llama.cpp 863 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874
  1. /**
  2. * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "llama-impl.h"
  27. #include "llama-vocab.h"
  28. #include "llama-grammar.h"
  29. #include "llama-sampling.h"
  30. #include "unicode.h"
  31. #include "ggml.h"
  32. #include "ggml-alloc.h"
  33. #include "ggml-backend.h"
  34. #ifdef GGML_USE_RPC
  35. # include "ggml-rpc.h"
  36. #endif
  37. #ifdef GGML_USE_CUDA
  38. # include "ggml-cuda.h"
  39. #elif defined(GGML_USE_VULKAN)
  40. # include "ggml-vulkan.h"
  41. #elif defined(GGML_USE_SYCL)
  42. # include "ggml-sycl.h"
  43. #elif defined(GGML_USE_KOMPUTE)
  44. # include "ggml-kompute.h"
  45. #elif defined(GGML_USE_CANN)
  46. # include "ggml-cann.h"
  47. #endif
  48. #ifdef GGML_USE_BLAS
  49. # include "ggml-blas.h"
  50. #endif
  51. #ifdef GGML_USE_METAL
  52. # include "ggml-metal.h"
  53. #endif
  54. // TODO: replace with ggml API call
  55. #define QK_K 256
  56. #ifdef __has_include
  57. #if __has_include(<unistd.h>)
  58. #include <unistd.h>
  59. #if defined(_POSIX_MAPPED_FILES)
  60. #include <sys/mman.h>
  61. #include <fcntl.h>
  62. #endif
  63. #if defined(_POSIX_MEMLOCK_RANGE)
  64. #include <sys/resource.h>
  65. #endif
  66. #endif
  67. #endif
  68. #if defined(_WIN32)
  69. #define WIN32_LEAN_AND_MEAN
  70. #ifndef NOMINMAX
  71. #define NOMINMAX
  72. #endif
  73. #include <windows.h>
  74. #ifndef PATH_MAX
  75. #define PATH_MAX MAX_PATH
  76. #endif
  77. #include <io.h>
  78. #endif
  79. #if __cplusplus >= 202000L
  80. #define LU8(x) (const char*)(u8##x)
  81. #else
  82. #define LU8(x) u8##x
  83. #endif
  84. #include <algorithm>
  85. #include <array>
  86. #include <cassert>
  87. #include <cctype>
  88. #include <cfloat>
  89. #include <cinttypes>
  90. #include <climits>
  91. #include <cmath>
  92. #include <cstdarg>
  93. #include <cstddef>
  94. #include <cstdint>
  95. #include <cstdio>
  96. #include <cstring>
  97. #include <ctime>
  98. #include <fstream>
  99. #include <functional>
  100. #include <future>
  101. #include <initializer_list>
  102. #include <locale>
  103. #include <map>
  104. #include <memory>
  105. #include <mutex>
  106. #include <numeric>
  107. #include <set>
  108. #include <sstream>
  109. #include <thread>
  110. #include <type_traits>
  111. #include <unordered_map>
  112. #if defined(_MSC_VER)
  113. #pragma warning(disable: 4244 4267) // possible loss of data
  114. #endif
  115. // bump if necessary
  116. #define LLAMA_MAX_LAYERS 512
  117. #define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
  118. //
  119. // helpers
  120. //
  121. // trim whitespace from the beginning and end of a string
  122. static std::string trim(const std::string & str) {
  123. size_t start = 0;
  124. size_t end = str.size();
  125. while (start < end && isspace(str[start])) {
  126. start += 1;
  127. }
  128. while (end > start && isspace(str[end - 1])) {
  129. end -= 1;
  130. }
  131. return str.substr(start, end - start);
  132. }
  133. static bool is_float_close(float a, float b, float abs_tol) {
  134. // Check for non-negative tolerance
  135. if (abs_tol < 0.0) {
  136. throw std::invalid_argument("Tolerance must be non-negative");
  137. }
  138. // Exact equality check
  139. if (a == b) {
  140. return true;
  141. }
  142. // Check for infinities
  143. if (std::isinf(a) || std::isinf(b)) {
  144. return false;
  145. }
  146. // Regular comparison using the provided absolute tolerance
  147. return std::fabs(b - a) <= abs_tol;
  148. }
  149. static void zeros(std::ofstream & file, size_t n) {
  150. char zero = 0;
  151. for (size_t i = 0; i < n; ++i) {
  152. file.write(&zero, 1);
  153. }
  154. }
  155. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  156. static std::string format(const char * fmt, ...) {
  157. va_list ap;
  158. va_list ap2;
  159. va_start(ap, fmt);
  160. va_copy(ap2, ap);
  161. int size = vsnprintf(NULL, 0, fmt, ap);
  162. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  163. std::vector<char> buf(size + 1);
  164. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  165. GGML_ASSERT(size2 == size);
  166. va_end(ap2);
  167. va_end(ap);
  168. return std::string(buf.data(), size);
  169. }
  170. //
  171. // gguf constants (sync with gguf.py)
  172. //
  173. enum llm_arch {
  174. LLM_ARCH_LLAMA,
  175. LLM_ARCH_FALCON,
  176. LLM_ARCH_BAICHUAN,
  177. LLM_ARCH_GROK,
  178. LLM_ARCH_GPT2,
  179. LLM_ARCH_GPTJ,
  180. LLM_ARCH_GPTNEOX,
  181. LLM_ARCH_MPT,
  182. LLM_ARCH_STARCODER,
  183. LLM_ARCH_REFACT,
  184. LLM_ARCH_BERT,
  185. LLM_ARCH_NOMIC_BERT,
  186. LLM_ARCH_JINA_BERT_V2,
  187. LLM_ARCH_BLOOM,
  188. LLM_ARCH_STABLELM,
  189. LLM_ARCH_QWEN,
  190. LLM_ARCH_QWEN2,
  191. LLM_ARCH_QWEN2MOE,
  192. LLM_ARCH_PHI2,
  193. LLM_ARCH_PHI3,
  194. LLM_ARCH_PLAMO,
  195. LLM_ARCH_CODESHELL,
  196. LLM_ARCH_ORION,
  197. LLM_ARCH_INTERNLM2,
  198. LLM_ARCH_MINICPM,
  199. LLM_ARCH_GEMMA,
  200. LLM_ARCH_GEMMA2,
  201. LLM_ARCH_STARCODER2,
  202. LLM_ARCH_MAMBA,
  203. LLM_ARCH_XVERSE,
  204. LLM_ARCH_COMMAND_R,
  205. LLM_ARCH_DBRX,
  206. LLM_ARCH_OLMO,
  207. LLM_ARCH_OPENELM,
  208. LLM_ARCH_ARCTIC,
  209. LLM_ARCH_DEEPSEEK2,
  210. LLM_ARCH_CHATGLM,
  211. LLM_ARCH_BITNET,
  212. LLM_ARCH_T5,
  213. LLM_ARCH_T5ENCODER,
  214. LLM_ARCH_JAIS,
  215. LLM_ARCH_NEMOTRON,
  216. LLM_ARCH_EXAONE,
  217. LLM_ARCH_RWKV6,
  218. LLM_ARCH_UNKNOWN,
  219. };
  220. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  221. { LLM_ARCH_LLAMA, "llama" },
  222. { LLM_ARCH_FALCON, "falcon" },
  223. { LLM_ARCH_GROK, "grok" },
  224. { LLM_ARCH_GPT2, "gpt2" },
  225. { LLM_ARCH_GPTJ, "gptj" },
  226. { LLM_ARCH_GPTNEOX, "gptneox" },
  227. { LLM_ARCH_MPT, "mpt" },
  228. { LLM_ARCH_BAICHUAN, "baichuan" },
  229. { LLM_ARCH_STARCODER, "starcoder" },
  230. { LLM_ARCH_REFACT, "refact" },
  231. { LLM_ARCH_BERT, "bert" },
  232. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  233. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  234. { LLM_ARCH_BLOOM, "bloom" },
  235. { LLM_ARCH_STABLELM, "stablelm" },
  236. { LLM_ARCH_QWEN, "qwen" },
  237. { LLM_ARCH_QWEN2, "qwen2" },
  238. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  239. { LLM_ARCH_PHI2, "phi2" },
  240. { LLM_ARCH_PHI3, "phi3" },
  241. { LLM_ARCH_PLAMO, "plamo" },
  242. { LLM_ARCH_CODESHELL, "codeshell" },
  243. { LLM_ARCH_ORION, "orion" },
  244. { LLM_ARCH_INTERNLM2, "internlm2" },
  245. { LLM_ARCH_MINICPM, "minicpm" },
  246. { LLM_ARCH_GEMMA, "gemma" },
  247. { LLM_ARCH_GEMMA2, "gemma2" },
  248. { LLM_ARCH_STARCODER2, "starcoder2" },
  249. { LLM_ARCH_MAMBA, "mamba" },
  250. { LLM_ARCH_XVERSE, "xverse" },
  251. { LLM_ARCH_COMMAND_R, "command-r" },
  252. { LLM_ARCH_DBRX, "dbrx" },
  253. { LLM_ARCH_OLMO, "olmo" },
  254. { LLM_ARCH_OPENELM, "openelm" },
  255. { LLM_ARCH_ARCTIC, "arctic" },
  256. { LLM_ARCH_DEEPSEEK2, "deepseek2" },
  257. { LLM_ARCH_CHATGLM, "chatglm" },
  258. { LLM_ARCH_BITNET, "bitnet" },
  259. { LLM_ARCH_T5, "t5" },
  260. { LLM_ARCH_T5ENCODER, "t5encoder" },
  261. { LLM_ARCH_JAIS, "jais" },
  262. { LLM_ARCH_NEMOTRON, "nemotron" },
  263. { LLM_ARCH_EXAONE, "exaone" },
  264. { LLM_ARCH_RWKV6, "rwkv6" },
  265. { LLM_ARCH_UNKNOWN, "(unknown)" },
  266. };
  267. enum llm_kv {
  268. LLM_KV_GENERAL_TYPE,
  269. LLM_KV_GENERAL_ARCHITECTURE,
  270. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  271. LLM_KV_GENERAL_ALIGNMENT,
  272. LLM_KV_GENERAL_NAME,
  273. LLM_KV_GENERAL_AUTHOR,
  274. LLM_KV_GENERAL_VERSION,
  275. LLM_KV_GENERAL_URL,
  276. LLM_KV_GENERAL_DESCRIPTION,
  277. LLM_KV_GENERAL_LICENSE,
  278. LLM_KV_GENERAL_SOURCE_URL,
  279. LLM_KV_GENERAL_SOURCE_HF_REPO,
  280. LLM_KV_VOCAB_SIZE,
  281. LLM_KV_CONTEXT_LENGTH,
  282. LLM_KV_EMBEDDING_LENGTH,
  283. LLM_KV_BLOCK_COUNT,
  284. LLM_KV_LEADING_DENSE_BLOCK_COUNT,
  285. LLM_KV_FEED_FORWARD_LENGTH,
  286. LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
  287. LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
  288. LLM_KV_USE_PARALLEL_RESIDUAL,
  289. LLM_KV_TENSOR_DATA_LAYOUT,
  290. LLM_KV_EXPERT_COUNT,
  291. LLM_KV_EXPERT_USED_COUNT,
  292. LLM_KV_EXPERT_SHARED_COUNT,
  293. LLM_KV_EXPERT_WEIGHTS_SCALE,
  294. LLM_KV_POOLING_TYPE,
  295. LLM_KV_LOGIT_SCALE,
  296. LLM_KV_DECODER_START_TOKEN_ID,
  297. LLM_KV_ATTN_LOGIT_SOFTCAPPING,
  298. LLM_KV_FINAL_LOGIT_SOFTCAPPING,
  299. LLM_KV_RESCALE_EVERY_N_LAYERS,
  300. LLM_KV_TIME_MIX_EXTRA_DIM,
  301. LLM_KV_TIME_DECAY_EXTRA_DIM,
  302. LLM_KV_ATTENTION_HEAD_COUNT,
  303. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  304. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  305. LLM_KV_ATTENTION_CLAMP_KQV,
  306. LLM_KV_ATTENTION_KEY_LENGTH,
  307. LLM_KV_ATTENTION_VALUE_LENGTH,
  308. LLM_KV_ATTENTION_LAYERNORM_EPS,
  309. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  310. LLM_KV_ATTENTION_CAUSAL,
  311. LLM_KV_ATTENTION_Q_LORA_RANK,
  312. LLM_KV_ATTENTION_KV_LORA_RANK,
  313. LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
  314. LLM_KV_ATTENTION_SLIDING_WINDOW,
  315. LLM_KV_ROPE_DIMENSION_COUNT,
  316. LLM_KV_ROPE_FREQ_BASE,
  317. LLM_KV_ROPE_SCALE_LINEAR,
  318. LLM_KV_ROPE_SCALING_TYPE,
  319. LLM_KV_ROPE_SCALING_FACTOR,
  320. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  321. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  322. LLM_KV_ROPE_SCALING_FINETUNED,
  323. LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
  324. LLM_KV_SPLIT_NO,
  325. LLM_KV_SPLIT_COUNT,
  326. LLM_KV_SPLIT_TENSORS_COUNT,
  327. LLM_KV_SSM_INNER_SIZE,
  328. LLM_KV_SSM_CONV_KERNEL,
  329. LLM_KV_SSM_STATE_SIZE,
  330. LLM_KV_SSM_TIME_STEP_RANK,
  331. LLM_KV_SSM_DT_B_C_RMS,
  332. LLM_KV_WKV_HEAD_SIZE,
  333. LLM_KV_TOKENIZER_MODEL,
  334. LLM_KV_TOKENIZER_PRE,
  335. LLM_KV_TOKENIZER_LIST,
  336. LLM_KV_TOKENIZER_TOKEN_TYPE,
  337. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  338. LLM_KV_TOKENIZER_SCORES,
  339. LLM_KV_TOKENIZER_MERGES,
  340. LLM_KV_TOKENIZER_BOS_ID,
  341. LLM_KV_TOKENIZER_EOS_ID,
  342. LLM_KV_TOKENIZER_UNK_ID,
  343. LLM_KV_TOKENIZER_SEP_ID,
  344. LLM_KV_TOKENIZER_PAD_ID,
  345. LLM_KV_TOKENIZER_CLS_ID,
  346. LLM_KV_TOKENIZER_MASK_ID,
  347. LLM_KV_TOKENIZER_ADD_BOS,
  348. LLM_KV_TOKENIZER_ADD_EOS,
  349. LLM_KV_TOKENIZER_ADD_PREFIX,
  350. LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,
  351. LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
  352. LLM_KV_TOKENIZER_HF_JSON,
  353. LLM_KV_TOKENIZER_RWKV,
  354. LLM_KV_TOKENIZER_PREFIX_ID,
  355. LLM_KV_TOKENIZER_SUFFIX_ID,
  356. LLM_KV_TOKENIZER_MIDDLE_ID,
  357. LLM_KV_TOKENIZER_EOT_ID,
  358. LLM_KV_TOKENIZER_EOM_ID,
  359. LLM_KV_ADAPTER_TYPE,
  360. LLM_KV_ADAPTER_LORA_ALPHA,
  361. };
  362. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  363. { LLM_KV_GENERAL_TYPE, "general.type" },
  364. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  365. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  366. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  367. { LLM_KV_GENERAL_NAME, "general.name" },
  368. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  369. { LLM_KV_GENERAL_VERSION, "general.version" },
  370. { LLM_KV_GENERAL_URL, "general.url" },
  371. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  372. { LLM_KV_GENERAL_LICENSE, "general.license" },
  373. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  374. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  375. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  376. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  377. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  378. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  379. { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
  380. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  381. { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
  382. { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
  383. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  384. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  385. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  386. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  387. { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
  388. { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
  389. { LLM_KV_POOLING_TYPE, "%s.pooling_type" },
  390. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  391. { LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
  392. { LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" },
  393. { LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" },
  394. { LLM_KV_RESCALE_EVERY_N_LAYERS, "%s.rescale_every_n_layers" },
  395. { LLM_KV_TIME_MIX_EXTRA_DIM, "%s.time_mix_extra_dim" },
  396. { LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" },
  397. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  398. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  399. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  400. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  401. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  402. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  403. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  404. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  405. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  406. { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
  407. { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
  408. { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
  409. { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
  410. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  411. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  412. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  413. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  414. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  415. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  416. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  417. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  418. { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
  419. { LLM_KV_SPLIT_NO, "split.no" },
  420. { LLM_KV_SPLIT_COUNT, "split.count" },
  421. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  422. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  423. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  424. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  425. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  426. { LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" },
  427. { LLM_KV_WKV_HEAD_SIZE, "%s.wkv.head_size" },
  428. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  429. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  430. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  431. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  432. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  433. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  434. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  435. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  436. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  437. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  438. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  439. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  440. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  441. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  442. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  443. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  444. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  445. { LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, "tokenizer.ggml.remove_extra_whitespaces" },
  446. { LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" },
  447. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  448. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  449. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  450. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  451. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  452. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  453. { LLM_KV_TOKENIZER_EOM_ID, "tokenizer.ggml.eom_token_id" },
  454. { LLM_KV_ADAPTER_TYPE, "adapter.type" },
  455. { LLM_KV_ADAPTER_LORA_ALPHA, "adapter.lora.alpha" },
  456. };
  457. struct LLM_KV {
  458. LLM_KV(llm_arch arch) : arch(arch) {}
  459. llm_arch arch;
  460. std::string operator()(llm_kv kv) const {
  461. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  462. }
  463. };
  464. enum llm_tensor {
  465. LLM_TENSOR_TOKEN_EMBD,
  466. LLM_TENSOR_TOKEN_EMBD_NORM,
  467. LLM_TENSOR_TOKEN_TYPES,
  468. LLM_TENSOR_POS_EMBD,
  469. LLM_TENSOR_OUTPUT,
  470. LLM_TENSOR_OUTPUT_NORM,
  471. LLM_TENSOR_ROPE_FREQS,
  472. LLM_TENSOR_ROPE_FACTORS_LONG,
  473. LLM_TENSOR_ROPE_FACTORS_SHORT,
  474. LLM_TENSOR_ATTN_Q,
  475. LLM_TENSOR_ATTN_K,
  476. LLM_TENSOR_ATTN_V,
  477. LLM_TENSOR_ATTN_QKV,
  478. LLM_TENSOR_ATTN_OUT,
  479. LLM_TENSOR_ATTN_NORM,
  480. LLM_TENSOR_ATTN_NORM_2,
  481. LLM_TENSOR_ATTN_OUT_NORM,
  482. LLM_TENSOR_ATTN_POST_NORM,
  483. LLM_TENSOR_ATTN_ROT_EMBD,
  484. LLM_TENSOR_FFN_GATE_INP,
  485. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  486. LLM_TENSOR_FFN_NORM,
  487. LLM_TENSOR_FFN_POST_NORM,
  488. LLM_TENSOR_FFN_GATE,
  489. LLM_TENSOR_FFN_DOWN,
  490. LLM_TENSOR_FFN_UP,
  491. LLM_TENSOR_FFN_ACT,
  492. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  493. LLM_TENSOR_FFN_GATE_EXP,
  494. LLM_TENSOR_FFN_UP_EXP,
  495. LLM_TENSOR_FFN_NORM_EXPS,
  496. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  497. LLM_TENSOR_FFN_GATE_EXPS,
  498. LLM_TENSOR_FFN_UP_EXPS,
  499. LLM_TENSOR_FFN_DOWN_SHEXP,
  500. LLM_TENSOR_FFN_GATE_SHEXP,
  501. LLM_TENSOR_FFN_UP_SHEXP,
  502. LLM_TENSOR_ATTN_Q_NORM,
  503. LLM_TENSOR_ATTN_K_NORM,
  504. LLM_TENSOR_LAYER_OUT_NORM,
  505. LLM_TENSOR_SSM_IN,
  506. LLM_TENSOR_SSM_CONV1D,
  507. LLM_TENSOR_SSM_X,
  508. LLM_TENSOR_SSM_DT,
  509. LLM_TENSOR_SSM_A,
  510. LLM_TENSOR_SSM_D,
  511. LLM_TENSOR_SSM_OUT,
  512. LLM_TENSOR_TIME_MIX_W1,
  513. LLM_TENSOR_TIME_MIX_W2,
  514. LLM_TENSOR_TIME_MIX_LERP_X,
  515. LLM_TENSOR_TIME_MIX_LERP_W,
  516. LLM_TENSOR_TIME_MIX_LERP_K,
  517. LLM_TENSOR_TIME_MIX_LERP_V,
  518. LLM_TENSOR_TIME_MIX_LERP_R,
  519. LLM_TENSOR_TIME_MIX_LERP_G,
  520. LLM_TENSOR_TIME_MIX_FIRST,
  521. LLM_TENSOR_TIME_MIX_DECAY,
  522. LLM_TENSOR_TIME_MIX_DECAY_W1,
  523. LLM_TENSOR_TIME_MIX_DECAY_W2,
  524. LLM_TENSOR_TIME_MIX_KEY,
  525. LLM_TENSOR_TIME_MIX_VALUE,
  526. LLM_TENSOR_TIME_MIX_RECEPTANCE,
  527. LLM_TENSOR_TIME_MIX_GATE,
  528. LLM_TENSOR_TIME_MIX_LN,
  529. LLM_TENSOR_TIME_MIX_OUTPUT,
  530. LLM_TENSOR_CHANNEL_MIX_LERP_K,
  531. LLM_TENSOR_CHANNEL_MIX_LERP_R,
  532. LLM_TENSOR_CHANNEL_MIX_KEY,
  533. LLM_TENSOR_CHANNEL_MIX_RECEPTANCE,
  534. LLM_TENSOR_CHANNEL_MIX_VALUE,
  535. LLM_TENSOR_ATTN_Q_A,
  536. LLM_TENSOR_ATTN_Q_B,
  537. LLM_TENSOR_ATTN_KV_A_MQA,
  538. LLM_TENSOR_ATTN_KV_B,
  539. LLM_TENSOR_ATTN_Q_A_NORM,
  540. LLM_TENSOR_ATTN_KV_A_NORM,
  541. LLM_TENSOR_ATTN_SUB_NORM,
  542. LLM_TENSOR_FFN_SUB_NORM,
  543. LLM_TENSOR_DEC_ATTN_NORM,
  544. LLM_TENSOR_DEC_ATTN_Q,
  545. LLM_TENSOR_DEC_ATTN_K,
  546. LLM_TENSOR_DEC_ATTN_V,
  547. LLM_TENSOR_DEC_ATTN_OUT,
  548. LLM_TENSOR_DEC_ATTN_REL_B,
  549. LLM_TENSOR_DEC_CROSS_ATTN_NORM,
  550. LLM_TENSOR_DEC_CROSS_ATTN_Q,
  551. LLM_TENSOR_DEC_CROSS_ATTN_K,
  552. LLM_TENSOR_DEC_CROSS_ATTN_V,
  553. LLM_TENSOR_DEC_CROSS_ATTN_OUT,
  554. LLM_TENSOR_DEC_CROSS_ATTN_REL_B,
  555. LLM_TENSOR_DEC_FFN_NORM,
  556. LLM_TENSOR_DEC_FFN_GATE,
  557. LLM_TENSOR_DEC_FFN_DOWN,
  558. LLM_TENSOR_DEC_FFN_UP,
  559. LLM_TENSOR_DEC_OUTPUT_NORM,
  560. LLM_TENSOR_ENC_ATTN_NORM,
  561. LLM_TENSOR_ENC_ATTN_Q,
  562. LLM_TENSOR_ENC_ATTN_K,
  563. LLM_TENSOR_ENC_ATTN_V,
  564. LLM_TENSOR_ENC_ATTN_OUT,
  565. LLM_TENSOR_ENC_ATTN_REL_B,
  566. LLM_TENSOR_ENC_FFN_NORM,
  567. LLM_TENSOR_ENC_FFN_GATE,
  568. LLM_TENSOR_ENC_FFN_DOWN,
  569. LLM_TENSOR_ENC_FFN_UP,
  570. LLM_TENSOR_ENC_OUTPUT_NORM,
  571. };
  572. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  573. {
  574. LLM_ARCH_LLAMA,
  575. {
  576. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  577. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  578. { LLM_TENSOR_OUTPUT, "output" },
  579. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  580. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  581. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  582. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  583. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  584. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  585. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  586. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  587. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  588. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  589. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  590. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  591. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  592. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  593. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  594. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  595. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  596. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  597. },
  598. },
  599. {
  600. LLM_ARCH_BAICHUAN,
  601. {
  602. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  603. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  604. { LLM_TENSOR_OUTPUT, "output" },
  605. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  606. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  607. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  608. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  609. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  610. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  611. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  612. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  613. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  614. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  615. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  616. },
  617. },
  618. {
  619. LLM_ARCH_FALCON,
  620. {
  621. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  622. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  623. { LLM_TENSOR_OUTPUT, "output" },
  624. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  625. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  626. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  627. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  628. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  629. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  630. },
  631. },
  632. {
  633. LLM_ARCH_GROK,
  634. {
  635. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  636. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  637. { LLM_TENSOR_OUTPUT, "output" },
  638. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  639. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  640. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  641. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  642. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  643. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  644. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  645. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  646. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  647. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  648. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  649. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  650. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  651. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  652. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  653. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  654. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  655. },
  656. },
  657. {
  658. LLM_ARCH_GPT2,
  659. {
  660. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  661. { LLM_TENSOR_POS_EMBD, "position_embd" },
  662. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  663. { LLM_TENSOR_OUTPUT, "output" },
  664. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  665. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  666. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  667. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  668. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  669. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  670. },
  671. },
  672. {
  673. LLM_ARCH_GPTJ,
  674. {
  675. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  676. },
  677. },
  678. {
  679. LLM_ARCH_GPTNEOX,
  680. {
  681. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  682. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  683. { LLM_TENSOR_OUTPUT, "output" },
  684. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  685. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  686. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  687. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  688. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  689. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  690. },
  691. },
  692. {
  693. LLM_ARCH_MPT,
  694. {
  695. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  696. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  697. { LLM_TENSOR_OUTPUT, "output"},
  698. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  699. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  700. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  701. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  702. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  703. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  704. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  705. { LLM_TENSOR_POS_EMBD, "position_embd" },
  706. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  707. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  708. },
  709. },
  710. {
  711. LLM_ARCH_STARCODER,
  712. {
  713. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  714. { LLM_TENSOR_POS_EMBD, "position_embd" },
  715. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  716. { LLM_TENSOR_OUTPUT, "output" },
  717. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  718. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  719. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  720. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  721. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  722. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  723. },
  724. },
  725. {
  726. LLM_ARCH_REFACT,
  727. {
  728. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  729. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  730. { LLM_TENSOR_OUTPUT, "output" },
  731. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  732. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  733. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  734. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  735. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  736. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  737. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  738. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  739. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  740. },
  741. },
  742. {
  743. LLM_ARCH_BERT,
  744. {
  745. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  746. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  747. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  748. { LLM_TENSOR_POS_EMBD, "position_embd" },
  749. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  750. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  751. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  752. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  753. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  754. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  755. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  756. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  757. },
  758. },
  759. {
  760. LLM_ARCH_NOMIC_BERT,
  761. {
  762. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  763. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  764. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  765. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  766. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  767. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  768. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  769. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  770. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  771. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  772. },
  773. },
  774. {
  775. LLM_ARCH_JINA_BERT_V2,
  776. {
  777. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  778. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  779. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  780. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  781. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  782. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  783. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  784. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  785. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  786. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  787. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  788. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  789. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  790. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  791. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  792. },
  793. },
  794. {
  795. LLM_ARCH_BLOOM,
  796. {
  797. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  798. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  799. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  800. { LLM_TENSOR_OUTPUT, "output" },
  801. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  802. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  803. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  804. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  805. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  806. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  807. },
  808. },
  809. {
  810. LLM_ARCH_STABLELM,
  811. {
  812. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  813. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  814. { LLM_TENSOR_OUTPUT, "output" },
  815. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  816. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  817. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  818. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  819. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  820. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  821. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  822. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  823. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  824. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  825. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  826. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  827. },
  828. },
  829. {
  830. LLM_ARCH_QWEN,
  831. {
  832. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  833. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  834. { LLM_TENSOR_OUTPUT, "output" },
  835. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  836. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  837. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  838. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  839. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  840. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  841. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  842. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  843. },
  844. },
  845. {
  846. LLM_ARCH_QWEN2,
  847. {
  848. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  849. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  850. { LLM_TENSOR_OUTPUT, "output" },
  851. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  852. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  853. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  854. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  855. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  856. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  857. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  858. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  859. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  860. },
  861. },
  862. {
  863. LLM_ARCH_QWEN2MOE,
  864. {
  865. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  866. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  867. { LLM_TENSOR_OUTPUT, "output" },
  868. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  869. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  870. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  871. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  872. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  873. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  874. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  875. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  876. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  877. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  878. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  879. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  880. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  881. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  882. },
  883. },
  884. {
  885. LLM_ARCH_PHI2,
  886. {
  887. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  888. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  889. { LLM_TENSOR_OUTPUT, "output" },
  890. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  891. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  892. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  893. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  894. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  895. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  896. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  897. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  898. },
  899. },
  900. {
  901. LLM_ARCH_PHI3,
  902. {
  903. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  904. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  905. { LLM_TENSOR_OUTPUT, "output" },
  906. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  907. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  908. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  909. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  910. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  911. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  912. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  913. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  914. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  915. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  916. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  917. },
  918. },
  919. {
  920. LLM_ARCH_PLAMO,
  921. {
  922. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  923. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  924. { LLM_TENSOR_OUTPUT, "output" },
  925. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  926. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  927. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  928. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  929. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  930. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  931. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  932. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  933. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  934. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  935. },
  936. },
  937. {
  938. LLM_ARCH_CODESHELL,
  939. {
  940. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  941. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  942. { LLM_TENSOR_OUTPUT, "output" },
  943. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  944. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  945. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  946. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  947. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  948. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  949. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  950. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  951. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  952. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  953. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  954. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  955. },
  956. },
  957. {
  958. LLM_ARCH_ORION,
  959. {
  960. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  961. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  962. { LLM_TENSOR_OUTPUT, "output" },
  963. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  964. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  965. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  966. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  967. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  968. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  969. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  970. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  971. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  972. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  973. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  974. },
  975. },
  976. {
  977. LLM_ARCH_INTERNLM2,
  978. {
  979. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  980. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  981. { LLM_TENSOR_OUTPUT, "output" },
  982. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  983. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  984. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  985. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  986. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  987. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  988. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  989. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  990. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  991. },
  992. },
  993. {
  994. LLM_ARCH_MINICPM,
  995. {
  996. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  997. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  998. { LLM_TENSOR_OUTPUT, "output" },
  999. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  1000. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1001. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1002. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1003. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1004. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1005. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  1006. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1007. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1008. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1009. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1010. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1011. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  1012. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  1013. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  1014. },
  1015. },
  1016. {
  1017. LLM_ARCH_GEMMA,
  1018. {
  1019. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1020. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1021. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1022. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1023. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1024. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1025. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1026. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1027. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1028. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1029. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1030. },
  1031. },
  1032. {
  1033. LLM_ARCH_GEMMA2,
  1034. {
  1035. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1036. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1037. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1038. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1039. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1040. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1041. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1042. { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
  1043. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1044. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1045. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1046. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1047. { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
  1048. },
  1049. },
  1050. {
  1051. LLM_ARCH_STARCODER2,
  1052. {
  1053. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1054. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1055. { LLM_TENSOR_OUTPUT, "output" },
  1056. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  1057. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1058. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1059. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1060. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1061. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1062. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  1063. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1064. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1065. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1066. },
  1067. },
  1068. {
  1069. LLM_ARCH_MAMBA,
  1070. {
  1071. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1072. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1073. { LLM_TENSOR_OUTPUT, "output" },
  1074. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1075. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  1076. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  1077. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  1078. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  1079. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  1080. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  1081. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  1082. },
  1083. },
  1084. {
  1085. LLM_ARCH_XVERSE,
  1086. {
  1087. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1088. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1089. { LLM_TENSOR_OUTPUT, "output" },
  1090. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  1091. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1092. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1093. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1094. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1095. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1096. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  1097. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1098. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1099. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1100. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1101. },
  1102. },
  1103. {
  1104. LLM_ARCH_COMMAND_R,
  1105. {
  1106. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1107. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1108. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1109. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1110. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1111. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1112. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1113. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1114. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1115. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1116. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  1117. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  1118. },
  1119. },
  1120. {
  1121. LLM_ARCH_DBRX,
  1122. {
  1123. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1124. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1125. { LLM_TENSOR_OUTPUT, "output" },
  1126. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  1127. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1128. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1129. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  1130. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1131. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1132. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1133. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1134. },
  1135. },
  1136. {
  1137. LLM_ARCH_OLMO,
  1138. {
  1139. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1140. { LLM_TENSOR_OUTPUT, "output" },
  1141. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1142. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1143. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1144. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1145. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1146. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1147. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1148. },
  1149. },
  1150. {
  1151. LLM_ARCH_OPENELM,
  1152. {
  1153. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1154. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1155. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1156. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  1157. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  1158. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  1159. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1160. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1161. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1162. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1163. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1164. },
  1165. },
  1166. {
  1167. LLM_ARCH_ARCTIC,
  1168. {
  1169. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1170. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1171. { LLM_TENSOR_OUTPUT, "output" },
  1172. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1173. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1174. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1175. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1176. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1177. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1178. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1179. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1180. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1181. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1182. { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
  1183. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1184. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1185. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1186. },
  1187. },
  1188. {
  1189. LLM_ARCH_DEEPSEEK2,
  1190. {
  1191. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1192. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1193. { LLM_TENSOR_OUTPUT, "output" },
  1194. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1195. { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
  1196. { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
  1197. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1198. { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
  1199. { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
  1200. { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
  1201. { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
  1202. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1203. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1204. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1205. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1206. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1207. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1208. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1209. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1210. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1211. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  1212. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  1213. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  1214. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  1215. },
  1216. },
  1217. {
  1218. LLM_ARCH_CHATGLM,
  1219. {
  1220. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1221. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  1222. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1223. { LLM_TENSOR_OUTPUT, "output" },
  1224. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1225. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  1226. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1227. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1228. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1229. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1230. },
  1231. },
  1232. {
  1233. LLM_ARCH_BITNET,
  1234. {
  1235. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1236. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1237. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1238. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1239. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1240. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1241. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1242. { LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" },
  1243. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1244. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1245. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1246. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1247. { LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" },
  1248. },
  1249. },
  1250. {
  1251. LLM_ARCH_T5,
  1252. {
  1253. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1254. { LLM_TENSOR_OUTPUT, "output" },
  1255. { LLM_TENSOR_DEC_OUTPUT_NORM, "dec.output_norm" },
  1256. { LLM_TENSOR_DEC_ATTN_NORM, "dec.blk.%d.attn_norm" },
  1257. { LLM_TENSOR_DEC_ATTN_Q, "dec.blk.%d.attn_q" },
  1258. { LLM_TENSOR_DEC_ATTN_K, "dec.blk.%d.attn_k" },
  1259. { LLM_TENSOR_DEC_ATTN_V, "dec.blk.%d.attn_v" },
  1260. { LLM_TENSOR_DEC_ATTN_OUT, "dec.blk.%d.attn_o" },
  1261. { LLM_TENSOR_DEC_ATTN_REL_B, "dec.blk.%d.attn_rel_b" },
  1262. { LLM_TENSOR_DEC_CROSS_ATTN_NORM, "dec.blk.%d.cross_attn_norm" },
  1263. { LLM_TENSOR_DEC_CROSS_ATTN_Q, "dec.blk.%d.cross_attn_q" },
  1264. { LLM_TENSOR_DEC_CROSS_ATTN_K, "dec.blk.%d.cross_attn_k" },
  1265. { LLM_TENSOR_DEC_CROSS_ATTN_V, "dec.blk.%d.cross_attn_v" },
  1266. { LLM_TENSOR_DEC_CROSS_ATTN_OUT, "dec.blk.%d.cross_attn_o" },
  1267. { LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "dec.blk.%d.cross_attn_rel_b" },
  1268. { LLM_TENSOR_DEC_FFN_NORM, "dec.blk.%d.ffn_norm" },
  1269. { LLM_TENSOR_DEC_FFN_GATE, "dec.blk.%d.ffn_gate" },
  1270. { LLM_TENSOR_DEC_FFN_DOWN, "dec.blk.%d.ffn_down" },
  1271. { LLM_TENSOR_DEC_FFN_UP, "dec.blk.%d.ffn_up" },
  1272. { LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" },
  1273. { LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" },
  1274. { LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" },
  1275. { LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" },
  1276. { LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" },
  1277. { LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" },
  1278. { LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" },
  1279. { LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" },
  1280. { LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" },
  1281. { LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" },
  1282. { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
  1283. },
  1284. },
  1285. {
  1286. LLM_ARCH_T5ENCODER,
  1287. {
  1288. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1289. { LLM_TENSOR_OUTPUT, "output" },
  1290. { LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" },
  1291. { LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" },
  1292. { LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" },
  1293. { LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" },
  1294. { LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" },
  1295. { LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" },
  1296. { LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" },
  1297. { LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" },
  1298. { LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" },
  1299. { LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" },
  1300. { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
  1301. },
  1302. },
  1303. {
  1304. LLM_ARCH_JAIS,
  1305. {
  1306. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1307. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1308. { LLM_TENSOR_OUTPUT, "output" },
  1309. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1310. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  1311. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1312. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1313. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1314. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1315. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1316. },
  1317. },
  1318. {
  1319. LLM_ARCH_NEMOTRON,
  1320. {
  1321. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1322. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1323. { LLM_TENSOR_OUTPUT, "output" },
  1324. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  1325. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1326. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1327. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1328. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1329. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1330. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  1331. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1332. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1333. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1334. },
  1335. },
  1336. {
  1337. LLM_ARCH_EXAONE,
  1338. {
  1339. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1340. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1341. { LLM_TENSOR_OUTPUT, "output" },
  1342. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  1343. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1344. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1345. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1346. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1347. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1348. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  1349. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1350. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1351. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1352. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1353. },
  1354. },
  1355. {
  1356. LLM_ARCH_RWKV6,
  1357. {
  1358. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1359. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  1360. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1361. { LLM_TENSOR_OUTPUT, "output" },
  1362. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1363. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  1364. { LLM_TENSOR_TIME_MIX_W1, "blk.%d.time_mix_w1" },
  1365. { LLM_TENSOR_TIME_MIX_W2, "blk.%d.time_mix_w2" },
  1366. { LLM_TENSOR_TIME_MIX_LERP_X, "blk.%d.time_mix_lerp_x" },
  1367. { LLM_TENSOR_TIME_MIX_LERP_W, "blk.%d.time_mix_lerp_w" },
  1368. { LLM_TENSOR_TIME_MIX_LERP_K, "blk.%d.time_mix_lerp_k" },
  1369. { LLM_TENSOR_TIME_MIX_LERP_V, "blk.%d.time_mix_lerp_v" },
  1370. { LLM_TENSOR_TIME_MIX_LERP_R, "blk.%d.time_mix_lerp_r" },
  1371. { LLM_TENSOR_TIME_MIX_LERP_G, "blk.%d.time_mix_lerp_g" },
  1372. { LLM_TENSOR_TIME_MIX_FIRST, "blk.%d.time_mix_first" },
  1373. { LLM_TENSOR_TIME_MIX_DECAY, "blk.%d.time_mix_decay" },
  1374. { LLM_TENSOR_TIME_MIX_DECAY_W1, "blk.%d.time_mix_decay_w1" },
  1375. { LLM_TENSOR_TIME_MIX_DECAY_W2, "blk.%d.time_mix_decay_w2" },
  1376. { LLM_TENSOR_TIME_MIX_KEY, "blk.%d.time_mix_key" },
  1377. { LLM_TENSOR_TIME_MIX_VALUE, "blk.%d.time_mix_value" },
  1378. { LLM_TENSOR_TIME_MIX_RECEPTANCE, "blk.%d.time_mix_receptance" },
  1379. { LLM_TENSOR_TIME_MIX_GATE, "blk.%d.time_mix_gate" },
  1380. { LLM_TENSOR_TIME_MIX_LN, "blk.%d.time_mix_ln" },
  1381. { LLM_TENSOR_TIME_MIX_OUTPUT, "blk.%d.time_mix_output" },
  1382. { LLM_TENSOR_CHANNEL_MIX_LERP_K, "blk.%d.channel_mix_lerp_k" },
  1383. { LLM_TENSOR_CHANNEL_MIX_LERP_R, "blk.%d.channel_mix_lerp_r" },
  1384. { LLM_TENSOR_CHANNEL_MIX_KEY, "blk.%d.channel_mix_key" },
  1385. { LLM_TENSOR_CHANNEL_MIX_VALUE, "blk.%d.channel_mix_value" },
  1386. { LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" },
  1387. },
  1388. },
  1389. {
  1390. LLM_ARCH_UNKNOWN,
  1391. {
  1392. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1393. },
  1394. },
  1395. };
  1396. static llm_arch llm_arch_from_string(const std::string & name) {
  1397. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1398. if (kv.second == name) {
  1399. return kv.first;
  1400. }
  1401. }
  1402. return LLM_ARCH_UNKNOWN;
  1403. }
  1404. // helper to handle gguf constants
  1405. // usage:
  1406. //
  1407. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1408. //
  1409. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1410. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1411. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1412. //
  1413. struct LLM_TN {
  1414. LLM_TN(llm_arch arch) : arch(arch) {}
  1415. llm_arch arch;
  1416. std::string operator()(llm_tensor tensor) const {
  1417. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1418. return "__missing__";
  1419. }
  1420. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1421. }
  1422. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1423. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1424. return "__missing__";
  1425. }
  1426. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1427. }
  1428. std::string operator()(llm_tensor tensor, int bid) const {
  1429. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1430. return "__missing__";
  1431. }
  1432. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1433. }
  1434. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1435. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1436. return "__missing__";
  1437. }
  1438. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1439. }
  1440. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1441. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1442. return "__missing__";
  1443. }
  1444. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1445. }
  1446. };
  1447. //
  1448. // gguf helpers
  1449. //
  1450. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1451. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1452. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1453. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1454. };
  1455. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1456. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1457. if (kv.second == name) {
  1458. return (llama_rope_scaling_type) kv.first;
  1459. }
  1460. }
  1461. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1462. }
  1463. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1464. switch (type) {
  1465. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1466. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1467. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1468. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1469. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1470. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1471. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1472. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1473. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1474. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1475. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1476. default: return format("unknown type %d", type);
  1477. }
  1478. }
  1479. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1480. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1481. switch (type) {
  1482. case GGUF_TYPE_STRING:
  1483. return gguf_get_val_str(ctx_gguf, i);
  1484. case GGUF_TYPE_ARRAY:
  1485. {
  1486. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1487. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1488. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1489. std::stringstream ss;
  1490. ss << "[";
  1491. for (int j = 0; j < arr_n; j++) {
  1492. if (arr_type == GGUF_TYPE_STRING) {
  1493. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1494. // escape quotes
  1495. replace_all(val, "\\", "\\\\");
  1496. replace_all(val, "\"", "\\\"");
  1497. ss << '"' << val << '"';
  1498. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1499. ss << "???";
  1500. } else {
  1501. ss << gguf_data_to_str(arr_type, data, j);
  1502. }
  1503. if (j < arr_n - 1) {
  1504. ss << ", ";
  1505. }
  1506. }
  1507. ss << "]";
  1508. return ss.str();
  1509. }
  1510. default:
  1511. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1512. }
  1513. }
  1514. //
  1515. // llama helpers
  1516. //
  1517. #if defined(_WIN32)
  1518. static std::string llama_format_win_err(DWORD err) {
  1519. LPSTR buf;
  1520. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1521. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1522. if (!size) {
  1523. return "FormatMessageA failed";
  1524. }
  1525. std::string ret(buf, size);
  1526. LocalFree(buf);
  1527. return ret;
  1528. }
  1529. #endif
  1530. template <typename T>
  1531. struct no_init {
  1532. T value;
  1533. no_init() { /* do nothing */ }
  1534. };
  1535. struct llama_file {
  1536. #if defined(_WIN32)
  1537. // use FILE * so we don't have to re-open the file to mmap
  1538. FILE * fp;
  1539. HANDLE fp_win32;
  1540. size_t size;
  1541. private:
  1542. std::string GetErrorMessageWin32(DWORD error_code) const {
  1543. std::string ret;
  1544. LPSTR lpMsgBuf = NULL;
  1545. DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1546. NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
  1547. if (!bufLen) {
  1548. ret = format("Win32 error code: %s", error_code);
  1549. } else {
  1550. ret = lpMsgBuf;
  1551. LocalFree(lpMsgBuf);
  1552. }
  1553. return ret;
  1554. }
  1555. public:
  1556. llama_file(const char * fname, const char * mode) {
  1557. fp = ggml_fopen(fname, mode);
  1558. if (fp == NULL) {
  1559. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1560. }
  1561. fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
  1562. seek(0, SEEK_END);
  1563. size = tell();
  1564. seek(0, SEEK_SET);
  1565. }
  1566. size_t tell() const {
  1567. // SetFilePointerEx returns the current position when seeking relative 0 bytes
  1568. LARGE_INTEGER li;
  1569. li.QuadPart = 0;
  1570. BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
  1571. if (!ret) {
  1572. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1573. }
  1574. return li.QuadPart;
  1575. }
  1576. void seek(size_t offset, int whence) const {
  1577. // no need to convert SEEK_* to FILE_*. The enums are the same.
  1578. // Still, keep static asserts to avoid failures in the future.
  1579. static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
  1580. static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
  1581. static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
  1582. LARGE_INTEGER li;
  1583. li.QuadPart = offset;
  1584. BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
  1585. if (!ret) {
  1586. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1587. }
  1588. }
  1589. void read_raw(void * ptr, size_t len) const {
  1590. // On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
  1591. // use the Win32 API to do file io instead of the C/C++ library functions.
  1592. // There are conditions under which ReadFile cannot read chunks >64MB.
  1593. // Thus split the operation into smaller chunks if len exceeds this limit.
  1594. size_t bytes_read = 0;
  1595. while (bytes_read < len) {
  1596. size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
  1597. DWORD chunk_read = 0;
  1598. BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
  1599. if (!result) {
  1600. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1601. }
  1602. if (chunk_read < chunk_size || chunk_read == 0) {
  1603. throw std::runtime_error("unexpectedly reached end of file");
  1604. }
  1605. bytes_read += chunk_read;
  1606. } ;
  1607. }
  1608. uint32_t read_u32() const {
  1609. uint32_t val;
  1610. read_raw(&val, sizeof(val));
  1611. return val;
  1612. }
  1613. void write_raw(const void * ptr, size_t len) const {
  1614. // There are conditions under which WriteFile cannot write chunks >64MB.
  1615. // Thus split the operation into smaller chunks if len exceeds this limit.
