_TYPE_FLOAT32:
  18343. case GGUF_TYPE_UINT64:
  18344. case GGUF_TYPE_INT64:
  18345. case GGUF_TYPE_FLOAT64:
  18346. case GGUF_TYPE_BOOL:
  18347. {
  18348. // prevent from integer overflow in the malloc below
  18349. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18350. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18351. fclose(file);
  18352. gguf_free(ctx);
  18353. return NULL;
  18354. }
  18355. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18356. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18357. } break;
  18358. case GGUF_TYPE_STRING:
  18359. {
  18360. // prevent from integer overflow in the malloc below
  18361. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18362. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18363. fclose(file);
  18364. gguf_free(ctx);
  18365. return NULL;
  18366. }
  18367. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18368. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18369. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18370. }
  18371. } break;
  18372. case GGUF_TYPE_ARRAY:
  18373. default: GGML_ABORT("invalid type");
  18374. }
  18375. } break;
  18376. default: GGML_ABORT("invalid type");
  18377. }
  18378. if (!ok) {
  18379. break;
  18380. }
  18381. ctx->header.n_kv++;
  18382. }
  18383. if (!ok) {
  18384. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18385. fclose(file);
  18386. gguf_free(ctx);
  18387. return NULL;
  18388. }
  18389. }
  18390. // read the tensor infos
  18391. if (ctx->header.n_tensors > 0) {
  18392. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18393. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18394. struct gguf_tensor_info * info = &ctx->infos[i];
  18395. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18396. info->ne[j] = 1;
  18397. }
  18398. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18399. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18400. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18401. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18402. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18403. }
  18404. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18405. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18406. // TODO: return an error instead of crashing with GGML_ASSERT
  18407. gguf_tensor_info_sanitize(info);
  18408. // make sure there is no duplicated tensor names
  18409. for (uint64_t j = 0; j < i && ok; ++j) {
  18410. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18411. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18412. ok = false;
  18413. }
  18414. }
  18415. if (!ok) {
  18416. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18417. fclose(file);
  18418. gguf_free(ctx);
  18419. return NULL;
  18420. }
  18421. }
  18422. }
  18423. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18424. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18425. if (alignment_idx != -1) {
  18426. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18427. }
  18428. // we require the data section to be aligned, so take into account any padding
  18429. {
  18430. const size_t offset_pad = offset % ctx->alignment;
  18431. if (offset_pad != 0) {
  18432. offset += ctx->alignment - offset_pad;
  18433. fseek(file, offset, SEEK_SET);
  18434. }
  18435. }
  18436. // store the current file offset - this is where the data section starts
  18437. ctx->offset = offset;
  18438. // compute the total size of the data section, taking into account the alignment
  18439. {
  18440. ctx->size = 0;
  18441. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18442. struct gguf_tensor_info * info = &ctx->infos[i];
  18443. const int64_t ne =
  18444. (int64_t) info->ne[0] *
  18445. (int64_t) info->ne[1] *
  18446. (int64_t) info->ne[2] *
  18447. (int64_t) info->ne[3];
  18448. if (ggml_blck_size(info->type) == 0 || ne % ggml_blck_size(info->type) != 0) {
  18449. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
  18450. __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18451. fclose(file);
  18452. gguf_free(ctx);
  18453. return NULL;
  18454. }
  18455. const size_t size_cur = ggml_row_size(info->type, ne);
  18456. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18457. }
  18458. }
  18459. // load the tensor data only if requested
  18460. if (params.ctx != NULL) {
  18461. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18462. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18463. // the ggml_tensor structs to the appropriate locations in the binary blob
  18464. // compute the exact size needed for the new ggml_context
  18465. const size_t mem_size =
  18466. params.no_alloc ?