  1616. size_t bytes_written = 0;
  1617. while (bytes_written < len) {
  1618. size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
  1619. DWORD chunk_written = 0;
  1620. BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
  1621. if (!result) {
  1622. throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1623. }
  1624. if (chunk_written < chunk_size || chunk_written == 0) {
  1625. throw std::runtime_error("unexpectedly failed to write bytes");
  1626. }
  1627. bytes_written += chunk_written;
  1628. }
  1629. }
  1630. void write_u32(std::uint32_t val) const {
  1631. write_raw(&val, sizeof(val));
  1632. }
  1633. ~llama_file() {
  1634. if (fp) {
  1635. std::fclose(fp);
  1636. }
  1637. }
  1638. #else
  1639. // use FILE * so we don't have to re-open the file to mmap
  1640. FILE * fp;
  1641. size_t size;
  1642. llama_file(const char * fname, const char * mode) {
  1643. fp = ggml_fopen(fname, mode);
  1644. if (fp == NULL) {
  1645. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1646. }
  1647. seek(0, SEEK_END);
  1648. size = tell();
  1649. seek(0, SEEK_SET);
  1650. }
  1651. size_t tell() const {
  1652. #ifdef _WIN32
  1653. __int64 ret = _ftelli64(fp);
  1654. #else
  1655. long ret = std::ftell(fp);
  1656. #endif
  1657. if (ret == -1) {
  1658. throw std::runtime_error(format("ftell error: %s", strerror(errno)));
  1659. }
  1660. return (size_t) ret;
  1661. }
  1662. void seek(size_t offset, int whence) const {
  1663. #ifdef _WIN32
  1664. int ret = _fseeki64(fp, (__int64) offset, whence);
  1665. #else
  1666. int ret = std::fseek(fp, (long) offset, whence);
  1667. #endif
  1668. if (ret != 0) {
  1669. throw std::runtime_error(format("seek error: %s", strerror(errno)));
  1670. }
  1671. }
  1672. void read_raw(void * ptr, size_t len) const {
  1673. if (len == 0) {
  1674. return;
  1675. }
  1676. errno = 0;
  1677. std::size_t ret = std::fread(ptr, len, 1, fp);
  1678. if (ferror(fp)) {
  1679. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1680. }
  1681. if (ret != 1) {
  1682. throw std::runtime_error("unexpectedly reached end of file");
  1683. }
  1684. }
  1685. uint32_t read_u32() const {
  1686. uint32_t ret;
  1687. read_raw(&ret, sizeof(ret));
  1688. return ret;
  1689. }
  1690. void write_raw(const void * ptr, size_t len) const {
  1691. if (len == 0) {
  1692. return;
  1693. }
  1694. errno = 0;
  1695. size_t ret = std::fwrite(ptr, len, 1, fp);
  1696. if (ret != 1) {
  1697. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1698. }
  1699. }
  1700. void write_u32(std::uint32_t val) const {
  1701. write_raw(&val, sizeof(val));
  1702. }
  1703. ~llama_file() {
  1704. if (fp) {
  1705. std::fclose(fp);
  1706. }
  1707. }
  1708. #endif
  1709. };
  1710. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1711. struct llama_mmap {
  1712. void * addr;
  1713. size_t size;
  1714. llama_mmap(const llama_mmap &) = delete;
  1715. #ifdef _POSIX_MAPPED_FILES
  1716. static constexpr bool SUPPORTED = true;
  1717. // list of mapped fragments (first_offset, last_offset)
  1718. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1719. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1720. size = file->size;
  1721. int fd = fileno(file->fp);
  1722. int flags = MAP_SHARED;
  1723. // prefetch/readahead impairs performance on NUMA systems
  1724. if (numa) { prefetch = 0; }
  1725. #ifdef __linux__
  1726. // advise the kernel to read the file sequentially (increases readahead)
  1727. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1728. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1729. strerror(errno));
  1730. }
  1731. if (prefetch) { flags |= MAP_POPULATE; }
  1732. #endif
  1733. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1734. if (addr == MAP_FAILED) { // NOLINT
  1735. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1736. }
  1737. if (prefetch > 0) {
  1738. // advise the kernel to preload the mapped memory
  1739. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1740. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1741. strerror(errno));
  1742. }
  1743. }
  1744. if (numa) {
  1745. // advise the kernel not to use readahead
  1746. // (because the next page might not belong on the same node)
  1747. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1748. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1749. strerror(errno));
  1750. }
  1751. }
  1752. // initialize list of mapped_fragments
  1753. mapped_fragments.emplace_back(0, file->size);
  1754. }
  1755. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1756. // align first to the next page
  1757. size_t offset_in_page = *first & (page_size - 1);
  1758. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1759. *first += offset_to_page;
  1760. // align last to the previous page
  1761. *last = *last & ~(page_size - 1);
  1762. if (*last <= *first) {
  1763. *last = *first;
  1764. }
  1765. }
  1766. // partially unmap the file in the range [first, last)
  1767. void unmap_fragment(size_t first, size_t last) {
  1768. // note: this function must not be called multiple times with overlapping ranges
  1769. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1770. int page_size = sysconf(_SC_PAGESIZE);
  1771. align_range(&first, &last, page_size);
  1772. size_t len = last - first;
  1773. if (len == 0) {
  1774. return;
  1775. }
  1776. GGML_ASSERT(first % page_size == 0);
  1777. GGML_ASSERT(last % page_size == 0);
  1778. GGML_ASSERT(last > first);
  1779. void * next_page_start = (uint8_t *) addr + first;
  1780. // unmap the range
  1781. if (munmap(next_page_start, len)) {
  1782. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1783. }
  1784. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1785. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1786. for (const auto & frag : mapped_fragments) {
  1787. if (frag.first < first && frag.second > last) {
  1788. // the range is in the middle of the fragment, split it
  1789. new_mapped_fragments.emplace_back(frag.first, first);
  1790. new_mapped_fragments.emplace_back(last, frag.second);
  1791. } else if (frag.first < first && frag.second > first) {
  1792. // the range starts in the middle of the fragment
  1793. new_mapped_fragments.emplace_back(frag.first, first);
  1794. } else if (frag.first < last && frag.second > last) {
  1795. // the range ends in the middle of the fragment
  1796. new_mapped_fragments.emplace_back(last, frag.second);
  1797. } else if (frag.first >= first && frag.second <= last) {
  1798. // the range covers the entire fragment
  1799. } else {
  1800. // the range is outside the fragment
  1801. new_mapped_fragments.push_back(frag);
  1802. }
  1803. }
  1804. mapped_fragments = std::move(new_mapped_fragments);
  1805. }
  1806. ~llama_mmap() {
  1807. for (const auto & frag : mapped_fragments) {
  1808. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1809. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1810. }
  1811. }
  1812. }
  1813. #elif defined(_WIN32)
  1814. static constexpr bool SUPPORTED = true;
  1815. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1816. GGML_UNUSED(numa);
  1817. size = file->size;
  1818. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1819. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1820. if (hMapping == NULL) {
  1821. DWORD error = GetLastError();
  1822. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1823. }
  1824. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1825. DWORD error = GetLastError();
  1826. CloseHandle(hMapping);
  1827. if (addr == NULL) {
  1828. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1829. }
  1830. if (prefetch > 0) {
  1831. #if _WIN32_WINNT >= 0x602
  1832. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1833. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1834. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1835. // may fail on pre-Windows 8 systems
  1836. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1837. if (pPrefetchVirtualMemory) {
  1838. // advise the kernel to preload the mapped memory
  1839. WIN32_MEMORY_RANGE_ENTRY range;
  1840. range.VirtualAddress = addr;
  1841. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1842. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1843. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1844. llama_format_win_err(GetLastError()).c_str());
  1845. }
  1846. }
  1847. #else
  1848. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1849. #endif
  1850. }
  1851. }
  1852. void unmap_fragment(size_t first, size_t last) {
  1853. // not supported
  1854. GGML_UNUSED(first);
  1855. GGML_UNUSED(last);
  1856. }
  1857. ~llama_mmap() {
  1858. if (!UnmapViewOfFile(addr)) {
  1859. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1860. llama_format_win_err(GetLastError()).c_str());
  1861. }
  1862. }
  1863. #else
  1864. static constexpr bool SUPPORTED = false;
  1865. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1866. GGML_UNUSED(file);
  1867. GGML_UNUSED(prefetch);
  1868. GGML_UNUSED(numa);
  1869. throw std::runtime_error("mmap not supported");
  1870. }
  1871. void unmap_fragment(size_t first, size_t last) {
  1872. GGML_UNUSED(first);
  1873. GGML_UNUSED(last);
  1874. throw std::runtime_error("mmap not supported");
  1875. }
  1876. #endif
  1877. };
  1878. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1879. // Represents some region of memory being locked using mlock or VirtualLock;
  1880. // will automatically unlock on destruction.
  1881. struct llama_mlock {
  1882. void * addr = NULL;
  1883. size_t size = 0;
  1884. bool failed_already = false;
  1885. llama_mlock() {}
  1886. llama_mlock(const llama_mlock &) = delete;
  1887. ~llama_mlock() {
  1888. if (size) {
  1889. raw_unlock(addr, size);
  1890. }
  1891. }
  1892. void init(void * ptr) {
  1893. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1894. addr = ptr;
  1895. }
  1896. void grow_to(size_t target_size) {
  1897. GGML_ASSERT(addr);
  1898. if (failed_already) {
  1899. return;
  1900. }
  1901. size_t granularity = lock_granularity();
  1902. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1903. if (target_size > size) {
  1904. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1905. size = target_size;
  1906. } else {
  1907. failed_already = true;
  1908. }
  1909. }
  1910. }
  1911. #ifdef _POSIX_MEMLOCK_RANGE
  1912. static constexpr bool SUPPORTED = true;
  1913. static size_t lock_granularity() {
  1914. return (size_t) sysconf(_SC_PAGESIZE);
  1915. }
  1916. #ifdef __APPLE__
  1917. #define MLOCK_SUGGESTION \
  1918. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1919. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1920. #else
  1921. #define MLOCK_SUGGESTION \
  1922. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1923. #endif
  1924. bool raw_lock(const void * addr, size_t size) const {
  1925. if (!mlock(addr, size)) {
  1926. return true;
  1927. }
  1928. char* errmsg = std::strerror(errno);
  1929. bool suggest = (errno == ENOMEM);
  1930. // Check if the resource limit is fine after all
  1931. struct rlimit lock_limit;
  1932. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1933. suggest = false;
  1934. }
  1935. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1936. suggest = false;
  1937. }
  1938. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1939. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1940. return false;
  1941. }
  1942. #undef MLOCK_SUGGESTION
  1943. static void raw_unlock(void * addr, size_t size) {
  1944. if (munlock(addr, size)) {
  1945. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1946. }
  1947. }
  1948. #elif defined(_WIN32)
  1949. static constexpr bool SUPPORTED = true;
  1950. static size_t lock_granularity() {
  1951. SYSTEM_INFO si;
  1952. GetSystemInfo(&si);
  1953. return (size_t) si.dwPageSize;
  1954. }
  1955. bool raw_lock(void * ptr, size_t len) const {
  1956. for (int tries = 1; ; tries++) {
  1957. if (VirtualLock(ptr, len)) {
  1958. return true;
  1959. }
  1960. if (tries == 2) {
  1961. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1962. len, size, llama_format_win_err(GetLastError()).c_str());
  1963. return false;
  1964. }
  1965. // It failed but this was only the first try; increase the working
  1966. // set size and try again.
  1967. SIZE_T min_ws_size, max_ws_size;
  1968. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1969. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1970. llama_format_win_err(GetLastError()).c_str());
  1971. return false;
  1972. }
  1973. // Per MSDN: "The maximum number of pages that a process can lock
  1974. // is equal to the number of pages in its minimum working set minus
  1975. // a small overhead."
  1976. // Hopefully a megabyte is enough overhead:
  1977. size_t increment = len + 1048576;
  1978. // The minimum must be <= the maximum, so we need to increase both:
  1979. min_ws_size += increment;
  1980. max_ws_size += increment;
  1981. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1982. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1983. llama_format_win_err(GetLastError()).c_str());
  1984. return false;
  1985. }
  1986. }
  1987. }
  1988. static void raw_unlock(void * ptr, size_t len) {
  1989. if (!VirtualUnlock(ptr, len)) {
  1990. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1991. llama_format_win_err(GetLastError()).c_str());
  1992. }
  1993. }
  1994. #else
  1995. static constexpr bool SUPPORTED = false;
  1996. static size_t lock_granularity() {
  1997. return (size_t) 65536;
  1998. }
  1999. bool raw_lock(const void * addr, size_t len) const {
  2000. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  2001. return false;
  2002. }
  2003. static void raw_unlock(const void * addr, size_t len) {}
  2004. #endif
  2005. };
  2006. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  2007. // NOTE: avoid ever using this except for building the token_to_piece caches
  2008. static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
  2009. std::string piece;
  2010. piece.resize(piece.capacity()); // using string internal cache
  2011. const int n_chars = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
  2012. if (n_chars < 0) {
  2013. piece.resize(-n_chars);
  2014. int check = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
  2015. GGML_ASSERT(check == -n_chars);
  2016. }
  2017. else {
  2018. piece.resize(n_chars);
  2019. }
  2020. return piece;
  2021. }
  2022. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  2023. ggml_backend_buffer_type_t buft = nullptr;
  2024. #if defined(GGML_USE_CUDA)
  2025. // host buffers should only be used when data is expected to be copied to/from the GPU
  2026. if (host_buffer) {
  2027. buft = ggml_backend_cuda_host_buffer_type();
  2028. }
  2029. #elif defined(GGML_USE_SYCL)
  2030. if (host_buffer) {
  2031. buft = ggml_backend_sycl_host_buffer_type();
  2032. }
  2033. #elif defined(GGML_USE_CPU_HBM)
  2034. buft = ggml_backend_cpu_hbm_buffer_type();
  2035. #elif defined(GGML_USE_VULKAN)
  2036. if (host_buffer) {
  2037. buft = ggml_backend_vk_host_buffer_type();
  2038. }
  2039. #endif
  2040. if (buft == nullptr) {
  2041. buft = ggml_backend_cpu_buffer_type();
  2042. }
  2043. return buft;
  2044. GGML_UNUSED(host_buffer);
  2045. }
  2046. //
  2047. // globals
  2048. //
  2049. struct llama_state {
  2050. llama_state() {
  2051. #ifdef GGML_USE_METAL
  2052. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  2053. #elif defined(GGML_USE_CUDA)
  2054. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  2055. #elif defined(GGML_USE_CANN)
  2056. ggml_backend_cann_log_set_callback(log_callback, log_callback_user_data);
  2057. #endif
  2058. }
  2059. // We save the log callback globally
  2060. ggml_log_callback log_callback = llama_log_callback_default;
  2061. void * log_callback_user_data = nullptr;
  2062. };
  2063. static llama_state g_state;
  2064. // available llama models
  2065. enum e_model {
  2066. MODEL_UNKNOWN,
  2067. MODEL_14M,
  2068. MODEL_17M,
  2069. MODEL_22M,
  2070. MODEL_33M,
  2071. MODEL_60M,
  2072. MODEL_70M,
  2073. MODEL_80M,
  2074. MODEL_109M,
  2075. MODEL_137M,
  2076. MODEL_160M,
  2077. MODEL_220M,
  2078. MODEL_250M,
  2079. MODEL_270M,
  2080. MODEL_335M,
  2081. MODEL_410M,
  2082. MODEL_450M,
  2083. MODEL_770M,
  2084. MODEL_780M,
  2085. MODEL_0_5B,
  2086. MODEL_1B,
  2087. MODEL_1_3B,
  2088. MODEL_1_4B,
  2089. MODEL_1_6B,
  2090. MODEL_2B,
  2091. MODEL_2_8B,
  2092. MODEL_3B,
  2093. MODEL_4B,
  2094. MODEL_6B,
  2095. MODEL_6_9B,
  2096. MODEL_7B,
  2097. MODEL_8B,
  2098. MODEL_9B,
  2099. MODEL_11B,
  2100. MODEL_12B,
  2101. MODEL_13B,
  2102. MODEL_14B,
  2103. MODEL_15B,
  2104. MODEL_16B,
  2105. MODEL_20B,
  2106. MODEL_30B,
  2107. MODEL_34B,
  2108. MODEL_35B,
  2109. MODEL_40B,
  2110. MODEL_65B,
  2111. MODEL_70B,
  2112. MODEL_236B,
  2113. MODEL_314B,
  2114. MODEL_SMALL,
  2115. MODEL_MEDIUM,
  2116. MODEL_LARGE,
  2117. MODEL_XL,
  2118. MODEL_A2_7B,
  2119. MODEL_8x7B,
  2120. MODEL_8x22B,
  2121. MODEL_16x12B,
  2122. MODEL_10B_128x3_66B,
  2123. MODEL_57B_A14B,
  2124. MODEL_27B,
  2125. };
  2126. static const size_t kiB = 1024;
  2127. static const size_t MiB = 1024*kiB;
  2128. static const size_t GiB = 1024*MiB;
  2129. struct llama_hparams {
  2130. bool vocab_only;
  2131. bool rope_finetuned;
  2132. bool use_par_res;
  2133. uint32_t n_vocab;
  2134. uint32_t n_ctx_train; // context size the model was trained on
  2135. uint32_t n_embd;
  2136. uint32_t n_layer;
  2137. uint32_t n_rot;
  2138. uint32_t n_swa = 0; // sliding window attention (SWA)
  2139. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  2140. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  2141. uint32_t n_expert = 0;
  2142. uint32_t n_expert_used = 0;
  2143. uint32_t n_vocab_type = 0; // for BERT-style token types
  2144. uint32_t n_rel_attn_bkts = 0;
  2145. std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
  2146. std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
  2147. std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
  2148. uint32_t n_layer_dense_lead = 0;
  2149. uint32_t n_lora_q = 0;
  2150. uint32_t n_lora_kv = 0;
  2151. uint32_t n_ff_exp = 0;
  2152. uint32_t n_ff_shexp = 0;
  2153. uint32_t n_expert_shared = 0;
  2154. float expert_weights_scale = 0.0;
  2155. float f_norm_eps;
  2156. float f_norm_rms_eps;
  2157. float f_attn_logit_softcapping = 50.0f;
  2158. float f_final_logit_softcapping = 30.0f;
  2159. // for RWKV
  2160. uint32_t rescale_every_n_layers = 0;
  2161. uint32_t time_mix_extra_dim = 0;
  2162. uint32_t time_decay_extra_dim = 0;
  2163. uint32_t wkv_head_size = 0;
  2164. float rope_attn_factor = 1.0f;
  2165. float rope_freq_base_train;
  2166. float rope_freq_scale_train;
  2167. uint32_t n_ctx_orig_yarn;
  2168. float rope_yarn_log_mul;
  2169. // for State Space Models
  2170. uint32_t ssm_d_conv = 0;
  2171. uint32_t ssm_d_inner = 0;
  2172. uint32_t ssm_d_state = 0;
  2173. uint32_t ssm_dt_rank = 0;
  2174. bool ssm_dt_b_c_rms = false;
  2175. float f_clamp_kqv = 0.0f;
  2176. float f_max_alibi_bias = 0.0f;
  2177. float f_logit_scale = 0.0f;
  2178. bool causal_attn = true;
  2179. bool use_alibi = false;
  2180. bool attn_soft_cap = false;
  2181. // needed by encoder-decoder models (e.g. T5, FLAN-T5)
  2182. // ref: https://github.com/ggerganov/llama.cpp/pull/8141
  2183. llama_token dec_start_token_id = -1;
  2184. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  2185. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  2186. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  2187. bool operator!=(const llama_hparams & other) const {
  2188. if (this->vocab_only != other.vocab_only) return true;
  2189. if (this->n_vocab != other.n_vocab) return true;
  2190. if (this->n_ctx_train != other.n_ctx_train) return true;
  2191. if (this->n_embd != other.n_embd) return true;
  2192. if (this->n_layer != other.n_layer) return true;
  2193. if (this->n_rot != other.n_rot) return true;
  2194. if (this->n_swa != other.n_swa) return true;
  2195. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  2196. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  2197. if (this->n_expert != other.n_expert) return true;
  2198. if (this->n_expert_used != other.n_expert_used) return true;
  2199. if (this->n_head_arr != other.n_head_arr) return true;
  2200. if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
  2201. if (this->n_ff_arr != other.n_ff_arr) return true;
  2202. if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
  2203. if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
  2204. if (this->n_lora_q != other.n_lora_q) return true;
  2205. if (this->n_lora_kv != other.n_lora_kv) return true;
  2206. if (this->n_ff_exp != other.n_ff_exp) return true;
  2207. if (this->n_ff_shexp != other.n_ff_shexp) return true;
  2208. if (this->n_expert_shared != other.n_expert_shared) return true;
  2209. if (this->rope_finetuned != other.rope_finetuned) return true;
  2210. if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
  2211. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  2212. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  2213. if (this->ssm_d_state != other.ssm_d_state) return true;
  2214. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  2215. if (this->ssm_dt_b_c_rms != other.ssm_dt_b_c_rms) return true;
  2216. if (this->rescale_every_n_layers != other.rescale_every_n_layers) return true;
  2217. if (this->time_mix_extra_dim != other.time_mix_extra_dim) return true;
  2218. if (this->time_decay_extra_dim != other.time_decay_extra_dim) return true;
  2219. if (this->wkv_head_size != other.wkv_head_size) return true;
  2220. if (this->dec_start_token_id != other.dec_start_token_id) return true;
  2221. const float EPSILON = 1e-9f;
  2222. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  2223. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  2224. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  2225. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  2226. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  2227. if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
  2228. if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
  2229. return false;
  2230. }
  2231. uint32_t n_head(uint32_t il = 0) const {
  2232. if (il < n_layer) {
  2233. return n_head_arr[il];
  2234. }
  2235. GGML_ABORT("fatal error");
  2236. }
  2237. uint32_t n_head_kv(uint32_t il = 0) const {
  2238. if (il < n_layer) {
  2239. return n_head_kv_arr[il];
  2240. }
  2241. GGML_ABORT("fatal error");
  2242. }
  2243. uint32_t n_ff(uint32_t il = 0) const {
  2244. if (il < n_layer) {
  2245. return n_ff_arr[il];
  2246. }
  2247. GGML_ABORT("fatal error");
  2248. }
  2249. uint32_t n_gqa(uint32_t il = 0) const {
  2250. const uint32_t n_head = this->n_head(il);
  2251. const uint32_t n_head_kv = this->n_head_kv(il);
  2252. if (n_head_kv == 0) {
  2253. return 0;
  2254. }
  2255. return n_head/n_head_kv;
  2256. }
  2257. uint32_t n_embd_k_gqa(uint32_t il = 0) const { // dimension of key embeddings across all k-v heads
  2258. const uint32_t n_head_kv = this->n_head_kv(il);
  2259. return n_embd_head_k * n_head_kv;
  2260. }
  2261. uint32_t n_embd_v_gqa(uint32_t il = 0) const { // dimension of value embeddings across all k-v heads
  2262. const uint32_t n_head_kv = this->n_head_kv(il);
  2263. return n_embd_head_v * n_head_kv;
  2264. }
  2265. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  2266. // corresponds to Mamba's conv_states size or RWKV's token_shift states size
  2267. if (wkv_head_size != 0) {
  2268. // for RWKV models
  2269. return 2 * n_embd;
  2270. } else {
  2271. // TODO: maybe support other convolution strides than 1
  2272. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  2273. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  2274. }
  2275. }
  2276. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  2277. if (wkv_head_size != 0) {
  2278. // corresponds to RWKV's wkv_states size
  2279. return n_embd * wkv_head_size;
  2280. } else {
  2281. // corresponds to Mamba's ssm_states size
  2282. return ssm_d_state * ssm_d_inner;
  2283. }
  2284. }
  2285. };
  2286. static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
  2287. struct llama_cparams {
  2288. uint32_t n_ctx; // context size used during inference
  2289. uint32_t n_batch;
  2290. uint32_t n_ubatch;
  2291. uint32_t n_seq_max;
  2292. int n_threads; // number of threads to use for generation
  2293. int n_threads_batch; // number of threads to use for batch processing
  2294. float rope_freq_base;
  2295. float rope_freq_scale;
  2296. uint32_t n_ctx_orig_yarn;
  2297. // These hyperparameters are not exposed in GGUF, because all
  2298. // existing YaRN models use the same values for them.
  2299. float yarn_ext_factor;
  2300. float yarn_attn_factor;
  2301. float yarn_beta_fast;
  2302. float yarn_beta_slow;
  2303. float defrag_thold;
  2304. bool embeddings;
  2305. bool causal_attn;
  2306. bool offload_kqv;
  2307. bool flash_attn;
  2308. enum llama_pooling_type pooling_type;
  2309. ggml_backend_sched_eval_callback cb_eval;
  2310. void * cb_eval_user_data;
  2311. };
  2312. // TODO: separate into "llama_layer_enc" and "llama_layer_dec"
  2313. struct llama_layer {
  2314. // normalization
  2315. struct ggml_tensor * attn_norm;
  2316. struct ggml_tensor * attn_norm_b;
  2317. struct ggml_tensor * attn_norm_2;
  2318. struct ggml_tensor * attn_norm_2_b;
  2319. struct ggml_tensor * attn_q_norm;
  2320. struct ggml_tensor * attn_q_norm_b;
  2321. struct ggml_tensor * attn_k_norm;
  2322. struct ggml_tensor * attn_k_norm_b;
  2323. struct ggml_tensor * attn_out_norm;
  2324. struct ggml_tensor * attn_out_norm_b;
  2325. struct ggml_tensor * attn_q_a_norm;
  2326. struct ggml_tensor * attn_kv_a_norm;
  2327. struct ggml_tensor * attn_sub_norm;
  2328. struct ggml_tensor * attn_post_norm;
  2329. struct ggml_tensor * ffn_sub_norm;
  2330. struct ggml_tensor * attn_norm_cross;
  2331. struct ggml_tensor * attn_norm_enc;
  2332. // attention
  2333. struct ggml_tensor * wq;
  2334. struct ggml_tensor * wk;
  2335. struct ggml_tensor * wv;
  2336. struct ggml_tensor * wo;
  2337. struct ggml_tensor * wqkv;
  2338. struct ggml_tensor * wq_a;
  2339. struct ggml_tensor * wq_b;
  2340. struct ggml_tensor * wkv_a_mqa;
  2341. struct ggml_tensor * wkv_b;
  2342. struct ggml_tensor * wq_cross;
  2343. struct ggml_tensor * wk_cross;
  2344. struct ggml_tensor * wv_cross;
  2345. struct ggml_tensor * wo_cross;
  2346. struct ggml_tensor * wq_enc;
  2347. struct ggml_tensor * wk_enc;
  2348. struct ggml_tensor * wv_enc;
  2349. struct ggml_tensor * wo_enc;
  2350. // attention bias
  2351. struct ggml_tensor * bq;
  2352. struct ggml_tensor * bk;
  2353. struct ggml_tensor * bv;
  2354. struct ggml_tensor * bo;
  2355. struct ggml_tensor * bqkv;
  2356. // relative position bias
  2357. struct ggml_tensor * attn_rel_b;
  2358. struct ggml_tensor * attn_rel_b_enc;
  2359. struct ggml_tensor * attn_rel_b_cross;
  2360. // normalization
  2361. struct ggml_tensor * ffn_norm;
  2362. struct ggml_tensor * ffn_norm_b;
  2363. struct ggml_tensor * ffn_post_norm;
  2364. struct ggml_tensor * layer_out_norm;
  2365. struct ggml_tensor * layer_out_norm_b;
  2366. struct ggml_tensor * ffn_norm_exps;
  2367. struct ggml_tensor * ffn_norm_enc;
  2368. // ff
  2369. struct ggml_tensor * ffn_gate; // w1
  2370. struct ggml_tensor * ffn_down; // w2
  2371. struct ggml_tensor * ffn_up; // w3
  2372. struct ggml_tensor * ffn_gate_enc;
  2373. struct ggml_tensor * ffn_down_enc;
  2374. struct ggml_tensor * ffn_up_enc;
  2375. // ff MoE
  2376. struct ggml_tensor * ffn_gate_inp;
  2377. struct ggml_tensor * ffn_gate_exps;
  2378. struct ggml_tensor * ffn_down_exps;
  2379. struct ggml_tensor * ffn_up_exps ;
  2380. // ff shared expert (shexp)
  2381. struct ggml_tensor * ffn_gate_inp_shexp;
  2382. struct ggml_tensor * ffn_gate_shexp;
  2383. struct ggml_tensor * ffn_down_shexp;
  2384. struct ggml_tensor * ffn_up_shexp;
  2385. // ff bias
  2386. struct ggml_tensor * ffn_gate_b = nullptr;
  2387. struct ggml_tensor * ffn_down_b = nullptr; // b2
  2388. struct ggml_tensor * ffn_up_b = nullptr; // b3
  2389. struct ggml_tensor * ffn_act;
  2390. // mamba proj
  2391. struct ggml_tensor * ssm_in;
  2392. struct ggml_tensor * ssm_x;
  2393. struct ggml_tensor * ssm_dt;
  2394. struct ggml_tensor * ssm_out;
  2395. // mamba
  2396. struct ggml_tensor * ssm_conv1d;
  2397. struct ggml_tensor * ssm_a;
  2398. struct ggml_tensor * ssm_d;
  2399. // mamba bias
  2400. struct ggml_tensor * ssm_conv1d_b;
  2401. struct ggml_tensor * ssm_dt_b;
  2402. // rwkv
  2403. struct ggml_tensor * time_mix_w1;
  2404. struct ggml_tensor * time_mix_w2;
  2405. struct ggml_tensor * time_mix_lerp_x;
  2406. struct ggml_tensor * time_mix_lerp_w;
  2407. struct ggml_tensor * time_mix_lerp_k;
  2408. struct ggml_tensor * time_mix_lerp_v;
  2409. struct ggml_tensor * time_mix_lerp_r;
  2410. struct ggml_tensor * time_mix_lerp_g;
  2411. struct ggml_tensor * time_mix_first;
  2412. struct ggml_tensor * time_mix_decay;
  2413. struct ggml_tensor * time_mix_decay_w1;
  2414. struct ggml_tensor * time_mix_decay_w2;
  2415. struct ggml_tensor * time_mix_key;
  2416. struct ggml_tensor * time_mix_value;
  2417. struct ggml_tensor * time_mix_receptance;
  2418. struct ggml_tensor * time_mix_gate;
  2419. struct ggml_tensor * time_mix_ln;
  2420. struct ggml_tensor * time_mix_ln_b;
  2421. struct ggml_tensor * time_mix_output;
  2422. struct ggml_tensor * channel_mix_lerp_k;
  2423. struct ggml_tensor * channel_mix_lerp_r;
  2424. struct ggml_tensor * channel_mix_key;
  2425. struct ggml_tensor * channel_mix_receptance;
  2426. struct ggml_tensor * channel_mix_value;
  2427. // long rope factors
  2428. struct ggml_tensor * rope_long = nullptr;
  2429. struct ggml_tensor * rope_short = nullptr;
  2430. struct ggml_tensor * rope_freqs = nullptr;
  2431. // bitnet scale
  2432. struct ggml_tensor * wq_scale;
  2433. struct ggml_tensor * wk_scale;
  2434. struct ggml_tensor * wv_scale;
  2435. struct ggml_tensor * wo_scale;
  2436. struct ggml_tensor * ffn_gate_scale;
  2437. struct ggml_tensor * ffn_up_scale;
  2438. struct ggml_tensor * ffn_down_scale;
  2439. };
  2440. // very similar to llama_batch,
  2441. // but has more metadata about sequences
  2442. struct llama_ubatch {
  2443. bool equal_seqs;
  2444. // TODO: whole_seqs for embeddings?
  2445. uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs)
  2446. uint32_t n_seq_tokens; // tokens per sequence
  2447. uint32_t n_seqs;
  2448. llama_token * token; // [n_tokens]
  2449. float * embd; // [n_embd, n_tokens]
  2450. llama_pos * pos; // [n_tokens]
  2451. int32_t * n_seq_id; // [n_seqs]
  2452. llama_seq_id ** seq_id; // [n_seqs]
  2453. int8_t * output; // [n_tokens]
  2454. };
  2455. struct llama_kv_cell {
  2456. llama_pos pos = -1;
  2457. llama_pos delta = 0;
  2458. int32_t src = -1; // used by recurrent state models to copy states
  2459. int32_t tail = -1;
  2460. std::set<llama_seq_id> seq_id;
  2461. bool has_seq_id(const llama_seq_id & id) const {
  2462. return seq_id.find(id) != seq_id.end();
  2463. }
  2464. bool is_empty() const {
  2465. return seq_id.empty();
  2466. }
  2467. bool is_same_seq(const llama_kv_cell & other) const {
  2468. return seq_id == other.seq_id;
  2469. }
  2470. };
  2471. // ring-buffer of cached KV data
  2472. struct llama_kv_cache {
  2473. bool has_shift = false;
  2474. bool do_defrag = false;
  2475. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  2476. bool v_trans = true; // the value tensor is transposed
  2477. // Note: The value of head isn't only used to optimize searching
  2478. // for a free KV slot. llama_decode_internal also uses it, so it
  2479. // cannot be freely changed after a slot has been allocated.
  2480. uint32_t head = 0;
  2481. uint32_t size = 0;
  2482. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  2483. // computed before each graph build
  2484. uint32_t n = 0;
  2485. ggml_type type_k = GGML_TYPE_F16;
  2486. ggml_type type_v = GGML_TYPE_F16;
  2487. std::vector<llama_kv_cell> cells;
  2488. std::vector<struct ggml_tensor *> k_l; // per layer
  2489. std::vector<struct ggml_tensor *> v_l;
  2490. std::vector<struct ggml_context *> ctxs;
  2491. std::vector<ggml_backend_buffer_t> bufs;
  2492. size_t total_size() const {
  2493. size_t size = 0;
  2494. for (ggml_backend_buffer_t buf : bufs) {
  2495. size += ggml_backend_buffer_get_size(buf);
  2496. }
  2497. return size;
  2498. }
  2499. ~llama_kv_cache() {
  2500. for (struct ggml_context * ctx : ctxs) {
  2501. ggml_free(ctx);
  2502. }
  2503. for (ggml_backend_buffer_t buf : bufs) {
  2504. ggml_backend_buffer_free(buf);
  2505. }
  2506. }
  2507. };
  2508. struct llama_control_vector {
  2509. std::vector<struct ggml_tensor *> tensors; // per layer
  2510. std::vector<struct ggml_context *> ctxs;
  2511. std::vector<ggml_backend_buffer_t> bufs;
  2512. int32_t layer_start = -1;
  2513. int32_t layer_end = -1;
  2514. struct ggml_tensor * tensor_for(int il) const {
  2515. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  2516. return nullptr;
  2517. }
  2518. return tensors[il];
  2519. }
  2520. struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
  2521. ggml_tensor * layer_dir = tensor_for(il);
  2522. if (layer_dir != nullptr) {
  2523. cur = ggml_add(ctx, cur, layer_dir);
  2524. }
  2525. return cur;
  2526. }
  2527. ~llama_control_vector() {
  2528. for (struct ggml_context * ctx : ctxs) {
  2529. ggml_free(ctx);
  2530. }
  2531. for (ggml_backend_buffer_t buf : bufs) {
  2532. ggml_backend_buffer_free(buf);
  2533. }
  2534. }
  2535. };
  2536. struct llama_model {
  2537. e_model type = MODEL_UNKNOWN;
  2538. llm_arch arch = LLM_ARCH_UNKNOWN;
  2539. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  2540. std::string name = "n/a";
  2541. llama_hparams hparams = {};
  2542. llama_vocab vocab;
  2543. struct ggml_tensor * tok_embd;
  2544. struct ggml_tensor * type_embd;
  2545. struct ggml_tensor * pos_embd;
  2546. struct ggml_tensor * tok_norm;
  2547. struct ggml_tensor * tok_norm_b;
  2548. struct ggml_tensor * output_norm;
  2549. struct ggml_tensor * output_norm_b;
  2550. struct ggml_tensor * output;
  2551. struct ggml_tensor * output_b;
  2552. struct ggml_tensor * output_norm_enc;
  2553. std::vector<llama_layer> layers;
  2554. llama_split_mode split_mode;
  2555. int main_gpu;
  2556. int n_gpu_layers;
  2557. std::vector<std::string> rpc_servers;
  2558. // gguf metadata
  2559. std::unordered_map<std::string, std::string> gguf_kv;
  2560. // layer -> buffer type mapping
  2561. struct layer_buft {
  2562. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  2563. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  2564. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  2565. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  2566. ggml_backend_buffer_type_t buft; // everything else
  2567. };
  2568. layer_buft buft_input;
  2569. layer_buft buft_output;
  2570. std::vector<layer_buft> buft_layer;
  2571. // contexts where the model tensors metadata is stored
  2572. std::vector<struct ggml_context *> ctxs;
  2573. // the model memory buffers for the tensor data
  2574. std::vector<ggml_backend_buffer_t> bufs;
  2575. // model memory mapped files
  2576. llama_mmaps mappings;
  2577. // objects representing data potentially being locked in memory
  2578. llama_mlocks mlock_bufs;
  2579. llama_mlocks mlock_mmaps;
  2580. // for quantize-stats only
  2581. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  2582. int64_t t_load_us = 0;
  2583. int64_t t_start_us = 0;
  2584. // keep track of loaded lora adapters
  2585. std::set<struct llama_lora_adapter *> lora_adapters;
  2586. ~llama_model() {
  2587. for (struct ggml_context * ctx : ctxs) {
  2588. ggml_free(ctx);
  2589. }
  2590. for (ggml_backend_buffer_t buf : bufs) {
  2591. #ifdef GGML_USE_CUDA
  2592. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  2593. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  2594. }
  2595. #endif
  2596. ggml_backend_buffer_free(buf);
  2597. }
  2598. while (!lora_adapters.empty()) {
  2599. llama_lora_adapter_free(*lora_adapters.begin());
  2600. }
  2601. }
  2602. };
  2603. struct llama_sbatch_seq {
  2604. int32_t n_seq_id;
  2605. llama_seq_id * seq_id;
  2606. size_t offset;
  2607. size_t length;
  2608. // helper for smoother batch API transition -- can be deprecated in the future
  2609. llama_seq_id all_seq_id; // used if seq_id == NULL
  2610. };
  2611. // sequence-length-aware batch splitting
  2612. struct llama_sbatch {
  2613. // tokens left in this batch
  2614. size_t n_tokens;
  2615. size_t n_embd;
  2616. bool logits_all; // TODO: remove once lctx.logits_all is removed too
  2617. // sorted indices into the batch
  2618. std::vector<size_t> ids;
  2619. // batch indices of the output
  2620. std::vector<size_t> out_ids;
  2621. std::vector<llama_sbatch_seq> seq;
  2622. const llama_batch * batch = nullptr;
  2623. // buffers for the ubatch
  2624. std::vector<llama_token> ubatch_token;
  2625. std::vector<float> ubatch_embd;
  2626. std::vector<llama_pos> ubatch_pos;
  2627. std::vector<int32_t> ubatch_n_seq_id;
  2628. std::vector<llama_seq_id *> ubatch_seq_id;
  2629. std::vector<int8_t> ubatch_output;
  2630. llama_ubatch reserve_ubatch(size_t n_ubatch, bool has_embd = false) {
  2631. // clear empty sequences
  2632. // the previous ubatch is assumed to be gone,
  2633. // so nothing should refer to values in these sequences anymore.
  2634. for (size_t i = seq.size(); i-- > 0;) {
  2635. if (seq[i].length == 0) {
  2636. seq.pop_back();
  2637. } else {
  2638. break;
  2639. }
  2640. }
  2641. ubatch_token.resize(!has_embd ? n_ubatch : 0);
  2642. ubatch_embd.resize(has_embd ? n_embd * n_ubatch : 0);
  2643. ubatch_pos.resize(n_ubatch);
  2644. ubatch_n_seq_id.resize(n_ubatch);
  2645. ubatch_seq_id.resize(n_ubatch);
  2646. ubatch_output.resize(n_ubatch);
  2647. llama_ubatch ubatch = {
  2648. /*equal_seqs =*/ true,
  2649. /*n_tokens =*/ 0,
  2650. /*n_seq_tokens =*/ 0,
  2651. /*n_seqs =*/ 0,
  2652. /*token =*/ !has_embd ? ubatch_token.data() : nullptr,
  2653. /*embd =*/ has_embd ? ubatch_embd.data() : nullptr,
  2654. /*pos =*/ ubatch_pos.data(),
  2655. /*n_seq_id =*/ ubatch_n_seq_id.data(),
  2656. /*seq_id =*/ ubatch_seq_id.data(),
  2657. /*output =*/ ubatch_output.data(),
  2658. };
  2659. return ubatch;
  2660. }
  2661. void add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length) {
  2662. GGML_ASSERT(batch != nullptr);
  2663. GGML_ASSERT(length <= seq.length);
  2664. // Can only add sequences of equal lengths to a batch,
  2665. // otherwise it isn't clear to which sequence a token belongs
  2666. GGML_ASSERT(seq.n_seq_id == 0 || ubatch.n_seqs == 0 || length == (size_t) ubatch.n_tokens / ubatch.n_seqs);
  2667. GGML_ASSERT((seq.n_seq_id != 0) == ubatch.equal_seqs);
  2668. // NOTE: loops are separated for cache-friendliness
  2669. if (batch->token) {
  2670. if (ubatch.equal_seqs) {
  2671. for (size_t i = 0; i < length; ++i) {
  2672. ubatch.token[ubatch.n_tokens + i] = batch->token[ids[seq.offset + i]];
  2673. }
  2674. } else {
  2675. // simple split
  2676. ubatch.token = batch->token + seq.offset;
  2677. }
  2678. } else {
  2679. ubatch.token = nullptr;
  2680. }
  2681. if (batch->embd) {
  2682. if (ubatch.equal_seqs) {
  2683. for (size_t i = 0; i < length; ++i) {
  2684. memcpy(
  2685. ubatch.embd + n_embd * (ubatch.n_tokens + i),
  2686. batch->embd + n_embd * ids[seq.offset + i],
  2687. n_embd * sizeof(float)
  2688. );
  2689. }
  2690. } else {
  2691. // simple split
  2692. ubatch.embd = batch->embd + (n_embd * seq.offset);
  2693. }
  2694. } else {
  2695. ubatch.embd = nullptr;
  2696. }
  2697. // from here on, the else branches are deprecated;
  2698. // they are helpers for smoother batch API transition
  2699. if (batch->pos) {
  2700. if (ubatch.equal_seqs) {
  2701. for (size_t i = 0; i < length; ++i) {
  2702. ubatch.pos[ubatch.n_tokens + i] = batch->pos[ids[seq.offset + i]];
  2703. }
  2704. } else {
  2705. // simple split
  2706. ubatch.pos = batch->pos + seq.offset;
  2707. }
  2708. } else {
  2709. for (size_t i = 0; i < length; ++i) {
  2710. llama_pos bi = ids[seq.offset + i];
  2711. ubatch.pos[ubatch.n_tokens + i] = batch->all_pos_0 + (bi * batch->all_pos_1);
  2712. }
  2713. }
  2714. if (ubatch.equal_seqs) {
  2715. ubatch.n_seq_id[ubatch.n_seqs] = seq.n_seq_id;
  2716. if (seq.seq_id) {
  2717. ubatch.seq_id[ubatch.n_seqs] = seq.seq_id;
  2718. } else {
  2719. GGML_ASSERT(seq.n_seq_id == 1);
  2720. ubatch.seq_id[ubatch.n_seqs] = &seq.all_seq_id;
  2721. }
  2722. } else {
  2723. // simple split
  2724. if (batch->n_seq_id) {
  2725. for (size_t i = 0; i < length; ++i) {
  2726. ubatch.n_seq_id = batch->n_seq_id + seq.offset;
  2727. }
  2728. } else {
  2729. for (size_t i = 0; i < length; ++i) {
  2730. ubatch.n_seq_id[ubatch.n_seqs + i] = 1;
  2731. }
  2732. }
  2733. if (batch->seq_id) {
  2734. for (size_t i = 0; i < length; ++i) {
  2735. ubatch.seq_id = batch->seq_id + seq.offset;
  2736. }
  2737. } else {
  2738. for (size_t i = 0; i < length; ++i) {
  2739. ubatch.seq_id[ubatch.n_seqs + i] = &seq.all_seq_id;
  2740. }
  2741. }
  2742. }
  2743. if (logits_all) {
  2744. for (size_t i = 0; i < length; ++i) {
  2745. ubatch.output[ubatch.n_tokens + i] = 1;
  2746. out_ids.push_back(ids[seq.offset + i]);
  2747. }
  2748. } else if (batch->logits) {
  2749. if (ubatch.equal_seqs) {
  2750. for (size_t i = 0; i < length; ++i) {
  2751. size_t id = ids[seq.offset + i];
  2752. int8_t is_output = batch->logits[id];
  2753. ubatch.output[ubatch.n_tokens + i] = is_output;
  2754. if (is_output) { out_ids.push_back(id); }
  2755. }
  2756. } else {
  2757. // simple split
  2758. ubatch.output = batch->logits + seq.offset;
  2759. for (size_t i = 0; i < length; ++i) {
  2760. if (ubatch.output[i] != 0) { out_ids.push_back(seq.offset + i); }
  2761. }
  2762. }
  2763. } else {
  2764. // only get last output
  2765. for (size_t i = 0; i < length; ++i) {
  2766. size_t id = ids[seq.offset + i];
  2767. int8_t is_last = id == ids.size() - 1;
  2768. ubatch.output[ubatch.n_tokens + i] = is_last;
  2769. if (is_last) { out_ids.push_back(id); }
  2770. }
  2771. }
  2772. if (ubatch.n_tokens == 0 && ubatch.n_seqs == 0) {
  2773. ubatch.n_seq_tokens = ubatch.equal_seqs ? length : 1;
  2774. }
  2775. ubatch.n_tokens += length;
  2776. ubatch.n_seqs += ubatch.equal_seqs ? 1 : length; // virtual sequences for simple splits
  2777. seq.offset += length;
  2778. seq.length -= length;
  2779. n_tokens -= length;
  2780. GGML_ASSERT(ubatch.n_tokens == ubatch.n_seq_tokens * ubatch.n_seqs);
  2781. }
  2782. // simple split, unknown number of sequences of unequal lengths
  2783. llama_ubatch split_simple(size_t n_ubatch) {
  2784. n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
  2785. llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
  2786. ubatch.equal_seqs = false;
  2787. if (!seq.empty()) {
  2788. llama_sbatch_seq & s = seq[0];
  2789. size_t length = s.length < n_ubatch ? s.length : n_ubatch;
  2790. GGML_ASSERT(seq.size() == 1 && s.n_seq_id == 0); // don't mix with other splits
  2791. add_seq_to_ubatch(ubatch, s, length);
  2792. }
  2793. return ubatch;
  2794. }
  2795. // make batches of equal-length sequences
  2796. llama_ubatch split_equal(size_t n_ubatch) {
  2797. n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
  2798. llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
  2799. if (!seq.empty()) {
  2800. size_t length = 0;
  2801. size_t n_tokens_in_ubatch = 0;
  2802. GGML_ASSERT(seq[0].n_seq_id > 0); // should not be mixed with simple splits
  2803. // smallest first, because it's easier to split this way;
  2804. // starting from the end to pop in constant time.
  2805. for (size_t i = seq.size(); i-- > 0;) {
  2806. llama_sbatch_seq & s = seq[i];
  2807. GGML_ASSERT(s.length > 0);
  2808. if (length == 0) {
  2809. length = s.length < n_ubatch ? s.length : n_ubatch;
  2810. }
  2811. add_seq_to_ubatch(ubatch, s, length);
  2812. n_tokens_in_ubatch += length;
  2813. // shared prompts can't be mixed with any of their sequences,
  2814. // so it's safer to compute them in their own ubatch
  2815. if (s.n_seq_id > 1) { break; }
  2816. // stop when there isn't enough space for another sequence
  2817. if (length + n_tokens_in_ubatch > n_ubatch) { break; }
  2818. }
  2819. }
  2820. return ubatch;
  2821. }
  2822. // sequence-wise split
  2823. llama_ubatch split_seq(size_t n_ubatch) {
  2824. n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
  2825. llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
  2826. if (!seq.empty()) {
  2827. llama_sbatch_seq & s = seq[seq.size() - 1];
  2828. size_t length = s.length < n_ubatch ? s.length : n_ubatch;
  2829. GGML_ASSERT(s.n_seq_id > 0); // should not be mixed with simple splits
  2830. add_seq_to_ubatch(ubatch, s, length);
  2831. }
  2832. return ubatch;
  2833. }
  2834. void from_batch(const llama_batch & batch, const size_t n_embd, const bool simple_split = false, const bool logits_all = false) {
  2835. GGML_ASSERT(batch.n_tokens >= 0);
  2836. this->batch = &batch;
  2837. this->n_embd = n_embd;
  2838. this->logits_all = logits_all;
  2839. n_tokens = batch.n_tokens;
  2840. ids.resize(n_tokens);
  2841. out_ids.clear();
  2842. // TODO: reserve out_ids and seq
  2843. for (size_t i = 0; i < n_tokens; ++i) {
  2844. ids[i] = i;
  2845. }
  2846. if (simple_split) {
  2847. seq.resize(1);
  2848. llama_sbatch_seq & s = seq[0];
  2849. s.n_seq_id = 0;
  2850. s.seq_id = nullptr;
  2851. s.offset = 0;
  2852. s.length = n_tokens;
  2853. s.all_seq_id = batch.all_seq_id;
  2854. return;
  2855. }
  2856. std::sort(ids.begin(), ids.end(),
  2857. [&batch](size_t a, size_t b) {
  2858. int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
  2859. int32_t n_seq_b = batch.n_seq_id ? batch.n_seq_id[b] : 1;
  2860. // sort by seq_id, then by pos
  2861. if (n_seq_a == n_seq_b) {
  2862. if (batch.seq_id) {
  2863. for (int32_t i = 0; i < n_seq_a; ++i) {
  2864. llama_seq_id seq_id_a = batch.seq_id[a][i];
  2865. llama_seq_id seq_id_b = batch.seq_id[b][i];
  2866. // smaller seq_ids go first
  2867. if (seq_id_a != seq_id_b) {
  2868. return seq_id_a < seq_id_b;
  2869. }
  2870. }
  2871. }
  2872. // when all else is equal, sort by pos
  2873. if (batch.pos) {
  2874. return batch.pos[a] < batch.pos[b];
  2875. }
  2876. // no pos, sort by id (assuming batch.all_pos_1 is positive)
  2877. return a < b;
  2878. }
  2879. // shared prompts go first
  2880. return n_seq_a > n_seq_b;
  2881. }
  2882. );
  2883. // init seq
  2884. llama_sbatch_seq * last_seq = nullptr;
  2885. if (batch.n_seq_id != nullptr && batch.seq_id != nullptr) {
  2886. for (size_t i = 0; i < n_tokens; ++i) {
  2887. const size_t bi = ids[i];
  2888. const int32_t n_seqs = batch.n_seq_id[bi];
  2889. llama_seq_id * seq_ids = batch.seq_id[bi];
  2890. if (last_seq != nullptr) {
  2891. bool same = n_seqs == last_seq->n_seq_id;
  2892. for (int32_t j = 0; same && j < n_seqs; ++j) {
  2893. if (seq_ids[j] != last_seq->seq_id[j]) {
  2894. same = false;
  2895. }
  2896. }
  2897. if (same) {
  2898. last_seq->length += 1;
  2899. continue;
  2900. }
  2901. }
  2902. llama_sbatch_seq new_seq = {n_seqs, seq_ids, i, 1, batch.all_seq_id};
  2903. seq.push_back(new_seq);
  2904. last_seq = &seq.back();
  2905. }
  2906. } else {
  2907. llama_sbatch_seq new_seq = {1, nullptr, 0, n_tokens, batch.all_seq_id};
  2908. seq.push_back(new_seq);
  2909. }
  2910. // keep shared prompts first at the end, then sort by length descending.
  2911. std::sort(seq.begin(), seq.end(),
  2912. [](llama_sbatch_seq & a, llama_sbatch_seq & b) {
  2913. if (a.n_seq_id == b.n_seq_id) {
  2914. return a.length > b.length;
  2915. }
  2916. return a.n_seq_id < b.n_seq_id;
  2917. }
  2918. );
  2919. }
  2920. };
  2921. struct llama_context {
  2922. llama_context(const llama_model & model)
  2923. : model(model)
  2924. , sampling(llama_n_vocab(&model))
  2925. , t_start_us(model.t_start_us)
  2926. , t_load_us(model.t_load_us) {}
  2927. ~llama_context() {
  2928. ggml_backend_sched_free(sched);
  2929. for (ggml_backend_t backend : backends) {
  2930. ggml_backend_free(backend);
  2931. }
  2932. ggml_backend_buffer_free(buf_output);
  2933. }
  2934. const struct llama_model & model;
  2935. struct llama_cparams cparams;
  2936. struct llama_sampling sampling;
  2937. struct llama_sbatch sbatch;
  2938. struct llama_kv_cache kv_self;
  2939. struct llama_control_vector cvec;
  2940. std::unordered_map<struct llama_lora_adapter *, float> lora_adapters;
  2941. std::vector<ggml_backend_t> backends;
  2942. #ifdef GGML_USE_METAL
  2943. ggml_backend_t backend_metal = nullptr;
  2944. #endif
  2945. #ifdef GGML_USE_BLAS
  2946. ggml_backend_t backend_blas = nullptr;
  2947. #endif
  2948. ggml_backend_t backend_cpu = nullptr;
  2949. ggml_threadpool_t threadpool = nullptr;
  2950. ggml_threadpool_t threadpool_batch = nullptr;
  2951. bool has_evaluated_once = false;
  2952. int64_t t_start_us;
  2953. int64_t t_load_us;
  2954. int64_t t_p_eval_us = 0;
  2955. int64_t t_eval_us = 0;
  2956. int64_t t_compute_start_us = 0;
  2957. int64_t n_queued_tokens = 0;
  2958. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2959. int32_t n_eval = 0; // number of eval calls
  2960. // host buffer for the model output (logits and embeddings)
  2961. ggml_backend_buffer_t buf_output = nullptr;
  2962. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2963. size_t logits_size = 0; // capacity (of floats) for logits
  2964. float * logits = nullptr;
  2965. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2966. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2967. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2968. bool logits_all = false;
  2969. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2970. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2971. size_t embd_size = 0; // capacity (of floats) for embeddings
  2972. float * embd = nullptr;
  2973. // sequence embeddings output (map of [n_embd] vectors)
  2974. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2975. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2976. // whether we are computing encoder output or decoder output
  2977. bool is_encoding = false;
  2978. // output of the encoder part of the encoder-decoder models
  2979. std::vector<float> embd_enc;
  2980. std::vector<std::set<llama_seq_id>> seq_ids_enc;
  2981. // memory buffers used to evaluate the model
  2982. std::vector<uint8_t> buf_compute_meta;
  2983. ggml_backend_sched_t sched = nullptr;
  2984. ggml_abort_callback abort_callback = nullptr;
  2985. void * abort_callback_data = nullptr;
  2986. // input tensors
  2987. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2988. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2989. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2990. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2991. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2992. struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
  2993. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2994. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2995. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2996. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2997. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2998. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2999. struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
  3000. struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
  3001. struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
  3002. };
  3003. struct llama_lora_weight {
  3004. struct ggml_tensor * a = nullptr;
  3005. struct ggml_tensor * b = nullptr;
  3006. llama_lora_weight() = default;
  3007. llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b): a(a), b(b) {}
  3008. };
  3009. struct llama_lora_adapter {
  3010. struct llama_model * base_model;
  3011. // map tensor name to lora_a_b
  3012. std::unordered_map<std::string, struct llama_lora_weight> ab_map;
  3013. std::vector<struct ggml_context *> ctxs;
  3014. std::vector<ggml_backend_buffer_t> bufs;
  3015. float alpha;
  3016. llama_lora_adapter(struct llama_model * base_model): base_model(base_model) {
  3017. base_model->lora_adapters.insert(this);
  3018. }
  3019. llama_lora_weight * get_weight(struct ggml_tensor * w) {
  3020. std::string name(w->name);
  3021. auto pos = ab_map.find(name);
  3022. if (ab_map.find(name) != ab_map.end()) {
  3023. return &pos->second;
  3024. }
  3025. return nullptr;
  3026. }
  3027. ~llama_lora_adapter() {
  3028. for (struct ggml_context * ctx : ctxs) {
  3029. ggml_free(ctx);
  3030. }
  3031. for (ggml_backend_buffer_t buf : bufs) {
  3032. ggml_backend_buffer_free(buf);
  3033. }
  3034. auto pos = base_model->lora_adapters.find(this);
  3035. if (pos != base_model->lora_adapters.end()) {
  3036. base_model->lora_adapters.erase(pos);
  3037. }
  3038. }
  3039. };
  3040. static size_t llama_get_device_count(const llama_model & model) {
  3041. size_t count = 1;
  3042. #if defined(GGML_USE_CUDA)
  3043. count = ggml_backend_cuda_get_device_count();
  3044. #elif defined(GGML_USE_SYCL)
  3045. count = ggml_backend_sycl_get_device_count();
  3046. #elif defined(GGML_USE_VULKAN)
  3047. count = ggml_backend_vk_get_device_count();
  3048. #elif defined(GGML_USE_CANN)
  3049. return ggml_backend_cann_get_device_count();
  3050. #endif
  3051. #if defined(GGML_USE_RPC)
  3052. count += model.rpc_servers.size();
  3053. #endif
  3054. return count;
  3055. GGML_UNUSED(model);
  3056. }
  3057. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  3058. ggml_backend_buffer_type_t buft = nullptr;
  3059. #if defined(GGML_USE_RPC)
  3060. int dev_count = (int)llama_get_device_count(model);
  3061. int rpc_count = (int)model.rpc_servers.size();
  3062. if (gpu >= dev_count - rpc_count) {
  3063. const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str();
  3064. return ggml_backend_rpc_buffer_type(endpoint);
  3065. }
  3066. #endif
  3067. #if defined(GGML_USE_METAL)
  3068. buft = ggml_backend_metal_buffer_type();
  3069. #elif defined(GGML_USE_CUDA)
  3070. buft = ggml_backend_cuda_buffer_type(gpu);
  3071. #elif defined(GGML_USE_VULKAN)
  3072. buft = ggml_backend_vk_buffer_type(gpu);
  3073. #elif defined(GGML_USE_SYCL)
  3074. buft = ggml_backend_sycl_buffer_type(gpu);
  3075. #elif defined(GGML_USE_KOMPUTE)
  3076. buft = ggml_backend_kompute_buffer_type(gpu);
  3077. if (buft == nullptr) {
  3078. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  3079. }
  3080. #elif defined(GGML_USE_CANN)
  3081. buft = ggml_backend_cann_buffer_type(gpu);
  3082. #endif
  3083. if (buft == nullptr) {
  3084. buft = llama_default_buffer_type_cpu(true);
  3085. }
  3086. return buft;
  3087. GGML_UNUSED(model);
  3088. GGML_UNUSED(gpu);
  3089. }
  3090. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  3091. ggml_backend_buffer_type_t buft = nullptr;
  3092. #ifdef GGML_USE_CUDA
  3093. if (ggml_backend_cuda_get_device_count() > 1) {
  3094. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  3095. }
  3096. #endif
  3097. #ifdef GGML_USE_SYCL
  3098. if (ggml_backend_sycl_get_device_count() > 1) {
  3099. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  3100. }
  3101. #endif
  3102. if (buft == nullptr) {
  3103. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  3104. }
  3105. return buft;
  3106. GGML_UNUSED(tensor_split);
  3107. }
  3108. static size_t llama_get_device_memory(const llama_model & model, int device) {
  3109. #if defined(GGML_USE_RPC)
  3110. int dev_count = (int)llama_get_device_count(model);
  3111. int rpc_count = (int)model.rpc_servers.size();
  3112. if (device >= dev_count - rpc_count) {
  3113. size_t total;
  3114. size_t free;
  3115. const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str();
  3116. ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
  3117. return free;
  3118. }
  3119. #endif
  3120. #if defined(GGML_USE_CUDA)
  3121. size_t total;
  3122. size_t free;
  3123. ggml_backend_cuda_get_device_memory(device, &free, &total);
  3124. return free;
  3125. #elif defined(GGML_USE_SYCL)
  3126. size_t total;
  3127. size_t free;
  3128. ggml_backend_sycl_get_device_memory(device, &free, &total);
  3129. return free;
  3130. #elif defined(GGML_USE_VULKAN)
  3131. size_t total;
  3132. size_t free;
  3133. ggml_backend_vk_get_device_memory(device, &free, &total);
  3134. return free;
  3135. #elif defined(GGML_USE_CANN)
  3136. size_t total;
  3137. size_t free;
  3138. ggml_backend_cann_get_device_memory(device, &free, &total);
  3139. return free;
  3140. #else
  3141. return 1;
  3142. #endif
  3143. GGML_UNUSED(model);
  3144. GGML_UNUSED(device);
  3145. }
  3146. //
  3147. // kv cache helpers
  3148. //
  3149. static bool llama_kv_cache_init(
  3150. struct llama_kv_cache & cache,
  3151. const llama_context * ctx,
  3152. ggml_type type_k,
  3153. ggml_type type_v,
  3154. uint32_t kv_size,
  3155. bool offload) {
  3156. const llama_model & model = ctx->model;
  3157. const llama_cparams & cparams = ctx->cparams;
  3158. const struct llama_hparams & hparams = model.hparams;
  3159. const int64_t n_layer = hparams.n_layer;
  3160. cache.has_shift = false;
  3161. cache.recurrent = llama_model_is_recurrent(&model);
  3162. cache.v_trans = !cache.recurrent && !cparams.flash_attn;
  3163. cache.head = 0;
  3164. cache.size = kv_size;
  3165. cache.used = 0;
  3166. cache.type_k = type_k;
  3167. cache.type_v = type_v;
  3168. cache.cells.clear();
  3169. cache.cells.resize(kv_size);
  3170. // count used buffer types
  3171. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  3172. if (offload) {
  3173. for (int64_t i = 0; i < n_layer; ++i) {
  3174. buft_layer_count[model.buft_layer[i].buft]++;
  3175. }
  3176. } else {
  3177. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  3178. }
  3179. // create a context for each buffer type
  3180. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  3181. for (auto & it : buft_layer_count) {
  3182. int n_layers = it.second;
  3183. struct ggml_init_params params = {
  3184. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  3185. /*.mem_buffer =*/ NULL,
  3186. /*.no_alloc =*/ true,
  3187. };
  3188. ggml_context * ctx = ggml_init(params);
  3189. if (!ctx) {
  3190. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  3191. return false;
  3192. }
  3193. ctx_map[it.first] = ctx;
  3194. cache.ctxs.push_back(ctx);
  3195. }
  3196. cache.k_l.reserve(n_layer);
  3197. cache.v_l.reserve(n_layer);
  3198. for (int i = 0; i < (int) n_layer; i++) {
  3199. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
  3200. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
  3201. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  3202. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  3203. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  3204. ggml_format_name(k, "cache_k_l%d", i);
  3205. ggml_format_name(v, "cache_v_l%d", i);
  3206. cache.k_l.push_back(k);
  3207. cache.v_l.push_back(v);
  3208. }
  3209. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  3210. for (auto it : ctx_map) {
  3211. ggml_backend_buffer_type_t buft = it.first;
  3212. ggml_context * ctx = it.second;
  3213. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  3214. if (!buf) {
  3215. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  3216. return false;
  3217. }
  3218. ggml_backend_buffer_clear(buf, 0);
  3219. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  3220. cache.bufs.push_back(buf);
  3221. }
  3222. return true;
  3223. }
  3224. // find an empty slot of size "n_tokens" in the cache
  3225. // updates the cache head
  3226. // Note: On success, it's important that cache.head points
  3227. // to the first cell of the slot.
  3228. static bool llama_kv_cache_find_slot(
  3229. struct llama_kv_cache & cache,
  3230. const struct llama_ubatch & batch) {
  3231. const uint32_t n_tokens = batch.n_tokens;
  3232. const uint32_t n_seqs = batch.n_seqs;
  3233. const uint32_t n_seq_tokens = batch.n_seq_tokens;
  3234. if (cache.recurrent) {
  3235. // For recurrent state architectures (like Mamba or RWKV),
  3236. // each cache cell can store the state for a whole sequence.
  3237. // A slot should be always be contiguous.
  3238. // can only process batches with an equal number of new tokens in each sequence
  3239. GGML_ASSERT(batch.equal_seqs);
  3240. int32_t min = cache.size - 1;
  3241. int32_t max = 0;
  3242. // everything should fit if all seq_ids are smaller than the max
  3243. for (uint32_t s = 0; s < n_seqs; ++s) {
  3244. const uint32_t n_seq_id = batch.n_seq_id[s];
  3245. for (uint32_t j = 0; j < n_seq_id; ++j) {
  3246. const llama_seq_id seq_id = batch.seq_id[s][j];
  3247. if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
  3248. // too big seq_id
  3249. // TODO: would it be possible to resize the cache instead?
  3250. LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  3251. return false;
  3252. }
  3253. if (j > 0) {
  3254. llama_kv_cell & seq = cache.cells[seq_id];
  3255. if (seq.tail >= 0) {
  3256. llama_kv_cell & cell = cache.cells[seq.tail];
  3257. // clear cells from seq_ids that become shared
  3258. // (should not normally happen, but let's handle it anyway)
  3259. cell.seq_id.erase(seq_id);
  3260. seq.tail = -1;
  3261. if (cell.seq_id.empty()) {
  3262. cell.pos = -1;
  3263. cell.src = -1;
  3264. cache.used -= 1;
  3265. }
  3266. }
  3267. }
  3268. }
  3269. }
  3270. #ifndef NDEBUG
  3271. {
  3272. std::vector<int32_t> tails_verif;
  3273. tails_verif.assign(cache.size, -1);
  3274. for (uint32_t i = 0; i < cache.size; ++i) {
  3275. llama_kv_cell & cell = cache.cells[i];
  3276. for (llama_seq_id seq_id : cell.seq_id) {
  3277. if (tails_verif[seq_id] != -1) {
  3278. LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
  3279. }
  3280. tails_verif[seq_id] = i;
  3281. }
  3282. }
  3283. for (uint32_t i = 0; i < cache.size; ++i) {
  3284. if (tails_verif[i] != cache.cells[i].tail) {
  3285. LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cache.cells[i].tail, tails_verif[i]);
  3286. }
  3287. }
  3288. }
  3289. #endif
  3290. // find next empty cell
  3291. uint32_t next_empty_cell = cache.head;
  3292. for (uint32_t i = 0; i < cache.size; ++i) {
  3293. if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
  3294. llama_kv_cell & cell = cache.cells[next_empty_cell];
  3295. if (cell.is_empty()) { break; }
  3296. next_empty_cell += 1;
  3297. }
  3298. // find usable cell range
  3299. for (uint32_t s = 0; s < n_seqs; ++s) {
  3300. const llama_seq_id seq_id = batch.seq_id[s][0];
  3301. llama_kv_cell & seq_meta = cache.cells[seq_id];
  3302. bool has_cell = false;
  3303. if (seq_meta.tail >= 0) {
  3304. llama_kv_cell & cell = cache.cells[seq_meta.tail];
  3305. GGML_ASSERT(cell.has_seq_id(seq_id));
  3306. // does this seq_id "own" the cell?
  3307. if (cell.seq_id.size() == 1) { has_cell = true; }
  3308. }
  3309. if (!has_cell) {
  3310. llama_kv_cell & empty_cell = cache.cells[next_empty_cell];
  3311. GGML_ASSERT(empty_cell.is_empty());
  3312. // copy old tail into the empty cell
  3313. if (seq_meta.tail >= 0) {
  3314. llama_kv_cell & orig_cell = cache.cells[seq_meta.tail];
  3315. empty_cell.pos = orig_cell.pos;
  3316. empty_cell.src = orig_cell.src;
  3317. orig_cell.seq_id.erase(seq_id);
  3318. empty_cell.seq_id.insert(seq_id); // will be overwritten
  3319. }
  3320. seq_meta.tail = next_empty_cell;
  3321. // find next empty cell
  3322. if (s + 1 < n_seqs) {
  3323. next_empty_cell += 1;
  3324. for (uint32_t i = 0; i < cache.size; ++i) {
  3325. if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
  3326. llama_kv_cell & cell = cache.cells[next_empty_cell];
  3327. if (cell.is_empty()) { break; }
  3328. next_empty_cell += 1;
  3329. }
  3330. }
  3331. }
  3332. if (min > seq_meta.tail) { min = seq_meta.tail; }
  3333. if (max < seq_meta.tail) { max = seq_meta.tail; }
  3334. }
  3335. // gather and re-order
  3336. for (uint32_t s = 0; s < n_seqs; ++s) {
  3337. int32_t dst_id = s + min;
  3338. int32_t src_id = cache.cells[batch.seq_id[s][0]].tail;
  3339. if (dst_id != src_id) {
  3340. llama_kv_cell & dst_cell = cache.cells[dst_id];
  3341. llama_kv_cell & src_cell = cache.cells[src_id];
  3342. std::swap(dst_cell.pos, src_cell.pos);
  3343. std::swap(dst_cell.src, src_cell.src);
  3344. std::swap(dst_cell.seq_id, src_cell.seq_id);
  3345. // swap tails (assuming they NEVER overlap)
  3346. for (const llama_seq_id seq_id : src_cell.seq_id) {
  3347. cache.cells[seq_id].tail = src_id;
  3348. }
  3349. for (const llama_seq_id seq_id : dst_cell.seq_id) {
  3350. cache.cells[seq_id].tail = dst_id;
  3351. }
  3352. }
  3353. }
  3354. // update the pos of the used seqs
  3355. for (uint32_t s = 0; s < n_seqs; ++s) {
  3356. const llama_pos last_pos = batch.pos[n_seq_tokens * s + n_seq_tokens - 1];
  3357. int32_t cell_id = s + min;
  3358. llama_kv_cell & cell = cache.cells[cell_id];
  3359. if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
  3360. // What should happen when the pos backtracks or skips a value?
  3361. // Clearing the state mid-batch would require special-casing which isn't done.
  3362. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
  3363. __func__, last_pos, cell.pos, batch.seq_id[s][0], n_seq_tokens);
  3364. }
  3365. cell.pos = last_pos;
  3366. cell.seq_id.clear();
  3367. for (int32_t j = 0; j < batch.n_seq_id[s]; ++j) {
  3368. const llama_seq_id seq_id = batch.seq_id[s][j];
  3369. cell.seq_id.insert(seq_id);
  3370. cache.cells[seq_id].tail = cell_id;
  3371. }
  3372. }
  3373. // allow getting the range of used cells, from head to head + n
  3374. cache.head = min;
  3375. cache.n = max - min + 1;
  3376. // sanity check
  3377. return cache.n >= n_seqs;
  3378. }
  3379. // otherwise, one cell per token.
  3380. if (n_tokens > cache.size) {
  3381. LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
  3382. return false;
  3383. }
  3384. uint32_t n_tested = 0;
  3385. while (true) {
  3386. if (cache.head + n_tokens > cache.size) {
  3387. n_tested += cache.size - cache.head;
  3388. cache.head = 0;
  3389. continue;
  3390. }
  3391. bool found = true;
  3392. for (uint32_t i = 0; i < n_tokens; i++) {
  3393. if (cache.cells[cache.head + i].pos >= 0) {
  3394. found = false;
  3395. cache.head += i + 1;
  3396. n_tested += i + 1;
  3397. break;
  3398. }
  3399. }
  3400. if (found) {
  3401. break;
  3402. }
  3403. if (n_tested >= cache.size) {
  3404. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  3405. return false;
  3406. }
  3407. }
  3408. for (uint32_t s = 0; s < n_seqs; s++) {
  3409. for (uint32_t i = 0; i < n_seq_tokens; ++i) {
  3410. uint32_t k = s*n_seq_tokens + i;
  3411. cache.cells[cache.head + k].pos = batch.pos[k];
  3412. for (int32_t j = 0; j < batch.n_seq_id[s]; j++) {
  3413. cache.cells[cache.head + k].seq_id.insert(batch.seq_id[s][j]);
  3414. }
  3415. }
  3416. }
  3417. cache.used += n_tokens;
  3418. return true;
  3419. }
  3420. // find how many cells are currently in use
  3421. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  3422. for (uint32_t i = cache.size; i > 0; --i) {
  3423. const llama_kv_cell & cell = cache.cells[i - 1];
  3424. if (cell.pos >= 0 && !cell.is_empty()) {
  3425. return i;
  3426. }
  3427. }
  3428. return 0;
  3429. }
  3430. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  3431. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  3432. cache.cells[i].pos = -1;
  3433. cache.cells[i].seq_id.clear();
  3434. cache.cells[i].src = -1;
  3435. cache.cells[i].tail = -1;
  3436. }
  3437. cache.head = 0;
  3438. cache.used = 0;
  3439. for (auto & buf : cache.bufs) {
  3440. ggml_backend_buffer_clear(buf, 0);
  3441. }
  3442. }
  3443. static bool llama_kv_cache_seq_rm(
  3444. struct llama_kv_cache & cache,
  3445. llama_seq_id seq_id,
  3446. llama_pos p0,
  3447. llama_pos p1) {
  3448. uint32_t new_head = cache.size;
  3449. if (p0 < 0) p0 = 0;
  3450. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  3451. // models like Mamba or RWKV can't have a state partially erased
  3452. if (cache.recurrent) {
  3453. if (seq_id >= (int64_t) cache.size) {
  3454. // could be fatal
  3455. return false;
  3456. }
  3457. if (0 <= seq_id) {
  3458. int32_t & tail_id = cache.cells[seq_id].tail;
  3459. if (tail_id >= 0) {
  3460. const llama_kv_cell & cell = cache.cells[tail_id];
  3461. // partial intersection is invalid
  3462. if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
  3463. return false;
  3464. }
  3465. // invalidate tails which will be cleared
  3466. if (p0 <= cell.pos && cell.pos < p1) {
  3467. tail_id = -1;
  3468. }
  3469. }
  3470. } else {
  3471. // seq_id is negative, then the range should include everything or nothing
  3472. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  3473. return false;
  3474. }
  3475. }
  3476. }
  3477. for (uint32_t i = 0; i < cache.size; ++i) {
  3478. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  3479. if (seq_id < 0) {
  3480. cache.cells[i].seq_id.clear();
  3481. } else if (cache.cells[i].has_seq_id(seq_id)) {
  3482. cache.cells[i].seq_id.erase(seq_id);
  3483. } else {
  3484. continue;
  3485. }
  3486. if (cache.cells[i].is_empty()) {
  3487. // keep count of the number of used cells
  3488. if (cache.cells[i].pos >= 0) cache.used--;
  3489. cache.cells[i].pos = -1;
  3490. cache.cells[i].src = -1;
  3491. if (new_head == cache.size) new_head = i;
  3492. }
  3493. }
  3494. }
  3495. // If we freed up a slot, set head to it so searching can start there.
  3496. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  3497. return true;
  3498. }
  3499. static void llama_kv_cache_seq_cp(
  3500. struct llama_kv_cache & cache,
  3501. llama_seq_id seq_id_src,
  3502. llama_seq_id seq_id_dst,
  3503. llama_pos p0,
  3504. llama_pos p1) {
  3505. if (p0 < 0) p0 = 0;
  3506. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  3507. if (cache.recurrent) {
  3508. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  3509. llama_kv_cell & tail_src = cache.cells[seq_id_src];
  3510. llama_kv_cell & tail_dst = cache.cells[seq_id_dst];
  3511. if (tail_dst.tail >= 0) {
  3512. // clear destination seq_id if it wasn't empty
  3513. llama_kv_cell & cell_dst = cache.cells[tail_dst.tail];
  3514. cell_dst.seq_id.erase(seq_id_dst);
  3515. tail_dst.tail = -1;
  3516. if (cell_dst.seq_id.empty()) {
  3517. cell_dst.pos = -1;
  3518. cell_dst.delta = -1;
  3519. cell_dst.src = -1;
  3520. cache.used -= 1;
  3521. }
  3522. }
  3523. if (tail_src.tail >= 0) {
  3524. llama_kv_cell & cell_src = cache.cells[tail_src.tail];
  3525. cell_src.seq_id.insert(seq_id_dst);
  3526. tail_dst.tail = tail_src.tail;
  3527. }
  3528. }
  3529. return;
  3530. }
  3531. // otherwise, this is the KV cache of a Transformer-like model
  3532. cache.head = 0;
  3533. for (uint32_t i = 0; i < cache.size; ++i) {
  3534. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  3535. cache.cells[i].seq_id.insert(seq_id_dst);
  3536. }
  3537. }
  3538. }
  3539. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  3540. uint32_t new_head = cache.size;
  3541. for (uint32_t i = 0; i < cache.size; ++i) {
  3542. if (cache.recurrent && (llama_seq_id) i != seq_id) {
  3543. cache.cells[i].tail = -1;
  3544. }
  3545. if (!cache.cells[i].has_seq_id(seq_id)) {
  3546. if (cache.cells[i].pos >= 0) cache.used--;
  3547. cache.cells[i].pos = -1;
  3548. cache.cells[i].src = -1;
  3549. cache.cells[i].seq_id.clear();
  3550. if (new_head == cache.size) new_head = i;
  3551. } else {
  3552. cache.cells[i].seq_id.clear();
  3553. cache.cells[i].seq_id.insert(seq_id);
  3554. }
  3555. }
  3556. // If we freed up a slot, set head to it so searching can start there.
  3557. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  3558. }
  3559. static void llama_kv_cache_seq_add(
  3560. struct llama_kv_cache & cache,
  3561. llama_seq_id seq_id,
  3562. llama_pos p0,
  3563. llama_pos p1,
  3564. llama_pos delta) {
  3565. uint32_t new_head = cache.size;
  3566. if (p0 < 0) p0 = 0;
  3567. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  3568. // If there is no range then return early to avoid looping over the cache.
  3569. if (p0 == p1) return;
  3570. if (cache.recurrent) {
  3571. // for Mamba-like or RWKV models, only the pos needs to be shifted
  3572. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  3573. const int32_t tail_id = cache.cells[seq_id].tail;
  3574. if (tail_id >= 0) {
  3575. llama_kv_cell & cell = cache.cells[tail_id];
  3576. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  3577. cell.pos += delta;
  3578. }
  3579. }
  3580. }
  3581. return;
  3582. }
  3583. for (uint32_t i = 0; i < cache.size; ++i) {
  3584. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  3585. cache.has_shift = true;
  3586. cache.cells[i].pos += delta;
  3587. cache.cells[i].delta += delta;
  3588. if (cache.cells[i].pos < 0) {
  3589. if (!cache.cells[i].is_empty()) {
  3590. cache.used--;
  3591. }
  3592. cache.cells[i].pos = -1;
  3593. cache.cells[i].seq_id.clear();
  3594. if (new_head == cache.size) {
  3595. new_head = i;
  3596. }
  3597. }
  3598. }
  3599. }
  3600. // If we freed up a slot, set head to it so searching can start there.
  3601. // Otherwise we just start the next search from the beginning.
  3602. cache.head = new_head != cache.size ? new_head : 0;
  3603. }
  3604. static void llama_kv_cache_seq_div(
  3605. struct llama_kv_cache & cache,
  3606. llama_seq_id seq_id,
  3607. llama_pos p0,
  3608. llama_pos p1,
  3609. int d) {
  3610. if (p0 < 0) p0 = 0;
  3611. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  3612. // If there is no range then return early to avoid looping over the cache.
  3613. if (p0 == p1) return;
  3614. if (cache.recurrent) {
  3615. // for Mamba-like or RWKV models, only the pos needs to be changed
  3616. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  3617. const int32_t tail_id = cache.cells[seq_id].tail;
  3618. if (tail_id >= 0) {
  3619. llama_kv_cell & cell = cache.cells[tail_id];
  3620. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  3621. cell.pos /= d;
  3622. }
  3623. }
  3624. }
  3625. return;
  3626. }
  3627. for (uint32_t i = 0; i < cache.size; ++i) {
  3628. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  3629. cache.has_shift = true;
  3630. {
  3631. llama_pos p_old = cache.cells[i].pos;
  3632. cache.cells[i].pos /= d;
  3633. cache.cells[i].delta += cache.cells[i].pos - p_old;
  3634. }
  3635. }
  3636. }
  3637. }
  3638. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  3639. llama_pos result = 0;
  3640. for (uint32_t i = 0; i < cache.size; ++i) {
  3641. if (cache.cells[i].has_seq_id(seq_id)) {
  3642. result = std::max(result, cache.cells[i].pos);
  3643. }
  3644. }
  3645. return result;
  3646. }
  3647. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  3648. if (!cache.recurrent) {
  3649. cache.do_defrag = true;
  3650. }
  3651. }
  3652. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  3653. // the FA kernels require padding to avoid extra runtime boundary checks
  3654. return cparams.flash_attn ? 256u : 32u;
  3655. }
  3656. //
  3657. // model loading and saving
  3658. //
  3659. enum llama_fver {
  3660. GGUF_FILE_VERSION_V1 = 1,
  3661. GGUF_FILE_VERSION_V2 = 2,
  3662. GGUF_FILE_VERSION_V3 = 3,
  3663. };
  3664. static const char * llama_file_version_name(llama_fver version) {
  3665. switch (version) {
  3666. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  3667. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  3668. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  3669. }
  3670. return "unknown";
  3671. }
  3672. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  3673. char buf[256];
  3674. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  3675. for (size_t i = 1; i < ne.size(); i++) {
  3676. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  3677. }
  3678. return buf;
  3679. }
  3680. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  3681. char buf[256];
  3682. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  3683. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  3684. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  3685. }
  3686. return buf;
  3687. }
  3688. namespace GGUFMeta {
  3689. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  3690. struct GKV_Base_Type {
  3691. static constexpr gguf_type gt = gt_;
  3692. static T getter(const gguf_context * ctx, const int kid) {
  3693. return gfun(ctx, kid);
  3694. }
  3695. };
  3696. template<typename T> struct GKV_Base;
  3697. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  3698. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  3699. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  3700. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  3701. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  3702. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  3703. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  3704. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  3705. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  3706. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  3707. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  3708. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  3709. template<> struct GKV_Base<std::string> {
  3710. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  3711. static std::string getter(const gguf_context * ctx, const int kid) {
  3712. return gguf_get_val_str(ctx, kid);
  3713. }
  3714. };
  3715. struct ArrayInfo {
  3716. const gguf_type gt;
  3717. const size_t length;
  3718. const void * data;
  3719. };
  3720. template<> struct GKV_Base<ArrayInfo> {
  3721. public:
  3722. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  3723. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  3724. return ArrayInfo {
  3725. gguf_get_arr_type(ctx, k),
  3726. size_t(gguf_get_arr_n(ctx, k)),
  3727. gguf_get_arr_data(ctx, k),
  3728. };
  3729. }
  3730. };
  3731. template<typename T>
  3732. class GKV : public GKV_Base<T> {
  3733. GKV() = delete;
  3734. public:
  3735. static T get_kv(const gguf_context * ctx, const int k) {
  3736. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  3737. if (kt != GKV::gt) {
  3738. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  3739. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  3740. }
  3741. return GKV::getter(ctx, k);
  3742. }
  3743. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  3744. switch (ty) {
  3745. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  3746. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  3747. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  3748. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  3749. }
  3750. return "unknown";
  3751. }
  3752. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  3753. if (!ovrd) { return false; }
  3754. if (ovrd->tag == expected_type) {
  3755. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  3756. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  3757. switch (ovrd->tag) {
  3758. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  3759. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  3760. } break;
  3761. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  3762. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  3763. } break;
  3764. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  3765. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  3766. } break;
  3767. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  3768. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  3769. } break;
  3770. default:
  3771. // Shouldn't be possible to end up here, but just in case...
  3772. throw std::runtime_error(
  3773. format("Unsupported attempt to override %s type for metadata key %s\n",
  3774. override_type_to_str(ovrd->tag), ovrd->key));
  3775. }
  3776. return true;
  3777. }
  3778. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  3779. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  3780. return false;
  3781. }
  3782. template<typename OT>
  3783. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  3784. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  3785. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  3786. target = ovrd->val_bool;
  3787. return true;
  3788. }
  3789. return false;
  3790. }
  3791. template<typename OT>
  3792. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  3793. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  3794. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  3795. target = ovrd->val_i64;
  3796. return true;
  3797. }
  3798. return false;
  3799. }
  3800. template<typename OT>
  3801. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  3802. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  3803. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  3804. target = ovrd->val_f64;
  3805. return true;
  3806. }
  3807. return false;
  3808. }
  3809. template<typename OT>
  3810. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  3811. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  3812. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  3813. target = ovrd->val_str;
  3814. return true;
  3815. }
  3816. return false;
  3817. }
  3818. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  3819. if (try_override<T>(target, ovrd)) {
  3820. return true;
  3821. }
  3822. if (k < 0) { return false; }
  3823. target = get_kv(ctx, k);
  3824. return true;
  3825. }
  3826. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  3827. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  3828. }
  3829. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  3830. return set(ctx, key.c_str(), target, ovrd);
  3831. }
  3832. };
  3833. }
  3834. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  3835. static size_t llama_model_max_nodes(const llama_model & model) {
  3836. return std::max<size_t>(8192, model.tensors_by_name.size()*5);
  3837. }
  3838. struct llama_model_loader {
  3839. int n_kv = 0;
  3840. int n_tensors = 0;
  3841. int n_created = 0;
  3842. int64_t n_elements = 0;
  3843. size_t n_bytes = 0;
  3844. bool use_mmap = false;
  3845. bool check_tensors;
  3846. llama_files files;
  3847. llama_ftype ftype;
  3848. llama_fver fver;
  3849. llama_mmaps mappings;
  3850. // Holds information on a model weight
  3851. struct llama_tensor_weight {
  3852. uint16_t idx; // source file index
  3853. size_t offs; // tensor data offset in the original file
  3854. ggml_tensor * tensor;
  3855. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  3856. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  3857. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  3858. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  3859. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  3860. }
  3861. }
  3862. };
  3863. std::vector<llama_tensor_weight> weights;
  3864. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  3865. struct gguf_context * meta = NULL;
  3866. std::vector<ggml_context *> contexts;
  3867. std::string arch_name;
  3868. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  3869. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  3870. int trace = 0;
  3871. if (getenv("LLAMA_TRACE")) {
  3872. trace = atoi(getenv("LLAMA_TRACE"));
  3873. }
  3874. if (param_overrides_p != nullptr) {
  3875. for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) {
  3876. kv_overrides.insert({std::string(p->key), *p});
  3877. }
  3878. }
  3879. struct ggml_context * ctx = NULL;
  3880. struct gguf_init_params params = {
  3881. /*.no_alloc = */ true,
  3882. /*.ctx = */ &ctx,
  3883. };
  3884. meta = gguf_init_from_file(fname.c_str(), params);
  3885. if (!meta) {
  3886. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  3887. }
  3888. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  3889. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  3890. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  3891. contexts.emplace_back(ctx);
  3892. // Save tensors data offset of the main file.
  3893. // For subsidiary files, `meta` tensor data offset must not be used,
  3894. // so we build a unified tensors index for weights.
  3895. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  3896. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  3897. }
  3898. uint16_t n_split = 0;
  3899. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  3900. // Load additional GGML contexts
  3901. if (n_split > 1) {
  3902. uint16_t idx = 0;
  3903. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  3904. if (idx != 0) {
  3905. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  3906. }
  3907. char split_prefix[PATH_MAX] = {0};
  3908. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  3909. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  3910. }
  3911. if (trace > 0) {
  3912. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  3913. }
  3914. char split_path[PATH_MAX] = {0};
  3915. for (idx = 1; idx < n_split; idx++) {
  3916. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  3917. struct gguf_init_params split_params = {
  3918. /*.no_alloc = */ true,
  3919. /*.ctx = */ &ctx,
  3920. };
  3921. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  3922. if (!ctx_gguf) {
  3923. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  3924. }
  3925. files.emplace_back(new llama_file(split_path, "rb"));
  3926. contexts.emplace_back(ctx);
  3927. // Save tensors data offset info of the shard.
  3928. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  3929. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  3930. }
  3931. gguf_free(ctx_gguf);
  3932. }
  3933. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  3934. // sanity check
  3935. {
  3936. const int n_tensors_loaded = (int) weights.size();
  3937. if (n_tensors != n_tensors_loaded) {
  3938. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  3939. }
  3940. }
  3941. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  3942. }
  3943. n_kv = gguf_get_n_kv(meta);
  3944. n_tensors = weights.size();
  3945. fver = (enum llama_fver) gguf_get_version(meta);
  3946. std::set<std::string> tensor_names;
  3947. for (auto & w : weights) {
  3948. n_elements += ggml_nelements(w.tensor);
  3949. n_bytes += ggml_nbytes(w.tensor);
  3950. // make sure there is no duplicated tensor names
  3951. const std::string name(w.tensor->name);
  3952. auto found = tensor_names.find(name);
  3953. if (found != tensor_names.end()) {
  3954. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  3955. }
  3956. tensor_names.insert(name);
  3957. }
  3958. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  3959. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  3960. // determine file type based on the number of tensors for each quantization and print meta data
  3961. // TODO: make optional
  3962. {
  3963. std::map<enum ggml_type, uint32_t> n_type;
  3964. uint32_t n_type_max = 0;
  3965. enum ggml_type type_max = GGML_TYPE_F32;
  3966. for (int i = 0; i < n_tensors; i++) {
  3967. const ggml_tensor * tensor = weights.at(i).tensor;
  3968. enum ggml_type type = tensor->type;
  3969. n_type[type]++;
  3970. if (n_type_max < n_type[type]) {
  3971. n_type_max = n_type[type];
  3972. type_max = type;
  3973. }
  3974. if (trace > 0) {
  3975. const uint16_t sid = weights.at(i).idx;
  3976. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  3977. }
  3978. }
  3979. switch (type_max) {
  3980. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  3981. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  3982. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  3983. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  3984. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  3985. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  3986. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  3987. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  3988. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  3989. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  3990. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  3991. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  3992. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  3993. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  3994. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  3995. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  3996. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  3997. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  3998. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  3999. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  4000. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  4001. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  4002. case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break;
  4003. case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break;
  4004. case GGML_TYPE_Q4_0_8_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_8_8; break;
  4005. default:
  4006. {
  4007. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  4008. ftype = LLAMA_FTYPE_ALL_F32;
  4009. } break;
  4010. }
  4011. // this is a way to mark that we have "guessed" the file type
  4012. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  4013. {
  4014. const int kid = gguf_find_key(meta, "general.file_type"); // TODO: use LLM_KV
  4015. if (kid >= 0) {
  4016. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  4017. }
  4018. }
  4019. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  4020. for (int i = 0; i < n_kv; i++) {
  4021. const char * name = gguf_get_key(meta, i);
  4022. const enum gguf_type type = gguf_get_kv_type(meta, i);
  4023. const std::string type_name =
  4024. type == GGUF_TYPE_ARRAY
  4025. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  4026. : gguf_type_name(type);
  4027. std::string value = gguf_kv_to_str(meta, i);
  4028. const size_t MAX_VALUE_LEN = 40;
  4029. if (value.size() > MAX_VALUE_LEN) {
  4030. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  4031. }
  4032. replace_all(value, "\n", "\\n");
  4033. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  4034. }
  4035. // print type counts
  4036. for (auto & kv : n_type) {
  4037. if (kv.second == 0) {
  4038. continue;
  4039. }
  4040. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  4041. }
  4042. }
  4043. if (!llama_mmap::SUPPORTED) {
  4044. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  4045. use_mmap = false;
  4046. }
  4047. this->use_mmap = use_mmap;
  4048. this->check_tensors = check_tensors;
  4049. }
  4050. ~llama_model_loader() {
  4051. if (meta) {
  4052. gguf_free(meta);
  4053. }
  4054. for (auto * ctx : contexts) {
  4055. ggml_free(ctx);
  4056. }
  4057. }
  4058. template<typename T>
  4059. typename std::enable_if<std::is_integral<T>::value, bool>::type
  4060. get_arr_n(const std::string & key, T & result, const bool required = true) {
  4061. const int kid = gguf_find_key(meta, key.c_str());
  4062. if (kid < 0) {
  4063. if (required) {
  4064. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  4065. }
  4066. return false;
  4067. }
  4068. struct GGUFMeta::ArrayInfo arr_info =
  4069. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  4070. result = arr_info.length;
  4071. return true;
  4072. }
  4073. template<typename T>
  4074. typename std::enable_if<std::is_integral<T>::value, bool>::type
  4075. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  4076. return get_arr_n(llm_kv(kid), result, required);
  4077. }
  4078. template<typename T>
  4079. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  4080. const int kid = gguf_find_key(meta, key.c_str());
  4081. if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) {
  4082. if (required) {
  4083. throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
  4084. }
  4085. return false;
  4086. }
  4087. struct GGUFMeta::ArrayInfo arr_info =
  4088. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  4089. switch (arr_info.gt) {
  4090. case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
  4091. case GGUF_TYPE_INT32: GGML_ASSERT(
  4092. (std::is_same<T, int32_t>::value) ||
  4093. (std::is_same<T, uint32_t>::value)); break;
  4094. default:
  4095. throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
  4096. }
  4097. result.resize(arr_info.length);
  4098. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  4099. return true;
  4100. }
  4101. template<typename T, size_t N_MAX>
  4102. bool get_arr(const std::string & key, std::array<T, N_MAX> & result, const bool required = true) {
  4103. const int kid = gguf_find_key(meta, key.c_str());
  4104. if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) {
  4105. if (required) {
  4106. throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
  4107. }
  4108. return false;
  4109. }
  4110. struct GGUFMeta::ArrayInfo arr_info =
  4111. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  4112. switch (arr_info.gt) {
  4113. case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
  4114. case GGUF_TYPE_INT32: GGML_ASSERT(
  4115. (std::is_same<T, int32_t>::value) ||
  4116. (std::is_same<T, uint32_t>::value)); break;
  4117. default:
  4118. throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
  4119. }
  4120. if (arr_info.length > N_MAX) {
  4121. throw std::runtime_error(format("array length %u for key %s exceeds max %u", (uint32_t) arr_info.length, key.c_str(), (uint32_t) N_MAX));
  4122. }
  4123. std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin());
  4124. return true;
  4125. }
  4126. template<typename T>
  4127. bool get_arr(const enum llm_kv kid, T & result, const bool required = true) {
  4128. return get_arr(llm_kv(kid), result, required);
  4129. }
  4130. template<typename T>
  4131. bool get_key(const std::string & key, T & result, const bool required = true) {
  4132. auto it = kv_overrides.find(key);
  4133. const struct llama_model_kv_override * override =
  4134. it != kv_overrides.end() ? &it->second : nullptr;
  4135. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  4136. if (required && !found) {
  4137. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  4138. }
  4139. return found;
  4140. }
  4141. template<typename T>
  4142. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  4143. return get_key(llm_kv(kid), result, required);
  4144. }
  4145. // get array of n <= N_MAX elements, or a single element repeated n times
  4146. template<typename T, size_t N_MAX>
  4147. bool get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, const bool required = true) {
  4148. const int kid = gguf_find_key(meta, key.c_str());
  4149. if (kid < 0) {
  4150. if (required) {
  4151. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  4152. }
  4153. return false;
  4154. }
  4155. if (n > N_MAX) {
  4156. throw std::runtime_error(format("n > N_MAX: %u > %u for key %s", (uint32_t) n, (uint32_t) N_MAX, key.c_str()));
  4157. }
  4158. if (gguf_get_kv_type(meta, kid) == GGUF_TYPE_ARRAY) {
  4159. struct GGUFMeta::ArrayInfo arr_info =
  4160. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  4161. if (n != arr_info.length) {
  4162. throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length));
  4163. }
  4164. return get_arr(key, result, required);
  4165. } else {
  4166. T value;
  4167. bool ok = get_key(key, value, required);
  4168. if (!ok) {
  4169. return false;
  4170. }
  4171. for (uint32_t i = 0; i < n; i++) {
  4172. result[i] = value;
  4173. }
  4174. return true;
  4175. }
  4176. }
  4177. template<typename T>
  4178. bool get_key_or_arr(const enum llm_kv kid, T & result, uint32_t n, const bool required = true) {
  4179. return get_key_or_arr(llm_kv(kid), result, n, required);
  4180. }
  4181. std::string get_arch_name() const {
  4182. return arch_name;
  4183. }
  4184. enum llm_arch get_arch() const {
  4185. return llm_kv.arch;
  4186. }
  4187. const char * get_tensor_name(int i) const {
  4188. return weights.at(i).tensor->name;
  4189. }
  4190. const llama_tensor_weight * get_weight(const char * name) const {
  4191. for (const auto & weight : weights) {
  4192. if (strcmp(name, weight.tensor->name) == 0) {
  4193. return &weight;
  4194. }
  4195. }
  4196. return nullptr;
  4197. }
  4198. const llama_tensor_weight * get_weight(int i) const {
  4199. return get_weight(get_tensor_name(i));
  4200. }
  4201. const llama_tensor_weight & require_weight(const char * name) const {
  4202. const llama_tensor_weight * weight = get_weight(name);
  4203. if (!weight) {
  4204. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  4205. }
  4206. return *weight;
  4207. }
  4208. struct ggml_tensor * get_tensor_meta(const char * name) const {
  4209. const auto * weight = get_weight(name);
  4210. if (!weight) {
  4211. return nullptr;
  4212. }
  4213. return weight->tensor;
  4214. }
  4215. struct ggml_tensor * require_tensor_meta(const char * name) const {
  4216. struct ggml_tensor * tensor = get_tensor_meta(name);
  4217. if (!tensor) {
  4218. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  4219. }
  4220. return tensor;
  4221. }
  4222. struct ggml_tensor * get_tensor_meta(int i) const {
  4223. return get_tensor_meta(get_tensor_name(i));
  4224. }
  4225. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  4226. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  4227. ggml_set_name(tensor, ggml_get_name(cur));
  4228. if (duplicated) {
  4229. size_data += ggml_nbytes(cur);
  4230. } else {
  4231. n_created++;
  4232. }
  4233. return tensor;
  4234. }
  4235. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  4236. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  4237. if (cur == NULL) {
  4238. if (!required) {
  4239. return NULL;
  4240. }
  4241. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  4242. }
  4243. {
  4244. bool is_ok = true;
  4245. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  4246. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  4247. is_ok = false;
  4248. break;
  4249. }
  4250. }
  4251. if (!is_ok) {
  4252. throw std::runtime_error(
  4253. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  4254. __func__, name.c_str(),
  4255. llama_format_tensor_shape(ne).c_str(),
  4256. llama_format_tensor_shape(cur).c_str()));
  4257. }
  4258. }
  4259. return cur;
  4260. }
  4261. static const int TENSOR_NOT_REQUIRED = 1;
  4262. static const int TENSOR_DUPLICATED = 2;
  4263. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  4264. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  4265. if (cur == NULL) {
  4266. return NULL;
  4267. }
  4268. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  4269. }
  4270. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  4271. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  4272. if (cur == NULL) {
  4273. return NULL;
  4274. }
  4275. if (cur->type != base->type) {
  4276. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  4277. }
  4278. std::array<int64_t, GGML_MAX_DIMS> dims;
  4279. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  4280. dims[i] = i < ne.size() ? ne[i] : 1;
  4281. }
  4282. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  4283. dims[0], dims[1], dims[2], dims[3],
  4284. cur->nb[1], cur->nb[2], cur->nb[3],
  4285. offset);
  4286. ggml_set_name(tensor, name.c_str());
  4287. n_created++;
  4288. return tensor;
  4289. }
  4290. void done_getting_tensors() const {
  4291. if (n_created != n_tensors) {
  4292. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  4293. }
  4294. }
  4295. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  4296. if (use_mmap) {
  4297. mappings.reserve(files.size());
  4298. mmaps_used.reserve(files.size());
  4299. for (const auto & file : files) {
  4300. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  4301. mmaps_used.emplace_back(mapping->size, 0);
  4302. if (mlock_mmaps) {
  4303. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  4304. mlock_mmap->init(mapping->addr);
  4305. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  4306. }
  4307. mappings.emplace_back(std::move(mapping));
  4308. }
  4309. }
  4310. // compute the total size of all tensors for progress reporting
  4311. for (auto & w : weights) {
  4312. size_data += ggml_nbytes(w.tensor);
  4313. }
  4314. }
  4315. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  4316. GGML_ASSERT(!mappings.empty());
  4317. const auto & mapping = mappings.at(idx);
  4318. *first = mapping->size;
  4319. *last = 0;
  4320. *addr = mapping->addr;
  4321. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  4322. try {
  4323. const auto * weight = get_weight(ggml_get_name(tensor));
  4324. if (!weight) {
  4325. continue;
  4326. }
  4327. if (weight->idx != idx) {
  4328. continue;
  4329. }
  4330. *first = std::min(*first, weight->offs);
  4331. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  4332. } catch(...) {
  4333. // the tensor is not in the model
  4334. }
  4335. }
  4336. }
  4337. // for backwards compatibility, does not support ggml-backend
  4338. void load_data_for(struct ggml_tensor * cur) const {
  4339. const auto & w = require_weight(ggml_get_name(cur));
  4340. if (use_mmap) {
  4341. const auto & mapping = mappings.at(w.idx);
  4342. if (cur->data == nullptr) {
  4343. cur->data = (uint8_t *)mapping->addr + w.offs;
  4344. } else {
  4345. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  4346. }
  4347. } else {
  4348. GGML_ASSERT(cur->data != nullptr);
  4349. GGML_ASSERT(w.idx < files.size());
  4350. const auto & file = files.at(w.idx);
  4351. file->seek(w.offs, SEEK_SET);
  4352. file->read_raw(cur->data, ggml_nbytes(cur));
  4353. }
  4354. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  4355. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  4356. }
  4357. }
  4358. size_t size_done = 0;
  4359. size_t size_data = 0;
  4360. std::vector<std::pair<size_t, size_t>> mmaps_used;
  4361. // Returns false if cancelled by progress_callback
  4362. bool load_all_data(
  4363. struct ggml_context * ctx,
  4364. llama_buf_map & bufs_mmap,
  4365. llama_mlocks * lmlocks,
  4366. llama_progress_callback progress_callback,
  4367. void * progress_callback_user_data) {
  4368. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  4369. std::vector<no_init<uint8_t>> read_buf;
  4370. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  4371. #if defined(GGML_USE_CUDA)
  4372. // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
  4373. // NVMe raid configurations might require more / larger buffers.
  4374. constexpr size_t n_buffers = 4;
  4375. constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
  4376. std::vector<ggml_backend_buffer_t> host_buffers;
  4377. std::vector<void*> host_ptrs;
  4378. std::vector<ggml_backend_event_t> events;
  4379. size_t buffer_idx = 0; // buffer to use for async loads
  4380. ggml_backend_t cuda_backend = nullptr;
  4381. if (!use_mmap && !check_tensors) {
  4382. // When not using mmaped io use async uploads from pinned memory to GPU memory.