  18467. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18468. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18469. struct ggml_init_params pdata = {
  18470. .mem_size = mem_size,
  18471. .mem_buffer = NULL,
  18472. .no_alloc = params.no_alloc,
  18473. };
  18474. *params.ctx = ggml_init(pdata);
  18475. if (*params.ctx == NULL) {
  18476. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  18477. fclose(file);
  18478. gguf_free(ctx);
  18479. return NULL;
  18480. }
  18481. struct ggml_context * ctx_data = *params.ctx;
  18482. struct ggml_tensor * data = NULL;
  18483. if (!params.no_alloc) {
  18484. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18485. ok = ok && data != NULL;
  18486. // read the binary blob with the tensor data
  18487. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18488. if (!ok) {
  18489. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18490. fclose(file);
  18491. ggml_free(ctx_data);
  18492. gguf_free(ctx);
  18493. return NULL;
  18494. }
  18495. ctx->data = data->data;
  18496. }
  18497. ggml_set_no_alloc(ctx_data, true);
  18498. // create the tensors
  18499. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18500. const int64_t ne[GGML_MAX_DIMS] = {
  18501. ctx->infos[i].ne[0],
  18502. ctx->infos[i].ne[1],
  18503. ctx->infos[i].ne[2],
  18504. ctx->infos[i].ne[3],
  18505. };
  18506. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18507. ok = ok && cur != NULL;
  18508. if (!ok) {
  18509. break;
  18510. }
  18511. ggml_set_name(cur, ctx->infos[i].name.data);
  18512. // point the data member to the appropriate location in the binary blob using the tensor infos
  18513. if (!params.no_alloc) {
  18514. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18515. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18516. }
  18517. }
  18518. if (!ok) {
  18519. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18520. fclose(file);
  18521. ggml_free(ctx_data);
  18522. gguf_free(ctx);
  18523. return NULL;
  18524. }
  18525. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18526. }
  18527. fclose(file);
  18528. return ctx;
  18529. }
  18530. void gguf_free(struct gguf_context * ctx) {
  18531. if (ctx == NULL) {
  18532. return;
  18533. }
  18534. if (ctx->kv) {
  18535. // free string memory - not great..
  18536. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18537. gguf_free_kv(&ctx->kv[i]);
  18538. }
  18539. GGML_FREE(ctx->kv);
  18540. }
  18541. if (ctx->infos) {
  18542. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18543. struct gguf_tensor_info * info = &ctx->infos[i];
  18544. if (info->name.data) {
  18545. GGML_FREE(info->name.data);
  18546. }
  18547. }
  18548. GGML_FREE(ctx->infos);
  18549. }
  18550. GGML_FREE(ctx);
  18551. }
  18552. const char * gguf_type_name(enum gguf_type type) {
  18553. return GGUF_TYPE_NAME[type];
  18554. }
  18555. int gguf_get_version(const struct gguf_context * ctx) {
  18556. return ctx->header.version;
  18557. }
  18558. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18559. return ctx->alignment;
  18560. }
  18561. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18562. return ctx->offset;
  18563. }
  18564. void * gguf_get_data(const struct gguf_context * ctx) {
  18565. return ctx->data;
  18566. }
  18567. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18568. return ctx->header.n_kv;
  18569. }
  18570. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18571. // return -1 if key not found
  18572. int keyfound = -1;
  18573. const int n_kv = gguf_get_n_kv(ctx);
  18574. for (int i = 0; i < n_kv; ++i) {
  18575. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18576. keyfound = i;
  18577. break;
  18578. }
  18579. }
  18580. return keyfound;
  18581. }
  18582. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18583. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18584. return ctx->kv[key_id].key.data;
  18585. }
  18586. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18587. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18588. return ctx->kv[key_id].type;
  18589. }
  18590. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18591. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18592. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18593. return ctx->kv[key_id].value.arr.type;
  18594. }
  18595. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18596. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18597. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18598. return ctx->kv[key_id].value.arr.data;
  18599. }
  18600. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18601. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18602. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18603. struct gguf_kv * kv = &ctx->kv[key_id];
  18604. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18605. return str->data;
  18606. }
  18607. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18608. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18609. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18610. return ctx->kv[key_id].value.arr.n;
  18611. }
  18612. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18613. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18614. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18615. return ctx->kv[key_id].value.uint8;
  18616. }
  18617. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18618. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18619. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18620. return ctx->kv[key_id].value.int8;
  18621. }