  4383. // First determine if the CUDA backend is active, and if so, determine the device ID.
  4384. ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
  4385. if (buf) {
  4386. ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
  4387. for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
  4388. auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
  4389. if (buffer_type == cuda_buffer_type) {
  4390. cuda_backend = ggml_backend_cuda_init(i);
  4391. break;
  4392. }
  4393. }
  4394. }
  4395. // If the cuda backend is active create pinned memory buffers and events for synchronisation.
  4396. if (cuda_backend) {
  4397. for (size_t idx = 0; idx < n_buffers; ++idx) {
  4398. host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
  4399. host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
  4400. events.emplace_back(ggml_backend_event_new(cuda_backend));
  4401. }
  4402. }
  4403. }
  4404. #endif
  4405. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  4406. const auto * weight = get_weight(ggml_get_name(cur));
  4407. if (weight == nullptr) {
  4408. // this can happen with split experts models
  4409. continue;
  4410. }
  4411. if (progress_callback) {
  4412. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  4413. return false;
  4414. }
  4415. }
  4416. size_t n_size = ggml_nbytes(cur);
  4417. if (use_mmap) {
  4418. const auto & mapping = mappings.at(weight->idx);
  4419. ggml_backend_buffer_t buf_mmap = nullptr;
  4420. if (bufs_mmap.count(weight->idx)) {
  4421. buf_mmap = bufs_mmap.at(weight->idx);
  4422. }
  4423. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  4424. if (check_tensors) {
  4425. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  4426. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  4427. }));
  4428. }
  4429. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  4430. if (buf_mmap && cur->data == nullptr) {
  4431. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  4432. if (lmlocks) {
  4433. const auto & lmlock = lmlocks->at(weight->idx);
  4434. lmlock->grow_to(weight->offs + n_size);
  4435. }
  4436. auto & mmap_used = mmaps_used[weight->idx];
  4437. mmap_used.first = std::min(mmap_used.first, weight->offs);
  4438. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  4439. } else {
  4440. ggml_backend_tensor_set(cur, data, 0, n_size);
  4441. }
  4442. } else {
  4443. GGML_ASSERT(weight->idx < files.size());
  4444. const auto & file = files.at(weight->idx);
  4445. if (ggml_backend_buffer_is_host(cur->buffer)) {
  4446. file->seek(weight->offs, SEEK_SET);
  4447. file->read_raw(cur->data, n_size);
  4448. if (check_tensors) {
  4449. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  4450. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  4451. }));
  4452. }
  4453. } else {
  4454. #if defined(GGML_USE_CUDA)
  4455. // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
  4456. if (cuda_backend) {
  4457. file->seek(weight->offs, SEEK_SET);
  4458. size_t bytes_read = 0;
  4459. while (bytes_read < n_size) {
  4460. size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
  4461. ggml_backend_event_synchronize(events[buffer_idx]);
  4462. file->read_raw(host_ptrs[buffer_idx], read_iteration);
  4463. ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
  4464. ggml_backend_event_record(events[buffer_idx]);
  4465. bytes_read += read_iteration;
  4466. ++buffer_idx;
  4467. buffer_idx %= n_buffers;
  4468. }
  4469. }
  4470. else
  4471. #endif
  4472. {
  4473. read_buf.resize(n_size);
  4474. file->seek(weight->offs, SEEK_SET);
  4475. file->read_raw(read_buf.data(), n_size);
  4476. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  4477. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  4478. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  4479. }
  4480. }
  4481. }
  4482. }
  4483. size_done += n_size;
  4484. }
  4485. #if defined(GGML_USE_CUDA)
  4486. // free temporary resources used for async cuda uploads
  4487. if (cuda_backend) {
  4488. for (size_t idx = 0; idx < n_buffers;++idx) {
  4489. ggml_backend_event_synchronize(events[idx]);
  4490. ggml_backend_event_free(events[idx]);
  4491. ggml_backend_buffer_free(host_buffers[idx]);
  4492. }
  4493. ggml_backend_free(cuda_backend);
  4494. }
  4495. #endif
  4496. // check validation results
  4497. bool validation_failed = false;
  4498. for (auto & future : validation_result) {
  4499. auto result = future.get();
  4500. if (!result.second) {
  4501. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  4502. validation_failed = true;
  4503. }
  4504. }
  4505. if (validation_failed) {
  4506. throw std::runtime_error("found tensors with invalid data");
  4507. }
  4508. // check if this is the last call and do final cleanup
  4509. if (size_done >= size_data) {
  4510. // unmap offloaded tensors and metadata
  4511. if (use_mmap) {
  4512. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  4513. const auto & mmap_used = mmaps_used.at(idx);
  4514. auto & mapping = mappings.at(idx);
  4515. mapping->unmap_fragment(0, mmap_used.first);
  4516. if (mmap_used.second != 0) {
  4517. mapping->unmap_fragment(mmap_used.second, mapping->size);
  4518. }
  4519. }
  4520. }
  4521. if (progress_callback) {
  4522. // Even though the model is done loading, we still honor
  4523. // cancellation since we need to free allocations.
  4524. return progress_callback(1.0f, progress_callback_user_data);
  4525. }
  4526. }
  4527. return true;
  4528. }
  4529. };
  4530. template<>
  4531. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  4532. uint32_t tmp;
  4533. const bool found = get_key(kid, tmp, required);
  4534. if (found) {
  4535. result = (enum llama_pooling_type) tmp;
  4536. } else {
  4537. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  4538. }
  4539. return found;
  4540. }
  4541. //
  4542. // load LLaMA models
  4543. //
  4544. static const char * llama_model_arch_name(llm_arch arch) {
  4545. auto it = LLM_ARCH_NAMES.find(arch);
  4546. if (it == LLM_ARCH_NAMES.end()) {
  4547. return "unknown";
  4548. }
  4549. return it->second;
  4550. }
  4551. static std::string llama_model_ftype_name(llama_ftype ftype) {
  4552. if (ftype & LLAMA_FTYPE_GUESSED) {
  4553. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  4554. }
  4555. switch (ftype) {
  4556. case LLAMA_FTYPE_ALL_F32: return "all F32";
  4557. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  4558. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  4559. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  4560. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  4561. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  4562. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  4563. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  4564. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  4565. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  4566. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  4567. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  4568. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  4569. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  4570. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  4571. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  4572. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  4573. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  4574. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
  4575. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  4576. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  4577. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  4578. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  4579. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw";
  4580. case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw";
  4581. case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw";
  4582. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  4583. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  4584. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  4585. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  4586. case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: return "Q4_0_4_4";
  4587. case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: return "Q4_0_4_8";
  4588. case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: return "Q4_0_8_8";
  4589. default: return "unknown, may not work";
  4590. }
  4591. }
  4592. static const char * llama_model_type_name(e_model type) {
  4593. switch (type) {
  4594. case MODEL_14M: return "14M";
  4595. case MODEL_17M: return "17M";
  4596. case MODEL_22M: return "22M";
  4597. case MODEL_33M: return "33M";
  4598. case MODEL_60M: return "60M";
  4599. case MODEL_70M: return "70M";
  4600. case MODEL_80M: return "80M";
  4601. case MODEL_109M: return "109M";
  4602. case MODEL_137M: return "137M";
  4603. case MODEL_160M: return "160M";
  4604. case MODEL_220M: return "220M";
  4605. case MODEL_250M: return "250M";
  4606. case MODEL_270M: return "270M";
  4607. case MODEL_335M: return "335M";
  4608. case MODEL_410M: return "410M";
  4609. case MODEL_450M: return "450M";
  4610. case MODEL_770M: return "770M";
  4611. case MODEL_780M: return "780M";
  4612. case MODEL_0_5B: return "0.5B";
  4613. case MODEL_1B: return "1B";
  4614. case MODEL_1_3B: return "1.3B";
  4615. case MODEL_1_4B: return "1.4B";
  4616. case MODEL_1_6B: return "1.6B";
  4617. case MODEL_2B: return "2B";
  4618. case MODEL_2_8B: return "2.8B";
  4619. case MODEL_3B: return "3B";
  4620. case MODEL_4B: return "4B";
  4621. case MODEL_6B: return "6B";
  4622. case MODEL_6_9B: return "6.9B";
  4623. case MODEL_7B: return "7B";
  4624. case MODEL_8B: return "8B";
  4625. case MODEL_9B: return "9B";
  4626. case MODEL_11B: return "11B";
  4627. case MODEL_12B: return "12B";
  4628. case MODEL_13B: return "13B";
  4629. case MODEL_14B: return "14B";
  4630. case MODEL_15B: return "15B";
  4631. case MODEL_16B: return "16B";
  4632. case MODEL_20B: return "20B";
  4633. case MODEL_30B: return "30B";
  4634. case MODEL_34B: return "34B";
  4635. case MODEL_35B: return "35B";
  4636. case MODEL_40B: return "40B";
  4637. case MODEL_65B: return "65B";
  4638. case MODEL_70B: return "70B";
  4639. case MODEL_236B: return "236B";
  4640. case MODEL_314B: return "314B";
  4641. case MODEL_SMALL: return "0.1B";
  4642. case MODEL_MEDIUM: return "0.4B";
  4643. case MODEL_LARGE: return "0.8B";
  4644. case MODEL_XL: return "1.5B";
  4645. case MODEL_A2_7B: return "A2.7B";
  4646. case MODEL_8x7B: return "8x7B";
  4647. case MODEL_8x22B: return "8x22B";
  4648. case MODEL_16x12B: return "16x12B";
  4649. case MODEL_10B_128x3_66B: return "10B+128x3.66B";
  4650. case MODEL_57B_A14B: return "57B.A14B";
  4651. case MODEL_27B: return "27B";
  4652. default: return "?B";
  4653. }
  4654. }
  4655. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  4656. switch (type) {
  4657. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  4658. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  4659. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  4660. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  4661. case LLAMA_VOCAB_TYPE_UGM: return "UGM";
  4662. case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
  4663. default: return "unknown";
  4664. }
  4665. }
  4666. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  4667. model.arch = ml.get_arch();
  4668. if (model.arch == LLM_ARCH_UNKNOWN) {
  4669. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  4670. }
  4671. }
  4672. static void llm_load_hparams(
  4673. llama_model_loader & ml,
  4674. llama_model & model) {
  4675. auto & hparams = model.hparams;
  4676. const gguf_context * ctx = ml.meta;
  4677. // get metadata as string
  4678. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  4679. enum gguf_type type = gguf_get_kv_type(ctx, i);
  4680. if (type == GGUF_TYPE_ARRAY) {
  4681. continue;
  4682. }
  4683. const char * name = gguf_get_key(ctx, i);
  4684. const std::string value = gguf_kv_to_str(ctx, i);
  4685. model.gguf_kv.emplace(name, value);
  4686. }
  4687. // get general kv
  4688. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  4689. // get hparams kv
  4690. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  4691. // everything past this point is not vocab-related
  4692. if (hparams.vocab_only) {
  4693. return;
  4694. }
  4695. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  4696. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  4697. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  4698. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  4699. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  4700. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  4701. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  4702. if (hparams.n_expert > 0) {
  4703. GGML_ASSERT(hparams.n_expert_used > 0);
  4704. } else {
  4705. GGML_ASSERT(hparams.n_expert_used == 0);
  4706. }
  4707. // zero-out the per-layer hparams
  4708. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  4709. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  4710. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  4711. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
  4712. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
  4713. // n_head_kv is optional, default to n_head
  4714. hparams.n_head_kv_arr = hparams.n_head_arr;
  4715. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  4716. bool rope_finetuned = false;
  4717. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  4718. hparams.rope_finetuned = rope_finetuned;
  4719. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  4720. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  4721. // rope_freq_base (optional)
  4722. hparams.rope_freq_base_train = 10000.0f;
  4723. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  4724. std::string rope_scaling("linear");
  4725. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  4726. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  4727. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  4728. // rope_freq_scale (inverse of the kv) is optional
  4729. float ropescale = 0.0f;
  4730. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  4731. // try the old key name
  4732. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  4733. }
  4734. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  4735. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  4736. // non-transformer models do not have attention heads
  4737. if (hparams.n_head() > 0) {
  4738. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  4739. // gpt-j n_rot = rotary_dim
  4740. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  4741. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  4742. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  4743. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  4744. // sanity check for n_rot (optional)
  4745. hparams.n_rot = hparams.n_embd_head_k;
  4746. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  4747. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  4748. if (hparams.n_rot != hparams.n_embd_head_k) {
  4749. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  4750. }
  4751. }
  4752. } else {
  4753. hparams.n_rot = 0;
  4754. hparams.n_embd_head_k = 0;
  4755. hparams.n_embd_head_v = 0;
  4756. }
  4757. // arch-specific KVs
  4758. switch (model.arch) {
  4759. case LLM_ARCH_LLAMA:
  4760. {
  4761. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4762. if (hparams.n_expert == 8) {
  4763. switch (hparams.n_layer) {
  4764. case 32: model.type = e_model::MODEL_8x7B; break;
  4765. case 56: model.type = e_model::MODEL_8x22B; break;
  4766. default: model.type = e_model::MODEL_UNKNOWN;
  4767. }
  4768. } else {
  4769. switch (hparams.n_layer) {
  4770. case 22: model.type = e_model::MODEL_1B; break;
  4771. case 26: model.type = e_model::MODEL_3B; break;
  4772. // granite uses a vocab with len 49152
  4773. case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
  4774. case 36: model.type = e_model::MODEL_8B; break; // granite
  4775. case 40: model.type = e_model::MODEL_13B; break;
  4776. case 48: model.type = e_model::MODEL_34B; break;
  4777. case 60: model.type = e_model::MODEL_30B; break;
  4778. case 80: model.type = hparams.n_head() == hparams.n_head_kv() ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  4779. default: model.type = e_model::MODEL_UNKNOWN;
  4780. }
  4781. }
  4782. } break;
  4783. case LLM_ARCH_MINICPM:
  4784. {
  4785. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4786. switch (hparams.n_layer) {
  4787. case 40: model.type = e_model::MODEL_2B; break;
  4788. default: model.type = e_model::MODEL_UNKNOWN;
  4789. }
  4790. } break;
  4791. case LLM_ARCH_GROK:
  4792. {
  4793. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4794. switch (hparams.n_layer) {
  4795. case 64: model.type = e_model::MODEL_314B; break;
  4796. default: model.type = e_model::MODEL_UNKNOWN;
  4797. }
  4798. } break;
  4799. case LLM_ARCH_FALCON:
  4800. {
  4801. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4802. switch (hparams.n_layer) {
  4803. case 32: model.type = e_model::MODEL_7B; break;
  4804. case 60: model.type = e_model::MODEL_40B; break;
  4805. default: model.type = e_model::MODEL_UNKNOWN;
  4806. }
  4807. } break;
  4808. case LLM_ARCH_BAICHUAN:
  4809. {
  4810. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4811. switch (hparams.n_layer) {
  4812. case 32: model.type = e_model::MODEL_7B; break;
  4813. case 40: model.type = e_model::MODEL_13B; break;
  4814. default: model.type = e_model::MODEL_UNKNOWN;
  4815. }
  4816. if (model.type == e_model::MODEL_13B) {
  4817. // TODO: become GGUF KV parameter
  4818. hparams.f_max_alibi_bias = 8.0f;
  4819. }
  4820. } break;
  4821. case LLM_ARCH_STARCODER:
  4822. {
  4823. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4824. switch (hparams.n_layer) {
  4825. case 24: model.type = e_model::MODEL_1B; break;
  4826. case 36: model.type = e_model::MODEL_3B; break;
  4827. case 42: model.type = e_model::MODEL_7B; break;
  4828. case 40: model.type = e_model::MODEL_15B; break;
  4829. default: model.type = e_model::MODEL_UNKNOWN;
  4830. }
  4831. } break;
  4832. case LLM_ARCH_REFACT:
  4833. {
  4834. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4835. switch (hparams.n_layer) {
  4836. case 32: model.type = e_model::MODEL_1B; break;
  4837. default: model.type = e_model::MODEL_UNKNOWN;
  4838. }
  4839. // TODO: become GGUF KV parameter
  4840. hparams.f_max_alibi_bias = 8.0f;
  4841. } break;
  4842. case LLM_ARCH_BERT:
  4843. {
  4844. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4845. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  4846. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  4847. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  4848. switch (hparams.n_layer) {
  4849. case 3:
  4850. model.type = e_model::MODEL_17M; break; // bge-micro
  4851. case 6:
  4852. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  4853. case 12:
  4854. switch (hparams.n_embd) {
  4855. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  4856. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  4857. } break;
  4858. case 24:
  4859. model.type = e_model::MODEL_335M; break; // bge-large
  4860. }
  4861. } break;
  4862. case LLM_ARCH_JINA_BERT_V2:
  4863. {
  4864. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4865. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  4866. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  4867. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  4868. hparams.f_max_alibi_bias = 8.0f;
  4869. switch (hparams.n_layer) {
  4870. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  4871. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  4872. }
  4873. } break;
  4874. case LLM_ARCH_NOMIC_BERT:
  4875. {
  4876. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4877. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  4878. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  4879. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  4880. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  4881. model.type = e_model::MODEL_137M;
  4882. }
  4883. } break;
  4884. case LLM_ARCH_BLOOM:
  4885. {
  4886. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4887. switch (hparams.n_layer) {
  4888. case 24: model.type = e_model::MODEL_1B; break;
  4889. case 30:
  4890. switch (hparams.n_embd) {
  4891. case 2560: model.type = e_model::MODEL_3B; break;
  4892. case 4096: model.type = e_model::MODEL_7B; break;
  4893. } break;
  4894. }
  4895. // TODO: become GGUF KV parameter
  4896. hparams.f_max_alibi_bias = 8.0f;
  4897. } break;
  4898. case LLM_ARCH_MPT:
  4899. {
  4900. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4901. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  4902. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  4903. switch (hparams.n_layer) {
  4904. case 32: model.type = e_model::MODEL_7B; break;
  4905. case 48: model.type = e_model::MODEL_30B; break;
  4906. default: model.type = e_model::MODEL_UNKNOWN;
  4907. }
  4908. } break;
  4909. case LLM_ARCH_STABLELM:
  4910. {
  4911. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4912. switch (hparams.n_layer) {
  4913. case 24: model.type = e_model::MODEL_1B; break;
  4914. case 32: model.type = e_model::MODEL_3B; break;
  4915. case 40: model.type = e_model::MODEL_12B; break;
  4916. default: model.type = e_model::MODEL_UNKNOWN;
  4917. }
  4918. } break;
  4919. case LLM_ARCH_QWEN:
  4920. {
  4921. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4922. switch (hparams.n_layer) {
  4923. case 32: model.type = e_model::MODEL_7B; break;
  4924. case 40: model.type = e_model::MODEL_13B; break;
  4925. default: model.type = e_model::MODEL_UNKNOWN;
  4926. }
  4927. } break;
  4928. case LLM_ARCH_QWEN2:
  4929. {
  4930. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4931. switch (hparams.n_layer) {
  4932. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  4933. case 32: model.type = e_model::MODEL_7B; break;
  4934. case 40: model.type = hparams.n_head() == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  4935. case 80: model.type = e_model::MODEL_70B; break;
  4936. default: model.type = e_model::MODEL_UNKNOWN;
  4937. }
  4938. } break;
  4939. case LLM_ARCH_QWEN2MOE:
  4940. {
  4941. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  4942. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  4943. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4944. switch (hparams.n_layer) {
  4945. case 24: model.type = e_model::MODEL_A2_7B; break;
  4946. case 28: model.type = e_model::MODEL_57B_A14B; break;
  4947. default: model.type = e_model::MODEL_UNKNOWN;
  4948. }
  4949. } break;
  4950. case LLM_ARCH_PHI2:
  4951. {
  4952. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4953. switch (hparams.n_layer) {
  4954. case 24: model.type = e_model::MODEL_1B; break;
  4955. case 32: model.type = e_model::MODEL_3B; break;
  4956. default: model.type = e_model::MODEL_UNKNOWN;
  4957. }
  4958. } break;
  4959. case LLM_ARCH_PHI3:
  4960. {
  4961. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4962. switch (hparams.n_layer) {
  4963. case 24: model.type = e_model::MODEL_1B; break;
  4964. case 32: model.type = e_model::MODEL_3B; break;
  4965. case 40: model.type = e_model::MODEL_14B; break;
  4966. default: model.type = e_model::MODEL_UNKNOWN;
  4967. }
  4968. // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
  4969. if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
  4970. // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
  4971. hparams.n_swa = 2047;
  4972. } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
  4973. // default value for Phi-3-mini-128k-instruct
  4974. hparams.n_swa = 262144;
  4975. } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
  4976. // default value for Phi-3-medium-128k-instruct
  4977. hparams.n_swa = 131072;
  4978. }
  4979. bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  4980. if (!found_swa && hparams.n_swa == 0) {
  4981. throw std::runtime_error("invalid value for sliding_window");
  4982. }
  4983. } break;
  4984. case LLM_ARCH_PLAMO:
  4985. {
  4986. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4987. switch (hparams.n_layer) {
  4988. case 40: model.type = e_model::MODEL_13B; break;
  4989. default: model.type = e_model::MODEL_UNKNOWN;
  4990. }
  4991. } break;
  4992. case LLM_ARCH_GPT2:
  4993. {
  4994. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4995. switch (hparams.n_layer) {
  4996. case 12: model.type = e_model::MODEL_SMALL; break;
  4997. case 24: model.type = e_model::MODEL_MEDIUM; break;
  4998. case 36: model.type = e_model::MODEL_LARGE; break;
  4999. case 48: model.type = e_model::MODEL_XL; break;
  5000. default: model.type = e_model::MODEL_UNKNOWN;
  5001. }
  5002. } break;
  5003. case LLM_ARCH_CODESHELL:
  5004. {
  5005. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  5006. switch (hparams.n_layer) {
  5007. case 42: model.type = e_model::MODEL_7B; break;
  5008. default: model.type = e_model::MODEL_UNKNOWN;
  5009. }
  5010. } break;
  5011. case LLM_ARCH_ORION:
  5012. {
  5013. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  5014. switch (hparams.n_layer) {
  5015. case 40: model.type = e_model::MODEL_14B; break;
  5016. default: model.type = e_model::MODEL_UNKNOWN;
  5017. }
  5018. } break;
  5019. case LLM_ARCH_INTERNLM2:
  5020. {
  5021. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5022. switch (hparams.n_layer) {
  5023. case 32: model.type = e_model::MODEL_7B; break;
  5024. case 48: model.type = e_model::MODEL_20B; break;
  5025. default: model.type = e_model::MODEL_UNKNOWN;
  5026. }
  5027. } break;
  5028. case LLM_ARCH_GEMMA:
  5029. {
  5030. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5031. switch (hparams.n_layer) {
  5032. case 18: model.type = e_model::MODEL_2B; break;
  5033. case 28: model.type = e_model::MODEL_7B; break;
  5034. default: model.type = e_model::MODEL_UNKNOWN;
  5035. }
  5036. } break;
  5037. case LLM_ARCH_GEMMA2:
  5038. {
  5039. hparams.n_swa = 4096; // default value of gemma 2
  5040. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  5041. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5042. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  5043. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  5044. hparams.attn_soft_cap = true;
  5045. switch (hparams.n_layer) {
  5046. case 26: model.type = e_model::MODEL_2B; break;
  5047. case 42: model.type = e_model::MODEL_9B; break;
  5048. case 46: model.type = e_model::MODEL_27B; break;
  5049. default: model.type = e_model::MODEL_UNKNOWN;
  5050. }
  5051. } break;
  5052. case LLM_ARCH_STARCODER2:
  5053. {
  5054. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  5055. switch (hparams.n_layer) {
  5056. case 30: model.type = e_model::MODEL_3B; break;
  5057. case 32: model.type = e_model::MODEL_7B; break;
  5058. case 40: model.type = e_model::MODEL_15B; break;
  5059. case 52: model.type = e_model::MODEL_20B; break; // granite
  5060. case 88: model.type = e_model::MODEL_34B; break; // granite
  5061. default: model.type = e_model::MODEL_UNKNOWN;
  5062. }
  5063. } break;
  5064. case LLM_ARCH_MAMBA:
  5065. {
  5066. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  5067. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  5068. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  5069. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  5070. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  5071. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5072. switch (hparams.n_layer) {
  5073. case 24:
  5074. switch (hparams.n_embd) {
  5075. case 768: model.type = e_model::MODEL_SMALL; break;
  5076. default: model.type = e_model::MODEL_UNKNOWN;
  5077. } break;
  5078. case 48:
  5079. switch (hparams.n_embd) {
  5080. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  5081. case 1536: model.type = e_model::MODEL_LARGE; break;
  5082. case 2048: model.type = e_model::MODEL_XL; break;
  5083. default: model.type = e_model::MODEL_UNKNOWN;
  5084. } break;
  5085. case 64:
  5086. switch (hparams.n_embd) {
  5087. case 2560: model.type = e_model::MODEL_3B; break;
  5088. default: model.type = e_model::MODEL_UNKNOWN;
  5089. } break;
  5090. default: model.type = e_model::MODEL_UNKNOWN;
  5091. }
  5092. } break;
  5093. case LLM_ARCH_XVERSE:
  5094. {
  5095. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5096. switch (hparams.n_layer) {
  5097. case 32: model.type = e_model::MODEL_7B; break;
  5098. case 40: model.type = e_model::MODEL_13B; break;
  5099. case 80: model.type = e_model::MODEL_65B; break;
  5100. default: model.type = e_model::MODEL_UNKNOWN;
  5101. }
  5102. } break;
  5103. case LLM_ARCH_COMMAND_R:
  5104. {
  5105. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  5106. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  5107. switch (hparams.n_layer) {
  5108. case 40: model.type = e_model::MODEL_35B; break;
  5109. default: model.type = e_model::MODEL_UNKNOWN;
  5110. }
  5111. } break;
  5112. case LLM_ARCH_DBRX:
  5113. {
  5114. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  5115. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  5116. switch (hparams.n_layer) {
  5117. case 40: model.type = e_model::MODEL_16x12B; break;
  5118. default: model.type = e_model::MODEL_UNKNOWN;
  5119. }
  5120. } break;
  5121. case LLM_ARCH_OLMO:
  5122. {
  5123. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  5124. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  5125. switch (hparams.n_layer) {
  5126. case 22: model.type = e_model::MODEL_1B; break;
  5127. case 32: model.type = e_model::MODEL_7B; break;
  5128. case 80: model.type = e_model::MODEL_70B; break;
  5129. default: model.type = e_model::MODEL_UNKNOWN;
  5130. }
  5131. } break;
  5132. case LLM_ARCH_OPENELM:
  5133. {
  5134. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5135. switch (hparams.n_layer) {
  5136. case 16: model.type = e_model::MODEL_270M; break;
  5137. case 20: model.type = e_model::MODEL_450M; break;
  5138. case 28: model.type = e_model::MODEL_1B; break;
  5139. case 36: model.type = e_model::MODEL_3B; break;
  5140. default: model.type = e_model::MODEL_UNKNOWN;
  5141. }
  5142. } break;
  5143. case LLM_ARCH_GPTNEOX:
  5144. {
  5145. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  5146. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  5147. switch (hparams.n_layer) {
  5148. case 6:
  5149. switch (hparams.n_ff()) {
  5150. case 512: model.type = e_model::MODEL_14M; break;
  5151. case 2048: model.type = e_model::MODEL_70M; break;
  5152. default: model.type = e_model::MODEL_UNKNOWN;
  5153. } break;
  5154. case 12:
  5155. switch (hparams.n_ff()) {
  5156. case 3072: model.type = e_model::MODEL_160M; break;
  5157. default: model.type = e_model::MODEL_UNKNOWN;
  5158. } break;
  5159. case 16:
  5160. switch (hparams.n_ff()) {
  5161. case 8192: model.type = e_model::MODEL_1B; break;
  5162. default: model.type = e_model::MODEL_UNKNOWN;
  5163. } break;
  5164. case 24:
  5165. switch (hparams.n_ff()) {
  5166. case 4096: model.type = e_model::MODEL_410M; break;
  5167. case 8192: model.type = e_model::MODEL_1_4B; break;
  5168. default: model.type = e_model::MODEL_UNKNOWN;
  5169. } break;
  5170. case 32:
  5171. switch (hparams.n_ff()) {
  5172. case 10240: model.type = e_model::MODEL_2_8B; break;
  5173. case 16384: model.type = e_model::MODEL_6_9B; break;
  5174. default: model.type = e_model::MODEL_UNKNOWN;
  5175. } break;
  5176. case 36:
  5177. switch (hparams.n_ff()) {
  5178. case 20480: model.type = e_model::MODEL_12B; break;
  5179. default: model.type = e_model::MODEL_UNKNOWN;
  5180. } break;
  5181. case 44:
  5182. switch (hparams.n_ff()) {
  5183. case 24576: model.type = e_model::MODEL_20B; break;
  5184. default: model.type = e_model::MODEL_UNKNOWN;
  5185. } break;
  5186. default: model.type = e_model::MODEL_UNKNOWN;
  5187. }
  5188. } break;
  5189. case LLM_ARCH_ARCTIC:
  5190. {
  5191. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5192. if (hparams.n_expert == 128) {
  5193. switch (hparams.n_layer) {
  5194. case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
  5195. default: model.type = e_model::MODEL_UNKNOWN;
  5196. }
  5197. } else {
  5198. model.type = e_model::MODEL_UNKNOWN;
  5199. }
  5200. } break;
  5201. case LLM_ARCH_DEEPSEEK2:
  5202. {
  5203. bool is_lite = (hparams.n_layer == 27);
  5204. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5205. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  5206. if (!is_lite) {
  5207. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  5208. }
  5209. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  5210. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  5211. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  5212. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  5213. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  5214. switch (hparams.n_layer) {
  5215. case 27: model.type = e_model::MODEL_16B; break;
  5216. case 60: model.type = e_model::MODEL_236B; break;
  5217. default: model.type = e_model::MODEL_UNKNOWN;
  5218. }
  5219. } break;
  5220. case LLM_ARCH_CHATGLM:
  5221. {
  5222. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5223. switch (hparams.n_layer) {
  5224. case 28: model.type = e_model::MODEL_6B; break;
  5225. case 40: model.type = e_model::MODEL_9B; break;
  5226. default: model.type = e_model::MODEL_UNKNOWN;
  5227. }
  5228. } break;
  5229. case LLM_ARCH_BITNET:
  5230. {
  5231. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5232. switch (hparams.n_layer) {
  5233. case 26: model.type = e_model::MODEL_3B; break;
  5234. default: model.type = e_model::MODEL_UNKNOWN;
  5235. }
  5236. } break;
  5237. case LLM_ARCH_T5:
  5238. {
  5239. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5240. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  5241. uint32_t dec_start_token_id;
  5242. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  5243. hparams.dec_start_token_id = dec_start_token_id;
  5244. }
  5245. switch (hparams.n_layer) {
  5246. case 6: model.type = e_model::MODEL_60M; break; // t5-small
  5247. case 8: model.type = e_model::MODEL_80M; break; // flan-t5-small
  5248. case 12:
  5249. switch (hparams.n_ff()) {
  5250. case 3072: model.type = e_model::MODEL_220M; break; // t5-base
  5251. case 2048: model.type = e_model::MODEL_250M; break; // flan-t5-base
  5252. default: model.type = e_model::MODEL_UNKNOWN;
  5253. } break;
  5254. case 24:
  5255. switch (hparams.n_ff()) {
  5256. case 4096: model.type = e_model::MODEL_770M; break; // t5-large
  5257. case 2816: model.type = e_model::MODEL_780M; break; // flan-t5-large
  5258. case 16384: model.type = e_model::MODEL_3B; break; // t5-3b
  5259. case 5120: model.type = e_model::MODEL_3B; break; // flan-t5-xl
  5260. case 65536: model.type = e_model::MODEL_11B; break; // t5-11b
  5261. case 10240: model.type = e_model::MODEL_11B; break; // flan-t5-xxl
  5262. default: model.type = e_model::MODEL_UNKNOWN;
  5263. } break;
  5264. default: model.type = e_model::MODEL_UNKNOWN;
  5265. }
  5266. } break;
  5267. case LLM_ARCH_T5ENCODER:
  5268. {
  5269. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5270. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  5271. model.type = e_model::MODEL_UNKNOWN;
  5272. } break;
  5273. case LLM_ARCH_JAIS:
  5274. {
  5275. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  5276. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  5277. switch (hparams.n_layer) {
  5278. case 24: model.type = e_model::MODEL_1_3B; break;
  5279. case 40: model.type = e_model::MODEL_13B; break;
  5280. /* TODO: add variants */
  5281. default: model.type = e_model::MODEL_UNKNOWN;
  5282. }
  5283. } break;
  5284. case LLM_ARCH_NEMOTRON:
  5285. {
  5286. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  5287. switch (hparams.n_layer) {
  5288. case 32: model.type = e_model::MODEL_4B; break;
  5289. default: model.type = e_model::MODEL_UNKNOWN;
  5290. }
  5291. } break;
  5292. case LLM_ARCH_EXAONE:
  5293. {
  5294. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  5295. switch (hparams.n_layer) {
  5296. case 32: model.type = e_model::MODEL_8B; break;
  5297. default: model.type = e_model::MODEL_UNKNOWN;
  5298. }
  5299. } break;
  5300. case LLM_ARCH_RWKV6:
  5301. {
  5302. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  5303. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  5304. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  5305. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  5306. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  5307. switch (hparams.n_layer) {
  5308. case 24: model.type = e_model::MODEL_1_6B; break;
  5309. case 32:
  5310. switch (hparams.n_embd) {
  5311. case 2560: model.type = e_model::MODEL_3B; break;
  5312. case 4096: model.type = e_model::MODEL_7B; break;
  5313. default: model.type = e_model::MODEL_UNKNOWN;
  5314. } break;
  5315. case 61: model.type = e_model::MODEL_14B; break;
  5316. default: model.type = e_model::MODEL_UNKNOWN;
  5317. }
  5318. } break;
  5319. default: (void)0;
  5320. }
  5321. model.ftype = ml.ftype;
  5322. if (hparams.f_max_alibi_bias > 0.0f) {
  5323. hparams.use_alibi = true;
  5324. }
  5325. hparams.rope_type = llama_rope_type(&model);
  5326. }
  5327. static void llm_load_vocab(
  5328. llama_model_loader & ml,
  5329. llama_model & model) {
  5330. auto & vocab = model.vocab;
  5331. struct gguf_context * ctx = ml.meta;
  5332. const auto kv = LLM_KV(model.arch);
  5333. // determine vocab type
  5334. {
  5335. std::string tokenizer_model;
  5336. std::string tokenizer_pre;
  5337. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  5338. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  5339. if (tokenizer_model == "no_vocab") {
  5340. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  5341. // default special tokens
  5342. vocab.special_bos_id = -1;
  5343. vocab.special_eos_id = -1;
  5344. vocab.special_unk_id = -1;
  5345. vocab.special_sep_id = -1;
  5346. vocab.special_pad_id = -1;
  5347. vocab.special_cls_id = -1;
  5348. vocab.special_mask_id = -1;
  5349. vocab.linefeed_id = -1;
  5350. return;
  5351. } else if (tokenizer_model == "llama") {
  5352. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  5353. // default special tokens
  5354. vocab.special_bos_id = 1;
  5355. vocab.special_eos_id = 2;
  5356. vocab.special_unk_id = 0;
  5357. vocab.special_sep_id = -1;
  5358. vocab.special_pad_id = -1;
  5359. vocab.special_cls_id = -1;
  5360. vocab.special_mask_id = -1;
  5361. } else if (tokenizer_model == "bert") {
  5362. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  5363. // default special tokens
  5364. vocab.special_bos_id = -1;
  5365. vocab.special_eos_id = -1;
  5366. vocab.special_unk_id = 100;
  5367. vocab.special_sep_id = 102;
  5368. vocab.special_pad_id = 0;
  5369. vocab.special_cls_id = 101;
  5370. vocab.special_mask_id = 103;
  5371. } else if (tokenizer_model == "gpt2") {
  5372. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  5373. // read bpe merges and populate bpe ranks
  5374. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  5375. if (merges_keyidx == -1) {
  5376. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  5377. }
  5378. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  5379. for (int i = 0; i < n_merges; i++) {
  5380. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  5381. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  5382. std::string first;
  5383. std::string second;
  5384. const size_t pos = word.find(' ', 1);
  5385. if (pos != std::string::npos) {
  5386. first = word.substr(0, pos);
  5387. second = word.substr(pos + 1);
  5388. }
  5389. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  5390. }
  5391. // default special tokens
  5392. vocab.special_bos_id = 11;
  5393. vocab.special_eos_id = 11;
  5394. vocab.special_unk_id = -1;
  5395. vocab.special_sep_id = -1;
  5396. vocab.special_pad_id = -1;
  5397. vocab.special_cls_id = -1;
  5398. vocab.special_mask_id = -1;
  5399. } else if (tokenizer_model == "t5") {
  5400. vocab.type = LLAMA_VOCAB_TYPE_UGM;
  5401. // default special tokens
  5402. vocab.special_bos_id = -1;
  5403. vocab.special_eos_id = 1;
  5404. vocab.special_unk_id = 2;
  5405. vocab.special_sep_id = -1;
  5406. vocab.special_pad_id = 0;
  5407. vocab.special_cls_id = -1;
  5408. vocab.special_mask_id = -1;
  5409. const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
  5410. if (precompiled_charsmap_keyidx != -1) {
  5411. size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
  5412. const char * precompiled_charsmap = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
  5413. vocab.precompiled_charsmap.assign(precompiled_charsmap, precompiled_charsmap + n_precompiled_charsmap);
  5414. #ifdef IS_BIG_ENDIAN
  5415. // correct endiannes of data in precompiled_charsmap binary blob
  5416. uint32_t * xcda_blob_size = (uint32_t *) &vocab.precompiled_charsmap[0];
  5417. *xcda_blob_size = __builtin_bswap32(*xcda_blob_size);
  5418. assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap);
  5419. size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t);
  5420. uint32_t * xcda_array = (uint32_t *) &vocab.precompiled_charsmap[sizeof(uint32_t)];
  5421. for (size_t i = 0; i < xcda_array_size; ++i) {
  5422. xcda_array[i] = __builtin_bswap32(xcda_array[i]);
  5423. }
  5424. #endif
  5425. }
  5426. } else if (tokenizer_model == "rwkv") {
  5427. vocab.type = LLAMA_VOCAB_TYPE_RWKV;
  5428. // default special tokens
  5429. vocab.special_bos_id = -1;
  5430. vocab.special_eos_id = -1;
  5431. vocab.special_unk_id = -1;
  5432. vocab.special_sep_id = -1;
  5433. vocab.special_pad_id = -1;
  5434. } else {
  5435. throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
  5436. }
  5437. // for now, only BPE models have pre-tokenizers
  5438. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  5439. vocab.tokenizer_add_space_prefix = false;
  5440. vocab.tokenizer_clean_spaces = true;
  5441. if (tokenizer_pre == "default") {
  5442. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  5443. } else if (
  5444. tokenizer_pre == "llama3" ||
  5445. tokenizer_pre == "llama-v3" ||
  5446. tokenizer_pre == "llama-bpe") {
  5447. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  5448. vocab.tokenizer_ignore_merges = true;
  5449. vocab.tokenizer_add_bos = true;
  5450. } else if (
  5451. tokenizer_pre == "deepseek-llm") {
  5452. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  5453. vocab.tokenizer_clean_spaces = false;
  5454. } else if (
  5455. tokenizer_pre == "deepseek-coder") {
  5456. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  5457. vocab.tokenizer_clean_spaces = false;
  5458. } else if (
  5459. tokenizer_pre == "falcon") {
  5460. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  5461. } else if (
  5462. tokenizer_pre == "mpt") {
  5463. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  5464. } else if (
  5465. tokenizer_pre == "starcoder") {
  5466. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  5467. } else if (
  5468. tokenizer_pre == "gpt-2" ||
  5469. tokenizer_pre == "phi-2" ||
  5470. tokenizer_pre == "jina-es" ||
  5471. tokenizer_pre == "jina-de" ||
  5472. tokenizer_pre == "jina-v2-es" ||
  5473. tokenizer_pre == "jina-v2-de" ||
  5474. tokenizer_pre == "jina-v2-code") {
  5475. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  5476. } else if (
  5477. tokenizer_pre == "refact") {
  5478. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  5479. } else if (
  5480. tokenizer_pre == "command-r") {
  5481. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  5482. vocab.tokenizer_clean_spaces = false;
  5483. } else if (
  5484. tokenizer_pre == "qwen2") {
  5485. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  5486. vocab.tokenizer_clean_spaces = false;
  5487. } else if (
  5488. tokenizer_pre == "stablelm2") {
  5489. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  5490. } else if (
  5491. tokenizer_pre == "olmo") {
  5492. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  5493. } else if (
  5494. tokenizer_pre == "dbrx") {
  5495. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  5496. } else if (
  5497. tokenizer_pre == "smaug-bpe") {
  5498. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  5499. } else if (
  5500. tokenizer_pre == "poro-chat") {
  5501. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
  5502. vocab.tokenizer_clean_spaces = false;
  5503. } else if (
  5504. tokenizer_pre == "chatglm-bpe") {
  5505. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
  5506. vocab.special_bos_id = -1;
  5507. } else if (
  5508. tokenizer_pre == "viking") {
  5509. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING;
  5510. vocab.tokenizer_clean_spaces = false;
  5511. } else if (
  5512. tokenizer_pre == "jais") {
  5513. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
  5514. } else if (
  5515. tokenizer_pre == "tekken") {
  5516. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_TEKKEN;
  5517. vocab.tokenizer_clean_spaces = false;
  5518. vocab.tokenizer_ignore_merges = true;
  5519. vocab.tokenizer_add_bos = true;
  5520. } else if (
  5521. tokenizer_pre == "smollm") {
  5522. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMOLLM;
  5523. vocab.tokenizer_clean_spaces = false;
  5524. } else if (
  5525. tokenizer_pre == "codeshell") {
  5526. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
  5527. } else if (
  5528. tokenizer_pre == "bloom") {
  5529. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_BLOOM;
  5530. } else if (
  5531. tokenizer_pre == "gpt3-finnish") {
  5532. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH;
  5533. } else if (
  5534. tokenizer_pre == "exaone") {
  5535. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_EXAONE;
  5536. } else {
  5537. LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
  5538. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  5539. }
  5540. } else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  5541. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  5542. vocab.tokenizer_add_space_prefix = true;
  5543. vocab.tokenizer_clean_spaces = false;
  5544. vocab.tokenizer_add_bos = true;
  5545. vocab.tokenizer_add_eos = false;
  5546. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  5547. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  5548. vocab.tokenizer_add_space_prefix = false;
  5549. vocab.tokenizer_clean_spaces = true;
  5550. vocab.tokenizer_add_bos = true;
  5551. vocab.tokenizer_add_eos = false;
  5552. } else if (vocab.type == LLAMA_VOCAB_TYPE_UGM) {
  5553. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  5554. vocab.tokenizer_add_bos = false;
  5555. vocab.tokenizer_add_eos = true;
  5556. } else if (vocab.type == LLAMA_VOCAB_TYPE_RWKV) {
  5557. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  5558. vocab.tokenizer_add_space_prefix = false;
  5559. vocab.tokenizer_clean_spaces = false;
  5560. vocab.tokenizer_add_bos = false;
  5561. vocab.tokenizer_add_eos = false;
  5562. } else {
  5563. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  5564. }
  5565. ml.get_key(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.tokenizer_add_space_prefix, false);
  5566. ml.get_key(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.tokenizer_remove_extra_whitespaces, false);
  5567. }
  5568. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  5569. if (token_idx == -1) {
  5570. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  5571. }
  5572. const float * scores = nullptr;
  5573. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  5574. if (score_idx != -1) {
  5575. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  5576. }
  5577. const int * toktypes = nullptr;
  5578. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  5579. if (toktype_idx != -1) {
  5580. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  5581. }
  5582. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  5583. vocab.id_to_token.resize(n_vocab);
  5584. for (uint32_t i = 0; i < n_vocab; i++) {
  5585. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  5586. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  5587. vocab.token_to_id[word] = i;
  5588. vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size());
  5589. auto & token_data = vocab.id_to_token[i];
  5590. token_data.text = std::move(word);
  5591. token_data.score = scores ? scores[i] : 0.0f;
  5592. token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
  5593. if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
  5594. switch(toktypes[i]) {
  5595. case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
  5596. case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
  5597. case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
  5598. case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
  5599. case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
  5600. case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
  5601. case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  5602. default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  5603. }
  5604. }
  5605. }
  5606. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  5607. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  5608. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  5609. // For Fill-In-the-Middle (FIM)/infill models which where converted
  5610. // prior to support of FIM special tokens in GGUF, the following
  5611. // will allow those models to continue to work. The general names
  5612. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  5613. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  5614. // new versions of these models have been published.
  5615. std::string gen_name;
  5616. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  5617. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  5618. [](unsigned char c){ return std::tolower(c); });
  5619. if (gen_name.find("code") != std::string::npos) {
  5620. if (model.arch == LLM_ARCH_LLAMA
  5621. && 32010 < vocab.id_to_token.size()
  5622. && vocab.id_to_token[32007].text.find("<PRE>") != std::string::npos
  5623. && vocab.id_to_token[32008].text.find("<SUF>") != std::string::npos
  5624. && vocab.id_to_token[32009].text.find("<MID>") != std::string::npos
  5625. && vocab.id_to_token[32010].text.find("<EOT>") != std::string::npos) {
  5626. vocab.special_prefix_id = 32007;
  5627. vocab.special_suffix_id = 32008;
  5628. vocab.special_middle_id = 32009;
  5629. vocab.special_eot_id = 32010;
  5630. } else if (model.arch == LLM_ARCH_GEMMA
  5631. && 107 < vocab.id_to_token.size()
  5632. && vocab.id_to_token[67].text == "<|fim_prefix|>"
  5633. && vocab.id_to_token[69].text == "<|fim_suffix|>"
  5634. && vocab.id_to_token[68].text == "<|fim_middle|>"
  5635. && vocab.id_to_token[107].text == "<end_of_turn>") {
  5636. vocab.special_prefix_id = 67;
  5637. vocab.special_suffix_id = 69;
  5638. vocab.special_middle_id = 68;
  5639. // TODO: this is not EOT, it is "file separator" token, needs fix
  5640. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  5641. //vocab.special_eot_id = 70;
  5642. vocab.special_eot_id = 107;
  5643. }
  5644. }
  5645. try {
  5646. vocab.linefeed_id = llama_byte_to_token_impl(vocab, '\n');
  5647. } catch (const std::exception & e) {
  5648. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  5649. vocab.linefeed_id = vocab.special_pad_id;
  5650. }
  5651. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  5652. vocab.linefeed_id = vocab.special_pad_id;
  5653. } else if (vocab.type == LLAMA_VOCAB_TYPE_RWKV) {
  5654. const std::vector<int> ids = llama_tokenize_internal(vocab, "\n", false);
  5655. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  5656. vocab.linefeed_id = ids[0];
  5657. } else {
  5658. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  5659. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  5660. vocab.linefeed_id = ids[0];
  5661. }
  5662. // special tokens
  5663. {
  5664. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  5665. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  5666. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  5667. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  5668. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  5669. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  5670. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  5671. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  5672. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  5673. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  5674. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  5675. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  5676. { LLM_KV_TOKENIZER_EOM_ID, vocab.special_eom_id },
  5677. };
  5678. for (const auto & it : special_token_types) {
  5679. const std::string & key = kv(std::get<0>(it));
  5680. int32_t & id = std::get<1>(it);
  5681. uint32_t new_id;
  5682. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  5683. continue;
  5684. }
  5685. if (new_id >= vocab.id_to_token.size()) {
  5686. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  5687. __func__, key.c_str(), new_id, id);
  5688. } else {
  5689. id = new_id;
  5690. }
  5691. }
  5692. // Handle add_bos_token and add_eos_token
  5693. {
  5694. bool temp = true;
  5695. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  5696. vocab.tokenizer_add_bos = temp;
  5697. }
  5698. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  5699. vocab.tokenizer_add_eos = temp;
  5700. }
  5701. }
  5702. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  5703. //
  5704. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  5705. // for now, we apply this workaround to find the EOT token based on its text
  5706. if (vocab.special_eot_id == -1) {
  5707. for (const auto & t : vocab.token_to_id) {
  5708. if (
  5709. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  5710. // need to fix convert script
  5711. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  5712. (t.first == "<|eot_id|>" ||
  5713. t.first == "<|im_end|>" ||
  5714. t.first == "<|end|>" ||
  5715. t.first == "<end_of_turn>" ||
  5716. t.first == "<|endoftext|>"
  5717. )
  5718. ) {
  5719. vocab.special_eot_id = t.second;
  5720. break;
  5721. }
  5722. }
  5723. }
  5724. // find EOM token: "<|eom_id|>"
  5725. //
  5726. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOM_ID
  5727. // for now, we apply this workaround to find the EOM token based on its text
  5728. if (vocab.special_eom_id == -1) {
  5729. const auto & t = vocab.token_to_id.find("<|eom_id|>");
  5730. if (t != vocab.token_to_id.end()) {
  5731. vocab.special_eom_id = t->second;
  5732. }
  5733. }
  5734. }
  5735. // build special tokens cache
  5736. {
  5737. for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
  5738. if (vocab.id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
  5739. vocab.cache_special_tokens.push_back(id);
  5740. }
  5741. }
  5742. std::sort(vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
  5743. [&] (const llama_vocab::id a, const llama_vocab::id b) {
  5744. return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
  5745. }
  5746. );
  5747. LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
  5748. }
  5749. // build token to piece cache
  5750. {
  5751. size_t size_cache = 0;
  5752. std::vector<llama_vocab::token> cache_token_to_piece(n_vocab);
  5753. for (uint32_t id = 0; id < n_vocab; ++id) {
  5754. cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
  5755. size_cache += cache_token_to_piece[id].size();
  5756. }
  5757. std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
  5758. LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
  5759. }
  5760. // Handle per token attributes
  5761. //NOTE: Each model customizes per token attributes.
  5762. //NOTE: Per token attributes are missing from the GGUF file.
  5763. //TODO: Extract attributes from GGUF file.
  5764. {
  5765. auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
  5766. for (auto substr : substrs) {
  5767. if (str.find(substr) < std::string::npos) {
  5768. return true;
  5769. }
  5770. }
  5771. return false;
  5772. };
  5773. auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
  5774. uint32_t current = vocab.id_to_token.at(id).attr;
  5775. current = value ? (current | attr) : (current & ~attr);
  5776. vocab.id_to_token[id].attr = (llama_token_attr) current;
  5777. };
  5778. auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
  5779. _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
  5780. };
  5781. std::string model_name;
  5782. std::string tokenizer_pre;
  5783. ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
  5784. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  5785. // model name to lowercase
  5786. std::transform(model_name.begin(), model_name.end(), model_name.begin(),
  5787. [] (const std::string::value_type x) {
  5788. return std::tolower(x);
  5789. }
  5790. );
  5791. // set attributes by model/tokenizer name
  5792. if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
  5793. _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
  5794. } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
  5795. for (auto id : vocab.cache_special_tokens) {
  5796. _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
  5797. }
  5798. for (auto token : {"</s>"}) {
  5799. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
  5800. }
  5801. for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
  5802. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
  5803. }
  5804. }
  5805. }
  5806. }
  5807. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  5808. const auto & hparams = model.hparams;
  5809. const auto & vocab = model.vocab;
  5810. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  5811. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  5812. bool is_var = false;
  5813. std::vector<uint32_t> v;
  5814. for (uint32_t i = 0; i < n; ++i) {
  5815. v.push_back(f(i));
  5816. if (v[i] != v[0]) {
  5817. is_var = true;
  5818. }
  5819. }
  5820. std::stringstream ss;
  5821. if (is_var) {
  5822. ss << "[";
  5823. for (uint32_t i = 0; i < n; ++i) {
  5824. ss << v[i];
  5825. if (i < n - 1) {
  5826. ss << ", ";
  5827. }
  5828. }
  5829. ss << "]";
  5830. } else {
  5831. ss << v[0];
  5832. }
  5833. return ss.str();
  5834. };
  5835. // hparams
  5836. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  5837. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  5838. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  5839. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  5840. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  5841. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  5842. if (!hparams.vocab_only) {
  5843. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  5844. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  5845. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  5846. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  5847. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  5848. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  5849. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  5850. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  5851. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  5852. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  5853. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  5854. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  5855. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  5856. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  5857. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  5858. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  5859. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  5860. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  5861. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  5862. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  5863. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  5864. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  5865. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  5866. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  5867. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  5868. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  5869. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  5870. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  5871. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  5872. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  5873. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  5874. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  5875. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  5876. }
  5877. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  5878. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  5879. if (ml.n_elements >= 1e12) {
  5880. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  5881. } else if (ml.n_elements >= 1e9) {
  5882. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  5883. } else if (ml.n_elements >= 1e6) {
  5884. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  5885. } else {
  5886. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  5887. }
  5888. if (ml.n_bytes < GiB) {
  5889. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  5890. } else {
  5891. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  5892. }
  5893. // general kv
  5894. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  5895. // special tokens
  5896. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  5897. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  5898. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  5899. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  5900. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  5901. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  5902. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  5903. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  5904. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  5905. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  5906. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  5907. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  5908. LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);
  5909. if (model.arch == LLM_ARCH_DEEPSEEK2) {
  5910. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5911. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  5912. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  5913. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5914. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5915. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5916. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  5917. }
  5918. if (model.arch == LLM_ARCH_QWEN2MOE) {
  5919. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5920. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  5921. }
  5922. }
  5923. // Returns false if cancelled by progress_callback
  5924. static bool llm_load_tensors(
  5925. llama_model_loader & ml,
  5926. llama_model & model,
  5927. int n_gpu_layers,
  5928. enum llama_split_mode split_mode,
  5929. int main_gpu,
  5930. const float * tensor_split,
  5931. bool use_mlock,
  5932. llama_progress_callback progress_callback,
  5933. void * progress_callback_user_data) {
  5934. model.t_start_us = ggml_time_us();
  5935. auto & hparams = model.hparams;
  5936. model.split_mode = split_mode;
  5937. model.main_gpu = main_gpu;
  5938. model.n_gpu_layers = n_gpu_layers;
  5939. const int n_layer = hparams.n_layer;
  5940. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  5941. bool use_mmap_buffer = true;
  5942. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  5943. model.buft_input = llama_default_buffer_type_cpu(true);
  5944. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  5945. model.buft_layer.resize(n_layer);
  5946. // assign cpu layers
  5947. for (int i = 0; i < i_gpu_start; ++i) {
  5948. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  5949. }
  5950. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  5951. // calculate the split points
  5952. int device_count = llama_get_device_count(model);
  5953. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  5954. std::vector<float> splits(device_count);
  5955. if (all_zero) {
  5956. // default split, by free memory
  5957. for (int i = 0; i < device_count; ++i) {
  5958. splits[i] = llama_get_device_memory(model, i);
  5959. }
  5960. } else {
  5961. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  5962. }
  5963. // sum and normalize the splits to get the split points
  5964. float split_sum = 0.0f;
  5965. for (int i = 0; i < device_count; ++i) {
  5966. split_sum += splits[i];
  5967. splits[i] = split_sum;
  5968. }
  5969. for (int i = 0; i < device_count; ++i) {
  5970. splits[i] /= split_sum;
  5971. }
  5972. // assign the repeating layers to the devices according to the splits
  5973. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  5974. for (int i = i_gpu_start; i < n_layer; ++i) {
  5975. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  5976. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  5977. }
  5978. // assign the output layer
  5979. if (n_gpu_layers > n_layer) {
  5980. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  5981. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  5982. } else {
  5983. model.buft_output = llama_default_buffer_type_cpu(true);
  5984. }
  5985. } else {
  5986. ggml_backend_buffer_type_t split_buft;
  5987. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  5988. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  5989. } else {
  5990. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  5991. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  5992. }
  5993. // assign the repeating layers
  5994. for (int i = i_gpu_start; i < n_layer; ++i) {
  5995. model.buft_layer[i] = {
  5996. split_buft,
  5997. llama_default_buffer_type_offload(model, main_gpu)
  5998. };
  5999. }
  6000. // assign the output layer
  6001. if (n_gpu_layers > n_layer) {
  6002. model.buft_output = {
  6003. split_buft,
  6004. llama_default_buffer_type_offload(model, main_gpu)
  6005. };
  6006. } else {
  6007. model.buft_output = llama_default_buffer_type_cpu(true);
  6008. }
  6009. }
  6010. // count used buffer types
  6011. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  6012. buft_layer_count[model.buft_input.buft]++;
  6013. buft_layer_count[model.buft_input.buft_matrix]++;
  6014. buft_layer_count[model.buft_output.buft]++;
  6015. buft_layer_count[model.buft_output.buft_matrix]++;
  6016. for (int i = 0; i < n_layer; ++i) {
  6017. buft_layer_count[model.buft_layer[i].buft]++;
  6018. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  6019. }
  6020. // create one context per buffer type
  6021. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  6022. // for moe merged tensors
  6023. ctx_size += ggml_tensor_overhead()*n_layer*3;
  6024. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  6025. for (auto & it : buft_layer_count) {
  6026. struct ggml_init_params params = {
  6027. /*.mem_size =*/ ctx_size,
  6028. /*.mem_buffer =*/ NULL,
  6029. /*.no_alloc =*/ true,
  6030. };
  6031. ggml_context * ctx = ggml_init(params);
  6032. if (!ctx) {
  6033. throw std::runtime_error(format("failed to create context"));
  6034. }
  6035. ctx_map[it.first] = ctx;
  6036. model.ctxs.push_back(ctx);
  6037. }
  6038. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  6039. // create tensors for the weights
  6040. {
  6041. // note: cast to int64_t since we will use these for the tensor dimensions
  6042. const int64_t n_head = hparams.n_head();
  6043. const int64_t n_head_kv = hparams.n_head_kv();
  6044. const int64_t n_embd = hparams.n_embd;
  6045. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  6046. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  6047. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  6048. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  6049. const int64_t n_ff = hparams.n_ff();
  6050. const int64_t n_embd_gqa = n_embd_v_gqa;
  6051. const int64_t n_vocab = hparams.n_vocab;
  6052. const int64_t n_vocab_type = hparams.n_vocab_type;
  6053. const int64_t n_rot = hparams.n_rot;
  6054. const int64_t n_expert = hparams.n_expert;
  6055. const int64_t n_expert_used = hparams.n_expert_used;
  6056. const int64_t n_ctx_train = hparams.n_ctx_train;
  6057. if (n_expert > 0 && hparams.n_expert_used == 0) {
  6058. throw std::runtime_error("model has expert layers but no expert layers are used");
  6059. }
  6060. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  6061. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  6062. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  6063. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  6064. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  6065. model.layers.resize(n_layer);
  6066. const auto tn = LLM_TN(model.arch);
  6067. switch (model.arch) {
  6068. case LLM_ARCH_LLAMA:
  6069. case LLM_ARCH_REFACT:
  6070. case LLM_ARCH_MINICPM:
  6071. {
  6072. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6073. // output
  6074. {
  6075. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6076. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6077. // if output is NULL, init from the input tok embed
  6078. if (model.output == NULL) {
  6079. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6080. }
  6081. }
  6082. for (int i = 0; i < n_layer; ++i) {
  6083. ggml_context * ctx_layer = ctx_for_layer(i);
  6084. ggml_context * ctx_split = ctx_for_layer_split(i);
  6085. auto & layer = model.layers[i];
  6086. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6087. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
  6088. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  6089. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  6090. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
  6091. // optional bias tensors
  6092. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6093. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6094. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6095. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6096. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6097. layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  6098. if (n_expert == 0) {
  6099. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6100. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6101. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6102. // optional MLP bias
  6103. layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6104. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6105. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6106. } else {
  6107. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  6108. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6109. if (layer.ffn_gate_exps) {
  6110. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  6111. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  6112. } else {
  6113. // merge split expert into a single tensor for compatibility with older models
  6114. // requires disabling mmap
  6115. use_mmap_buffer = false;
  6116. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  6117. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  6118. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  6119. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  6120. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  6121. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  6122. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  6123. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  6124. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  6125. for (uint32_t x = 0; x < n_expert; ++x) {
  6126. // the individual experts are loaded into a view of the merged tensor
  6127. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  6128. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  6129. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  6130. }
  6131. }
  6132. }
  6133. }
  6134. } break;
  6135. case LLM_ARCH_GROK:
  6136. {
  6137. if (n_expert == 0) {
  6138. throw std::runtime_error("Grok model cannot have zero experts");
  6139. }
  6140. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6141. // output
  6142. {
  6143. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6144. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6145. // if output is NULL, init from the input tok embed
  6146. if (model.output == NULL) {
  6147. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6148. }
  6149. }
  6150. for (int i = 0; i < n_layer; ++i) {
  6151. ggml_context * ctx_layer = ctx_for_layer(i);
  6152. ggml_context * ctx_split = ctx_for_layer_split(i);
  6153. auto & layer = model.layers[i];
  6154. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6155. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6156. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6157. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6158. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6159. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  6160. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6161. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  6162. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6163. if (layer.ffn_gate_exps) {
  6164. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  6165. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  6166. } else {
  6167. // merge split expert into a single tensor for compatibility with older models
  6168. // requires disabling mmap
  6169. use_mmap_buffer = false;
  6170. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  6171. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  6172. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  6173. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  6174. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  6175. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  6176. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  6177. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  6178. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  6179. for (uint32_t x = 0; x < n_expert; ++x) {
  6180. // the individual experts are loaded into a view of the merged tensor
  6181. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  6182. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  6183. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  6184. }
  6185. }
  6186. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  6187. }
  6188. } break;
  6189. case LLM_ARCH_DBRX:
  6190. {
  6191. if (n_expert == 0) {
  6192. throw std::runtime_error("DBRX model cannot have zero experts");
  6193. }
  6194. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6195. // output
  6196. {
  6197. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6198. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6199. }
  6200. for (int i = 0; i < n_layer; ++i) {
  6201. ggml_context * ctx_layer = ctx_for_layer(i);
  6202. ggml_context * ctx_split = ctx_for_layer_split(i);
  6203. auto & layer = model.layers[i];
  6204. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6205. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  6206. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6207. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  6208. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  6209. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  6210. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  6211. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  6212. }
  6213. } break;
  6214. case LLM_ARCH_BAICHUAN:
  6215. {
  6216. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6217. {
  6218. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6219. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6220. }
  6221. for (int i = 0; i < n_layer; ++i) {
  6222. ggml_context * ctx_layer = ctx_for_layer(i);
  6223. ggml_context * ctx_split = ctx_for_layer_split(i);
  6224. auto & layer = model.layers[i];
  6225. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6226. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6227. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6228. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6229. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6230. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6231. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6232. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6233. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6234. }
  6235. } break;
  6236. case LLM_ARCH_FALCON:
  6237. {
  6238. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6239. // output
  6240. {
  6241. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6242. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6243. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6244. if (!model.output) {
  6245. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  6246. }
  6247. }
  6248. for (int i = 0; i < n_layer; ++i) {
  6249. ggml_context * ctx_layer = ctx_for_layer(i);
  6250. ggml_context * ctx_split = ctx_for_layer_split(i);
  6251. auto & layer = model.layers[i];
  6252. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6253. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6254. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6255. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6256. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  6257. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6258. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6259. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6260. }
  6261. } break;
  6262. case LLM_ARCH_STARCODER:
  6263. {
  6264. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6265. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
  6266. // output
  6267. {
  6268. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6269. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6270. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6271. if (!model.output) {
  6272. // needs to be on GPU
  6273. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6274. }
  6275. }
  6276. for (int i = 0; i < n_layer; ++i) {
  6277. ggml_context * ctx_layer = ctx_for_layer(i);
  6278. ggml_context * ctx_split = ctx_for_layer_split(i);
  6279. auto & layer = model.layers[i];
  6280. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6281. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6282. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  6283. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  6284. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6285. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  6286. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6287. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  6288. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6289. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  6290. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6291. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  6292. }
  6293. } break;
  6294. case LLM_ARCH_BERT:
  6295. case LLM_ARCH_NOMIC_BERT:
  6296. {
  6297. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6298. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  6299. if (model.arch == LLM_ARCH_BERT) {
  6300. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
  6301. }
  6302. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  6303. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  6304. for (int i = 0; i < n_layer; ++i) {
  6305. ggml_context * ctx_layer = ctx_for_layer(i);
  6306. ggml_context * ctx_split = ctx_for_layer_split(i);
  6307. auto & layer = model.layers[i];
  6308. if (model.arch == LLM_ARCH_BERT) {
  6309. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6310. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  6311. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6312. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  6313. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6314. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  6315. } else {
  6316. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  6317. }
  6318. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6319. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  6320. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  6321. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6322. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6323. if (model.arch == LLM_ARCH_BERT) {
  6324. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  6325. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  6326. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  6327. } else {
  6328. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6329. }
  6330. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  6331. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  6332. }
  6333. } break;
  6334. case LLM_ARCH_JINA_BERT_V2:
  6335. {
  6336. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  6337. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); // token_type_embeddings
  6338. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  6339. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  6340. for (int i = 0; i < n_layer; ++i) {
  6341. ggml_context * ctx_layer = ctx_for_layer(i);
  6342. ggml_context * ctx_split = ctx_for_layer_split(i);
  6343. auto & layer = model.layers[i]; // JinaBertLayer
  6344. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6345. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  6346. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6347. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6348. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6349. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  6350. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6351. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6352. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6353. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  6354. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  6355. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  6356. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  6357. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  6358. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6359. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6360. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6361. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6362. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6363. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  6364. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  6365. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  6366. }
  6367. } break;
  6368. case LLM_ARCH_BLOOM:
  6369. {
  6370. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6371. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  6372. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  6373. // output
  6374. {
  6375. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6376. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6377. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6378. }
  6379. for (int i = 0; i < n_layer; ++i) {
  6380. ggml_context * ctx_layer = ctx_for_layer(i);
  6381. ggml_context * ctx_split = ctx_for_layer_split(i);
  6382. auto & layer = model.layers[i];
  6383. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6384. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6385. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  6386. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  6387. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6388. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  6389. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6390. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  6391. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6392. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  6393. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6394. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  6395. }
  6396. } break;
  6397. case LLM_ARCH_MPT:
  6398. {
  6399. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6400. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6401. // output
  6402. {
  6403. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6404. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6405. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6406. if (!model.output) {
  6407. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  6408. }
  6409. }
  6410. for (int i = 0; i < n_layer; ++i) {
  6411. ggml_context * ctx_layer = ctx_for_layer(i);
  6412. ggml_context * ctx_split = ctx_for_layer_split(i);
  6413. auto & layer = model.layers[i];
  6414. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6415. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6416. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  6417. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6418. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6419. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6420. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6421. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6422. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6423. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6424. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6425. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6426. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6427. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6428. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6429. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6430. // AWQ ScaleActivation layer
  6431. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6432. }
  6433. } break;
  6434. case LLM_ARCH_STABLELM:
  6435. {
  6436. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6437. // output
  6438. {
  6439. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6440. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6441. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6442. }
  6443. for (int i = 0; i < n_layer; ++i) {
  6444. ggml_context * ctx_layer = ctx_for_layer(i);
  6445. ggml_context * ctx_split = ctx_for_layer_split(i);
  6446. auto & layer = model.layers[i];
  6447. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6448. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6449. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6450. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6451. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6452. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6453. // optional bias tensors, present in Stable LM 2 1.6B
  6454. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6455. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6456. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6457. // optional q and k layernorms, present in StableLM 2 12B
  6458. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6459. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6460. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  6461. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6462. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6463. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6464. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6465. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6466. }
  6467. } break;
  6468. case LLM_ARCH_QWEN:
  6469. {
  6470. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6471. // output
  6472. {
  6473. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6474. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6475. }
  6476. for (int i = 0; i < n_layer; ++i) {
  6477. ggml_context * ctx_layer = ctx_for_layer(i);
  6478. ggml_context * ctx_split = ctx_for_layer_split(i);
  6479. auto & layer = model.layers[i];
  6480. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6481. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  6482. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  6483. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6484. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6485. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  6486. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  6487. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  6488. }
  6489. } break;
  6490. case LLM_ARCH_QWEN2:
  6491. {
  6492. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6493. // output
  6494. {
  6495. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6496. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6497. // if output is NULL, init from the input tok embed
  6498. if (model.output == NULL) {
  6499. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6500. }
  6501. }
  6502. for (int i = 0; i < n_layer; ++i) {
  6503. ggml_context * ctx_layer = ctx_for_layer(i);
  6504. ggml_context * ctx_split = ctx_for_layer_split(i);
  6505. auto & layer = model.layers[i];
  6506. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6507. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6508. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6509. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6510. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6511. // optional bias tensors
  6512. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  6513. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  6514. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  6515. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6516. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6517. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6518. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6519. }
  6520. } break;
  6521. case LLM_ARCH_QWEN2MOE:
  6522. {
  6523. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6524. // output
  6525. {
  6526. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6527. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6528. }
  6529. for (int i = 0; i < n_layer; ++i) {
  6530. ggml_context * ctx_layer = ctx_for_layer(i);
  6531. ggml_context * ctx_split = ctx_for_layer_split(i);
  6532. auto & layer = model.layers[i];
  6533. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6534. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6535. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6536. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6537. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6538. // optional bias tensors
  6539. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  6540. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  6541. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  6542. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6543. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  6544. GGML_ASSERT(n_expert > 0);
  6545. GGML_ASSERT(n_expert_used > 0);
  6546. // MoE branch
  6547. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  6548. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  6549. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  6550. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  6551. // Shared expert branch
  6552. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  6553. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  6554. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp});
  6555. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd});
  6556. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp});
  6557. }
  6558. } break;
  6559. case LLM_ARCH_PHI2:
  6560. {
  6561. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6562. // output
  6563. {
  6564. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6565. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6566. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6567. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  6568. }
  6569. for (int i = 0; i < n_layer; ++i) {
  6570. ggml_context * ctx_layer = ctx_for_layer(i);
  6571. ggml_context * ctx_split = ctx_for_layer_split(i);
  6572. auto & layer = model.layers[i];
  6573. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6574. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6575. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6576. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6577. if (layer.wqkv == nullptr) {
  6578. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6579. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  6580. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6581. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  6582. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6583. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  6584. }
  6585. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6586. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  6587. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6588. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  6589. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6590. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  6591. }
  6592. } break;
  6593. case LLM_ARCH_PHI3:
  6594. {
  6595. const int64_t n_embd_head = n_embd / n_head;
  6596. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  6597. // output
  6598. {
  6599. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  6600. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  6601. }
  6602. for (int i = 0; i < n_layer; ++i) {
  6603. ggml_context * ctx_layer = ctx_for_layer(i);
  6604. ggml_context * ctx_split = ctx_for_layer_split(i);
  6605. auto & layer = model.layers[i];
  6606. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  6607. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  6608. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  6609. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  6610. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  6611. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  6612. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  6613. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  6614. }
  6615. } break;
  6616. case LLM_ARCH_PLAMO:
  6617. {
  6618. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6619. // output
  6620. {
  6621. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6622. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6623. }
  6624. for (int i = 0; i < n_layer; ++i) {
  6625. ggml_context * ctx_layer = ctx_for_layer(i);
  6626. ggml_context * ctx_split = ctx_for_layer_split(i);
  6627. auto & layer = model.layers[i];
  6628. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6629. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6630. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6631. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6632. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6633. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6634. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6635. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6636. }
  6637. } break;
  6638. case LLM_ARCH_GPT2:
  6639. {
  6640. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6641. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
  6642. // output
  6643. {
  6644. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6645. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6646. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6647. }
  6648. for (int i = 0; i < n_layer; ++i) {
  6649. ggml_context * ctx_layer = ctx_for_layer(i);
  6650. ggml_context * ctx_split = ctx_for_layer_split(i);
  6651. auto & layer = model.layers[i];
  6652. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6653. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6654. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  6655. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  6656. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6657. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  6658. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6659. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  6660. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6661. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  6662. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6663. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  6664. }
  6665. } break;
  6666. case LLM_ARCH_CODESHELL:
  6667. {
  6668. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6669. // output
  6670. {
  6671. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6672. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6673. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6674. }
  6675. for (int i = 0; i < n_layer; ++i) {
  6676. ggml_context * ctx_layer = ctx_for_layer(i);
  6677. ggml_context * ctx_split = ctx_for_layer_split(i);
  6678. auto & layer = model.layers[i];
  6679. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6680. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6681. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  6682. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  6683. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6684. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  6685. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6686. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  6687. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6688. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  6689. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6690. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  6691. }
  6692. } break;
  6693. case LLM_ARCH_ORION:
  6694. {
  6695. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6696. {
  6697. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6698. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6699. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6700. }
  6701. for (int i = 0; i < n_layer; ++i) {
  6702. ggml_context * ctx_layer = ctx_for_layer(i);
  6703. ggml_context * ctx_split = ctx_for_layer_split(i);
  6704. auto & layer = model.layers[i];
  6705. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6706. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6707. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6708. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6709. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6710. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6711. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6712. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  6713. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6714. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6715. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6716. }
  6717. } break;
  6718. case LLM_ARCH_INTERNLM2:
  6719. {
  6720. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6721. // output
  6722. {
  6723. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6724. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6725. }
  6726. for (int i = 0; i < n_layer; ++i) {
  6727. ggml_context * ctx_layer = ctx_for_layer(i);
  6728. ggml_context * ctx_split = ctx_for_layer_split(i);
  6729. auto & layer = model.layers[i];
  6730. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6731. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  6732. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6733. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6734. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6735. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6736. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6737. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6738. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6739. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6740. }
  6741. } break;
  6742. case LLM_ARCH_GEMMA:
  6743. {
  6744. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6745. // output
  6746. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6747. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  6748. for (int i = 0; i < n_layer; ++i) {
  6749. ggml_context * ctx_layer = ctx_for_layer(i);
  6750. ggml_context * ctx_split = ctx_for_layer_split(i);
  6751. auto & layer = model.layers[i];
  6752. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6753. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
  6754. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  6755. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  6756. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
  6757. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6758. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6759. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6760. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6761. }
  6762. } break;
  6763. case LLM_ARCH_GEMMA2:
  6764. {
  6765. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6766. // output
  6767. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6768. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  6769. for (int i = 0; i < n_layer; ++i) {
  6770. ggml_context * ctx_layer = ctx_for_layer(i);
  6771. ggml_context * ctx_split = ctx_for_layer_split(i);
  6772. auto & layer = model.layers[i];
  6773. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6774. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
  6775. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  6776. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  6777. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
  6778. layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
  6779. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6780. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6781. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6782. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6783. layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
  6784. }
  6785. } break;
  6786. case LLM_ARCH_STARCODER2:
  6787. {
  6788. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6789. // output
  6790. {
  6791. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6792. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6793. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6794. // if output is NULL, init from the input tok embed
  6795. if (model.output == NULL) {
  6796. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6797. }
  6798. }
  6799. for (int i = 0; i < n_layer; ++i) {
  6800. ggml_context * ctx_layer = ctx_for_layer(i);
  6801. ggml_context * ctx_split = ctx_for_layer_split(i);
  6802. auto & layer = model.layers[i];
  6803. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6804. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6805. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6806. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6807. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6808. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6809. // optional bias tensors
  6810. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  6811. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  6812. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  6813. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  6814. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6815. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  6816. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6817. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6818. // optional bias tensors
  6819. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  6820. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  6821. }
  6822. } break;
  6823. case LLM_ARCH_MAMBA:
  6824. {
  6825. const int64_t d_conv = hparams.ssm_d_conv;
  6826. const int64_t d_inner = hparams.ssm_d_inner;
  6827. const int64_t d_state = hparams.ssm_d_state;
  6828. const int64_t dt_rank = hparams.ssm_dt_rank;
  6829. // only an expansion factor of 2 is supported for now
  6830. GGML_ASSERT(2 * n_embd == d_inner);
  6831. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6832. // output
  6833. {
  6834. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6835. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6836. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  6837. if (model.output == NULL) {
  6838. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6839. }
  6840. }
  6841. for (int i = 0; i < n_layer; ++i) {
  6842. ggml_context * ctx_layer = ctx_for_layer(i);
  6843. ggml_context * ctx_split = ctx_for_layer_split(i);
  6844. auto & layer = model.layers[i];
  6845. // norm
  6846. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6847. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  6848. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  6849. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  6850. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  6851. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  6852. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  6853. // no "weight" suffix for these
  6854. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  6855. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  6856. // out_proj
  6857. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  6858. }
  6859. } break;
  6860. case LLM_ARCH_XVERSE:
  6861. {
  6862. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6863. {
  6864. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6865. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6866. }
  6867. for (int i = 0; i < n_layer; ++i) {
  6868. ggml_context * ctx_layer = ctx_for_layer(i);
  6869. ggml_context * ctx_split = ctx_for_layer_split(i);
  6870. auto & layer = model.layers[i];
  6871. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6872. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6873. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6874. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6875. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6876. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6877. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6878. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6879. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6880. }
  6881. } break;
  6882. case LLM_ARCH_COMMAND_R:
  6883. {
  6884. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6885. // output
  6886. {
  6887. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6888. // init output from the input tok embed
  6889. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6890. }
  6891. for (int i = 0; i < n_layer; ++i) {
  6892. ggml_context * ctx_layer = ctx_for_layer(i);
  6893. ggml_context * ctx_split = ctx_for_layer_split(i);
  6894. auto & layer = model.layers[i];
  6895. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6896. if (n_layer >= 64){
  6897. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head});
  6898. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv});
  6899. }
  6900. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6901. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6902. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6903. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6904. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6905. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6906. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6907. }
  6908. } break;
  6909. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  6910. {
  6911. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6912. // output
  6913. {
  6914. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6915. // if output is NULL, init from the input tok embed
  6916. if (model.output == NULL) {
  6917. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6918. }
  6919. }
  6920. for (int i = 0; i < n_layer; ++i) {
  6921. ggml_context * ctx_split = ctx_for_layer_split(i);
  6922. auto & layer = model.layers[i];
  6923. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6924. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6925. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6926. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6927. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6928. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6929. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6930. }
  6931. } break;
  6932. case LLM_ARCH_OPENELM:
  6933. {
  6934. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6935. // output
  6936. {
  6937. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6938. // init output from the input tok embed
  6939. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6940. }
  6941. for (int i = 0; i < n_layer; ++i) {
  6942. const int64_t n_head = hparams.n_head(i);
  6943. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  6944. const int64_t n_ff = hparams.n_ff(i);
  6945. ggml_context * ctx_layer = ctx_for_layer(i);
  6946. ggml_context * ctx_split = ctx_for_layer_split(i);
  6947. auto & layer = model.layers[i];
  6948. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6949. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k});
  6950. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k});
  6951. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k});
  6952. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd});
  6953. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6954. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6955. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6956. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6957. }
  6958. } break;
  6959. case LLM_ARCH_GPTNEOX:
  6960. {
  6961. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6962. // output
  6963. {
  6964. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6965. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6966. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6967. }
  6968. for (int i = 0; i < n_layer; ++i) {
  6969. ggml_context * ctx_layer = ctx_for_layer(i);
  6970. ggml_context * ctx_split = ctx_for_layer_split(i);
  6971. auto & layer = model.layers[i];
  6972. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6973. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6974. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  6975. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  6976. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6977. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  6978. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6979. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  6980. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6981. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  6982. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6983. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  6984. }
  6985. } break;
  6986. case LLM_ARCH_ARCTIC:
  6987. {
  6988. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6989. // output
  6990. {
  6991. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6992. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6993. // if output is NULL, init from the input tok embed
  6994. if (model.output == NULL) {
  6995. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6996. }
  6997. }
  6998. for (int i = 0; i < n_layer; ++i) {
  6999. ggml_context * ctx_layer = ctx_for_layer(i);
  7000. ggml_context * ctx_split = ctx_for_layer_split(i);
  7001. auto & layer = model.layers[i];
  7002. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  7003. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  7004. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  7005. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  7006. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  7007. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  7008. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
  7009. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
  7010. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
  7011. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  7012. layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
  7013. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  7014. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  7015. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  7016. }
  7017. } break;
  7018. case LLM_ARCH_DEEPSEEK2:
  7019. {
  7020. const bool is_lite = (hparams.n_layer == 27);
  7021. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  7022. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  7023. const int64_t q_lora_rank = hparams.n_lora_q;
  7024. const int64_t kv_lora_rank = hparams.n_lora_kv;
  7025. const int64_t n_ff_exp = hparams.n_ff_exp;
  7026. const int64_t n_expert_shared = hparams.n_expert_shared;
  7027. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  7028. // output
  7029. {
  7030. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  7031. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  7032. }
  7033. for (int i = 0; i < n_layer; ++i) {
  7034. ggml_context * ctx_layer = ctx_for_layer(i);
  7035. ggml_context * ctx_split = ctx_for_layer_split(i);
  7036. auto & layer = model.layers[i];
  7037. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  7038. if (!is_lite) {
  7039. layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
  7040. }
  7041. layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
  7042. if (!is_lite) {
  7043. layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
  7044. layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k});
  7045. } else {
  7046. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  7047. }
  7048. layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)});
  7049. layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)});
  7050. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd});
  7051. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  7052. if (i < (int) hparams.n_layer_dense_lead) {
  7053. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  7054. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  7055. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  7056. } else {
  7057. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  7058. GGML_ASSERT(n_expert > 0);
  7059. GGML_ASSERT(n_expert_used > 0);
  7060. // MoE branch
  7061. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  7062. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  7063. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  7064. // Shared expert branch
  7065. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
  7066. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd});
  7067. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
  7068. }
  7069. }
  7070. } break;
  7071. case LLM_ARCH_BITNET:
  7072. {
  7073. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  7074. // output
  7075. {
  7076. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  7077. }
  7078. for (int i = 0; i < n_layer; ++i) {
  7079. ggml_context * ctx_layer = ctx_for_layer(i);
  7080. ggml_context * ctx_split = ctx_for_layer_split(i);
  7081. auto & layer = model.layers[i];
  7082. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  7083. layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});
  7084. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  7085. layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1});
  7086. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  7087. layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "scale", i), {1});
  7088. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  7089. layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "scale", i), {1});
  7090. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  7091. layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1});
  7092. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  7093. layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});
  7094. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  7095. layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1});
  7096. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  7097. layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1});
  7098. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  7099. layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1});
  7100. }
  7101. } break;
  7102. case LLM_ARCH_T5:
  7103. {
  7104. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  7105. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  7106. // output
  7107. {
  7108. model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
  7109. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd});
  7110. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7111. // if output is NULL, init from the input tok embed
  7112. if (model.output == NULL) {
  7113. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  7114. }
  7115. }
  7116. for (int i = 0; i < n_layer; ++i) {
  7117. ggml_context * ctx_layer = ctx_for_layer(i);
  7118. ggml_context * ctx_split = ctx_for_layer_split(i);
  7119. auto & layer = model.layers[i];
  7120. layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd});
  7121. layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7122. layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  7123. layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  7124. layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  7125. layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
  7126. layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
  7127. layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7128. layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd});
  7129. layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff});
  7130. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd});
  7131. layer.attn_rel_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7132. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  7133. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  7134. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  7135. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
  7136. layer.attn_norm_cross = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd});
  7137. // this tensor seems to be unused in HF transformers implementation
  7138. layer.attn_rel_b_cross = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7139. layer.wq_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  7140. layer.wk_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  7141. layer.wv_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  7142. layer.wo_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
  7143. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd});
  7144. layer.ffn_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7145. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd});
  7146. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff});
  7147. }
  7148. } break;
  7149. case LLM_ARCH_T5ENCODER:
  7150. {
  7151. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  7152. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  7153. // output
  7154. {
  7155. model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
  7156. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7157. // if output is NULL, init from the input tok embed
  7158. if (model.output == NULL) {
  7159. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  7160. }
  7161. }
  7162. for (int i = 0; i < n_layer; ++i) {
  7163. ggml_context * ctx_layer = ctx_for_layer(i);
  7164. ggml_context * ctx_split = ctx_for_layer_split(i);
  7165. auto & layer = model.layers[i];
  7166. layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd});
  7167. layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7168. layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  7169. layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  7170. layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  7171. layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
  7172. layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
  7173. layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7174. layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd});
  7175. layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff});
  7176. }
  7177. } break;
  7178. case LLM_ARCH_JAIS:
  7179. {
  7180. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  7181. // Output
  7182. {
  7183. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  7184. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  7185. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  7186. }
  7187. for (int i = 0; i < n_layer; ++i) {
  7188. ggml_context * ctx_layer = ctx_for_layer(i);
  7189. ggml_context * ctx_split = ctx_for_layer_split(i);
  7190. auto & layer = model.layers[i];
  7191. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  7192. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  7193. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  7194. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  7195. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  7196. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  7197. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  7198. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  7199. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  7200. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  7201. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  7202. layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff});
  7203. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  7204. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  7205. }
  7206. } break;
  7207. case LLM_ARCH_CHATGLM:
  7208. {
  7209. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  7210. // output
  7211. {
  7212. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  7213. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  7214. }
  7215. for (int i = 0; i < n_layer; ++i) {
  7216. ggml_context * ctx_layer = ctx_for_layer(i);
  7217. ggml_context * ctx_split = ctx_for_layer_split(i);
  7218. auto & layer = model.layers[i];
  7219. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  7220. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  7221. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  7222. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  7223. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  7224. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2});
  7225. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  7226. }
  7227. } break;
  7228. case LLM_ARCH_NEMOTRON:
  7229. {
  7230. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  7231. // output
  7232. {
  7233. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  7234. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  7235. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  7236. }
  7237. for (int i = 0; i < n_layer; ++i) {
  7238. ggml_context * ctx_layer = ctx_for_layer(i);
  7239. ggml_context * ctx_split = ctx_for_layer_split(i);
  7240. auto & layer = model.layers[i];
  7241. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  7242. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  7243. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  7244. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  7245. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  7246. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  7247. // optional bias tensors
  7248. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7249. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7250. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7251. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7252. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  7253. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  7254. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  7255. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  7256. // optional MLP bias
  7257. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7258. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  7259. }
  7260. } break;
  7261. case LLM_ARCH_EXAONE:
  7262. {
  7263. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  7264. // output
  7265. {
  7266. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  7267. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  7268. }
  7269. for (int i = 0; i < n_layer; ++i) {
  7270. ggml_context * ctx_layer = ctx_for_layer(i);
  7271. ggml_context * ctx_split = ctx_for_layer_split(i);
  7272. auto & layer = model.layers[i];
  7273. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  7274. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
  7275. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  7276. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  7277. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
  7278. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  7279. layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  7280. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  7281. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  7282. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  7283. }
  7284. } break;
  7285. case LLM_ARCH_RWKV6:
  7286. {
  7287. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  7288. // Block 0, LN0
  7289. model.tok_norm = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  7290. model.tok_norm_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  7291. // output
  7292. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  7293. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  7294. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  7295. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  7296. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  7297. const int head_size = hparams.wkv_head_size;
  7298. const int attn_hidden_size = n_embd;
  7299. const int ffn_size = hparams.n_ff_arr[0];
  7300. for (int i = 0; i < n_layer; ++i) {
  7301. ggml_context * ctx_layer = ctx_for_layer(i);
  7302. auto & layer = model.layers[i];
  7303. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  7304. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  7305. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd});
  7306. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd});
  7307. layer.time_mix_w1 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5});
  7308. layer.time_mix_w2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5});
  7309. layer.time_mix_lerp_x = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1});
  7310. layer.time_mix_lerp_w = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1});
  7311. layer.time_mix_lerp_k = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1});
  7312. layer.time_mix_lerp_v = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1});
  7313. layer.time_mix_lerp_r = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1});
  7314. layer.time_mix_lerp_g = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1});
  7315. layer.time_mix_first = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size});
  7316. layer.time_mix_decay = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd});
  7317. layer.time_mix_decay_w1 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim});
  7318. layer.time_mix_decay_w2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size});
  7319. layer.time_mix_key = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd});
  7320. layer.time_mix_value = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd});
  7321. layer.time_mix_receptance = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd});
  7322. layer.time_mix_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd});
  7323. layer.time_mix_ln = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd});
  7324. layer.time_mix_ln_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd});
  7325. layer.time_mix_output = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size});
  7326. layer.channel_mix_lerp_k = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1});
  7327. layer.channel_mix_lerp_r = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1});
  7328. layer.channel_mix_key = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size});
  7329. layer.channel_mix_value = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd});
  7330. layer.channel_mix_receptance = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd});
  7331. }
  7332. } break;
  7333. default:
  7334. throw std::runtime_error("unknown architecture");
  7335. }
  7336. }
  7337. ml.done_getting_tensors();
  7338. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  7339. model.mappings.reserve(ml.mappings.size());
  7340. // create the backend buffers
  7341. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  7342. ctx_bufs.reserve(ctx_map.size());
  7343. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  7344. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  7345. model.bufs.reserve(n_max_backend_buffer);
  7346. for (auto & it : ctx_map) {
  7347. ggml_backend_buffer_type_t buft = it.first;
  7348. ggml_context * ctx = it.second;
  7349. llama_buf_map bufs;
  7350. bufs.reserve(n_max_backend_buffer);
  7351. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  7352. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  7353. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  7354. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  7355. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  7356. void * addr = nullptr;
  7357. size_t first, last;
  7358. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  7359. if (first >= last) {
  7360. continue;
  7361. }
  7362. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  7363. if (buf == nullptr) {
  7364. throw std::runtime_error("unable to allocate backend CPU buffer");
  7365. }
  7366. model.bufs.push_back(buf);
  7367. bufs.emplace(idx, buf);
  7368. #ifdef GGML_USE_CUDA
  7369. if (n_layer >= n_gpu_layers) {
  7370. ggml_backend_cuda_register_host_buffer(
  7371. ggml_backend_buffer_get_base(buf),
  7372. ggml_backend_buffer_get_size(buf));
  7373. }
  7374. #endif
  7375. }
  7376. }
  7377. #ifdef GGML_USE_METAL
  7378. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  7379. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  7380. const size_t max_size = ggml_get_max_tensor_size(ctx);
  7381. void * addr = nullptr;
  7382. size_t first, last;
  7383. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  7384. if (first >= last) {
  7385. continue;
  7386. }
  7387. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  7388. if (buf == nullptr) {
  7389. throw std::runtime_error("unable to allocate backend metal buffer");
  7390. }
  7391. model.bufs.push_back(buf);
  7392. bufs.emplace(idx, buf);
  7393. }
  7394. }
  7395. #endif
  7396. else {
  7397. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  7398. if (buf == nullptr) {
  7399. throw std::runtime_error("unable to allocate backend buffer");
  7400. }
  7401. model.bufs.push_back(buf);
  7402. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  7403. model.mlock_bufs.emplace_back(new llama_mlock);
  7404. auto & mlock_buf = model.mlock_bufs.back();
  7405. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  7406. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  7407. }
  7408. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  7409. bufs.emplace(idx, buf);
  7410. }
  7411. }
  7412. if (bufs.empty()) {
  7413. throw std::runtime_error("failed to allocate buffer");
  7414. }
  7415. for (auto & buf : bufs) {
  7416. // indicate that this buffer contains weights
  7417. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  7418. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  7419. }
  7420. ctx_bufs.emplace_back(ctx, bufs);
  7421. }
  7422. if (llama_supports_gpu_offload()) {
  7423. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  7424. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  7425. if (n_gpu_layers > (int) hparams.n_layer) {
  7426. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  7427. }
  7428. const int max_backend_supported_layers = hparams.n_layer + 1;
  7429. const int max_offloadable_layers = hparams.n_layer + 1;
  7430. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  7431. }
  7432. // print memory requirements
  7433. for (ggml_backend_buffer_t buf : model.bufs) {
  7434. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  7435. }
  7436. // populate tensors_by_name
  7437. for (ggml_context * ctx : model.ctxs) {
  7438. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  7439. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  7440. }
  7441. }
  7442. // load tensor data
  7443. for (auto & it : ctx_bufs) {
  7444. ggml_context * ctx = it.first;
  7445. auto & bufs = it.second;
  7446. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  7447. return false;
  7448. }
  7449. }
  7450. if (use_mmap_buffer) {
  7451. for (auto & mapping : ml.mappings) {
  7452. model.mappings.emplace_back(std::move(mapping));
  7453. }
  7454. }
  7455. // loading time will be recalculate after the first eval, so
  7456. // we take page faults deferred by mmap() into consideration
  7457. model.t_load_us = ggml_time_us() - model.t_start_us;
  7458. return true;
  7459. }
  7460. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  7461. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  7462. try {
  7463. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  7464. model.hparams.vocab_only = params.vocab_only;
  7465. try {
  7466. llm_load_arch(ml, model);
  7467. } catch(const std::exception & e) {
  7468. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  7469. }
  7470. try {
  7471. llm_load_hparams(ml, model);
  7472. } catch(const std::exception & e) {
  7473. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  7474. }
  7475. try {
  7476. llm_load_vocab(ml, model);
  7477. } catch(const std::exception & e) {
  7478. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  7479. }
  7480. llm_load_print_meta(ml, model);
  7481. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  7482. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  7483. throw std::runtime_error("vocab size mismatch");
  7484. }
  7485. if (params.vocab_only) {
  7486. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  7487. return 0;
  7488. }
  7489. #ifdef GGML_USE_KOMPUTE
  7490. if (params.n_gpu_layers > 0 && (
  7491. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  7492. || !(
  7493. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  7494. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  7495. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  7496. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  7497. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  7498. )
  7499. )) {
  7500. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  7501. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  7502. params.n_gpu_layers = 0;
  7503. }
  7504. #endif
  7505. if (!llm_load_tensors(
  7506. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  7507. params.progress_callback, params.progress_callback_user_data
  7508. )) {
  7509. return -2;
  7510. }
  7511. } catch (const std::exception & err) {
  7512. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  7513. return -1;
  7514. }
  7515. return 0;
  7516. }
  7517. //
  7518. // llm_build
  7519. //
  7520. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  7521. enum llm_ffn_op_type {
  7522. LLM_FFN_SILU,
  7523. LLM_FFN_GELU,
  7524. LLM_FFN_RELU,
  7525. LLM_FFN_RELU_SQR,
  7526. LLM_FFN_SWIGLU,
  7527. };
  7528. enum llm_ffn_gate_type {
  7529. LLM_FFN_SEQ,
  7530. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  7531. };
  7532. enum llm_norm_type {
  7533. LLM_NORM,
  7534. LLM_NORM_RMS,
  7535. };
  7536. static struct ggml_tensor * llm_build_inp_embd(
  7537. struct ggml_context * ctx,
  7538. struct llama_context & lctx,
  7539. const llama_hparams & hparams,
  7540. const llama_ubatch & batch,
  7541. struct ggml_tensor * tok_embd,
  7542. const llm_build_cb & cb) {
  7543. const int64_t n_embd = hparams.n_embd;
  7544. struct ggml_tensor * inpL;
  7545. if (batch.token) {
  7546. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  7547. cb(lctx.inp_tokens, "inp_tokens", -1);
  7548. ggml_set_input(lctx.inp_tokens);
  7549. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  7550. } else {
  7551. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  7552. inpL = lctx.inp_embd;
  7553. ggml_set_input(lctx.inp_embd);
  7554. }
  7555. cb(inpL, "inp_embd", -1);
  7556. return inpL;
  7557. }
  7558. static void llm_build_kv_store(
  7559. struct ggml_context * ctx,
  7560. const llama_hparams & hparams,
  7561. const llama_cparams & cparams,
  7562. const llama_kv_cache & kv,
  7563. struct ggml_cgraph * graph,
  7564. struct ggml_tensor * k_cur,
  7565. struct ggml_tensor * v_cur,
  7566. int32_t n_tokens,
  7567. int32_t kv_head,
  7568. const llm_build_cb & cb,
  7569. int64_t il) {
  7570. const int64_t n_ctx = cparams.n_ctx;
  7571. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
  7572. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
  7573. GGML_ASSERT(kv.size == n_ctx);
  7574. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa, ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa)*kv_head);
  7575. cb(k_cache_view, "k_cache_view", il);
  7576. // note: storing RoPE-ed version of K in the KV cache
  7577. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  7578. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  7579. struct ggml_tensor * v_cache_view = nullptr;
  7580. if (cparams.flash_attn) {
  7581. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa, ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa)*kv_head);
  7582. } else {
  7583. // note: the V cache is transposed when not using flash attention
  7584. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  7585. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  7586. (kv_head)*ggml_element_size(kv.v_l[il]));
  7587. v_cur = ggml_transpose(ctx, v_cur);
  7588. }
  7589. cb(v_cache_view, "v_cache_view", il);
  7590. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  7591. }
  7592. // do mat_mul, while optionally apply lora
  7593. static struct ggml_tensor * llm_build_lora_mm(
  7594. struct llama_context & lctx,
  7595. struct ggml_context * ctx0,
  7596. struct ggml_tensor * w,
  7597. struct ggml_tensor * cur) {
  7598. struct ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
  7599. for (auto & it : lctx.lora_adapters) {
  7600. struct llama_lora_weight * lora = it.first->get_weight(w);
  7601. if (lora == nullptr) {
  7602. continue;
  7603. }
  7604. const float alpha = it.first->alpha;
  7605. const float rank = (float) lora->b->ne[0];
  7606. const float scale = alpha ? it.second * alpha / rank : it.second;
  7607. struct ggml_tensor * ab_cur = ggml_mul_mat(
  7608. ctx0, lora->b,
  7609. ggml_mul_mat(ctx0, lora->a, cur)
  7610. );
  7611. ab_cur = ggml_scale(ctx0, ab_cur, scale);
  7612. res = ggml_add(ctx0, res, ab_cur);
  7613. }
  7614. return res;
  7615. }
  7616. // do mat_mul_id, while optionally apply lora
  7617. static struct ggml_tensor * llm_build_lora_mm_id(
  7618. struct llama_context & lctx,
  7619. struct ggml_context * ctx0,
  7620. struct ggml_tensor * w, // struct ggml_tensor * as
  7621. struct ggml_tensor * cur, // struct ggml_tensor * b
  7622. struct ggml_tensor * ids) {
  7623. struct ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
  7624. for (auto & it : lctx.lora_adapters) {
  7625. struct llama_lora_weight * lora = it.first->get_weight(w);
  7626. if (lora == nullptr) {
  7627. continue;
  7628. }
  7629. const float alpha = it.first->alpha;
  7630. const float rank = (float) lora->b->ne[0];
  7631. const float scale = alpha ? it.second * alpha / rank : it.second;
  7632. struct ggml_tensor * ab_cur = ggml_mul_mat_id(
  7633. ctx0, lora->b,
  7634. ggml_mul_mat_id(ctx0, lora->a, cur, ids),
  7635. ids
  7636. );
  7637. ab_cur = ggml_scale(ctx0, ab_cur, scale);
  7638. res = ggml_add(ctx0, res, ab_cur);
  7639. }
  7640. return res;
  7641. }
  7642. static struct ggml_tensor * llm_build_norm(
  7643. struct ggml_context * ctx,
  7644. struct ggml_tensor * cur,
  7645. const llama_hparams & hparams,
  7646. struct ggml_tensor * mw,
  7647. struct ggml_tensor * mb,
  7648. llm_norm_type type,
  7649. const llm_build_cb & cb,
  7650. int il) {
  7651. switch (type) {
  7652. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  7653. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  7654. }
  7655. if (mw || mb) {
  7656. cb(cur, "norm", il);
  7657. }
  7658. if (mw) {
  7659. cur = ggml_mul(ctx, cur, mw);
  7660. if (mb) {
  7661. cb(cur, "norm_w", il);
  7662. }
  7663. }
  7664. if (mb) {
  7665. cur = ggml_add(ctx, cur, mb);
  7666. }
  7667. return cur;
  7668. }
  7669. static struct ggml_tensor * llm_build_ffn(
  7670. struct ggml_context * ctx,
  7671. struct llama_context & lctx,
  7672. struct ggml_tensor * cur,
  7673. struct ggml_tensor * up,
  7674. struct ggml_tensor * up_b,
  7675. struct ggml_tensor * up_s,
  7676. struct ggml_tensor * gate,
  7677. struct ggml_tensor * gate_b,
  7678. struct ggml_tensor * gate_s,
  7679. struct ggml_tensor * down,
  7680. struct ggml_tensor * down_b,
  7681. struct ggml_tensor * down_s,
  7682. struct ggml_tensor * act_scales,
  7683. llm_ffn_op_type type_op,
  7684. llm_ffn_gate_type type_gate,
  7685. const llm_build_cb & cb,
  7686. int il) {
  7687. struct ggml_tensor * tmp = up ? llm_build_lora_mm(lctx, ctx, up, cur) : cur;
  7688. cb(tmp, "ffn_up", il);
  7689. if (up_b) {
  7690. tmp = ggml_add(ctx, tmp, up_b);
  7691. cb(tmp, "ffn_up_b", il);
  7692. }
  7693. if (up_s) {
  7694. tmp = ggml_mul(ctx, tmp, up_s);
  7695. cb(tmp, "ffn_up_s", il);
  7696. }
  7697. if (gate) {
  7698. switch (type_gate) {
  7699. case LLM_FFN_SEQ:
  7700. {
  7701. cur = llm_build_lora_mm(lctx, ctx, gate, tmp);
  7702. cb(cur, "ffn_gate", il);
  7703. } break;
  7704. case LLM_FFN_PAR:
  7705. {
  7706. cur = llm_build_lora_mm(lctx, ctx, gate, cur);
  7707. cb(cur, "ffn_gate", il);
  7708. } break;
  7709. }
  7710. if (gate_b) {
  7711. cur = ggml_add(ctx, cur, gate_b);
  7712. cb(cur, "ffn_gate_b", il);
  7713. }
  7714. if (gate_s) {
  7715. cur = ggml_mul(ctx, cur, gate_s);
  7716. cb(cur, "ffn_gate_s", il);
  7717. }
  7718. } else {
  7719. cur = tmp;
  7720. }
  7721. switch (type_op) {
  7722. case LLM_FFN_SILU:
  7723. {
  7724. cur = ggml_silu(ctx, cur);
  7725. cb(cur, "ffn_silu", il);
  7726. } break;
  7727. case LLM_FFN_GELU:
  7728. {
  7729. cur = ggml_gelu(ctx, cur);
  7730. cb(cur, "ffn_gelu", il);
  7731. if (act_scales != NULL) {
  7732. cur = ggml_div(ctx, cur, act_scales);
  7733. cb(cur, "ffn_act", il);
  7734. }
  7735. } break;
  7736. case LLM_FFN_RELU:
  7737. {
  7738. cur = ggml_relu(ctx, cur);
  7739. cb(cur, "ffn_relu", il);
  7740. } break;
  7741. case LLM_FFN_RELU_SQR:
  7742. {
  7743. cur = ggml_relu(ctx, cur);
  7744. cb(cur, "ffn_relu", il);
  7745. cur = ggml_sqr(ctx, cur);
  7746. cb(cur, "ffn_sqr(relu)", il);
  7747. } break;
  7748. case LLM_FFN_SWIGLU:
  7749. {
  7750. // Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
  7751. int64_t split_point = cur->ne[0] / 2;
  7752. struct ggml_tensor * x0 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], 0));
  7753. struct ggml_tensor * x1 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
  7754. x0 = ggml_silu(ctx, x0);
  7755. cb(cur, "ffn_silu", il);
  7756. cur = ggml_mul(ctx, x0, x1);
  7757. cb(cur, "ffn_mul", il);
  7758. } break;
  7759. }
  7760. if (type_gate == LLM_FFN_PAR) {
  7761. cur = ggml_mul(ctx, cur, tmp);
  7762. cb(cur, "ffn_gate_par", il);
  7763. }
  7764. if (down) {
  7765. cur = llm_build_lora_mm(lctx, ctx, down, cur);
  7766. }
  7767. if (down_b) {
  7768. cb(cur, "ffn_down", il);
  7769. }
  7770. if (down_b) {
  7771. cur = ggml_add(ctx, cur, down_b);
  7772. }
  7773. if (down_s) {
  7774. cur = ggml_mul(ctx, cur, down_s);
  7775. cb(cur, "ffn_down_s", il);
  7776. }
  7777. return cur;
  7778. }
  7779. static struct ggml_tensor * llm_build_moe_ffn(
  7780. struct ggml_context * ctx,
  7781. struct llama_context & lctx,
  7782. struct ggml_tensor * cur,
  7783. struct ggml_tensor * gate_inp,
  7784. struct ggml_tensor * up_exps,
  7785. struct ggml_tensor * gate_exps,
  7786. struct ggml_tensor * down_exps,
  7787. int64_t n_expert,
  7788. int64_t n_expert_used,
  7789. llm_ffn_op_type type_op,
  7790. bool norm_w,
  7791. bool scale_w,
  7792. float w_scale,
  7793. const llm_build_cb & cb,
  7794. int il) {
  7795. int64_t n_embd = cur->ne[0];
  7796. int64_t n_tokens = cur->ne[1];
  7797. ggml_tensor * logits = llm_build_lora_mm(lctx, ctx, gate_inp, cur); // [n_expert, n_tokens]
  7798. cb(logits, "ffn_moe_logits", il);
  7799. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  7800. cb(probs, "ffn_moe_probs", il);
  7801. // select experts
  7802. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  7803. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  7804. cb(selected_experts, "ffn_moe_topk", il);
  7805. ggml_tensor * weights = ggml_get_rows(ctx,
  7806. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  7807. cb(weights, "ffn_moe_weights", il);
  7808. if (norm_w) {
  7809. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  7810. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  7811. cb(weights_sum, "ffn_moe_weights_sum", il);
  7812. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  7813. cb(weights, "ffn_moe_weights_norm", il);
  7814. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  7815. }
  7816. if (scale_w) {
  7817. weights = ggml_scale(ctx, weights, w_scale);
  7818. cb(weights, "ffn_moe_weights_scaled", il);
  7819. }
  7820. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  7821. ggml_tensor * up = llm_build_lora_mm_id(lctx, ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  7822. cb(up, "ffn_moe_up", il);
  7823. ggml_tensor * gate = llm_build_lora_mm_id(lctx, ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  7824. cb(gate, "ffn_moe_gate", il);
  7825. switch (type_op) {
  7826. case LLM_FFN_SILU:
  7827. {
  7828. gate = ggml_silu(ctx, gate);
  7829. cb(gate, "ffn_moe_silu", il);
  7830. } break;
  7831. case LLM_FFN_GELU:
  7832. {
  7833. gate = ggml_gelu(ctx, gate);
  7834. cb(gate, "ffn_moe_gelu", il);
  7835. } break;
  7836. default:
  7837. GGML_ABORT("fatal error");
  7838. }
  7839. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  7840. cb(par, "ffn_moe_gate_par", il);
  7841. ggml_tensor * experts = llm_build_lora_mm_id(lctx, ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  7842. cb(experts, "ffn_moe_down", il);
  7843. experts = ggml_mul(ctx, experts, weights);
  7844. // aggregate experts
  7845. ggml_tensor * moe_out = nullptr;
  7846. for (int i = 0; i < n_expert_used; ++i) {
  7847. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  7848. experts->nb[2], i*experts->nb[1]);
  7849. if (i == 0) {
  7850. moe_out = cur_expert;
  7851. } else {
  7852. moe_out = ggml_add(ctx, moe_out, cur_expert);
  7853. }
  7854. }
  7855. if (n_expert_used == 1) {
  7856. // avoid returning a non-contiguous tensor
  7857. moe_out = ggml_cont(ctx, moe_out);
  7858. }
  7859. return moe_out;
  7860. }
  7861. static struct ggml_tensor * llm_build_kqv(
  7862. struct ggml_context * ctx,
  7863. struct llama_context & lctx,
  7864. const llama_kv_cache & kv,
  7865. struct ggml_cgraph * graph,
  7866. struct ggml_tensor * wo,
  7867. struct ggml_tensor * wo_b,
  7868. struct ggml_tensor * q_cur,
  7869. struct ggml_tensor * kq_mask,
  7870. int32_t n_tokens,
  7871. int32_t n_kv,
  7872. float kq_scale,
  7873. const llm_build_cb & cb,
  7874. int il) {
  7875. const llama_model & model = lctx.model;
  7876. const llama_hparams & hparams = lctx.model.hparams;
  7877. const llama_cparams & cparams = lctx.cparams;
  7878. const int64_t n_ctx = cparams.n_ctx;
  7879. const int64_t n_head = hparams.n_head(il);
  7880. const int64_t n_head_kv = hparams.n_head_kv(il);
  7881. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  7882. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
  7883. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  7884. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
  7885. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  7886. cb(q, "q", il);
  7887. struct ggml_tensor * k =
  7888. ggml_view_3d(ctx, kv.k_l[il],
  7889. n_embd_head_k, n_kv, n_head_kv,
  7890. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  7891. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  7892. 0);
  7893. cb(k, "k", il);
  7894. struct ggml_tensor * cur;
  7895. if (cparams.flash_attn) {
  7896. GGML_UNUSED(model);
  7897. GGML_UNUSED(n_ctx);
  7898. // split cached v into n_head heads (not transposed)
  7899. struct ggml_tensor * v =
  7900. ggml_view_3d(ctx, kv.v_l[il],
  7901. n_embd_head_v, n_kv, n_head_kv,
  7902. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  7903. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  7904. 0);
  7905. cb(v, "v", il);
  7906. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
  7907. hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
  7908. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_GEMMA2) {
  7909. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  7910. }
  7911. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  7912. } else {
  7913. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  7914. cb(kq, "kq", il);
  7915. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON || model.arch == LLM_ARCH_CHATGLM) {
  7916. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  7917. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  7918. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  7919. }
  7920. if (model.arch == LLM_ARCH_GROK) {
  7921. // need to do the following:
  7922. // multiply by attn_output_multiplyer of 0.08838834764831845
  7923. // and then :
  7924. // kq = 30 * tanh(kq / 30)
  7925. // before the softmax below
  7926. //try from phi2
  7927. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  7928. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  7929. kq = ggml_scale(ctx, kq, 30);
  7930. }
  7931. if (hparams.attn_soft_cap) {
  7932. kq = ggml_scale(ctx, kq, 1.0f / hparams.f_attn_logit_softcapping);
  7933. kq = ggml_tanh(ctx, kq);
  7934. kq = ggml_scale(ctx, kq, hparams.f_attn_logit_softcapping);
  7935. }
  7936. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  7937. cb(kq, "kq_soft_max_ext", il);
  7938. GGML_ASSERT(kv.size == n_ctx);
  7939. // split cached v into n_head heads
  7940. struct ggml_tensor * v =
  7941. ggml_view_3d(ctx, kv.v_l[il],
  7942. n_kv, n_embd_head_v, n_head_kv,
  7943. ggml_element_size(kv.v_l[il])*n_ctx,
  7944. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  7945. 0);
  7946. cb(v, "v", il);
  7947. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  7948. cb(kqv, "kqv", il);
  7949. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  7950. cb(kqv_merged, "kqv_merged", il);
  7951. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  7952. cb(cur, "kqv_merged_cont", il);
  7953. }
  7954. ggml_build_forward_expand(graph, cur);
  7955. if (wo) {
  7956. cur = llm_build_lora_mm(lctx, ctx, wo, cur);
  7957. }
  7958. if (wo_b) {
  7959. cb(cur, "kqv_wo", il);
  7960. }
  7961. if (wo_b) {
  7962. cur = ggml_add(ctx, cur, wo_b);
  7963. }
  7964. return cur;
  7965. }
  7966. static struct ggml_tensor * llm_build_kv(
  7967. struct ggml_context * ctx,
  7968. struct llama_context & lctx,
  7969. const llama_kv_cache & kv,
  7970. struct ggml_cgraph * graph,
  7971. struct ggml_tensor * wo,
  7972. struct ggml_tensor * wo_b,
  7973. struct ggml_tensor * k_cur,
  7974. struct ggml_tensor * v_cur,
  7975. struct ggml_tensor * q_cur,
  7976. struct ggml_tensor * kq_mask,
  7977. int32_t n_tokens,
  7978. int32_t kv_head,
  7979. int32_t n_kv,
  7980. float kq_scale,
  7981. const llm_build_cb & cb,
  7982. int il) {
  7983. const llama_hparams & hparams = lctx.model.hparams;
  7984. const llama_cparams & cparams = lctx.cparams;
  7985. // these nodes are added to the graph together so that they are not reordered
  7986. // by doing so, the number of splits in the graph is reduced
  7987. ggml_build_forward_expand(graph, q_cur);
  7988. ggml_build_forward_expand(graph, k_cur);
  7989. ggml_build_forward_expand(graph, v_cur);
  7990. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  7991. struct ggml_tensor * cur;
  7992. cur = llm_build_kqv(ctx, lctx, kv, graph, wo, wo_b, q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  7993. cb(cur, "kqv_out", il);
  7994. return cur;
  7995. }
  7996. static struct ggml_tensor * llm_build_copy_mask_state(
  7997. struct ggml_context * ctx,
  7998. struct ggml_cgraph * graph,
  7999. struct ggml_tensor * s,
  8000. struct ggml_tensor * state_copy,
  8001. struct ggml_tensor * state_mask,
  8002. int32_t n_state,
  8003. int32_t kv_size,
  8004. int32_t kv_head,
  8005. int32_t n_kv,
  8006. int32_t n_seqs) {
  8007. struct ggml_tensor * states = ggml_reshape_2d(ctx, s, n_state, kv_size);
  8008. // copy states
  8009. // NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
  8010. // this shrinks the tensors's ne[1] to n_kv
  8011. states = ggml_get_rows(ctx, states, state_copy);
  8012. // clear states of sequences which are starting at the beginning of this batch
  8013. // FIXME: zero-out NANs?