  18622. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18623. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18624. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18625. return ctx->kv[key_id].value.uint16;
  18626. }
  18627. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18628. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18629. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18630. return ctx->kv[key_id].value.int16;
  18631. }
  18632. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18633. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18634. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18635. return ctx->kv[key_id].value.uint32;
  18636. }
  18637. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18638. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18639. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18640. return ctx->kv[key_id].value.int32;
  18641. }
  18642. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18643. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18644. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18645. return ctx->kv[key_id].value.float32;
  18646. }
  18647. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18648. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18649. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18650. return ctx->kv[key_id].value.uint64;
  18651. }
  18652. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18653. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18654. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18655. return ctx->kv[key_id].value.int64;
  18656. }
  18657. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18658. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18659. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18660. return ctx->kv[key_id].value.float64;
  18661. }
  18662. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18663. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18664. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18665. return ctx->kv[key_id].value.bool_;
  18666. }
  18667. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18668. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18669. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18670. return ctx->kv[key_id].value.str.data;
  18671. }
  18672. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18673. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18674. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18675. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18676. return &ctx->kv[key_id].value;
  18677. }
  18678. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18679. return ctx->header.n_tensors;
  18680. }
  18681. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18682. // return -1 if tensor not found
  18683. int tensorfound = -1;
  18684. const int n_tensors = gguf_get_n_tensors(ctx);
  18685. for (int i = 0; i < n_tensors; ++i) {
  18686. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18687. tensorfound = i;
  18688. break;
  18689. }
  18690. }
  18691. return tensorfound;
  18692. }
  18693. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18694. return ctx->infos[i].offset;
  18695. }
  18696. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18697. return ctx->infos[i].name.data;
  18698. }
  18699. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18700. return ctx->infos[i].type;
  18701. }
  18702. // returns the index
  18703. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18704. const int idx = gguf_find_key(ctx, key);
  18705. if (idx >= 0) {
  18706. return idx;
  18707. }
  18708. const int n_kv = gguf_get_n_kv(ctx);
  18709. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18710. ctx->kv[n_kv].key.n = strlen(key);
  18711. ctx->kv[n_kv].key.data = strdup(key);
  18712. ctx->header.n_kv++;
  18713. return n_kv;
  18714. }
  18715. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18716. const int idx = gguf_find_key(ctx, key);
  18717. if (idx >= 0) {
  18718. const int n_kv = gguf_get_n_kv(ctx);
  18719. gguf_free_kv(&ctx->kv[idx]);
  18720. for (int i = idx; i < n_kv-1; ++i) {
  18721. ctx->kv[i] = ctx->kv[i+1];
  18722. }
  18723. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18724. ctx->header.n_kv--;
  18725. }
  18726. }
  18727. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18728. const int idx = gguf_get_or_add_key(ctx, key);
  18729. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18730. ctx->kv[idx].value.uint8 = val;
  18731. }
  18732. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18733. const int idx = gguf_get_or_add_key(ctx, key);
  18734. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18735. ctx->kv[idx].value.int8 = val;
  18736. }
  18737. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18738. const int idx = gguf_get_or_add_key(ctx, key);
  18739. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18740. ctx->kv[idx].value.uint16 = val;
  18741. }
  18742. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18743. const int idx = gguf_get_or_add_key(ctx, key);
  18744. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18745. ctx->kv[idx].value.int16 = val;
  18746. }
  18747. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18748. const int idx = gguf_get_or_add_key(ctx, key);
  18749. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18750. ctx->kv[idx].value.uint32 = val;
  18751. }
  18752. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18753. const int idx = gguf_get_or_add_key(ctx, key);