  8014. states = ggml_mul(ctx, states, state_mask);
  8015. // copy states which won't be changed further (between n_seqs and n_rs)
  8016. ggml_build_forward_expand(graph,
  8017. ggml_cpy(ctx,
  8018. ggml_view_1d(ctx, states, n_state*(n_kv - n_seqs), n_seqs*n_state*ggml_element_size(states)),
  8019. ggml_view_1d(ctx, s, n_state*(n_kv - n_seqs), (kv_head + n_seqs)*n_state*ggml_element_size(s))));
  8020. // the part of the states that will be used and modified
  8021. return ggml_view_2d(ctx, states, n_state, n_seqs, states->nb[1], 0);
  8022. }
  8023. // TODO: split
  8024. static struct ggml_tensor * llm_build_mamba(
  8025. struct ggml_context * ctx,
  8026. struct llama_context & lctx,
  8027. const llama_ubatch & batch,
  8028. struct ggml_cgraph * graph,
  8029. struct ggml_tensor * cur,
  8030. struct ggml_tensor * state_copy,
  8031. struct ggml_tensor * state_mask,
  8032. int32_t kv_head,
  8033. int32_t n_kv,
  8034. const llm_build_cb & cb,
  8035. int il) {
  8036. const llama_model & model = lctx.model;
  8037. const llama_hparams & hparams = model.hparams;
  8038. const llama_kv_cache & kv = lctx.kv_self;
  8039. const int64_t d_conv = hparams.ssm_d_conv;
  8040. const int64_t d_inner = hparams.ssm_d_inner;
  8041. const int64_t d_state = hparams.ssm_d_state;
  8042. const int64_t dt_rank = hparams.ssm_dt_rank;
  8043. const int64_t n_seqs = batch.n_seqs;
  8044. // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
  8045. const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
  8046. // Use the same RMS norm as the final layer norm
  8047. const float norm_rms_eps = hparams.f_norm_rms_eps;
  8048. const int64_t n_seq_tokens = batch.n_seq_tokens;
  8049. GGML_ASSERT(n_seqs != 0);
  8050. GGML_ASSERT(batch.equal_seqs);
  8051. GGML_ASSERT(batch.n_tokens == n_seq_tokens * n_seqs);
  8052. struct ggml_tensor * conv_states_all = kv.k_l[il];
  8053. struct ggml_tensor * ssm_states_all = kv.v_l[il];
  8054. // (ab)using the KV cache to store the states
  8055. struct ggml_tensor * conv = llm_build_copy_mask_state(ctx,
  8056. graph, conv_states_all, state_copy, state_mask,
  8057. hparams.n_embd_k_s(), kv.size, kv_head, n_kv, n_seqs);
  8058. conv = ggml_reshape_3d(ctx, conv, d_conv - 1, d_inner, n_seqs);
  8059. struct ggml_tensor * ssm = llm_build_copy_mask_state(ctx,
  8060. graph, ssm_states_all, state_copy, state_mask,
  8061. hparams.n_embd_v_s(), kv.size, kv_head, n_kv, n_seqs);
  8062. ssm = ggml_reshape_3d(ctx, ssm, d_state, d_inner, n_seqs);
  8063. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  8064. cur = ggml_reshape_3d(ctx, cur, cur->ne[0], n_seq_tokens, n_seqs);
  8065. // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  8066. struct ggml_tensor * xz = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_in, cur);
  8067. // split the above in two
  8068. // => {d_inner, n_seq_tokens, n_seqs}
  8069. struct ggml_tensor * x = ggml_view_3d(ctx, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
  8070. struct ggml_tensor * z = ggml_view_3d(ctx, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
  8071. // conv
  8072. {
  8073. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  8074. struct ggml_tensor * conv_x = ggml_concat(ctx, conv, ggml_transpose(ctx, x), 0);
  8075. // copy last (d_conv - 1) columns back into the state cache
  8076. struct ggml_tensor * last_conv = ggml_view_3d(ctx, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  8077. ggml_build_forward_expand(graph,
  8078. ggml_cpy(ctx, last_conv,
  8079. ggml_view_1d(ctx, conv_states_all,
  8080. (d_conv - 1)*(d_inner)*(n_seqs),
  8081. kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
  8082. // 1D convolution
  8083. // The equivalent is to make a self-overlapping view of conv_x
  8084. // over d_conv columns at each stride in the 3rd dimension,
  8085. // then element-wise multiply that with the conv1d weight,
  8086. // then sum the elements of each row,
  8087. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8088. // then permute away the ne[0] dimension,
  8089. // and then you're left with the resulting x tensor.
  8090. // For simultaneous sequences, all sequences need to have the same length.
  8091. x = ggml_ssm_conv(ctx, conv_x, model.layers[il].ssm_conv1d);
  8092. // bias
  8093. x = ggml_add(ctx, x, model.layers[il].ssm_conv1d_b);
  8094. x = ggml_silu(ctx, x);
  8095. }
  8096. // ssm
  8097. {
  8098. // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  8099. struct ggml_tensor * x_db = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_x, x);
  8100. // split
  8101. struct ggml_tensor * dt = ggml_view_3d(ctx, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
  8102. struct ggml_tensor * B = ggml_view_3d(ctx, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
  8103. struct ggml_tensor * C = ggml_view_3d(ctx, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
  8104. // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
  8105. if (ssm_dt_b_c_rms) {
  8106. dt = ggml_rms_norm(ctx, dt, norm_rms_eps);
  8107. B = ggml_rms_norm(ctx, B, norm_rms_eps);
  8108. C = ggml_rms_norm(ctx, C, norm_rms_eps);
  8109. }
  8110. // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  8111. dt = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_dt, dt);
  8112. dt = ggml_add(ctx, dt, model.layers[il].ssm_dt_b);
  8113. // Custom operator to optimize the parallel associative scan
  8114. // as described in the Annex D of the Mamba paper.
  8115. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  8116. struct ggml_tensor * y_ssm = ggml_ssm_scan(ctx, ssm, x, dt, model.layers[il].ssm_a, B, C);
  8117. // store last states
  8118. ggml_build_forward_expand(graph,
  8119. ggml_cpy(ctx,
  8120. ggml_view_1d(ctx, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
  8121. ggml_view_1d(ctx, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  8122. struct ggml_tensor * y = ggml_view_3d(ctx, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
  8123. // TODO: skip computing output earlier for unused tokens
  8124. // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
  8125. y = ggml_add(ctx, y, ggml_mul(ctx, x, model.layers[il].ssm_d));
  8126. y = ggml_mul(ctx, y, ggml_silu(ctx, ggml_cont(ctx, z)));
  8127. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  8128. cur = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_out, y);
  8129. }
  8130. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  8131. cur = ggml_reshape_2d(ctx, cur, cur->ne[0], n_seq_tokens * n_seqs);
  8132. cb(cur, "mamba_out", il);
  8133. return cur;
  8134. }
  8135. static struct ggml_tensor * llm_build_rwkv6_time_mix(
  8136. struct llama_context & lctx,
  8137. struct ggml_context * ctx,
  8138. const struct llama_layer * layer,
  8139. struct ggml_tensor * cur,
  8140. struct ggml_tensor * x_prev,
  8141. struct ggml_tensor ** wkv_state) {
  8142. size_t n_embed = cur->ne[0];
  8143. size_t n_seq_tokens = cur->ne[1];
  8144. size_t n_seqs = cur->ne[2];
  8145. size_t head_size = layer->time_mix_first->ne[0];
  8146. size_t head_count = layer->time_mix_first->ne[1];
  8147. size_t n_tokens = n_seqs * n_seq_tokens;
  8148. struct ggml_tensor * sx = ggml_sub(ctx, x_prev, cur);
  8149. sx = ggml_reshape_2d(ctx, sx, n_embed, n_tokens);
  8150. cur = ggml_reshape_2d(ctx, cur, n_embed, n_tokens);
  8151. struct ggml_tensor * xxx = ggml_add(ctx, ggml_mul(ctx, sx, layer->time_mix_lerp_x), cur);
  8152. xxx = ggml_reshape_4d(
  8153. ctx,
  8154. ggml_tanh(
  8155. ctx,
  8156. ggml_mul_mat(ctx, layer->time_mix_w1, xxx)
  8157. ),
  8158. layer->time_mix_w1->ne[1] / 5, 1, 5, n_tokens
  8159. );
  8160. xxx = ggml_cont(ctx, ggml_permute(ctx, xxx, 0, 1, 3, 2));
  8161. xxx = ggml_mul_mat(
  8162. ctx,
  8163. ggml_reshape_4d(
  8164. ctx,
  8165. layer->time_mix_w2,
  8166. layer->time_mix_w2->ne[0], layer->time_mix_w2->ne[1], 1, 5
  8167. ),
  8168. xxx
  8169. );
  8170. struct ggml_tensor *mw = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], 0);
  8171. struct ggml_tensor *mk = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], n_embed * n_tokens * sizeof(float));
  8172. struct ggml_tensor *mv = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], n_embed * n_tokens * 2 * sizeof(float));
  8173. struct ggml_tensor *mr = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], n_embed * n_tokens * 3 * sizeof(float));
  8174. struct ggml_tensor *mg = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], n_embed * n_tokens * 4 * sizeof(float));
  8175. struct ggml_tensor * xw = ggml_add(
  8176. ctx,
  8177. ggml_mul(
  8178. ctx,
  8179. ggml_add(ctx, mw, layer->time_mix_lerp_w),
  8180. sx
  8181. ),
  8182. cur
  8183. );
  8184. struct ggml_tensor * xk = ggml_add(
  8185. ctx,
  8186. ggml_mul(
  8187. ctx,
  8188. ggml_add(ctx, mk, layer->time_mix_lerp_k),
  8189. sx
  8190. ),
  8191. cur
  8192. );
  8193. struct ggml_tensor * xv = ggml_add(
  8194. ctx,
  8195. ggml_mul(
  8196. ctx,
  8197. ggml_add(ctx, mv, layer->time_mix_lerp_v),
  8198. sx
  8199. ),
  8200. cur
  8201. );
  8202. struct ggml_tensor * xr = ggml_add(
  8203. ctx,
  8204. ggml_mul(
  8205. ctx,
  8206. ggml_add(ctx, mr, layer->time_mix_lerp_r),
  8207. sx
  8208. ),
  8209. cur
  8210. );
  8211. struct ggml_tensor * xg = ggml_add(
  8212. ctx,
  8213. ggml_mul(
  8214. ctx,
  8215. ggml_add(ctx, mg, layer->time_mix_lerp_g),
  8216. sx
  8217. ),
  8218. cur
  8219. );
  8220. struct ggml_tensor * r = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_receptance, xr), head_size, 1, head_count, n_tokens);
  8221. struct ggml_tensor * k = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_key, xk), 1, head_size, head_count, n_tokens);
  8222. struct ggml_tensor * v = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_value, xv), head_size, 1, head_count, n_tokens);
  8223. struct ggml_tensor * g = ggml_silu(
  8224. ctx,
  8225. llm_build_lora_mm(lctx, ctx, layer->time_mix_gate, xg)
  8226. );
  8227. struct ggml_tensor * w = ggml_mul_mat(
  8228. ctx,
  8229. layer->time_mix_decay_w2,
  8230. ggml_tanh(
  8231. ctx,
  8232. ggml_mul_mat(ctx, layer->time_mix_decay_w1, xw)
  8233. )
  8234. );
  8235. w = ggml_add(ctx, w, ggml_reshape_1d(ctx, layer->time_mix_decay, n_embed));
  8236. w = ggml_exp(ctx, ggml_neg(ctx, ggml_exp(ctx, w)));
  8237. w = ggml_reshape_4d(ctx, w, 1, head_size, head_count, n_tokens);
  8238. k = ggml_transpose(ctx, k);
  8239. v = ggml_transpose(ctx, v);
  8240. r = ggml_transpose(ctx, r);
  8241. struct ggml_tensor * wkv_output = ggml_rwkv_wkv(ctx, k, v, r, layer->time_mix_first, w, *wkv_state);
  8242. cur = ggml_view_1d(ctx, wkv_output, n_embed * n_tokens, 0);
  8243. *wkv_state = ggml_view_1d(ctx, wkv_output, n_embed * head_size * n_seqs, n_embed * n_tokens * sizeof(float));
  8244. // group norm with head_count groups
  8245. cur = ggml_reshape_3d(ctx, cur, n_embed / head_count, head_count, n_tokens);
  8246. cur = ggml_norm(ctx, cur, 64e-5f);
  8247. // Convert back to regular vectors.
  8248. cur = ggml_reshape_2d(ctx, cur, n_embed, n_tokens);
  8249. cur = ggml_add(ctx, ggml_mul(ctx, cur, layer->time_mix_ln), layer->time_mix_ln_b);
  8250. cur = ggml_mul(ctx, cur, g);
  8251. cur = llm_build_lora_mm(lctx, ctx, layer->time_mix_output, cur);
  8252. return ggml_reshape_3d(ctx, cur, n_embed, n_seq_tokens, n_seqs);
  8253. }
  8254. static struct ggml_tensor * llm_build_rwkv6_channel_mix(
  8255. struct llama_context & lctx,
  8256. struct ggml_context * ctx,
  8257. const struct llama_layer * layer,
  8258. struct ggml_tensor * cur,
  8259. struct ggml_tensor * x_prev) {
  8260. struct ggml_tensor * sx = ggml_sub(ctx, x_prev, cur);
  8261. struct ggml_tensor * xk = ggml_add(ctx, ggml_mul(ctx, sx, layer->channel_mix_lerp_k), cur);
  8262. struct ggml_tensor * xr = ggml_add(ctx, ggml_mul(ctx, sx, layer->channel_mix_lerp_r), cur);
  8263. struct ggml_tensor * r = ggml_sigmoid(ctx, llm_build_lora_mm(lctx, ctx, layer->channel_mix_receptance, xr));
  8264. struct ggml_tensor * k = ggml_sqr(
  8265. ctx,
  8266. ggml_relu(
  8267. ctx,
  8268. llm_build_lora_mm(lctx, ctx, layer->channel_mix_key, xk)
  8269. )
  8270. );
  8271. return ggml_mul(ctx, r, llm_build_lora_mm(lctx, ctx, layer->channel_mix_value, k));
  8272. }
  8273. struct llm_build_context {
  8274. const llama_model & model;
  8275. llama_context & lctx;
  8276. const llama_hparams & hparams;
  8277. const llama_cparams & cparams;
  8278. const llama_ubatch & batch;
  8279. const llama_kv_cache & kv_self;
  8280. const int64_t n_embd;
  8281. const int64_t n_layer;
  8282. const int64_t n_rot;
  8283. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  8284. const int64_t n_head;
  8285. const int64_t n_head_kv;
  8286. const int64_t n_embd_head_k;
  8287. const int64_t n_embd_k_gqa;
  8288. const int64_t n_embd_head_v;
  8289. const int64_t n_embd_v_gqa;
  8290. const int64_t n_expert;
  8291. const int64_t n_expert_used;
  8292. const float freq_base;
  8293. const float freq_scale;
  8294. const float ext_factor;
  8295. const float attn_factor;
  8296. const float beta_fast;
  8297. const float beta_slow;
  8298. const float norm_eps;
  8299. const float norm_rms_eps;
  8300. const int32_t n_tokens;
  8301. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  8302. const int32_t n_outputs;
  8303. const int32_t n_outputs_enc;
  8304. const int32_t kv_head; // index of where we store new KV data in the cache
  8305. const int32_t n_ctx_orig;
  8306. const bool flash_attn;
  8307. const enum llama_pooling_type pooling_type;
  8308. const enum llama_rope_type rope_type;
  8309. const llm_build_cb & cb;
  8310. std::vector<uint8_t> & buf_compute_meta;
  8311. struct ggml_context * ctx0 = nullptr;
  8312. // TODO: consider making the entire interface noexcept
  8313. llm_build_context(
  8314. llama_context & lctx,
  8315. const llama_ubatch & batch,
  8316. const llm_build_cb & cb,
  8317. bool worst_case) :
  8318. model (lctx.model),
  8319. lctx (lctx),
  8320. hparams (model.hparams),
  8321. cparams (lctx.cparams),
  8322. batch (batch),
  8323. kv_self (lctx.kv_self),
  8324. n_embd (hparams.n_embd),
  8325. n_layer (hparams.n_layer),
  8326. n_rot (hparams.n_rot),
  8327. n_ctx (cparams.n_ctx),
  8328. n_head (hparams.n_head()),
  8329. n_head_kv (hparams.n_head_kv()),
  8330. n_embd_head_k (hparams.n_embd_head_k),
  8331. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  8332. n_embd_head_v (hparams.n_embd_head_v),
  8333. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  8334. n_expert (hparams.n_expert),
  8335. n_expert_used (hparams.n_expert_used),
  8336. freq_base (cparams.rope_freq_base),
  8337. freq_scale (cparams.rope_freq_scale),
  8338. ext_factor (cparams.yarn_ext_factor),
  8339. attn_factor (cparams.yarn_attn_factor),
  8340. beta_fast (cparams.yarn_beta_fast),
  8341. beta_slow (cparams.yarn_beta_slow),
  8342. norm_eps (hparams.f_norm_eps),
  8343. norm_rms_eps (hparams.f_norm_rms_eps),
  8344. n_tokens (batch.n_tokens),
  8345. n_kv (worst_case ? kv_self.size : kv_self.n),
  8346. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  8347. n_outputs_enc (worst_case ? n_tokens : lctx.embd_enc.size() / hparams.n_embd),
  8348. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  8349. n_ctx_orig (cparams.n_ctx_orig_yarn),
  8350. flash_attn (cparams.flash_attn),
  8351. pooling_type (cparams.pooling_type),
  8352. rope_type (hparams.rope_type),
  8353. cb (cb),
  8354. buf_compute_meta (lctx.buf_compute_meta) {
  8355. // all initializations should be done in init()
  8356. }
  8357. void init() {
  8358. struct ggml_init_params params = {
  8359. /*.mem_size =*/ buf_compute_meta.size(),
  8360. /*.mem_buffer =*/ buf_compute_meta.data(),
  8361. /*.no_alloc =*/ true,
  8362. };
  8363. ctx0 = ggml_init(params);
  8364. lctx.inp_tokens = nullptr;
  8365. lctx.inp_embd = nullptr;
  8366. lctx.inp_pos = nullptr;
  8367. lctx.inp_out_ids = nullptr;
  8368. lctx.inp_KQ_mask = nullptr;
  8369. lctx.inp_KQ_mask_swa = nullptr;
  8370. lctx.inp_K_shift = nullptr;
  8371. lctx.inp_mean = nullptr;
  8372. lctx.inp_cls = nullptr;
  8373. lctx.inp_s_copy = nullptr;
  8374. lctx.inp_s_mask = nullptr;
  8375. lctx.inp_s_seq = nullptr;
  8376. lctx.inp_pos_bucket = nullptr;
  8377. lctx.inp_embd_enc = nullptr;
  8378. lctx.inp_KQ_mask_cross = nullptr;
  8379. }
  8380. void free() {
  8381. if (ctx0) {
  8382. ggml_free(ctx0);
  8383. ctx0 = nullptr;
  8384. }
  8385. }
  8386. struct ggml_cgraph * build_k_shift() {
  8387. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  8388. GGML_ASSERT(kv_self.size == n_ctx);
  8389. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  8390. cb(lctx.inp_K_shift, "K_shift", -1);
  8391. ggml_set_input(lctx.inp_K_shift);
  8392. for (int il = 0; il < n_layer; ++il) {
  8393. const int64_t n_head_kv = hparams.n_head_kv(il);
  8394. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
  8395. struct ggml_tensor * rope_factors = build_rope_factors(il);
  8396. struct ggml_tensor * tmp =
  8397. // we rotate only the first n_rot dimensions
  8398. ggml_rope_ext_inplace(ctx0,
  8399. ggml_view_3d(ctx0, kv_self.k_l[il],
  8400. n_embd_head_k, n_head_kv, n_ctx,
  8401. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  8402. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  8403. 0),
  8404. lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8405. ext_factor, attn_factor, beta_fast, beta_slow);
  8406. cb(tmp, "K_shifted", il);
  8407. ggml_build_forward_expand(gf, tmp);
  8408. }
  8409. return gf;
  8410. }
  8411. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  8412. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  8413. for (uint32_t i = 0; i < ids.size(); ++i) {
  8414. const uint32_t id = ids[i];
  8415. if (i == id || id == ids.size()) {
  8416. continue;
  8417. }
  8418. uint32_t nm = 1;
  8419. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  8420. nm++;
  8421. }
  8422. for (int il = 0; il < n_layer; ++il) {
  8423. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
  8424. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
  8425. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  8426. n_embd_k_gqa, nm,
  8427. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  8428. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  8429. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  8430. n_embd_k_gqa, nm,
  8431. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  8432. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  8433. ggml_tensor * view_v_src;
  8434. ggml_tensor * view_v_dst;
  8435. if (flash_attn) {
  8436. // NOTE: the V cache is not transposed when using flash attention
  8437. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  8438. n_embd_v_gqa, nm,
  8439. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  8440. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  8441. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  8442. n_embd_v_gqa, nm,
  8443. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  8444. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  8445. } else {
  8446. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  8447. nm, n_embd_v_gqa,
  8448. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  8449. ggml_row_size(kv_self.v_l[il]->type, i));
  8450. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  8451. nm, n_embd_v_gqa,
  8452. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  8453. ggml_row_size(kv_self.v_l[il]->type, id));
  8454. }
  8455. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  8456. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  8457. }
  8458. i += nm - 1;
  8459. }
  8460. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  8461. return gf;
  8462. }
  8463. struct ggml_tensor * build_inp_pos() {
  8464. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  8465. cb(lctx.inp_pos, "inp_pos", -1);
  8466. ggml_set_input(lctx.inp_pos);
  8467. return lctx.inp_pos;
  8468. }
  8469. struct ggml_tensor * build_rope_factors(int il) {
  8470. // choose long/short freq factors based on the context size
  8471. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  8472. if (model.layers[il].rope_freqs != nullptr) {
  8473. return model.layers[il].rope_freqs;
  8474. }
  8475. if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
  8476. return model.layers[il].rope_long;
  8477. }
  8478. return model.layers[il].rope_short;
  8479. }
  8480. struct ggml_tensor * build_inp_out_ids() {
  8481. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  8482. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  8483. ggml_set_input(lctx.inp_out_ids);
  8484. return lctx.inp_out_ids;
  8485. }
  8486. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  8487. lctx.inp_KQ_mask = causal
  8488. ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
  8489. : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  8490. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  8491. ggml_set_input(lctx.inp_KQ_mask);
  8492. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  8493. }
  8494. struct ggml_tensor * build_inp_KQ_mask_swa(bool causal = true) {
  8495. GGML_ASSERT(hparams.n_swa > 0);
  8496. lctx.inp_KQ_mask_swa = causal
  8497. ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
  8498. : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  8499. cb(lctx.inp_KQ_mask_swa, "KQ_mask_swa", -1);
  8500. ggml_set_input(lctx.inp_KQ_mask_swa);
  8501. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask_swa, GGML_TYPE_F16) : lctx.inp_KQ_mask_swa;
  8502. }
  8503. struct ggml_tensor * build_inp_mean() {
  8504. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  8505. cb(lctx.inp_mean, "inp_mean", -1);
  8506. ggml_set_input(lctx.inp_mean);
  8507. return lctx.inp_mean;
  8508. }
  8509. struct ggml_tensor * build_inp_cls() {
  8510. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  8511. cb(lctx.inp_cls, "inp_cls", -1);
  8512. ggml_set_input(lctx.inp_cls);
  8513. return lctx.inp_cls;
  8514. }
  8515. struct ggml_tensor * build_inp_s_copy() {
  8516. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_kv);
  8517. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  8518. ggml_set_input(lctx.inp_s_copy);
  8519. return lctx.inp_s_copy;
  8520. }
  8521. struct ggml_tensor * build_inp_s_mask() {
  8522. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  8523. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  8524. ggml_set_input(lctx.inp_s_mask);
  8525. return lctx.inp_s_mask;
  8526. }
  8527. struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
  8528. // find result_norm tensor for input
  8529. struct ggml_tensor * inp = nullptr;
  8530. for (int i = gf->n_nodes - 1; i >= 0; --i) {
  8531. inp = gf->nodes[i];
  8532. if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
  8533. break;
  8534. } else {
  8535. inp = nullptr;
  8536. }
  8537. }
  8538. GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
  8539. struct ggml_tensor * cur;
  8540. switch (pooling_type) {
  8541. case LLAMA_POOLING_TYPE_MEAN:
  8542. {
  8543. struct ggml_tensor * inp_mean = build_inp_mean();
  8544. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
  8545. } break;
  8546. case LLAMA_POOLING_TYPE_CLS:
  8547. case LLAMA_POOLING_TYPE_LAST:
  8548. {
  8549. struct ggml_tensor * inp_cls = build_inp_cls();
  8550. cur = ggml_get_rows(ctx0, inp, inp_cls);
  8551. } break;
  8552. case LLAMA_POOLING_TYPE_NONE:
  8553. {
  8554. cur = inp;
  8555. } break;
  8556. default:
  8557. {
  8558. GGML_ABORT("unknown pooling type");
  8559. }
  8560. }
  8561. cb(cur, "result_embd_pooled", -1);
  8562. ggml_build_forward_expand(gf, cur);
  8563. return gf;
  8564. }
  8565. struct ggml_tensor * llm_build_pos_bucket(bool causal) {
  8566. if (causal) {
  8567. lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  8568. } else {
  8569. lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
  8570. }
  8571. ggml_set_input(lctx.inp_pos_bucket);
  8572. cb(lctx.inp_pos_bucket, "pos_bucket", -1);
  8573. return lctx.inp_pos_bucket;
  8574. }
  8575. struct ggml_tensor * llm_build_pos_bias(struct ggml_tensor * pos_bucket, struct ggml_tensor * attn_rel_b) {
  8576. struct ggml_tensor * pos_bucket_1d = ggml_view_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1], 0);
  8577. cb(pos_bucket_1d, "pos_bucket_1d", -1);
  8578. struct ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
  8579. cb(pos_bias, "pos_bias", -1);
  8580. pos_bias = ggml_view_3d(ctx0, pos_bias, pos_bias->ne[0], lctx.inp_pos_bucket->ne[0], lctx.inp_pos_bucket->ne[1], ggml_element_size(pos_bias) * pos_bias->ne[0], ggml_element_size(pos_bias) * pos_bias->ne[0] * lctx.inp_pos_bucket->ne[0], 0);
  8581. cb(pos_bias, "pos_bias", -1);
  8582. pos_bias = ggml_permute(ctx0, pos_bias, 2, 0, 1, 3);
  8583. cb(pos_bias, "pos_bias", -1);
  8584. pos_bias = ggml_cont(ctx0, pos_bias);
  8585. cb(pos_bias, "pos_bias", -1);
  8586. return pos_bias;
  8587. }
  8588. struct ggml_tensor * llm_build_inp_embd_enc() {
  8589. const int64_t n_embd = hparams.n_embd;
  8590. lctx.inp_embd_enc = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_outputs_enc);
  8591. ggml_set_input(lctx.inp_embd_enc);
  8592. cb(lctx.inp_embd_enc, "embd_enc", -1);
  8593. return lctx.inp_embd_enc;
  8594. }
  8595. struct ggml_tensor * llm_build_inp_KQ_mask_cross() {
  8596. lctx.inp_KQ_mask_cross = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_outputs_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  8597. ggml_set_input(lctx.inp_KQ_mask_cross);
  8598. cb(lctx.inp_KQ_mask_cross, "KQ_mask_cross", -1);
  8599. return lctx.inp_KQ_mask_cross;
  8600. }
  8601. struct ggml_cgraph * build_llama() {
  8602. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  8603. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8604. int32_t n_tokens = this->n_tokens;
  8605. const int64_t n_embd_head = hparams.n_embd_head_v;
  8606. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8607. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8608. struct ggml_tensor * cur;
  8609. struct ggml_tensor * inpL;
  8610. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8611. // inp_pos - contains the positions
  8612. struct ggml_tensor * inp_pos = build_inp_pos();
  8613. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8614. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8615. for (int il = 0; il < n_layer; ++il) {
  8616. struct ggml_tensor * inpSA = inpL;
  8617. // norm
  8618. cur = llm_build_norm(ctx0, inpL, hparams,
  8619. model.layers[il].attn_norm, NULL,
  8620. LLM_NORM_RMS, cb, il);
  8621. cb(cur, "attn_norm", il);
  8622. // self-attention
  8623. {
  8624. // rope freq factors for llama3; may return nullptr for llama2 and other models
  8625. struct ggml_tensor * rope_factors = build_rope_factors(il);
  8626. // compute Q and K and RoPE them
  8627. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  8628. cb(Qcur, "Qcur", il);
  8629. if (model.layers[il].bq) {
  8630. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8631. cb(Qcur, "Qcur", il);
  8632. }
  8633. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  8634. cb(Kcur, "Kcur", il);
  8635. if (model.layers[il].bk) {
  8636. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8637. cb(Kcur, "Kcur", il);
  8638. }
  8639. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  8640. cb(Vcur, "Vcur", il);
  8641. if (model.layers[il].bv) {
  8642. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8643. cb(Vcur, "Vcur", il);
  8644. }
  8645. Qcur = ggml_rope_ext(
  8646. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
  8647. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8648. ext_factor, attn_factor, beta_fast, beta_slow
  8649. );
  8650. cb(Qcur, "Qcur", il);
  8651. Kcur = ggml_rope_ext(
  8652. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
  8653. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8654. ext_factor, attn_factor, beta_fast, beta_slow
  8655. );
  8656. cb(Kcur, "Kcur", il);
  8657. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  8658. model.layers[il].wo, model.layers[il].bo,
  8659. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8660. }
  8661. if (il == n_layer - 1) {
  8662. // skip computing output for unused tokens
  8663. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8664. n_tokens = n_outputs;
  8665. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8666. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8667. }
  8668. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8669. cb(ffn_inp, "ffn_inp", il);
  8670. // feed-forward network
  8671. if (model.layers[il].ffn_gate_inp == nullptr) {
  8672. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8673. model.layers[il].ffn_norm, NULL,
  8674. LLM_NORM_RMS, cb, il);
  8675. cb(cur, "ffn_norm", il);
  8676. cur = llm_build_ffn(ctx0, lctx, cur,
  8677. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8678. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  8679. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8680. NULL,
  8681. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8682. cb(cur, "ffn_out", il);
  8683. } else {
  8684. // MoE branch
  8685. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8686. model.layers[il].ffn_norm, NULL,
  8687. LLM_NORM_RMS, cb, il);
  8688. cb(cur, "ffn_norm", il);
  8689. cur = llm_build_moe_ffn(ctx0, lctx, cur,
  8690. model.layers[il].ffn_gate_inp,
  8691. model.layers[il].ffn_up_exps,
  8692. model.layers[il].ffn_gate_exps,
  8693. model.layers[il].ffn_down_exps,
  8694. n_expert, n_expert_used,
  8695. LLM_FFN_SILU, true,
  8696. false, 0.0,
  8697. cb, il);
  8698. cb(cur, "ffn_moe_out", il);
  8699. }
  8700. cur = ggml_add(ctx0, cur, ffn_inp);
  8701. cb(cur, "ffn_out", il);
  8702. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8703. cb(cur, "l_out", il);
  8704. // input for next layer
  8705. inpL = cur;
  8706. }
  8707. cur = inpL;
  8708. cur = llm_build_norm(ctx0, cur, hparams,
  8709. model.output_norm, NULL,
  8710. LLM_NORM_RMS, cb, -1);
  8711. cb(cur, "result_norm", -1);
  8712. // lm_head
  8713. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  8714. cb(cur, "result_output", -1);
  8715. ggml_build_forward_expand(gf, cur);
  8716. return gf;
  8717. }
  8718. struct ggml_cgraph * build_baichuan() {
  8719. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  8720. const int64_t n_embd_head = hparams.n_embd_head_v;
  8721. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8722. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8723. struct ggml_tensor * cur;
  8724. struct ggml_tensor * inpL;
  8725. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8726. // inp_pos - contains the positions
  8727. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  8728. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8729. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8730. for (int il = 0; il < n_layer; ++il) {
  8731. struct ggml_tensor * inpSA = inpL;
  8732. cur = llm_build_norm(ctx0, inpL, hparams,
  8733. model.layers[il].attn_norm, NULL,
  8734. LLM_NORM_RMS, cb, il);
  8735. cb(cur, "attn_norm", il);
  8736. // self-attention
  8737. {
  8738. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  8739. cb(Qcur, "Qcur", il);
  8740. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  8741. cb(Kcur, "Kcur", il);
  8742. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  8743. cb(Vcur, "Vcur", il);
  8744. switch (model.type) {
  8745. case MODEL_7B:
  8746. Qcur = ggml_rope_ext(
  8747. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8748. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8749. ext_factor, attn_factor, beta_fast, beta_slow
  8750. );
  8751. Kcur = ggml_rope_ext(
  8752. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8753. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8754. ext_factor, attn_factor, beta_fast, beta_slow
  8755. );
  8756. break;
  8757. case MODEL_13B:
  8758. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  8759. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  8760. break;
  8761. default:
  8762. GGML_ABORT("fatal error");
  8763. }
  8764. cb(Qcur, "Qcur", il);
  8765. cb(Kcur, "Kcur", il);
  8766. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  8767. model.layers[il].wo, NULL,
  8768. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8769. }
  8770. if (il == n_layer - 1) {
  8771. // skip computing output for unused tokens
  8772. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8773. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8774. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8775. }
  8776. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8777. cb(ffn_inp, "ffn_inp", il);
  8778. // feed-forward network
  8779. {
  8780. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8781. model.layers[il].ffn_norm, NULL,
  8782. LLM_NORM_RMS, cb, il);
  8783. cb(cur, "ffn_norm", il);
  8784. cur = llm_build_ffn(ctx0, lctx, cur,
  8785. model.layers[il].ffn_up, NULL, NULL,
  8786. model.layers[il].ffn_gate, NULL, NULL,
  8787. model.layers[il].ffn_down, NULL, NULL,
  8788. NULL,
  8789. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8790. cb(cur, "ffn_out", il);
  8791. }
  8792. cur = ggml_add(ctx0, cur, ffn_inp);
  8793. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8794. cb(cur, "l_out", il);
  8795. // input for next layer
  8796. inpL = cur;
  8797. }
  8798. cur = inpL;
  8799. cur = llm_build_norm(ctx0, cur, hparams,
  8800. model.output_norm, NULL,
  8801. LLM_NORM_RMS, cb, -1);
  8802. cb(cur, "result_norm", -1);
  8803. // lm_head
  8804. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  8805. cb(cur, "result_output", -1);
  8806. ggml_build_forward_expand(gf, cur);
  8807. return gf;
  8808. }
  8809. struct ggml_cgraph * build_xverse() {
  8810. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  8811. const int64_t n_embd_head = hparams.n_embd_head_v;
  8812. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8813. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8814. struct ggml_tensor * cur;
  8815. struct ggml_tensor * inpL;
  8816. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8817. // inp_pos - contains the positions
  8818. struct ggml_tensor * inp_pos = build_inp_pos();
  8819. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8820. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8821. for (int il = 0; il < n_layer; ++il) {
  8822. struct ggml_tensor * inpSA = inpL;
  8823. cur = llm_build_norm(ctx0, inpL, hparams,
  8824. model.layers[il].attn_norm, NULL,
  8825. LLM_NORM_RMS, cb, il);
  8826. cb(cur, "attn_norm", il);
  8827. // self-attention
  8828. {
  8829. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  8830. cb(Qcur, "Qcur", il);
  8831. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  8832. cb(Kcur, "Kcur", il);
  8833. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  8834. cb(Vcur, "Vcur", il);
  8835. Qcur = ggml_rope_ext(
  8836. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8837. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8838. ext_factor, attn_factor, beta_fast, beta_slow
  8839. );
  8840. cb(Qcur, "Qcur", il);
  8841. Kcur = ggml_rope_ext(
  8842. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8843. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8844. ext_factor, attn_factor, beta_fast, beta_slow
  8845. );
  8846. cb(Kcur, "Kcur", il);
  8847. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  8848. model.layers[il].wo, NULL,
  8849. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8850. }
  8851. if (il == n_layer - 1) {
  8852. // skip computing output for unused tokens
  8853. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8854. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8855. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8856. }
  8857. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8858. cb(ffn_inp, "ffn_inp", il);
  8859. // feed-forward network
  8860. {
  8861. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8862. model.layers[il].ffn_norm, NULL,
  8863. LLM_NORM_RMS, cb, il);
  8864. cb(cur, "ffn_norm", il);
  8865. cur = llm_build_ffn(ctx0, lctx, cur,
  8866. model.layers[il].ffn_up, NULL, NULL,
  8867. model.layers[il].ffn_gate, NULL, NULL,
  8868. model.layers[il].ffn_down, NULL, NULL,
  8869. NULL,
  8870. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8871. cb(cur, "ffn_out", il);
  8872. }
  8873. cur = ggml_add(ctx0, cur, ffn_inp);
  8874. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8875. cb(cur, "l_out", il);
  8876. // input for next layer
  8877. inpL = cur;
  8878. }
  8879. cur = inpL;
  8880. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  8881. cb(cur, "result_norm", -1);
  8882. // lm_head
  8883. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  8884. cb(cur, "result_output", -1);
  8885. ggml_build_forward_expand(gf, cur);
  8886. return gf;
  8887. }
  8888. struct ggml_cgraph * build_falcon() {
  8889. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  8890. const int64_t n_embd_head = hparams.n_embd_head_v;
  8891. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8892. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8893. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8894. struct ggml_tensor * cur;
  8895. struct ggml_tensor * inpL;
  8896. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8897. // inp_pos - contains the positions
  8898. struct ggml_tensor * inp_pos = build_inp_pos();
  8899. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8900. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8901. for (int il = 0; il < n_layer; ++il) {
  8902. struct ggml_tensor * attn_norm;
  8903. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  8904. model.layers[il].attn_norm,
  8905. model.layers[il].attn_norm_b,
  8906. LLM_NORM, cb, il);
  8907. cb(attn_norm, "attn_norm", il);
  8908. // self-attention
  8909. {
  8910. if (model.layers[il].attn_norm_2) {
  8911. // Falcon-40B
  8912. cur = llm_build_norm(ctx0, inpL, hparams,
  8913. model.layers[il].attn_norm_2,
  8914. model.layers[il].attn_norm_2_b,
  8915. LLM_NORM, cb, il);
  8916. cb(cur, "attn_norm_2", il);
  8917. } else {
  8918. cur = attn_norm;
  8919. }
  8920. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  8921. cb(cur, "wqkv", il);
  8922. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8923. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8924. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8925. cb(Qcur, "Qcur", il);
  8926. cb(Kcur, "Kcur", il);
  8927. cb(Vcur, "Vcur", il);
  8928. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8929. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8930. // using mode = 2 for neox mode
  8931. Qcur = ggml_rope_ext(
  8932. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8933. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8934. );
  8935. cb(Qcur, "Qcur", il);
  8936. Kcur = ggml_rope_ext(
  8937. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8938. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8939. );
  8940. cb(Kcur, "Kcur", il);
  8941. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  8942. model.layers[il].wo, NULL,
  8943. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8944. }
  8945. if (il == n_layer - 1) {
  8946. // skip computing output for unused tokens
  8947. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8948. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8949. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8950. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  8951. }
  8952. struct ggml_tensor * ffn_inp = cur;
  8953. // feed forward
  8954. {
  8955. cur = llm_build_ffn(ctx0, lctx, attn_norm, // !! use the attn norm, not the result
  8956. model.layers[il].ffn_up, NULL, NULL,
  8957. NULL, NULL, NULL,
  8958. model.layers[il].ffn_down, NULL, NULL,
  8959. NULL,
  8960. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8961. cb(cur, "ffn_out", il);
  8962. }
  8963. cur = ggml_add(ctx0, cur, ffn_inp);
  8964. cur = ggml_add(ctx0, cur, inpL);
  8965. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8966. cb(cur, "l_out", il);
  8967. // input for next layer
  8968. inpL = cur;
  8969. }
  8970. cur = inpL;
  8971. // norm
  8972. cur = llm_build_norm(ctx0, cur, hparams,
  8973. model.output_norm,
  8974. model.output_norm_b,
  8975. LLM_NORM, cb, -1);
  8976. cb(cur, "result_norm", -1);
  8977. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  8978. cb(cur, "result_output", -1);
  8979. ggml_build_forward_expand(gf, cur);
  8980. return gf;
  8981. }
  8982. struct ggml_cgraph * build_grok() {
  8983. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  8984. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8985. int32_t n_tokens = this->n_tokens;
  8986. const int64_t n_embd_head = hparams.n_embd_head_v;
  8987. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8988. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8989. struct ggml_tensor * cur;
  8990. struct ggml_tensor * inpL;
  8991. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8992. // multiply by embedding_multiplier_scale of 78.38367176906169
  8993. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  8994. // inp_pos - contains the positions
  8995. struct ggml_tensor * inp_pos = build_inp_pos();
  8996. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8997. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8998. for (int il = 0; il < n_layer; ++il) {
  8999. struct ggml_tensor * inpSA = inpL;
  9000. // norm
  9001. cur = llm_build_norm(ctx0, inpL, hparams,
  9002. model.layers[il].attn_norm, NULL,
  9003. LLM_NORM_RMS, cb, il);
  9004. cb(cur, "attn_norm", il);
  9005. // self-attention
  9006. {
  9007. // compute Q and K and RoPE them
  9008. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  9009. cb(Qcur, "Qcur", il);
  9010. if (model.layers[il].bq) {
  9011. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9012. cb(Qcur, "Qcur", il);
  9013. }
  9014. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  9015. cb(Kcur, "Kcur", il);
  9016. if (model.layers[il].bk) {
  9017. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9018. cb(Kcur, "Kcur", il);
  9019. }
  9020. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  9021. cb(Vcur, "Vcur", il);
  9022. if (model.layers[il].bv) {
  9023. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9024. cb(Vcur, "Vcur", il);
  9025. }
  9026. Qcur = ggml_rope_ext(
  9027. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9028. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9029. ext_factor, attn_factor, beta_fast, beta_slow
  9030. );
  9031. cb(Qcur, "Qcur", il);
  9032. Kcur = ggml_rope_ext(
  9033. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9034. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9035. ext_factor, attn_factor, beta_fast, beta_slow
  9036. );
  9037. cb(Kcur, "Kcur", il);
  9038. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  9039. model.layers[il].wo, model.layers[il].bo,
  9040. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  9041. }
  9042. if (il == n_layer - 1) {
  9043. // skip computing output for unused tokens
  9044. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9045. n_tokens = n_outputs;
  9046. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9047. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9048. }
  9049. // Grok
  9050. // if attn_out_norm is present then apply it before adding the input
  9051. if (model.layers[il].attn_out_norm) {
  9052. cur = llm_build_norm(ctx0, cur, hparams,
  9053. model.layers[il].attn_out_norm, NULL,
  9054. LLM_NORM_RMS, cb, il);
  9055. cb(cur, "attn_out_norm", il);
  9056. }
  9057. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9058. cb(ffn_inp, "ffn_inp", il);
  9059. // feed-forward network
  9060. // MoE branch
  9061. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9062. model.layers[il].ffn_norm, NULL,
  9063. LLM_NORM_RMS, cb, il);
  9064. cb(cur, "ffn_norm", il);
  9065. cur = llm_build_moe_ffn(ctx0, lctx, cur,
  9066. model.layers[il].ffn_gate_inp,
  9067. model.layers[il].ffn_up_exps,
  9068. model.layers[il].ffn_gate_exps,
  9069. model.layers[il].ffn_down_exps,
  9070. n_expert, n_expert_used,
  9071. LLM_FFN_GELU, true,
  9072. false, 0.0,
  9073. cb, il);
  9074. cb(cur, "ffn_moe_out", il);
  9075. // Grok
  9076. // if layer_out_norm is present then apply it before adding the input
  9077. // Idea: maybe ffn_out_norm is a better name
  9078. if (model.layers[il].layer_out_norm) {
  9079. cur = llm_build_norm(ctx0, cur, hparams,
  9080. model.layers[il].layer_out_norm, NULL,
  9081. LLM_NORM_RMS, cb, il);
  9082. cb(cur, "layer_out_norm", il);
  9083. }
  9084. cur = ggml_add(ctx0, cur, ffn_inp);
  9085. cb(cur, "ffn_out", il);
  9086. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9087. cb(cur, "l_out", il);
  9088. // input for next layer
  9089. inpL = cur;
  9090. }
  9091. cur = inpL;
  9092. cur = llm_build_norm(ctx0, cur, hparams,
  9093. model.output_norm, NULL,
  9094. LLM_NORM_RMS, cb, -1);
  9095. cb(cur, "result_norm", -1);
  9096. // lm_head
  9097. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  9098. // Grok
  9099. // multiply logits by output_multiplier_scale of 0.5773502691896257
  9100. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  9101. cb(cur, "result_output", -1);
  9102. ggml_build_forward_expand(gf, cur);
  9103. return gf;
  9104. }
  9105. struct ggml_cgraph * build_dbrx() {
  9106. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  9107. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9108. int32_t n_tokens = this->n_tokens;
  9109. const int64_t n_embd_head = hparams.n_embd_head_v;
  9110. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9111. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9112. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9113. struct ggml_tensor * cur;
  9114. struct ggml_tensor * inpL;
  9115. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9116. // inp_pos - contains the positions
  9117. struct ggml_tensor * inp_pos = build_inp_pos();
  9118. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9119. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9120. for (int il = 0; il < n_layer; ++il) {
  9121. struct ggml_tensor * inpSA = inpL;
  9122. // norm
  9123. cur = llm_build_norm(ctx0, inpL, hparams,
  9124. model.layers[il].attn_norm, NULL,
  9125. LLM_NORM, cb, il);
  9126. cb(cur, "attn_norm", il);
  9127. // self-attention
  9128. {
  9129. struct ggml_tensor * Qcur = nullptr;
  9130. struct ggml_tensor * Kcur = nullptr;
  9131. struct ggml_tensor * Vcur = nullptr;
  9132. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  9133. cb(cur, "wqkv", il);
  9134. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9135. cb(cur, "wqkv_clamped", il);
  9136. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9137. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9138. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9139. cb(Qcur, "Qcur", il);
  9140. cb(Kcur, "Kcur", il);
  9141. cb(Vcur, "Vcur", il);
  9142. Qcur = ggml_rope_ext(
  9143. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9144. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9145. ext_factor, attn_factor, beta_fast, beta_slow
  9146. );
  9147. cb(Qcur, "Qcur", il);
  9148. Kcur = ggml_rope_ext(
  9149. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9150. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9151. ext_factor, attn_factor, beta_fast, beta_slow
  9152. );
  9153. cb(Kcur, "Kcur", il);
  9154. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  9155. model.layers[il].wo, NULL,
  9156. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9157. }
  9158. if (il == n_layer - 1) {
  9159. // skip computing output for unused tokens
  9160. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9161. n_tokens = n_outputs;
  9162. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9163. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9164. }
  9165. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9166. cb(ffn_inp, "ffn_inp", il);
  9167. // feed-forward network
  9168. // MoE branch
  9169. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9170. model.layers[il].attn_out_norm, NULL,
  9171. LLM_NORM, cb, il);
  9172. cb(cur, "attn_out_norm", il);
  9173. cur = llm_build_moe_ffn(ctx0, lctx, cur,
  9174. model.layers[il].ffn_gate_inp,
  9175. model.layers[il].ffn_up_exps,
  9176. model.layers[il].ffn_gate_exps,
  9177. model.layers[il].ffn_down_exps,
  9178. n_expert, n_expert_used,
  9179. LLM_FFN_SILU, true,
  9180. false, 0.0,
  9181. cb, il);
  9182. cb(cur, "ffn_moe_out", il);
  9183. cur = ggml_add(ctx0, cur, ffn_inp);
  9184. cb(cur, "ffn_out", il);
  9185. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9186. cb(cur, "l_out", il);
  9187. // input for next layer
  9188. inpL = cur;
  9189. }
  9190. cur = inpL;
  9191. cur = llm_build_norm(ctx0, cur, hparams,
  9192. model.output_norm, NULL,
  9193. LLM_NORM, cb, -1);
  9194. cb(cur, "result_norm", -1);
  9195. // lm_head
  9196. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  9197. cb(cur, "result_output", -1);
  9198. ggml_build_forward_expand(gf, cur);
  9199. return gf;
  9200. }
  9201. struct ggml_cgraph * build_starcoder() {
  9202. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  9203. const int64_t n_embd_head = hparams.n_embd_head_v;
  9204. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9205. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9206. struct ggml_tensor * cur;
  9207. struct ggml_tensor * inpL;
  9208. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9209. // inp_pos - contains the positions
  9210. struct ggml_tensor * inp_pos = build_inp_pos();
  9211. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9212. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9213. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  9214. cb(pos, "pos_embd", -1);
  9215. inpL = ggml_add(ctx0, inpL, pos);
  9216. cb(inpL, "inpL", -1);
  9217. for (int il = 0; il < n_layer; ++il) {
  9218. cur = llm_build_norm(ctx0, inpL, hparams,
  9219. model.layers[il].attn_norm,
  9220. model.layers[il].attn_norm_b,
  9221. LLM_NORM, cb, il);
  9222. cb(cur, "attn_norm", il);
  9223. // self-attention
  9224. {
  9225. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  9226. cb(cur, "wqkv", il);
  9227. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9228. cb(cur, "bqkv", il);
  9229. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9230. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9231. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9232. cb(Qcur, "Qcur", il);
  9233. cb(Kcur, "Kcur", il);
  9234. cb(Vcur, "Vcur", il);
  9235. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9236. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  9237. model.layers[il].wo, model.layers[il].bo,
  9238. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9239. }
  9240. if (il == n_layer - 1) {
  9241. // skip computing output for unused tokens
  9242. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9243. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9244. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9245. }
  9246. // add the input
  9247. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9248. cb(ffn_inp, "ffn_inp", il);
  9249. // FF
  9250. {
  9251. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9252. model.layers[il].ffn_norm,
  9253. model.layers[il].ffn_norm_b,
  9254. LLM_NORM, cb, il);
  9255. cb(cur, "ffn_norm", il);
  9256. cur = llm_build_ffn(ctx0, lctx, cur,
  9257. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9258. NULL, NULL, NULL,
  9259. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9260. NULL,
  9261. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9262. cb(cur, "ffn_out", il);
  9263. }
  9264. cur = ggml_add(ctx0, cur, ffn_inp);
  9265. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9266. cb(cur, "l_out", il);
  9267. // input for next layer
  9268. inpL = cur;
  9269. }
  9270. cur = llm_build_norm(ctx0, inpL, hparams,
  9271. model.output_norm,
  9272. model.output_norm_b,
  9273. LLM_NORM, cb, -1);
  9274. cb(cur, "result_norm", -1);
  9275. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  9276. cb(cur, "result_output", -1);
  9277. ggml_build_forward_expand(gf, cur);
  9278. return gf;
  9279. }
  9280. struct ggml_cgraph * build_refact() {
  9281. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  9282. const int64_t n_embd_head = hparams.n_embd_head_v;
  9283. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9284. struct ggml_tensor * cur;
  9285. struct ggml_tensor * inpL;
  9286. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9287. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9288. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9289. for (int il = 0; il < n_layer; ++il) {
  9290. struct ggml_tensor * inpSA = inpL;
  9291. cur = llm_build_norm(ctx0, inpL, hparams,
  9292. model.layers[il].attn_norm, NULL,
  9293. LLM_NORM_RMS, cb, il);
  9294. cb(cur, "attn_norm", il);
  9295. // self-attention
  9296. {
  9297. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  9298. cb(Qcur, "Qcur", il);
  9299. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  9300. cb(Kcur, "Kcur", il);
  9301. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  9302. cb(Vcur, "Vcur", il);
  9303. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9304. cb(Kcur, "Kcur", il);
  9305. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9306. cb(Qcur, "Qcur", il);
  9307. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  9308. model.layers[il].wo, NULL,
  9309. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9310. }
  9311. if (il == n_layer - 1) {
  9312. // skip computing output for unused tokens
  9313. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9314. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9315. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9316. }
  9317. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9318. cb(ffn_inp, "ffn_inp", il);
  9319. // feed-forward network
  9320. {
  9321. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9322. model.layers[il].ffn_norm, NULL,
  9323. LLM_NORM_RMS, cb, il);
  9324. cb(cur, "ffn_norm", il);
  9325. cur = llm_build_ffn(ctx0, lctx, cur,
  9326. model.layers[il].ffn_up, NULL, NULL,
  9327. model.layers[il].ffn_gate, NULL, NULL,
  9328. model.layers[il].ffn_down, NULL, NULL,
  9329. NULL,
  9330. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9331. cb(cur, "ffn_out", il);
  9332. }
  9333. cur = ggml_add(ctx0, cur, ffn_inp);
  9334. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9335. cb(cur, "l_out", il);
  9336. // input for next layer
  9337. inpL = cur;
  9338. }
  9339. cur = inpL;
  9340. cur = llm_build_norm(ctx0, cur, hparams,
  9341. model.output_norm, NULL,
  9342. LLM_NORM_RMS, cb, -1);
  9343. cb(cur, "result_norm", -1);
  9344. // lm_head
  9345. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  9346. cb(cur, "result_output", -1);
  9347. ggml_build_forward_expand(gf, cur);
  9348. return gf;
  9349. }
  9350. struct ggml_cgraph * build_bert() {
  9351. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  9352. const int64_t n_embd_head = hparams.n_embd_head_v;
  9353. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9354. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9355. struct ggml_tensor * cur;
  9356. struct ggml_tensor * inpL;
  9357. struct ggml_tensor * inp_pos = nullptr;
  9358. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  9359. inp_pos = build_inp_pos();
  9360. }
  9361. // construct input embeddings (token, type, position)
  9362. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9363. // token types are hardcoded to zero ("Sentence A")
  9364. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  9365. inpL = ggml_add(ctx0, inpL, type_row0);
  9366. if (model.arch == LLM_ARCH_BERT) {
  9367. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  9368. }
  9369. cb(inpL, "inp_embd", -1);
  9370. // embed layer norm
  9371. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  9372. cb(inpL, "inp_norm", -1);
  9373. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9374. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  9375. // iterate layers
  9376. for (int il = 0; il < n_layer; ++il) {
  9377. struct ggml_tensor * cur = inpL;
  9378. struct ggml_tensor * Qcur;
  9379. struct ggml_tensor * Kcur;
  9380. struct ggml_tensor * Vcur;
  9381. // self-attention
  9382. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  9383. Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  9384. cb(Qcur, "Qcur", il);
  9385. if (model.layers[il].attn_q_norm) {
  9386. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  9387. model.layers[il].attn_q_norm,
  9388. model.layers[il].attn_q_norm_b,
  9389. LLM_NORM, cb, il);
  9390. }
  9391. Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  9392. cb(Kcur, "Kcur", il);
  9393. if (model.layers[il].attn_k_norm) {
  9394. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  9395. model.layers[il].attn_k_norm,
  9396. model.layers[il].attn_k_norm_b,
  9397. LLM_NORM, cb, il);
  9398. }
  9399. Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  9400. cb(Vcur, "Vcur", il);
  9401. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9402. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9403. } else {
  9404. // compute Q and K and RoPE them
  9405. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  9406. cb(cur, "wqkv", il);
  9407. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9408. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9409. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9410. cb(Qcur, "Qcur", il);
  9411. cb(Kcur, "Kcur", il);
  9412. cb(Vcur, "Vcur", il);
  9413. Qcur = ggml_rope_ext(
  9414. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9415. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9416. ext_factor, attn_factor, beta_fast, beta_slow
  9417. );
  9418. cb(Qcur, "Qcur", il);
  9419. Kcur = ggml_rope_ext(
  9420. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9421. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9422. ext_factor, attn_factor, beta_fast, beta_slow
  9423. );
  9424. cb(Kcur, "Kcur", il);
  9425. }
  9426. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  9427. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  9428. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  9429. cb(kq, "kq", il);
  9430. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  9431. cb(kq, "kq_soft_max_ext", il);
  9432. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  9433. cb(v, "v", il);
  9434. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  9435. cb(kqv, "kqv", il);
  9436. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  9437. cb(kqv_merged, "kqv_merged", il);
  9438. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  9439. cb(cur, "kqv_merged_cont", il);
  9440. ggml_build_forward_expand(gf, cur);
  9441. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
  9442. if (model.layers[il].bo) {
  9443. cb(cur, "kqv_wo", il);
  9444. }
  9445. if (model.layers[il].bo) {
  9446. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  9447. }
  9448. cb(cur, "kqv_out", il);
  9449. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9450. // skip computing output for unused tokens
  9451. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9452. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9453. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9454. }
  9455. // re-add the layer input
  9456. cur = ggml_add(ctx0, cur, inpL);
  9457. // attention layer norm
  9458. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  9459. if (model.layers[il].attn_norm_2 != nullptr) {
  9460. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  9461. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
  9462. }
  9463. struct ggml_tensor * ffn_inp = cur;
  9464. cb(ffn_inp, "ffn_inp", il);
  9465. // feed-forward network
  9466. if (model.arch == LLM_ARCH_BERT) {
  9467. cur = llm_build_ffn(ctx0, lctx, cur,
  9468. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9469. NULL, NULL, NULL,
  9470. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9471. NULL,
  9472. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9473. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  9474. cur = llm_build_ffn(ctx0, lctx, cur,
  9475. model.layers[il].ffn_up, NULL, NULL,
  9476. model.layers[il].ffn_gate, NULL, NULL,
  9477. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9478. NULL,
  9479. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  9480. } else {
  9481. cur = llm_build_ffn(ctx0, lctx, cur,
  9482. model.layers[il].ffn_up, NULL, NULL,
  9483. model.layers[il].ffn_gate, NULL, NULL,
  9484. model.layers[il].ffn_down, NULL, NULL,
  9485. NULL,
  9486. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9487. }
  9488. cb(cur, "ffn_out", il);
  9489. // attentions bypass the intermediate layer
  9490. cur = ggml_add(ctx0, cur, ffn_inp);
  9491. // output layer norm
  9492. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  9493. // input for next layer
  9494. inpL = cur;
  9495. }
  9496. // final output
  9497. cur = inpL;
  9498. cb(cur, "result_embd", -1);
  9499. ggml_build_forward_expand(gf, cur);
  9500. return gf;
  9501. }
  9502. struct ggml_cgraph * build_bloom() {
  9503. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  9504. const int64_t n_embd_head = hparams.n_embd_head_v;
  9505. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9506. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9507. struct ggml_tensor * cur;
  9508. struct ggml_tensor * inpL;
  9509. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9510. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9511. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9512. inpL = llm_build_norm(ctx0, inpL, hparams,
  9513. model.tok_norm,
  9514. model.tok_norm_b,
  9515. LLM_NORM, cb, -1);
  9516. cb(inpL, "inp_norm", -1);
  9517. for (int il = 0; il < n_layer; ++il) {
  9518. cur = llm_build_norm(ctx0, inpL, hparams,
  9519. model.layers[il].attn_norm,
  9520. model.layers[il].attn_norm_b,
  9521. LLM_NORM, cb, il);
  9522. cb(cur, "attn_norm", il);
  9523. // self-attention
  9524. {
  9525. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  9526. cb(cur, "wqkv", il);
  9527. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9528. cb(cur, "bqkv", il);
  9529. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9530. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9531. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9532. cb(Qcur, "Qcur", il);
  9533. cb(Kcur, "Kcur", il);
  9534. cb(Vcur, "Vcur", il);
  9535. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9536. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  9537. model.layers[il].wo, model.layers[il].bo,
  9538. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9539. }
  9540. if (il == n_layer - 1) {
  9541. // skip computing output for unused tokens
  9542. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9543. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9544. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9545. }
  9546. // Add the input
  9547. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9548. cb(ffn_inp, "ffn_inp", il);
  9549. // FF
  9550. {
  9551. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9552. model.layers[il].ffn_norm,
  9553. model.layers[il].ffn_norm_b,
  9554. LLM_NORM, cb, il);
  9555. cb(cur, "ffn_norm", il);
  9556. cur = llm_build_ffn(ctx0, lctx, cur,
  9557. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9558. NULL, NULL, NULL,
  9559. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9560. NULL,
  9561. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9562. cb(cur, "ffn_out", il);
  9563. }
  9564. cur = ggml_add(ctx0, cur, ffn_inp);
  9565. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9566. cb(cur, "l_out", il);
  9567. // input for next layer
  9568. inpL = cur;
  9569. }
  9570. cur = llm_build_norm(ctx0, inpL, hparams,
  9571. model.output_norm,
  9572. model.output_norm_b,
  9573. LLM_NORM, cb, -1);
  9574. cb(cur, "result_norm", -1);
  9575. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  9576. cb(cur, "result_output", -1);
  9577. ggml_build_forward_expand(gf, cur);
  9578. return gf;
  9579. }
  9580. struct ggml_cgraph * build_mpt() {
  9581. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  9582. const int64_t n_embd_head = hparams.n_embd_head_v;
  9583. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9584. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9585. struct ggml_tensor * cur;
  9586. struct ggml_tensor * pos;
  9587. struct ggml_tensor * inpL;
  9588. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9589. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9590. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9591. if (model.pos_embd) {
  9592. // inp_pos - contains the positions
  9593. struct ggml_tensor * inp_pos = build_inp_pos();
  9594. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  9595. cb(pos, "pos_embd", -1);
  9596. inpL = ggml_add(ctx0, inpL, pos);
  9597. cb(inpL, "inpL", -1);
  9598. }
  9599. for (int il = 0; il < n_layer; ++il) {
  9600. struct ggml_tensor * attn_norm;
  9601. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  9602. model.layers[il].attn_norm,
  9603. model.layers[il].attn_norm_b,
  9604. LLM_NORM, cb, il);
  9605. cb(attn_norm, "attn_norm", il);
  9606. // self-attention
  9607. {
  9608. cur = attn_norm;
  9609. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  9610. cb(cur, "wqkv", il);
  9611. if (model.layers[il].bqkv){
  9612. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9613. cb(cur, "bqkv", il);
  9614. }
  9615. if (hparams.f_clamp_kqv > 0.0f) {
  9616. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9617. cb(cur, "wqkv_clamped", il);
  9618. }
  9619. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9620. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9621. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9622. cb(Qcur, "Qcur", il);
  9623. cb(Kcur, "Kcur", il);
  9624. cb(Vcur, "Vcur", il);
  9625. // Q/K Layernorm
  9626. if (model.layers[il].attn_q_norm) {
  9627. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  9628. model.layers[il].attn_q_norm,
  9629. model.layers[il].attn_q_norm_b,
  9630. LLM_NORM, cb, il);
  9631. cb(Qcur, "Qcur", il);
  9632. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  9633. model.layers[il].attn_k_norm,
  9634. model.layers[il].attn_k_norm_b,
  9635. LLM_NORM, cb, il);
  9636. cb(Kcur, "Kcur", il);
  9637. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9638. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9639. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  9640. model.layers[il].wo, model.layers[il].bo,
  9641. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9642. } else {
  9643. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9644. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  9645. model.layers[il].wo, model.layers[il].bo,
  9646. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9647. }
  9648. }
  9649. if (il == n_layer - 1) {
  9650. // skip computing output for unused tokens
  9651. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9652. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9653. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9654. }
  9655. // Add the input
  9656. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9657. cb(ffn_inp, "ffn_inp", il);
  9658. // feed forward
  9659. {
  9660. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9661. model.layers[il].ffn_norm,
  9662. model.layers[il].ffn_norm_b,
  9663. LLM_NORM, cb, il);
  9664. cb(cur, "ffn_norm", il);
  9665. cur = llm_build_ffn(ctx0, lctx, cur,
  9666. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9667. NULL, NULL, NULL,
  9668. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9669. model.layers[il].ffn_act,
  9670. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9671. cb(cur, "ffn_out", il);
  9672. }
  9673. cur = ggml_add(ctx0, cur, ffn_inp);
  9674. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9675. cb(cur, "l_out", il);
  9676. // input for next layer
  9677. inpL = cur;
  9678. }
  9679. cur = inpL;
  9680. cur = llm_build_norm(ctx0, cur, hparams,
  9681. model.output_norm,
  9682. model.output_norm_b,
  9683. LLM_NORM, cb, -1);
  9684. cb(cur, "result_norm", -1);
  9685. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  9686. cb(cur, "result_output", -1);
  9687. ggml_build_forward_expand(gf, cur);
  9688. return gf;
  9689. }
  9690. struct ggml_cgraph * build_stablelm() {
  9691. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  9692. const int64_t n_embd_head = hparams.n_embd_head_v;
  9693. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9694. struct ggml_tensor * cur;
  9695. struct ggml_tensor * inpL;
  9696. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9697. // inp_pos - contains the positions
  9698. struct ggml_tensor * inp_pos = build_inp_pos();
  9699. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9700. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9701. for (int il = 0; il < n_layer; ++il) {
  9702. // norm
  9703. cur = llm_build_norm(ctx0, inpL, hparams,
  9704. model.layers[il].attn_norm,
  9705. model.layers[il].attn_norm_b,
  9706. LLM_NORM, cb, il);
  9707. cb(cur, "attn_norm", il);
  9708. struct ggml_tensor * inpSA = cur;
  9709. // self-attention
  9710. {
  9711. // compute Q and K and RoPE them
  9712. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  9713. cb(Qcur, "Qcur", il);
  9714. if (model.layers[il].bq) {
  9715. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9716. cb(Qcur, "Qcur", il);
  9717. }
  9718. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  9719. cb(Kcur, "Kcur", il);
  9720. if (model.layers[il].bk) {
  9721. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9722. cb(Kcur, "Kcur", il);
  9723. }
  9724. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  9725. cb(Vcur, "Vcur", il);
  9726. if (model.layers[il].bv) {
  9727. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9728. cb(Vcur, "Vcur", il);
  9729. }
  9730. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9731. cb(Qcur, "Qcur", il);
  9732. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9733. cb(Kcur, "Kcur", il);
  9734. if (model.layers[il].attn_q_norm) {
  9735. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  9736. model.layers[il].attn_q_norm,
  9737. NULL,
  9738. LLM_NORM, cb, il);
  9739. cb(Qcur, "Qcur", il);
  9740. }
  9741. if (model.layers[il].attn_k_norm) {
  9742. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  9743. model.layers[il].attn_k_norm,
  9744. NULL,
  9745. LLM_NORM, cb, il);
  9746. cb(Kcur, "Kcur", il);
  9747. }
  9748. Qcur = ggml_rope_ext(
  9749. ctx0, Qcur, inp_pos, nullptr,
  9750. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9751. ext_factor, attn_factor, beta_fast, beta_slow
  9752. );
  9753. cb(Qcur, "Qcur", il);
  9754. Kcur = ggml_rope_ext(
  9755. ctx0, Kcur, inp_pos, nullptr,
  9756. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9757. ext_factor, attn_factor, beta_fast, beta_slow
  9758. );
  9759. cb(Kcur, "Kcur", il);
  9760. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  9761. model.layers[il].wo, NULL,
  9762. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9763. }
  9764. if (il == n_layer - 1) {
  9765. // skip computing output for unused tokens
  9766. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9767. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9768. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9769. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9770. }
  9771. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9772. cb(ffn_inp, "ffn_inp", il);
  9773. // feed-forward network
  9774. {
  9775. if (model.layers[il].ffn_norm) {
  9776. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9777. model.layers[il].ffn_norm,
  9778. model.layers[il].ffn_norm_b,
  9779. LLM_NORM, cb, il);
  9780. cb(cur, "ffn_norm", il);
  9781. } else {
  9782. // parallel residual
  9783. cur = inpSA;
  9784. }
  9785. cur = llm_build_ffn(ctx0, lctx, cur,
  9786. model.layers[il].ffn_up, NULL, NULL,
  9787. model.layers[il].ffn_gate, NULL, NULL,
  9788. model.layers[il].ffn_down, NULL, NULL,
  9789. NULL,
  9790. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9791. cb(cur, "ffn_out", il);
  9792. }
  9793. cur = ggml_add(ctx0, cur, ffn_inp);
  9794. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9795. cb(cur, "l_out", il);
  9796. // input for next layer
  9797. inpL = cur;
  9798. }
  9799. cur = inpL;
  9800. cur = llm_build_norm(ctx0, cur, hparams,
  9801. model.output_norm,
  9802. model.output_norm_b,
  9803. LLM_NORM, cb, -1);
  9804. cb(cur, "result_norm", -1);
  9805. // lm_head
  9806. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  9807. cb(cur, "result_output", -1);
  9808. ggml_build_forward_expand(gf, cur);
  9809. return gf;
  9810. }
  9811. struct ggml_cgraph * build_qwen() {
  9812. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  9813. const int64_t n_embd_head = hparams.n_embd_head_v;
  9814. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9815. struct ggml_tensor * cur;
  9816. struct ggml_tensor * inpL;
  9817. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9818. // inp_pos - contains the positions
  9819. struct ggml_tensor * inp_pos = build_inp_pos();
  9820. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9821. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9822. for (int il = 0; il < n_layer; ++il) {
  9823. struct ggml_tensor * inpSA = inpL;
  9824. cur = llm_build_norm(ctx0, inpL, hparams,
  9825. model.layers[il].attn_norm, NULL,
  9826. LLM_NORM_RMS, cb, il);
  9827. cb(cur, "attn_norm", il);
  9828. // self-attention
  9829. {
  9830. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  9831. cb(cur, "wqkv", il);
  9832. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9833. cb(cur, "bqkv", il);
  9834. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9835. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9836. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  9837. cb(Qcur, "Qcur", il);
  9838. cb(Kcur, "Kcur", il);
  9839. cb(Vcur, "Vcur", il);
  9840. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9841. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9842. // using mode = 2 for neox mode
  9843. Qcur = ggml_rope_ext(
  9844. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  9845. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  9846. );
  9847. cb(Qcur, "Qcur", il);
  9848. Kcur = ggml_rope_ext(
  9849. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  9850. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  9851. );
  9852. cb(Kcur, "Kcur", il);
  9853. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  9854. model.layers[il].wo, NULL,
  9855. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9856. }
  9857. if (il == n_layer - 1) {
  9858. // skip computing output for unused tokens
  9859. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9860. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9861. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9862. }
  9863. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9864. cb(ffn_inp, "ffn_inp", il);
  9865. // feed-forward forward
  9866. {
  9867. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9868. model.layers[il].ffn_norm, NULL,
  9869. LLM_NORM_RMS, cb, il);
  9870. cb(cur, "ffn_norm", il);
  9871. cur = llm_build_ffn(ctx0, lctx, cur,
  9872. model.layers[il].ffn_up, NULL, NULL,
  9873. model.layers[il].ffn_gate, NULL, NULL,
  9874. model.layers[il].ffn_down, NULL, NULL,
  9875. NULL,
  9876. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9877. cb(cur, "ffn_out", il);
  9878. }
  9879. cur = ggml_add(ctx0, cur, ffn_inp);
  9880. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9881. cb(cur, "l_out", il);
  9882. // input for next layer
  9883. inpL = cur;
  9884. }
  9885. cur = inpL;
  9886. cur = llm_build_norm(ctx0, cur, hparams,
  9887. model.output_norm, NULL,
  9888. LLM_NORM_RMS, cb, -1);
  9889. cb(cur, "result_norm", -1);
  9890. // lm_head
  9891. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  9892. cb(cur, "result_output", -1);
  9893. ggml_build_forward_expand(gf, cur);
  9894. return gf;
  9895. }
  9896. struct ggml_cgraph * build_qwen2() {
  9897. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  9898. const int64_t n_embd_head = hparams.n_embd_head_v;
  9899. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9900. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9901. struct ggml_tensor * cur;
  9902. struct ggml_tensor * inpL;
  9903. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9904. // inp_pos - contains the positions
  9905. struct ggml_tensor * inp_pos = build_inp_pos();
  9906. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9907. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9908. for (int il = 0; il < n_layer; ++il) {
  9909. struct ggml_tensor * inpSA = inpL;
  9910. // norm
  9911. cur = llm_build_norm(ctx0, inpL, hparams,
  9912. model.layers[il].attn_norm, NULL,
  9913. LLM_NORM_RMS, cb, il);
  9914. cb(cur, "attn_norm", il);
  9915. // self-attention
  9916. {
  9917. // compute Q and K and RoPE them
  9918. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  9919. cb(Qcur, "Qcur", il);
  9920. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9921. cb(Qcur, "Qcur", il);
  9922. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  9923. cb(Kcur, "Kcur", il);
  9924. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9925. cb(Kcur, "Kcur", il);
  9926. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  9927. cb(Vcur, "Vcur", il);
  9928. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9929. cb(Vcur, "Vcur", il);
  9930. Qcur = ggml_rope_ext(
  9931. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9932. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9933. ext_factor, attn_factor, beta_fast, beta_slow
  9934. );
  9935. cb(Qcur, "Qcur", il);
  9936. Kcur = ggml_rope_ext(
  9937. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9938. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9939. ext_factor, attn_factor, beta_fast, beta_slow
  9940. );
  9941. cb(Kcur, "Kcur", il);
  9942. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  9943. model.layers[il].wo, model.layers[il].bo,
  9944. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9945. }
  9946. if (il == n_layer - 1) {
  9947. // skip computing output for unused tokens
  9948. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9949. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9950. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9951. }
  9952. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9953. cb(ffn_inp, "ffn_inp", il);
  9954. // feed-forward network
  9955. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9956. model.layers[il].ffn_norm, NULL,
  9957. LLM_NORM_RMS, cb, il);
  9958. cb(cur, "ffn_norm", il);
  9959. cur = llm_build_ffn(ctx0, lctx, cur,
  9960. model.layers[il].ffn_up, NULL, NULL,
  9961. model.layers[il].ffn_gate, NULL, NULL,
  9962. model.layers[il].ffn_down, NULL, NULL,
  9963. NULL,
  9964. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9965. cb(cur, "ffn_out", il);
  9966. cur = ggml_add(ctx0, cur, ffn_inp);
  9967. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9968. cb(cur, "l_out", il);
  9969. // input for next layer
  9970. inpL = cur;
  9971. }
  9972. cur = inpL;
  9973. cur = llm_build_norm(ctx0, cur, hparams,
  9974. model.output_norm, NULL,
  9975. LLM_NORM_RMS, cb, -1);
  9976. cb(cur, "result_norm", -1);
  9977. // lm_head
  9978. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  9979. cb(cur, "result_output", -1);
  9980. ggml_build_forward_expand(gf, cur);
  9981. return gf;
  9982. }
  9983. struct ggml_cgraph * build_qwen2moe() {
  9984. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  9985. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9986. int32_t n_tokens = this->n_tokens;
  9987. const int64_t n_embd_head = hparams.n_embd_head_v;
  9988. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9989. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9990. struct ggml_tensor * cur;
  9991. struct ggml_tensor * inpL;
  9992. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9993. // inp_pos - contains the positions
  9994. struct ggml_tensor * inp_pos = build_inp_pos();
  9995. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9996. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9997. for (int il = 0; il < n_layer; ++il) {
  9998. struct ggml_tensor * inpSA = inpL;
  9999. // norm
  10000. cur = llm_build_norm(ctx0, inpL, hparams,
  10001. model.layers[il].attn_norm, NULL,
  10002. LLM_NORM_RMS, cb, il);
  10003. cb(cur, "attn_norm", il);
  10004. // self_attention
  10005. {
  10006. // compute Q and K and RoPE them
  10007. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  10008. cb(Qcur, "Qcur", il);
  10009. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10010. cb(Qcur, "Qcur", il);
  10011. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  10012. cb(Kcur, "Kcur", il);
  10013. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10014. cb(Kcur, "Kcur", il);
  10015. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  10016. cb(Vcur, "Vcur", il);
  10017. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10018. cb(Vcur, "Vcur", il);
  10019. Qcur = ggml_rope_ext(
  10020. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  10021. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10022. ext_factor, attn_factor, beta_fast, beta_slow
  10023. );
  10024. cb(Qcur, "Qcur", il);
  10025. Kcur = ggml_rope_ext(
  10026. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  10027. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10028. ext_factor, attn_factor, beta_fast, beta_slow
  10029. );
  10030. cb(Kcur, "Kcur", il);
  10031. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  10032. model.layers[il].wo, model.layers[il].bo,
  10033. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10034. }
  10035. if (il == n_layer - 1) {
  10036. // skip computing output for unused tokens
  10037. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10038. n_tokens = n_outputs;
  10039. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10040. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10041. }
  10042. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10043. cb(ffn_inp, "ffn_inp", il);
  10044. // MoE branch
  10045. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10046. model.layers[il].ffn_norm, NULL,
  10047. LLM_NORM_RMS, cb, il);
  10048. cb(cur, "ffn_norm", il);
  10049. ggml_tensor * moe_out =
  10050. llm_build_moe_ffn(ctx0, lctx, cur,
  10051. model.layers[il].ffn_gate_inp,
  10052. model.layers[il].ffn_up_exps,
  10053. model.layers[il].ffn_gate_exps,
  10054. model.layers[il].ffn_down_exps,
  10055. n_expert, n_expert_used,
  10056. LLM_FFN_SILU, false,
  10057. false, 0.0,
  10058. cb, il);
  10059. cb(cur, "ffn_moe_out", il);
  10060. // FFN shared expert
  10061. {
  10062. ggml_tensor * cur_gate_inp = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  10063. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  10064. // sigmoid
  10065. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  10066. cb(cur_gate, "ffn_shexp_gate", il);
  10067. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, lctx, cur,
  10068. model.layers[il].ffn_up_shexp, NULL, NULL,
  10069. model.layers[il].ffn_gate_shexp, NULL, NULL,
  10070. model.layers[il].ffn_down_shexp, NULL, NULL,
  10071. NULL,
  10072. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  10073. cb(cur_ffn, "ffn_shexp", il);
  10074. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  10075. cb(ffn_shexp_out, "ffn_shexp_out", il);
  10076. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  10077. cb(moe_out, "ffn_out", il);
  10078. cur = moe_out;
  10079. }
  10080. cur = ggml_add(ctx0, cur, ffn_inp);
  10081. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10082. cb(cur, "l_out", il);
  10083. // input for next layer
  10084. inpL = cur;
  10085. }
  10086. cur = inpL;
  10087. cur = llm_build_norm(ctx0, cur, hparams,
  10088. model.output_norm, NULL,
  10089. LLM_NORM_RMS, cb, -1);
  10090. cb(cur, "result_norm", -1);
  10091. // lm_head
  10092. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  10093. cb(cur, "result_output", -1);
  10094. ggml_build_forward_expand(gf, cur);
  10095. return gf;
  10096. }
  10097. struct ggml_cgraph * build_phi2() {
  10098. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  10099. const int64_t n_embd_head = hparams.n_embd_head_v;
  10100. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  10101. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10102. struct ggml_tensor * cur;
  10103. struct ggml_tensor * attn_norm_output;
  10104. struct ggml_tensor * ffn_output;
  10105. struct ggml_tensor * inpL;
  10106. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10107. // inp_pos - contains the positions
  10108. struct ggml_tensor * inp_pos = build_inp_pos();
  10109. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10110. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10111. for (int il = 0; il < n_layer; ++il) {
  10112. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  10113. model.layers[il].attn_norm,
  10114. model.layers[il].attn_norm_b,
  10115. LLM_NORM, cb, il);
  10116. cb(attn_norm_output, "attn_norm", il);
  10117. // self-attention
  10118. {
  10119. struct ggml_tensor * Qcur = nullptr;
  10120. struct ggml_tensor * Kcur = nullptr;
  10121. struct ggml_tensor * Vcur = nullptr;
  10122. if (model.layers[il].wqkv) {
  10123. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, attn_norm_output);
  10124. cb(cur, "wqkv", il);
  10125. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  10126. cb(cur, "bqkv", il);
  10127. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  10128. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  10129. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  10130. } else {
  10131. Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  10132. Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  10133. Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  10134. }
  10135. cb(Qcur, "Qcur", il);
  10136. cb(Kcur, "Kcur", il);
  10137. cb(Vcur, "Vcur", il);
  10138. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  10139. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  10140. Qcur = ggml_rope_ext(
  10141. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  10142. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  10143. );
  10144. cb(Qcur, "Qcur", il);
  10145. // with phi2, we scale the Q to avoid precision issues
  10146. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  10147. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  10148. cb(Qcur, "Qcur", il);
  10149. Kcur = ggml_rope_ext(
  10150. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  10151. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  10152. );
  10153. cb(Kcur, "Kcur", il);
  10154. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  10155. model.layers[il].wo, model.layers[il].bo,
  10156. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  10157. }
  10158. if (il == n_layer - 1) {
  10159. // skip computing output for unused tokens
  10160. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10161. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10162. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  10163. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  10164. }
  10165. // FF
  10166. {
  10167. ffn_output = llm_build_ffn(ctx0, lctx, attn_norm_output,
  10168. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  10169. NULL, NULL, NULL,
  10170. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  10171. NULL,
  10172. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  10173. cb(ffn_output, "ffn_out", il);
  10174. }
  10175. cur = ggml_add(ctx0, cur, ffn_output);
  10176. cur = ggml_add(ctx0, cur, inpL);
  10177. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10178. cb(cur, "l_out", il);
  10179. // input for next layer
  10180. inpL = cur;
  10181. }
  10182. cur = llm_build_norm(ctx0, inpL, hparams,
  10183. model.output_norm,
  10184. model.output_norm_b,
  10185. LLM_NORM, cb, -1);
  10186. cb(cur, "result_norm", -1);
  10187. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  10188. cb(cur, "result_output_no_bias", -1);
  10189. cur = ggml_add(ctx0, cur, model.output_b);
  10190. cb(cur, "result_output", -1);
  10191. ggml_build_forward_expand(gf, cur);
  10192. return gf;
  10193. }
  10194. struct ggml_cgraph * build_phi3() {
  10195. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  10196. const int64_t n_embd_head = hparams.n_embd_head_v;
  10197. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  10198. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10199. struct ggml_tensor * cur;
  10200. struct ggml_tensor * inpL;
  10201. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10202. // inp_pos - contains the positions
  10203. struct ggml_tensor * inp_pos = build_inp_pos();
  10204. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10205. struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
  10206. for (int il = 0; il < n_layer; ++il) {
  10207. auto residual = inpL;
  10208. // self-attention
  10209. {
  10210. // rope freq factors for 128k context
  10211. struct ggml_tensor * rope_factors = build_rope_factors(il);
  10212. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  10213. model.layers[il].attn_norm,
  10214. NULL,
  10215. LLM_NORM_RMS, cb, il);
  10216. cb(attn_norm_output, "attn_norm", il);
  10217. struct ggml_tensor * Qcur = nullptr;
  10218. struct ggml_tensor * Kcur = nullptr;
  10219. struct ggml_tensor * Vcur = nullptr;
  10220. if (model.layers[il].wqkv) {
  10221. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, attn_norm_output);
  10222. cb(cur, "wqkv", il);
  10223. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  10224. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  10225. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  10226. }
  10227. else {
  10228. Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  10229. Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  10230. Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  10231. }
  10232. cb(Qcur, "Qcur", il);
  10233. cb(Kcur, "Kcur", il);
  10234. cb(Vcur, "Vcur", il);
  10235. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  10236. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  10237. Qcur = ggml_rope_ext(
  10238. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  10239. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  10240. );
  10241. cb(Qcur, "Qcur", il);
  10242. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  10243. cb(Qcur, "Qcur", il);
  10244. Kcur = ggml_rope_ext(
  10245. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  10246. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  10247. );
  10248. cb(Kcur, "Kcur", il);
  10249. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  10250. model.layers[il].wo, model.layers[il].bo,
  10251. Kcur, Vcur, Qcur, KQ_mask_swa, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  10252. }
  10253. if (il == n_layer - 1) {
  10254. // skip computing output for unused tokens
  10255. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  10256. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10257. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  10258. }
  10259. cur = ggml_add(ctx0, cur, residual);
  10260. residual = cur;
  10261. cur = llm_build_norm(ctx0, cur, hparams,
  10262. model.layers[il].ffn_norm, NULL,
  10263. LLM_NORM_RMS, cb, il);
  10264. cb(cur, "ffn_norm", il);
  10265. // FF
  10266. // special-case: the up and gate tensors are merged into a single tensor
  10267. // TOOD: support into llm_build_ffn
  10268. {
  10269. cur = llm_build_ffn(ctx0, lctx, cur,
  10270. model.layers[il].ffn_up, NULL, NULL,
  10271. NULL, NULL, NULL,
  10272. model.layers[il].ffn_down, NULL, NULL,
  10273. NULL,
  10274. LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
  10275. cb(cur, "ffn_out", il);
  10276. }
  10277. cur = ggml_add(ctx0, residual, cur);
  10278. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10279. cb(cur, "l_out", il);
  10280. // input for next layer
  10281. inpL = cur;
  10282. }
  10283. cur = llm_build_norm(ctx0, inpL, hparams,
  10284. model.output_norm,
  10285. NULL,
  10286. LLM_NORM_RMS, cb, -1);
  10287. cb(cur, "result_norm", -1);
  10288. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  10289. cb(cur, "result_output", -1);
  10290. ggml_build_forward_expand(gf, cur);
  10291. return gf;
  10292. }
  10293. struct ggml_cgraph * build_plamo() {
  10294. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  10295. const int64_t n_embd_head = hparams.n_embd_head_v;
  10296. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10297. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10298. struct ggml_tensor * cur;
  10299. struct ggml_tensor * inpL;
  10300. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10301. // inp_pos - contains the positions
  10302. struct ggml_tensor * inp_pos = build_inp_pos();
  10303. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10304. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10305. for (int il = 0; il < n_layer; ++il) {
  10306. // norm
  10307. cur = llm_build_norm(ctx0, inpL, hparams,
  10308. model.layers[il].attn_norm, NULL,
  10309. LLM_NORM_RMS, cb, il);
  10310. cb(cur, "attn_norm", il);
  10311. struct ggml_tensor * attention_norm = cur;
  10312. // self-attention
  10313. {
  10314. // compute Q and K and RoPE them
  10315. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  10316. cb(Qcur, "Qcur", il);
  10317. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  10318. cb(Kcur, "Kcur", il);
  10319. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  10320. cb(Vcur, "Vcur", il);
  10321. Qcur = ggml_rope_ext(
  10322. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  10323. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  10324. ext_factor, attn_factor, beta_fast, beta_slow);
  10325. cb(Qcur, "Qcur", il);
  10326. Kcur = ggml_rope_ext(
  10327. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  10328. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  10329. ext_factor, attn_factor, beta_fast, beta_slow);
  10330. cb(Kcur, "Kcur", il);
  10331. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  10332. model.layers[il].wo, NULL,
  10333. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10334. }
  10335. struct ggml_tensor * sa_out = cur;
  10336. cur = attention_norm;
  10337. if (il == n_layer - 1) {
  10338. // skip computing output for unused tokens
  10339. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10340. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10341. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  10342. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  10343. }
  10344. // feed-forward network
  10345. {
  10346. cur = llm_build_ffn(ctx0, lctx, cur,
  10347. model.layers[il].ffn_up, NULL, NULL,
  10348. model.layers[il].ffn_gate, NULL, NULL,
  10349. model.layers[il].ffn_down, NULL, NULL,
  10350. NULL,
  10351. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  10352. cb(cur, "ffn_out", il);
  10353. }
  10354. cur = ggml_add(ctx0, cur, sa_out);
  10355. cur = ggml_add(ctx0, cur, inpL);
  10356. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10357. cb(cur, "l_out", il);
  10358. // input for next layer
  10359. inpL = cur;
  10360. }
  10361. cur = inpL;
  10362. cur = llm_build_norm(ctx0, cur, hparams,
  10363. model.output_norm, NULL,
  10364. LLM_NORM_RMS, cb, -1);
  10365. cb(cur, "result_norm", -1);
  10366. // lm_head
  10367. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  10368. cb(cur, "result_output", -1);
  10369. ggml_build_forward_expand(gf, cur);
  10370. return gf;
  10371. }
  10372. struct ggml_cgraph * build_gpt2() {
  10373. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  10374. const int64_t n_embd_head = hparams.n_embd_head_v;
  10375. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  10376. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10377. struct ggml_tensor * cur;
  10378. struct ggml_tensor * pos;
  10379. struct ggml_tensor * inpL;
  10380. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10381. // inp_pos - contains the positions
  10382. struct ggml_tensor * inp_pos = build_inp_pos();
  10383. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10384. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10385. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  10386. cb(pos, "pos_embd", -1);
  10387. inpL = ggml_add(ctx0, inpL, pos);
  10388. cb(inpL, "inpL", -1);
  10389. for (int il = 0; il < n_layer; ++il) {
  10390. cur = llm_build_norm(ctx0, inpL, hparams,
  10391. model.layers[il].attn_norm,
  10392. model.layers[il].attn_norm_b,
  10393. LLM_NORM, cb, il);
  10394. cb(cur, "attn_norm", il);
  10395. // self-attention
  10396. {
  10397. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  10398. cb(cur, "wqkv", il);
  10399. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  10400. cb(cur, "bqkv", il);
  10401. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  10402. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  10403. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  10404. cb(Qcur, "Qcur", il);
  10405. cb(Kcur, "Kcur", il);
  10406. cb(Vcur, "Vcur", il);
  10407. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  10408. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  10409. model.layers[il].wo, model.layers[il].bo,
  10410. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10411. }
  10412. if (il == n_layer - 1) {
  10413. // skip computing output for unused tokens
  10414. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10415. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10416. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  10417. }
  10418. // add the input
  10419. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  10420. cb(ffn_inp, "ffn_inp", il);
  10421. // FF
  10422. {
  10423. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10424. model.layers[il].ffn_norm,
  10425. model.layers[il].ffn_norm_b,
  10426. LLM_NORM, cb, il);
  10427. cb(cur, "ffn_norm", il);
  10428. cur = llm_build_ffn(ctx0, lctx, cur,
  10429. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  10430. NULL, NULL, NULL,
  10431. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  10432. NULL,
  10433. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  10434. cb(cur, "ffn_out", il);
  10435. }
  10436. cur = ggml_add(ctx0, cur, ffn_inp);
  10437. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10438. cb(cur, "l_out", il);
  10439. // input for next layer
  10440. inpL = cur;
  10441. }
  10442. cur = llm_build_norm(ctx0, inpL, hparams,
  10443. model.output_norm,
  10444. model.output_norm_b,
  10445. LLM_NORM, cb, -1);
  10446. cb(cur, "result_norm", -1);
  10447. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  10448. cb(cur, "result_output", -1);
  10449. ggml_build_forward_expand(gf, cur);
  10450. return gf;
  10451. }
  10452. struct ggml_cgraph * build_codeshell() {
  10453. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  10454. const int64_t n_embd_head = hparams.n_embd_head_v;
  10455. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  10456. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10457. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10458. struct ggml_tensor * cur;
  10459. struct ggml_tensor * inpL;
  10460. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10461. // inp_pos - contains the positions