  18754. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18755. ctx->kv[idx].value.int32 = val;
  18756. }
  18757. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18758. const int idx = gguf_get_or_add_key(ctx, key);
  18759. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18760. ctx->kv[idx].value.float32 = val;
  18761. }
  18762. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18763. const int idx = gguf_get_or_add_key(ctx, key);
  18764. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18765. ctx->kv[idx].value.uint64 = val;
  18766. }
  18767. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18768. const int idx = gguf_get_or_add_key(ctx, key);
  18769. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18770. ctx->kv[idx].value.int64 = val;
  18771. }
  18772. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18773. const int idx = gguf_get_or_add_key(ctx, key);
  18774. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18775. ctx->kv[idx].value.float64 = val;
  18776. }
  18777. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18778. const int idx = gguf_get_or_add_key(ctx, key);
  18779. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18780. ctx->kv[idx].value.bool_ = val;
  18781. }
  18782. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18783. const int idx = gguf_get_or_add_key(ctx, key);
  18784. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18785. ctx->kv[idx].value.str.n = strlen(val);
  18786. ctx->kv[idx].value.str.data = strdup(val);
  18787. }
  18788. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18789. const int idx = gguf_get_or_add_key(ctx, key);
  18790. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18791. ctx->kv[idx].value.arr.type = type;
  18792. ctx->kv[idx].value.arr.n = n;
  18793. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18794. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18795. }
  18796. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18797. const int idx = gguf_get_or_add_key(ctx, key);
  18798. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18799. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18800. ctx->kv[idx].value.arr.n = n;
  18801. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18802. for (int i = 0; i < n; i++) {
  18803. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18804. str->n = strlen(data[i]);
  18805. str->data = strdup(data[i]);
  18806. }
  18807. }
  18808. // set or add KV pairs from another context
  18809. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18810. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18811. switch (src->kv[i].type) {
  18812. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18813. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18814. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18815. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18816. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18817. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18818. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18819. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18820. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18821. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18822. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18823. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18824. case GGUF_TYPE_ARRAY:
  18825. {
  18826. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18827. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18828. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18829. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18830. }
  18831. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18832. GGML_FREE((void *)data);
  18833. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18834. GGML_ABORT("nested arrays not supported");
  18835. } else {
  18836. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18837. }
  18838. } break;
  18839. default: GGML_ABORT("invalid type");
  18840. }
  18841. }
  18842. }
  18843. void gguf_add_tensor(
  18844. struct gguf_context * ctx,
  18845. const struct ggml_tensor * tensor) {
  18846. GGML_ASSERT(tensor);
  18847. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18848. GGML_ABORT("duplicated tensor name");
  18849. }
  18850. const int idx = ctx->header.n_tensors;
  18851. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18852. ctx->infos[idx].name.n = strlen(tensor->name);
  18853. ctx->infos[idx].name.data = strdup(tensor->name);
  18854. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18855. ctx->infos[idx].ne[i] = 1;
  18856. }
  18857. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18858. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18859. ctx->infos[idx].ne[i] = tensor->ne[i];
  18860. }
  18861. ctx->infos[idx].type = tensor->type;
  18862. ctx->infos[idx].offset = 0;
  18863. ctx->infos[idx].data = tensor->data;
  18864. ctx->infos[idx].size = ggml_nbytes(tensor);
  18865. if (ctx->header.n_tensors > 0) {
  18866. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18867. }
  18868. ctx->header.n_tensors++;
  18869. }
  18870. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18871. const int idx = gguf_find_tensor(ctx, name);
  18872. if (idx < 0) {
  18873. GGML_ABORT("tensor not found");
  18874. }
  18875. ctx->infos[idx].type = type;
  18876. }
  18877. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18878. const int idx = gguf_find_tensor(ctx, name);
  18879. if (idx < 0) {
  18880. GGML_ABORT("tensor not found");
  18881. }
  18882. ctx->infos[idx].data = data;
  18883. ctx->infos[idx].size = size;
  18884. // update offsets
  18885. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18886. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18887. }
  18888. }
  18889. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18890. // fwrite(&val->n, sizeof(val->n), 1, file);
  18891. // fwrite(val->data, sizeof(char), val->n, file);
  18892. //}
  18893. //
  18894. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18895. // fwrite(val, sizeof(char), size, file);
  18896. //}
  18897. struct gguf_buf {
  18898. void * data;
  18899. size_t size;
  18900. size_t offset;
  18901. };
  18902. static struct gguf_buf gguf_buf_init(size_t size) {
  18903. struct gguf_buf buf = {
  18904. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18905. /*buf.size =*/ size,
  18906. /*buf.offset =*/ 0,
  18907. };
  18908. return buf;
  18909. }
  18910. static void gguf_buf_free(struct gguf_buf buf) {
  18911. if (buf.data) {
  18912. GGML_FREE(buf.data);
  18913. }
  18914. }
  18915. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18916. if (buf->offset + size > buf->size) {
  18917. buf->size = 1.5*(buf->offset + size);
  18918. if (buf->data) {
  18919. buf->data = realloc(buf->data, buf->size);
  18920. }
  18921. }
  18922. }
  18923. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18924. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18925. if (buf->data) {
  18926. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18927. }
  18928. buf->offset += sizeof(val->n);
  18929. if (buf->data) {
  18930. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18931. }
  18932. buf->offset += val->n;
  18933. }
  18934. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18935. gguf_buf_grow(buf, el_size);
  18936. if (buf->data) {
  18937. memcpy((char *) buf->data + buf->offset, val, el_size);
  18938. }
  18939. buf->offset += el_size;
  18940. }
  18941. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18942. // write header
  18943. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18944. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18945. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18946. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18947. // write key-value pairs
  18948. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18949. struct gguf_kv * kv = &ctx->kv[i];
  18950. gguf_bwrite_str(buf, &kv->key);
  18951. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18952. switch (kv->type) {
  18953. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18954. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18955. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18956. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18957. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18958. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18959. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18960. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18961. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18962. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18963. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18964. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18965. case GGUF_TYPE_ARRAY:
  18966. {
  18967. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18968. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18969. switch (kv->value.arr.type) {
  18970. case GGUF_TYPE_UINT8:
  18971. case GGUF_TYPE_INT8:
  18972. case GGUF_TYPE_UINT16:
  18973. case GGUF_TYPE_INT16:
  18974. case GGUF_TYPE_UINT32:
  18975. case GGUF_TYPE_INT32:
  18976. case GGUF_TYPE_FLOAT32:
  18977. case GGUF_TYPE_UINT64:
  18978. case GGUF_TYPE_INT64:
  18979. case GGUF_TYPE_FLOAT64:
  18980. case GGUF_TYPE_BOOL:
  18981. {
  18982. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18983. } break;
  18984. case GGUF_TYPE_STRING:
  18985. {
  18986. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18987. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18988. }
  18989. } break;
  18990. case GGUF_TYPE_ARRAY:
  18991. default: GGML_ABORT("invalid type");
  18992. }
  18993. } break;
  18994. default: GGML_ABORT("invalid type");
  18995. }
  18996. }
  18997. // write tensor infos
  18998. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18999. struct gguf_tensor_info * info = &ctx->infos[i];
  19000. gguf_bwrite_str(buf, &info->name);
  19001. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  19002. for (uint32_t j = 0; j < info->n_dims; ++j) {
  19003. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  19004. }
  19005. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  19006. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  19007. }
  19008. // we require the data section to be aligned, so take into account any padding
  19009. {
  19010. const size_t offset = buf->offset;
  19011. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  19012. if (offset_pad != offset) {
  19013. uint8_t pad = 0;
  19014. for (size_t i = 0; i < offset_pad - offset; ++i) {
  19015. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19016. }
  19017. }
  19018. }
  19019. if (only_meta) {
  19020. return;
  19021. }
  19022. size_t offset = 0;
  19023. // write tensor data
  19024. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19025. struct gguf_tensor_info * info = &ctx->infos[i];
  19026. const size_t size = info->size;
  19027. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  19028. gguf_bwrite_el(buf, info->data, size);
  19029. if (size_pad != size) {
  19030. uint8_t pad = 0;
  19031. for (size_t j = 0; j < size_pad - size; ++j) {
  19032. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19033. }
  19034. }
  19035. GGML_ASSERT(offset == info->offset);
  19036. offset += size_pad;
  19037. }
  19038. }
  19039. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  19040. FILE * file = ggml_fopen(fname, "wb");
  19041. if (!file) {
  19042. GGML_ABORT("failed to open file for writing");
  19043. }
  19044. struct gguf_buf buf = gguf_buf_init(16*1024);
  19045. gguf_write_to_buf(ctx, &buf, only_meta);
  19046. fwrite(buf.data, 1, buf.offset, file);
  19047. gguf_buf_free(buf);
  19048. fclose(file);
  19049. }
  19050. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  19051. // no allocs - only compute size
  19052. struct gguf_buf buf = gguf_buf_init(0);
  19053. gguf_write_to_buf(ctx, &buf, true);
  19054. return buf.offset;
  19055. }
  19056. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  19057. struct gguf_buf buf = gguf_buf_init(16*1024);
  19058. gguf_write_to_buf(ctx, &buf, true);
  19059. memcpy(data, buf.data, buf.offset);
  19060. gguf_buf_free(buf);
  19061. }
  19062. ////////////////////////////////////////////////////////////////////////////////
  19063. int ggml_cpu_has_avx(void) {
  19064. #if defined(__AVX__)
  19065. return 1;
  19066. #else
  19067. return 0;
  19068. #endif
  19069. }
  19070. int ggml_cpu_has_avx_vnni(void) {
  19071. #if defined(__AVXVNNI__)
  19072. return 1;
  19073. #else
  19074. return 0;
  19075. #endif
  19076. }
  19077. int ggml_cpu_has_avx2(void) {
  19078. #if defined(__AVX2__)
  19079. return 1;
  19080. #else
  19081. return 0;
  19082. #endif
  19083. }
  19084. int ggml_cpu_has_avx512(void) {
  19085. #if defined(__AVX512F__)
  19086. return 1;
  19087. #else
  19088. return 0;
  19089. #endif
  19090. }
  19091. int ggml_cpu_has_avx512_vbmi(void) {
  19092. #if defined(__AVX512VBMI__)
  19093. return 1;
  19094. #else
  19095. return 0;
  19096. #endif
  19097. }
  19098. int ggml_cpu_has_avx512_vnni(void) {
  19099. #if defined(__AVX512VNNI__)
  19100. return 1;
  19101. #else
  19102. return 0;
  19103. #endif
  19104. }
  19105. int ggml_cpu_has_avx512_bf16(void) {
  19106. #if defined(__AVX512BF16__)
  19107. return 1;
  19108. #else
  19109. return 0;
  19110. #endif
  19111. }
  19112. int ggml_cpu_has_fma(void) {
  19113. #if defined(__FMA__)
  19114. return 1;
  19115. #else
  19116. return 0;
  19117. #endif
  19118. }
  19119. int ggml_cpu_has_neon(void) {
  19120. #if defined(__ARM_NEON)
  19121. return 1;
  19122. #else
  19123. return 0;
  19124. #endif
  19125. }
  19126. int ggml_cpu_has_sve(void) {
  19127. #if defined(__ARM_FEATURE_SVE)
  19128. return 1;
  19129. #else
  19130. return 0;
  19131. #endif
  19132. }
  19133. int ggml_cpu_has_arm_fma(void) {
  19134. #if defined(__ARM_FEATURE_FMA)
  19135. return 1;
  19136. #else
  19137. return 0;
  19138. #endif
  19139. }
  19140. int ggml_cpu_has_metal(void) {
  19141. #if defined(GGML_USE_METAL)
  19142. return 1;
  19143. #else
  19144. return 0;
  19145. #endif
  19146. }
  19147. int ggml_cpu_has_f16c(void) {
  19148. #if defined(__F16C__)
  19149. return 1;
  19150. #else
  19151. return 0;
  19152. #endif
  19153. }
  19154. int ggml_cpu_has_fp16_va(void) {
  19155. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  19156. return 1;
  19157. #else
  19158. return 0;
  19159. #endif
  19160. }
  19161. int ggml_cpu_has_wasm_simd(void) {
  19162. #if defined(__wasm_simd128__)
  19163. return 1;
  19164. #else
  19165. return 0;
  19166. #endif
  19167. }
  19168. int ggml_cpu_has_blas(void) {
  19169. #if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  19170. return 1;
  19171. #else
  19172. return 0;
  19173. #endif
  19174. }
  19175. int ggml_cpu_has_cuda(void) {
  19176. #if defined(GGML_USE_CUDA)
  19177. return 1;
  19178. #else
  19179. return 0;
  19180. #endif
  19181. }
  19182. int ggml_cpu_has_vulkan(void) {
  19183. #if defined(GGML_USE_VULKAN)
  19184. return 1;
  19185. #else
  19186. return 0;
  19187. #endif
  19188. }
  19189. int ggml_cpu_has_kompute(void) {
  19190. #if defined(GGML_USE_KOMPUTE)
  19191. return 1;
  19192. #else
  19193. return 0;
  19194. #endif
  19195. }
  19196. int ggml_cpu_has_sycl(void) {
  19197. #if defined(GGML_USE_SYCL)
  19198. return 1;
  19199. #else
  19200. return 0;
  19201. #endif
  19202. }
  19203. int ggml_cpu_has_rpc(void) {
  19204. #if defined(GGML_USE_RPC)
  19205. return 1;
  19206. #else
  19207. return 0;
  19208. #endif
  19209. }
  19210. int ggml_cpu_has_cann(void) {
  19211. #if defined(GGML_USE_CANN)
  19212. return 1;
  19213. #else
  19214. return 0;
  19215. #endif
  19216. }
  19217. int ggml_cpu_has_llamafile(void) {
  19218. #if defined(GGML_USE_LLAMAFILE)
  19219. return 1;
  19220. #else
  19221. return 0;
  19222. #endif
  19223. }
  19224. int ggml_cpu_has_gpublas(void) {
  19225. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  19226. }
  19227. int ggml_cpu_has_sse3(void) {
  19228. #if defined(__SSE3__)
  19229. return 1;
  19230. #else
  19231. return 0;
  19232. #endif
  19233. }
  19234. int ggml_cpu_has_ssse3(void) {
  19235. #if defined(__SSSE3__)
  19236. return 1;
  19237. #else
  19238. return 0;
  19239. #endif
  19240. }
  19241. int ggml_cpu_has_vsx(void) {
  19242. #if defined(__POWER9_VECTOR__)
  19243. return 1;
  19244. #else
  19245. return 0;
  19246. #endif
  19247. }
  19248. int ggml_cpu_has_matmul_int8(void) {
  19249. #if defined(__ARM_FEATURE_MATMUL_INT8)
  19250. return 1;
  19251. #else
  19252. return 0;
  19253. #endif
  19254. }
  19255. ////////////////////////////////////////////////////////////////////////////////