  10462. struct ggml_tensor * inp_pos = build_inp_pos();
  10463. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10464. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10465. for (int il = 0; il < n_layer; ++il) {
  10466. cur = llm_build_norm(ctx0, inpL, hparams,
  10467. model.layers[il].attn_norm,
  10468. model.layers[il].attn_norm_b,
  10469. LLM_NORM, cb, il);
  10470. cb(cur, "attn_norm", il);
  10471. // self-attention
  10472. {
  10473. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  10474. cb(cur, "wqkv", il);
  10475. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  10476. cb(cur, "bqkv", il);
  10477. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  10478. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  10479. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  10480. cb(tmpq, "tmpq", il);
  10481. cb(tmpk, "tmpk", il);
  10482. cb(Vcur, "Vcur", il);
  10483. struct ggml_tensor * Qcur = ggml_rope_ext(
  10484. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  10485. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10486. ext_factor, attn_factor, beta_fast, beta_slow
  10487. );
  10488. cb(Qcur, "Qcur", il);
  10489. struct ggml_tensor * Kcur = ggml_rope_ext(
  10490. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  10491. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10492. ext_factor, attn_factor, beta_fast, beta_slow
  10493. );
  10494. cb(Kcur, "Kcur", il);
  10495. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  10496. model.layers[il].wo, model.layers[il].bo,
  10497. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10498. }
  10499. if (il == n_layer - 1) {
  10500. // skip computing output for unused tokens
  10501. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10502. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10503. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  10504. }
  10505. // add the input
  10506. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  10507. cb(ffn_inp, "ffn_inp", il);
  10508. // FF
  10509. {
  10510. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10511. model.layers[il].ffn_norm,
  10512. model.layers[il].ffn_norm_b,
  10513. LLM_NORM, cb, il);
  10514. cb(cur, "ffn_norm", il);
  10515. cur = llm_build_ffn(ctx0, lctx, cur,
  10516. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  10517. NULL, NULL, NULL,
  10518. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  10519. NULL,
  10520. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  10521. cb(cur, "ffn_out", il);
  10522. }
  10523. cur = ggml_add(ctx0, cur, ffn_inp);
  10524. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10525. cb(cur, "l_out", il);
  10526. // input for next layer
  10527. inpL = cur;
  10528. }
  10529. cur = llm_build_norm(ctx0, inpL, hparams,
  10530. model.output_norm,
  10531. model.output_norm_b,
  10532. LLM_NORM, cb, -1);
  10533. cb(cur, "result_norm", -1);
  10534. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  10535. cb(cur, "result_output", -1);
  10536. ggml_build_forward_expand(gf, cur);
  10537. return gf;
  10538. }
  10539. struct ggml_cgraph * build_orion() {
  10540. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  10541. const int64_t n_embd_head = hparams.n_embd_head_v;
  10542. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10543. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10544. struct ggml_tensor * cur;
  10545. struct ggml_tensor * inpL;
  10546. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10547. // inp_pos - contains the positions
  10548. struct ggml_tensor * inp_pos = build_inp_pos();
  10549. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10550. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10551. for (int il = 0; il < n_layer; ++il) {
  10552. struct ggml_tensor * inpSA = inpL;
  10553. // norm
  10554. cur = llm_build_norm(ctx0, inpL, hparams,
  10555. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  10556. LLM_NORM, cb, il);
  10557. cb(cur, "attn_norm", il);
  10558. // self-attention
  10559. {
  10560. // compute Q and K and RoPE them
  10561. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  10562. cb(Qcur, "Qcur", il);
  10563. // if (model.layers[il].bq) {
  10564. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10565. // cb(Qcur, "Qcur", il);
  10566. // }
  10567. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  10568. cb(Kcur, "Kcur", il);
  10569. // if (model.layers[il].bk) {
  10570. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10571. // cb(Kcur, "Kcur", il);
  10572. // }
  10573. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  10574. cb(Vcur, "Vcur", il);
  10575. // if (model.layers[il].bv) {
  10576. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10577. // cb(Vcur, "Vcur", il);
  10578. // }
  10579. Qcur = ggml_rope_ext(
  10580. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  10581. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10582. ext_factor, attn_factor, beta_fast, beta_slow
  10583. );
  10584. cb(Qcur, "Qcur", il);
  10585. Kcur = ggml_rope_ext(
  10586. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  10587. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10588. ext_factor, attn_factor, beta_fast, beta_slow
  10589. );
  10590. cb(Kcur, "Kcur", il);
  10591. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  10592. model.layers[il].wo, NULL,
  10593. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10594. }
  10595. if (il == n_layer - 1) {
  10596. // skip computing output for unused tokens
  10597. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10598. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10599. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10600. }
  10601. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10602. cb(ffn_inp, "ffn_inp", il);
  10603. // feed-forward network
  10604. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10605. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  10606. LLM_NORM, cb, il);
  10607. cb(cur, "ffn_norm", il);
  10608. cur = llm_build_ffn(ctx0, lctx, cur,
  10609. model.layers[il].ffn_up, NULL, NULL,
  10610. model.layers[il].ffn_gate, NULL, NULL,
  10611. model.layers[il].ffn_down, NULL, NULL,
  10612. NULL,
  10613. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  10614. cb(cur, "ffn_out", il);
  10615. cur = ggml_add(ctx0, cur, ffn_inp);
  10616. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10617. cb(cur, "l_out", il);
  10618. // input for next layer
  10619. inpL = cur;
  10620. }
  10621. cur = inpL;
  10622. cur = llm_build_norm(ctx0, cur, hparams,
  10623. model.output_norm, model.output_norm_b,
  10624. LLM_NORM, cb, -1);
  10625. cb(cur, "result_norm", -1);
  10626. // lm_head
  10627. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  10628. cb(cur, "result_output", -1);
  10629. ggml_build_forward_expand(gf, cur);
  10630. return gf;
  10631. }
  10632. struct ggml_cgraph * build_internlm2() {
  10633. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  10634. const int64_t n_embd_head = hparams.n_embd_head_v;
  10635. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10636. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10637. struct ggml_tensor * cur;
  10638. struct ggml_tensor * inpL;
  10639. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10640. // inp_pos - contains the positions
  10641. struct ggml_tensor * inp_pos = build_inp_pos();
  10642. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10643. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10644. for (int il = 0; il < n_layer; ++il) {
  10645. struct ggml_tensor * inpSA = inpL;
  10646. // norm
  10647. cur = llm_build_norm(ctx0, inpL, hparams,
  10648. model.layers[il].attn_norm, NULL,
  10649. LLM_NORM_RMS, cb, il);
  10650. cb(cur, "attn_norm", il);
  10651. // self-attention
  10652. {
  10653. // compute Q and K and RoPE them
  10654. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  10655. cb(Qcur, "Qcur", il);
  10656. if (model.layers[il].bq) {
  10657. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10658. cb(Qcur, "Qcur", il);
  10659. }
  10660. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  10661. cb(Kcur, "Kcur", il);
  10662. if (model.layers[il].bk) {
  10663. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10664. cb(Kcur, "Kcur", il);
  10665. }
  10666. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  10667. cb(Vcur, "Vcur", il);
  10668. if (model.layers[il].bv) {
  10669. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10670. cb(Vcur, "Vcur", il);
  10671. }
  10672. Qcur = ggml_rope_ext(
  10673. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  10674. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10675. ext_factor, attn_factor, beta_fast, beta_slow
  10676. );
  10677. cb(Qcur, "Qcur", il);
  10678. Kcur = ggml_rope_ext(
  10679. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  10680. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10681. ext_factor, attn_factor, beta_fast, beta_slow
  10682. );
  10683. cb(Kcur, "Kcur", il);
  10684. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  10685. model.layers[il].wo, model.layers[il].bo,
  10686. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10687. }
  10688. if (il == n_layer - 1) {
  10689. // skip computing output for unused tokens
  10690. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10691. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10692. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10693. }
  10694. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10695. cb(ffn_inp, "ffn_inp", il);
  10696. // feed-forward network
  10697. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10698. model.layers[il].ffn_norm, NULL,
  10699. LLM_NORM_RMS, cb, il);
  10700. cb(cur, "ffn_norm", il);
  10701. cur = llm_build_ffn(ctx0, lctx, cur,
  10702. model.layers[il].ffn_up, NULL, NULL,
  10703. model.layers[il].ffn_gate, NULL, NULL,
  10704. model.layers[il].ffn_down, NULL, NULL,
  10705. NULL,
  10706. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  10707. cb(cur, "ffn_out", il);
  10708. cur = ggml_add(ctx0, cur, ffn_inp);
  10709. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10710. cb(cur, "l_out", il);
  10711. // input for next layer
  10712. inpL = cur;
  10713. }
  10714. cur = inpL;
  10715. cur = llm_build_norm(ctx0, cur, hparams,
  10716. model.output_norm, NULL,
  10717. LLM_NORM_RMS, cb, -1);
  10718. cb(cur, "result_norm", -1);
  10719. // lm_head
  10720. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  10721. cb(cur, "result_output", -1);
  10722. ggml_build_forward_expand(gf, cur);
  10723. return gf;
  10724. }
  10725. // ref: https://arxiv.org/abs/2203.03466
  10726. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  10727. // based on the original build_llama() function
  10728. struct ggml_cgraph * build_minicpm() {
  10729. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  10730. const int64_t n_embd_head = hparams.n_embd_head_v;
  10731. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10732. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10733. const int64_t n_embd = hparams.n_embd;
  10734. //TODO: if the model varies, these parameters need to be read from the model
  10735. const int64_t n_embd_base = 256;
  10736. const float scale_embd = 12.0f;
  10737. const float scale_depth = 1.4f;
  10738. struct ggml_tensor * cur;
  10739. struct ggml_tensor * inpL;
  10740. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10741. // scale the input embeddings
  10742. inpL = ggml_scale(ctx0, inpL, scale_embd);
  10743. cb(inpL, "inp_scaled", -1);
  10744. // inp_pos - contains the positions
  10745. struct ggml_tensor * inp_pos = build_inp_pos();
  10746. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10747. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10748. for (int il = 0; il < n_layer; ++il) {
  10749. struct ggml_tensor * inpSA = inpL;
  10750. // norm
  10751. cur = llm_build_norm(ctx0, inpL, hparams,
  10752. model.layers[il].attn_norm, NULL,
  10753. LLM_NORM_RMS, cb, il);
  10754. cb(cur, "attn_norm", il);
  10755. // self-attention
  10756. {
  10757. // compute Q and K and RoPE them
  10758. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  10759. cb(Qcur, "Qcur", il);
  10760. if (model.layers[il].bq) {
  10761. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10762. cb(Qcur, "Qcur", il);
  10763. }
  10764. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  10765. cb(Kcur, "Kcur", il);
  10766. if (model.layers[il].bk) {
  10767. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10768. cb(Kcur, "Kcur", il);
  10769. }
  10770. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  10771. cb(Vcur, "Vcur", il);
  10772. if (model.layers[il].bv) {
  10773. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10774. cb(Vcur, "Vcur", il);
  10775. }
  10776. Qcur = ggml_rope_ext(
  10777. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  10778. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10779. ext_factor, attn_factor, beta_fast, beta_slow
  10780. );
  10781. cb(Qcur, "Qcur", il);
  10782. Kcur = ggml_rope_ext(
  10783. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  10784. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10785. ext_factor, attn_factor, beta_fast, beta_slow
  10786. );
  10787. cb(Kcur, "Kcur", il);
  10788. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  10789. model.layers[il].wo, model.layers[il].bo,
  10790. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10791. }
  10792. if (il == n_layer - 1) {
  10793. // skip computing output for unused tokens
  10794. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10795. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10796. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10797. }
  10798. // scale_res - scale the hidden states for residual connection
  10799. const float scale_res = scale_depth/sqrtf(float(n_layer));
  10800. cur = ggml_scale(ctx0, cur, scale_res);
  10801. cb(cur, "hidden_scaled", -1);
  10802. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10803. cb(ffn_inp, "ffn_inp", il);
  10804. // feed-forward network
  10805. {
  10806. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10807. model.layers[il].ffn_norm, NULL,
  10808. LLM_NORM_RMS, cb, il);
  10809. cb(cur, "ffn_norm", il);
  10810. cur = llm_build_ffn(ctx0, lctx, cur,
  10811. model.layers[il].ffn_up, NULL, NULL,
  10812. model.layers[il].ffn_gate, NULL, NULL,
  10813. model.layers[il].ffn_down, NULL, NULL,
  10814. NULL,
  10815. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  10816. cb(cur, "ffn_out", il);
  10817. }
  10818. // scale the hidden states for residual connection
  10819. cur = ggml_scale(ctx0, cur, scale_res);
  10820. cb(cur, "hidden_scaled_ffn", -1);
  10821. cur = ggml_add(ctx0, cur, ffn_inp);
  10822. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10823. cb(cur, "l_out", il);
  10824. // input for next layer
  10825. inpL = cur;
  10826. }
  10827. cur = inpL;
  10828. cur = llm_build_norm(ctx0, cur, hparams,
  10829. model.output_norm, NULL,
  10830. LLM_NORM_RMS, cb, -1);
  10831. cb(cur, "result_norm", -1);
  10832. // lm_head scaling
  10833. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  10834. cur = ggml_scale(ctx0, cur, scale_lmhead);
  10835. cb(cur, "lmhead_scaling", -1);
  10836. // lm_head
  10837. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  10838. cb(cur, "result_output", -1);
  10839. ggml_build_forward_expand(gf, cur);
  10840. return gf;
  10841. }
  10842. struct ggml_cgraph * build_gemma() {
  10843. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  10844. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  10845. struct ggml_tensor * cur;
  10846. struct ggml_tensor * inpL;
  10847. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10848. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  10849. cb(inpL, "inp_scaled", -1);
  10850. // inp_pos - contains the positions
  10851. struct ggml_tensor * inp_pos = build_inp_pos();
  10852. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10853. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10854. for (int il = 0; il < n_layer; ++il) {
  10855. // norm
  10856. cur = llm_build_norm(ctx0, inpL, hparams,
  10857. model.layers[il].attn_norm, NULL,
  10858. LLM_NORM_RMS, cb, il);
  10859. cb(cur, "attn_norm", il);
  10860. // self-attention
  10861. {
  10862. // compute Q and K and RoPE them
  10863. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  10864. cb(Qcur, "Qcur", il);
  10865. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  10866. cb(Kcur, "Kcur", il);
  10867. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  10868. cb(Vcur, "Vcur", il);
  10869. Qcur = ggml_rope_ext(
  10870. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  10871. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10872. ext_factor, attn_factor, beta_fast, beta_slow);
  10873. cb(Qcur, "Qcur", il);
  10874. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  10875. cb(Qcur, "Qcur_scaled", il);
  10876. Kcur = ggml_rope_ext(
  10877. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  10878. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10879. ext_factor, attn_factor, beta_fast, beta_slow);
  10880. cb(Kcur, "Kcur", il);
  10881. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  10882. model.layers[il].wo, NULL,
  10883. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  10884. }
  10885. if (il == n_layer - 1) {
  10886. // skip computing output for unused tokens
  10887. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10888. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10889. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  10890. }
  10891. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  10892. cb(sa_out, "sa_out", il);
  10893. cur = llm_build_norm(ctx0, sa_out, hparams,
  10894. model.layers[il].ffn_norm, NULL,
  10895. LLM_NORM_RMS, cb, il);
  10896. cb(cur, "ffn_norm", il);
  10897. // feed-forward network
  10898. {
  10899. cur = llm_build_ffn(ctx0, lctx, cur,
  10900. model.layers[il].ffn_up, NULL, NULL,
  10901. model.layers[il].ffn_gate, NULL, NULL,
  10902. model.layers[il].ffn_down, NULL, NULL,
  10903. NULL,
  10904. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  10905. cb(cur, "ffn_out", il);
  10906. }
  10907. cur = ggml_add(ctx0, cur, sa_out);
  10908. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10909. cb(cur, "l_out", il);
  10910. // input for next layer
  10911. inpL = cur;
  10912. }
  10913. cur = inpL;
  10914. cur = llm_build_norm(ctx0, cur, hparams,
  10915. model.output_norm, NULL,
  10916. LLM_NORM_RMS, cb, -1);
  10917. cb(cur, "result_norm", -1);
  10918. // lm_head
  10919. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  10920. cb(cur, "result_output", -1);
  10921. ggml_build_forward_expand(gf, cur);
  10922. return gf;
  10923. }
  10924. struct ggml_cgraph * build_gemma2() {
  10925. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  10926. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  10927. struct ggml_tensor * cur;
  10928. struct ggml_tensor * inpL;
  10929. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10930. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  10931. cb(inpL, "inp_scaled", -1);
  10932. // inp_pos - contains the positions
  10933. struct ggml_tensor * inp_pos = build_inp_pos();
  10934. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10935. // gemma 2 requires different mask for layers using sliding window (SWA)
  10936. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(true);
  10937. struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(true);
  10938. for (int il = 0; il < n_layer; ++il) {
  10939. // (il % 2) layers use SWA
  10940. struct ggml_tensor * KQ_mask_l = (il % 2 == 0) ? KQ_mask_swa : KQ_mask;
  10941. // norm
  10942. cur = llm_build_norm(ctx0, inpL, hparams,
  10943. model.layers[il].attn_norm, NULL,
  10944. LLM_NORM_RMS, cb, il);
  10945. cb(cur, "attn_norm", il);
  10946. // self-attention
  10947. {
  10948. // compute Q and K and RoPE them
  10949. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  10950. cb(Qcur, "Qcur", il);
  10951. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  10952. cb(Kcur, "Kcur", il);
  10953. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  10954. cb(Vcur, "Vcur", il);
  10955. Qcur = ggml_rope_ext(
  10956. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  10957. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10958. ext_factor, attn_factor, beta_fast, beta_slow);
  10959. cb(Qcur, "Qcur", il);
  10960. // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
  10961. switch (model.type) {
  10962. case e_model::MODEL_2B:
  10963. case e_model::MODEL_9B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
  10964. case e_model::MODEL_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break;
  10965. default: GGML_ABORT("fatal error");
  10966. };
  10967. cb(Qcur, "Qcur_scaled", il);
  10968. Kcur = ggml_rope_ext(
  10969. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  10970. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10971. ext_factor, attn_factor, beta_fast, beta_slow);
  10972. cb(Kcur, "Kcur", il);
  10973. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  10974. model.layers[il].wo, NULL,
  10975. Kcur, Vcur, Qcur, KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  10976. }
  10977. cur = llm_build_norm(ctx0, cur, hparams,
  10978. model.layers[il].attn_post_norm, NULL,
  10979. LLM_NORM_RMS, cb, il);
  10980. cb(cur, "attn_post_norm", il);
  10981. if (il == n_layer - 1) {
  10982. // skip computing output for unused tokens
  10983. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10984. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10985. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  10986. }
  10987. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  10988. cb(sa_out, "sa_out", il);
  10989. cur = llm_build_norm(ctx0, sa_out, hparams,
  10990. model.layers[il].ffn_norm, NULL,
  10991. LLM_NORM_RMS, cb, il);
  10992. cb(cur, "ffn_norm", il);
  10993. // feed-forward network
  10994. {
  10995. cur = llm_build_ffn(ctx0, lctx, cur,
  10996. model.layers[il].ffn_up, NULL, NULL,
  10997. model.layers[il].ffn_gate, NULL, NULL,
  10998. model.layers[il].ffn_down, NULL, NULL,
  10999. NULL,
  11000. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  11001. cb(cur, "ffn_out", il);
  11002. }
  11003. cur = llm_build_norm(ctx0, cur, hparams,
  11004. model.layers[il].ffn_post_norm, NULL,
  11005. LLM_NORM_RMS, cb, -1);
  11006. cb(cur, "ffn_post_norm", -1);
  11007. cur = ggml_add(ctx0, cur, sa_out);
  11008. cur = lctx.cvec.apply_to(ctx0, cur, il);
  11009. cb(cur, "l_out", il);
  11010. // input for next layer
  11011. inpL = cur;
  11012. }
  11013. cur = inpL;
  11014. cur = llm_build_norm(ctx0, cur, hparams,
  11015. model.output_norm, NULL,
  11016. LLM_NORM_RMS, cb, -1);
  11017. cb(cur, "result_norm", -1);
  11018. // lm_head
  11019. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  11020. // final logit soft-capping
  11021. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  11022. cur = ggml_tanh(ctx0, cur);
  11023. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  11024. cb(cur, "result_output", -1);
  11025. ggml_build_forward_expand(gf, cur);
  11026. return gf;
  11027. }
  11028. struct ggml_cgraph * build_starcoder2() {
  11029. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  11030. const int64_t n_embd_head = hparams.n_embd_head_v;
  11031. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11032. GGML_ASSERT(n_embd_head == hparams.n_rot);
  11033. struct ggml_tensor * cur;
  11034. struct ggml_tensor * inpL;
  11035. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  11036. // inp_pos - contains the positions
  11037. struct ggml_tensor * inp_pos = build_inp_pos();
  11038. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  11039. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  11040. for (int il = 0; il < n_layer; ++il) {
  11041. struct ggml_tensor * inpSA = inpL;
  11042. // norm
  11043. cur = llm_build_norm(ctx0, inpL, hparams,
  11044. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  11045. LLM_NORM, cb, il);
  11046. cb(cur, "attn_norm", il);
  11047. // self-attention
  11048. {
  11049. // compute Q and K and RoPE them
  11050. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  11051. cb(Qcur, "Qcur", il);
  11052. if (model.layers[il].bq) {
  11053. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  11054. cb(Qcur, "Qcur", il);
  11055. }
  11056. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  11057. cb(Kcur, "Kcur", il);
  11058. if (model.layers[il].bk) {
  11059. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  11060. cb(Kcur, "Kcur", il);
  11061. }
  11062. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  11063. cb(Vcur, "Vcur", il);
  11064. if (model.layers[il].bv) {
  11065. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  11066. cb(Vcur, "Vcur", il);
  11067. }
  11068. Qcur = ggml_rope_ext(
  11069. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  11070. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11071. ext_factor, attn_factor, beta_fast, beta_slow
  11072. );
  11073. cb(Qcur, "Qcur", il);
  11074. Kcur = ggml_rope_ext(
  11075. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  11076. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11077. ext_factor, attn_factor, beta_fast, beta_slow
  11078. );
  11079. cb(Kcur, "Kcur", il);
  11080. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  11081. model.layers[il].wo, model.layers[il].bo,
  11082. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  11083. }
  11084. if (il == n_layer - 1) {
  11085. // skip computing output for unused tokens
  11086. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  11087. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11088. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11089. }
  11090. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  11091. cb(ffn_inp, "ffn_inp", il);
  11092. // feed-forward network
  11093. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  11094. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  11095. LLM_NORM, cb, il);
  11096. cb(cur, "ffn_norm", il);
  11097. cur = llm_build_ffn(ctx0, lctx, cur,
  11098. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  11099. NULL, NULL, NULL,
  11100. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  11101. NULL,
  11102. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  11103. cb(cur, "ffn_out", il);
  11104. cur = ggml_add(ctx0, cur, ffn_inp);
  11105. cur = lctx.cvec.apply_to(ctx0, cur, il);
  11106. cb(cur, "l_out", il);
  11107. // input for next layer
  11108. inpL = cur;
  11109. }
  11110. cur = inpL;
  11111. cur = llm_build_norm(ctx0, cur, hparams,
  11112. model.output_norm, model.output_norm_b,
  11113. LLM_NORM, cb, -1);
  11114. cb(cur, "result_norm", -1);
  11115. // lm_head
  11116. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  11117. cb(cur, "result_output", -1);
  11118. ggml_build_forward_expand(gf, cur);
  11119. return gf;
  11120. }
  11121. struct ggml_cgraph * build_mamba() {
  11122. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  11123. struct ggml_tensor * cur;
  11124. struct ggml_tensor * inpL;
  11125. // {n_embd, n_tokens}
  11126. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  11127. struct ggml_tensor * state_copy = build_inp_s_copy();
  11128. struct ggml_tensor * state_mask = build_inp_s_mask();
  11129. for (int il = 0; il < n_layer; ++il) {
  11130. // norm
  11131. cur = llm_build_norm(ctx0, inpL, hparams,
  11132. model.layers[il].attn_norm, NULL,
  11133. LLM_NORM_RMS, cb, il);
  11134. cb(cur, "attn_norm", il);
  11135. cur = llm_build_mamba(ctx0, lctx, batch, gf, cur,
  11136. state_copy, state_mask,
  11137. kv_head, n_kv, cb, il);
  11138. if (il == n_layer - 1) {
  11139. // skip computing output for unused tokens
  11140. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  11141. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11142. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  11143. }
  11144. // residual
  11145. cur = ggml_add(ctx0, cur, inpL);
  11146. cur = lctx.cvec.apply_to(ctx0, cur, il);
  11147. cb(cur, "l_out", il);
  11148. // input for next layer
  11149. inpL = cur;
  11150. }
  11151. // final rmsnorm
  11152. cur = llm_build_norm(ctx0, inpL, hparams,
  11153. model.output_norm, NULL,
  11154. LLM_NORM_RMS, cb, -1);
  11155. cb(cur, "result_norm", -1);
  11156. // lm_head
  11157. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  11158. cb(cur, "result_output", -1);
  11159. ggml_build_forward_expand(gf, cur);
  11160. return gf;
  11161. }
  11162. struct ggml_cgraph * build_command_r() {
  11163. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  11164. const int64_t n_embd_head = hparams.n_embd_head_v;
  11165. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11166. const float f_logit_scale = hparams.f_logit_scale;
  11167. struct ggml_tensor * cur;
  11168. struct ggml_tensor * inpL;
  11169. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  11170. // inp_pos - contains the positions
  11171. struct ggml_tensor * inp_pos = build_inp_pos();
  11172. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  11173. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  11174. for (int il = 0; il < n_layer; ++il) {
  11175. // norm
  11176. cur = llm_build_norm(ctx0, inpL, hparams,
  11177. model.layers[il].attn_norm, NULL,
  11178. LLM_NORM, cb, il);
  11179. cb(cur, "attn_norm", il);
  11180. struct ggml_tensor * ffn_inp = cur;
  11181. // self-attention
  11182. {
  11183. // compute Q and K and RoPE them
  11184. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  11185. cb(Qcur, "Qcur", il);
  11186. if (model.layers[il].bq) {
  11187. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  11188. cb(Qcur, "Qcur", il);
  11189. }
  11190. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  11191. cb(Kcur, "Kcur", il);
  11192. if (model.layers[il].bk) {
  11193. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  11194. cb(Kcur, "Kcur", il);
  11195. }
  11196. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  11197. cb(Vcur, "Vcur", il);
  11198. if (model.layers[il].bv) {
  11199. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  11200. cb(Vcur, "Vcur", il);
  11201. }
  11202. if (model.layers[il].attn_q_norm) {
  11203. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  11204. ggml_element_size(Qcur) * n_embd_head,
  11205. ggml_element_size(Qcur) * n_embd_head * n_head,
  11206. 0);
  11207. cb(Qcur, "Qcur", il);
  11208. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  11209. ggml_element_size(Kcur) * n_embd_head,
  11210. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  11211. 0);
  11212. cb(Kcur, "Kcur", il);
  11213. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  11214. model.layers[il].attn_q_norm,
  11215. NULL,
  11216. LLM_NORM, cb, il);
  11217. cb(Qcur, "Qcur", il);
  11218. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  11219. model.layers[il].attn_k_norm,
  11220. NULL,
  11221. LLM_NORM, cb, il);
  11222. cb(Kcur, "Kcur", il);
  11223. }
  11224. Qcur = ggml_rope_ext(
  11225. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  11226. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11227. ext_factor, attn_factor, beta_fast, beta_slow
  11228. );
  11229. cb(Qcur, "Qcur", il);
  11230. Kcur = ggml_rope_ext(
  11231. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  11232. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11233. ext_factor, attn_factor, beta_fast, beta_slow
  11234. );
  11235. cb(Kcur, "Kcur", il);
  11236. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  11237. model.layers[il].wo, model.layers[il].bo,
  11238. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  11239. }
  11240. if (il == n_layer - 1) {
  11241. // skip computing output for unused tokens
  11242. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  11243. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11244. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  11245. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  11246. }
  11247. struct ggml_tensor * attn_out = cur;
  11248. // feed-forward network
  11249. {
  11250. cur = llm_build_ffn(ctx0, lctx, ffn_inp,
  11251. model.layers[il].ffn_up, NULL, NULL,
  11252. model.layers[il].ffn_gate, NULL, NULL,
  11253. model.layers[il].ffn_down, NULL, NULL,
  11254. NULL,
  11255. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  11256. cb(cur, "ffn_out", il);
  11257. }
  11258. // add together residual + FFN + self-attention
  11259. cur = ggml_add(ctx0, cur, inpL);
  11260. cur = ggml_add(ctx0, cur, attn_out);
  11261. cur = lctx.cvec.apply_to(ctx0, cur, il);
  11262. cb(cur, "l_out", il);
  11263. // input for next layer
  11264. inpL = cur;
  11265. }
  11266. cur = inpL;
  11267. cur = llm_build_norm(ctx0, cur, hparams,
  11268. model.output_norm, NULL,
  11269. LLM_NORM, cb, -1);
  11270. cb(cur, "result_norm", -1);
  11271. // lm_head
  11272. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  11273. if (f_logit_scale) {
  11274. cur = ggml_scale(ctx0, cur, f_logit_scale);
  11275. }
  11276. cb(cur, "result_output", -1);
  11277. ggml_build_forward_expand(gf, cur);
  11278. return gf;
  11279. }
  11280. // ref: https://allenai.org/olmo
  11281. // based on the original build_llama() function, changes:
  11282. // * non-parametric layer norm
  11283. // * clamp qkv
  11284. // * removed bias
  11285. // * removed MoE
  11286. struct ggml_cgraph * build_olmo() {
  11287. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  11288. // mutable variable, needed during the last layer of the computation to skip unused tokens
  11289. int32_t n_tokens = this->n_tokens;
  11290. const int64_t n_embd_head = hparams.n_embd_head_v;
  11291. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11292. GGML_ASSERT(n_embd_head == hparams.n_rot);
  11293. struct ggml_tensor * cur;
  11294. struct ggml_tensor * inpL;
  11295. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  11296. // inp_pos - contains the positions
  11297. struct ggml_tensor * inp_pos = build_inp_pos();
  11298. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  11299. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  11300. for (int il = 0; il < n_layer; ++il) {
  11301. struct ggml_tensor * inpSA = inpL;
  11302. // norm
  11303. cur = llm_build_norm(ctx0, inpL, hparams,
  11304. NULL, NULL,
  11305. LLM_NORM, cb, il);
  11306. cb(cur, "attn_norm", il);
  11307. // self-attention
  11308. {
  11309. // compute Q and K and RoPE them
  11310. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  11311. cb(Qcur, "Qcur", il);
  11312. if (hparams.f_clamp_kqv > 0.0f) {
  11313. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  11314. cb(Qcur, "Qcur", il);
  11315. }
  11316. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  11317. cb(Kcur, "Kcur", il);
  11318. if (hparams.f_clamp_kqv > 0.0f) {
  11319. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  11320. cb(Kcur, "Kcur", il);
  11321. }
  11322. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  11323. cb(Vcur, "Vcur", il);
  11324. if (hparams.f_clamp_kqv > 0.0f) {
  11325. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  11326. cb(Vcur, "Vcur", il);
  11327. }
  11328. Qcur = ggml_rope_ext(
  11329. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  11330. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11331. ext_factor, attn_factor, beta_fast, beta_slow
  11332. );
  11333. cb(Qcur, "Qcur", il);
  11334. Kcur = ggml_rope_ext(
  11335. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  11336. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11337. ext_factor, attn_factor, beta_fast, beta_slow
  11338. );
  11339. cb(Kcur, "Kcur", il);
  11340. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  11341. model.layers[il].wo, nullptr,
  11342. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  11343. }
  11344. if (il == n_layer - 1) {
  11345. // skip computing output for unused tokens
  11346. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  11347. n_tokens = n_outputs;
  11348. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11349. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11350. }
  11351. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  11352. cb(ffn_inp, "ffn_inp", il);
  11353. // feed-forward network
  11354. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  11355. NULL, NULL,
  11356. LLM_NORM, cb, il);
  11357. cb(cur, "ffn_norm", il);
  11358. cur = llm_build_ffn(ctx0, lctx, cur,
  11359. model.layers[il].ffn_up, NULL, NULL,
  11360. model.layers[il].ffn_gate, NULL, NULL,
  11361. model.layers[il].ffn_down, NULL, NULL,
  11362. NULL,
  11363. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  11364. cb(cur, "ffn_out", il);
  11365. cur = ggml_add(ctx0, cur, ffn_inp);
  11366. cb(cur, "ffn_out", il);
  11367. cur = lctx.cvec.apply_to(ctx0, cur, il);
  11368. cb(cur, "l_out", il);
  11369. // input for next layer
  11370. inpL = cur;
  11371. }
  11372. cur = inpL;
  11373. cur = llm_build_norm(ctx0, cur, hparams,
  11374. NULL, NULL,
  11375. LLM_NORM, cb, -1);
  11376. cb(cur, "result_norm", -1);
  11377. // lm_head
  11378. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  11379. cb(cur, "result_output", -1);
  11380. ggml_build_forward_expand(gf, cur);
  11381. return gf;
  11382. }
  11383. struct ggml_cgraph * build_openelm() {
  11384. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  11385. const int64_t n_embd_head = hparams.n_embd_head_v;
  11386. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11387. struct ggml_tensor * cur;
  11388. struct ggml_tensor * inpL;
  11389. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  11390. // inp_pos - contains the positions
  11391. struct ggml_tensor * inp_pos = build_inp_pos();
  11392. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  11393. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  11394. for (int il = 0; il < n_layer; ++il) {
  11395. const int64_t n_head = hparams.n_head(il);
  11396. const int64_t n_head_kv = hparams.n_head_kv(il);
  11397. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  11398. cur = inpL;
  11399. struct ggml_tensor * residual = cur;
  11400. // norm
  11401. cur = llm_build_norm(ctx0, inpL, hparams,
  11402. model.layers[il].attn_norm, NULL,
  11403. LLM_NORM_RMS, cb, il);
  11404. cb(cur, "attn_norm", il);
  11405. // self-attention
  11406. {
  11407. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  11408. cb(cur, "wqkv", il);
  11409. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  11410. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
  11411. cb(Qcur, "Qcur", il);
  11412. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
  11413. cb(Kcur, "Kcur", il);
  11414. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  11415. cb(Vcur, "Vcur", il);
  11416. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  11417. model.layers[il].attn_q_norm, NULL,
  11418. LLM_NORM_RMS, cb, il);
  11419. cb(Qcur, "Qcur", il);
  11420. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  11421. model.layers[il].attn_k_norm, NULL,
  11422. LLM_NORM_RMS, cb, il);
  11423. cb(Kcur, "Kcur", il);
  11424. Qcur = ggml_rope_ext(
  11425. ctx0, Qcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
  11426. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  11427. );
  11428. cb(Qcur, "Qcur", il);
  11429. Kcur = ggml_rope_ext(
  11430. ctx0, Kcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
  11431. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  11432. );
  11433. cb(Kcur, "Kcur", il);
  11434. Vcur = ggml_reshape_2d(ctx0, Vcur, n_embd_head * n_head_kv, n_tokens);
  11435. cb(Qcur, "Vcur", il);
  11436. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  11437. model.layers[il].wo, NULL,
  11438. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  11439. }
  11440. if (il == n_layer - 1) {
  11441. // skip computing output for unused tokens
  11442. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  11443. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  11444. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11445. }
  11446. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  11447. cb(ffn_inp, "ffn_inp", il);
  11448. // feed-forward network
  11449. {
  11450. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  11451. model.layers[il].ffn_norm, NULL,
  11452. LLM_NORM_RMS, cb, il);
  11453. cb(cur, "ffn_norm", il);
  11454. cur = llm_build_ffn(ctx0, lctx, cur,
  11455. model.layers[il].ffn_up, NULL, NULL,
  11456. model.layers[il].ffn_gate, NULL, NULL,
  11457. model.layers[il].ffn_down, NULL, NULL,
  11458. NULL,
  11459. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  11460. cb(cur, "ffn_out", il);
  11461. }
  11462. cur = ggml_add(ctx0, cur, ffn_inp);
  11463. cur = lctx.cvec.apply_to(ctx0, cur, il);
  11464. cb(cur, "l_out", il);
  11465. inpL = cur;
  11466. }
  11467. cur = inpL;
  11468. // norm
  11469. cur = llm_build_norm(ctx0, cur, hparams,
  11470. model.output_norm, NULL,
  11471. LLM_NORM_RMS, cb, -1);
  11472. cb(cur, "result_norm", -1);
  11473. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  11474. cb(cur, "result_output", -1);
  11475. ggml_build_forward_expand(gf, cur);
  11476. return gf;
  11477. }
  11478. struct ggml_cgraph * build_gptneox() {
  11479. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  11480. const int64_t n_embd_head = hparams.n_embd_head_v;
  11481. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  11482. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11483. struct ggml_tensor * cur;
  11484. struct ggml_tensor * inpL;
  11485. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  11486. // inp_pos - contains the positions
  11487. struct ggml_tensor * inp_pos = build_inp_pos();
  11488. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  11489. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  11490. for (int il = 0; il < n_layer; ++il) {
  11491. cur = llm_build_norm(ctx0, inpL, hparams,
  11492. model.layers[il].attn_norm,
  11493. model.layers[il].attn_norm_b,
  11494. LLM_NORM, cb, il);
  11495. cb(cur, "attn_norm", il);
  11496. // self-attention
  11497. {
  11498. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  11499. cb(cur, "wqkv", il);
  11500. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  11501. cb(cur, "bqkv", il);
  11502. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  11503. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  11504. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  11505. cb(Qcur, "Qcur", il);
  11506. cb(Kcur, "Kcur", il);
  11507. cb(Vcur, "Vcur", il);
  11508. Qcur = ggml_rope_ext(
  11509. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  11510. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11511. ext_factor, attn_factor, beta_fast, beta_slow
  11512. );
  11513. cb(Qcur, "Qcur", il);
  11514. Kcur = ggml_rope_ext(
  11515. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  11516. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11517. ext_factor, attn_factor, beta_fast, beta_slow
  11518. );
  11519. cb(Kcur, "Kcur", il);
  11520. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  11521. model.layers[il].wo, model.layers[il].bo,
  11522. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  11523. }
  11524. if (il == n_layer - 1) {
  11525. // skip computing output for unused tokens
  11526. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  11527. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11528. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  11529. }
  11530. // ffn
  11531. if (hparams.use_par_res) {
  11532. // attention and ffn are computed in parallel
  11533. // x = x + attn(ln1(x)) + ffn(ln2(x))
  11534. struct ggml_tensor * attn_out = cur;
  11535. cur = llm_build_norm(ctx0, inpL, hparams,
  11536. model.layers[il].ffn_norm,
  11537. model.layers[il].ffn_norm_b,
  11538. LLM_NORM, cb, il);
  11539. cb(cur, "ffn_norm", il);
  11540. cur = llm_build_ffn(ctx0, lctx, cur,
  11541. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  11542. NULL, NULL, NULL,
  11543. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  11544. NULL,
  11545. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  11546. cb(cur, "ffn_out", il);
  11547. cur = ggml_add(ctx0, cur, inpL);
  11548. cb(cur, "ffn_out", il);
  11549. cur = ggml_add(ctx0, cur, attn_out);
  11550. cur = lctx.cvec.apply_to(ctx0, cur, il);
  11551. cb(cur, "l_out", il);
  11552. // input for next layer
  11553. inpL = cur;
  11554. } else {
  11555. // attention and ffn are computed sequentially
  11556. // x = x + attn(ln1(x))
  11557. // x = x + ffn(ln2(x))
  11558. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  11559. cb(ffn_inp, "ffn_inp", il);
  11560. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  11561. model.layers[il].ffn_norm,
  11562. model.layers[il].ffn_norm_b,
  11563. LLM_NORM, cb, il);
  11564. cb(cur, "ffn_norm", il);
  11565. cur = llm_build_ffn(ctx0, lctx, cur,
  11566. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  11567. NULL, NULL, NULL,
  11568. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  11569. NULL,
  11570. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  11571. cb(cur, "ffn_out", il);
  11572. cur = ggml_add(ctx0, cur, ffn_inp);
  11573. cur = lctx.cvec.apply_to(ctx0, cur, il);
  11574. cb(cur, "l_out", il);
  11575. // input for next layer
  11576. inpL = cur;
  11577. }
  11578. }
  11579. cur = llm_build_norm(ctx0, inpL, hparams,
  11580. model.output_norm,
  11581. model.output_norm_b,
  11582. LLM_NORM, cb, -1);
  11583. cb(cur, "result_norm", -1);
  11584. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  11585. cb(cur, "result_output", -1);
  11586. ggml_build_forward_expand(gf, cur);
  11587. return gf;
  11588. }
  11589. struct ggml_cgraph * build_arctic() {
  11590. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  11591. // mutable variable, needed during the last layer of the computation to skip unused tokens
  11592. int32_t n_tokens = this->n_tokens;
  11593. const int64_t n_embd_head = hparams.n_embd_head_v;
  11594. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11595. GGML_ASSERT(n_embd_head == hparams.n_rot);
  11596. struct ggml_tensor * cur;
  11597. struct ggml_tensor * inpL;
  11598. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  11599. // inp_pos - contains the positions
  11600. struct ggml_tensor * inp_pos = build_inp_pos();
  11601. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  11602. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  11603. for (int il = 0; il < n_layer; ++il) {
  11604. struct ggml_tensor * inpSA = inpL;
  11605. // norm
  11606. cur = llm_build_norm(ctx0, inpL, hparams,
  11607. model.layers[il].attn_norm, NULL,
  11608. LLM_NORM_RMS, cb, il);
  11609. cb(cur, "attn_norm", il);
  11610. // self-attention
  11611. {
  11612. // compute Q and K and RoPE them
  11613. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  11614. cb(Qcur, "Qcur", il);
  11615. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  11616. cb(Kcur, "Kcur", il);
  11617. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  11618. cb(Vcur, "Vcur", il);
  11619. Qcur = ggml_rope_ext(
  11620. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  11621. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11622. ext_factor, attn_factor, beta_fast, beta_slow
  11623. );
  11624. cb(Qcur, "Qcur", il);
  11625. Kcur = ggml_rope_ext(
  11626. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  11627. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11628. ext_factor, attn_factor, beta_fast, beta_slow
  11629. );
  11630. cb(Kcur, "Kcur", il);
  11631. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  11632. model.layers[il].wo, NULL,
  11633. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  11634. }
  11635. if (il == n_layer - 1) {
  11636. // skip computing output for unused tokens
  11637. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  11638. n_tokens = n_outputs;
  11639. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11640. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11641. }
  11642. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  11643. cb(ffn_inp, "ffn_inp", il);
  11644. // feed-forward network
  11645. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  11646. model.layers[il].ffn_norm, NULL,
  11647. LLM_NORM_RMS, cb, il);
  11648. cb(cur, "ffn_norm", il);
  11649. cur = llm_build_ffn(ctx0, lctx, cur,
  11650. model.layers[il].ffn_up, NULL, NULL,
  11651. model.layers[il].ffn_gate, NULL, NULL,
  11652. model.layers[il].ffn_down, NULL, NULL,
  11653. NULL,
  11654. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  11655. cb(cur, "ffn_out", il);
  11656. struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  11657. cb(ffn_out, "ffn_out", il);
  11658. // MoE
  11659. cur = llm_build_norm(ctx0, inpSA, hparams,
  11660. model.layers[il].ffn_norm_exps, NULL,
  11661. LLM_NORM_RMS, cb, il);
  11662. cb(cur, "ffn_norm_exps", il);
  11663. cur = llm_build_moe_ffn(ctx0, lctx, cur,
  11664. model.layers[il].ffn_gate_inp,
  11665. model.layers[il].ffn_up_exps,
  11666. model.layers[il].ffn_gate_exps,
  11667. model.layers[il].ffn_down_exps,
  11668. n_expert, n_expert_used,
  11669. LLM_FFN_SILU, true,
  11670. false, 0.0,
  11671. cb, il);
  11672. cb(cur, "ffn_moe_out", il);
  11673. cur = ggml_add(ctx0, cur, ffn_out);
  11674. cb(cur, "ffn_out", il);
  11675. cur = lctx.cvec.apply_to(ctx0, cur, il);
  11676. cb(cur, "l_out", il);
  11677. // input for next layer
  11678. inpL = cur;
  11679. }
  11680. cur = inpL;
  11681. cur = llm_build_norm(ctx0, cur, hparams,
  11682. model.output_norm, NULL,
  11683. LLM_NORM_RMS, cb, -1);
  11684. cb(cur, "result_norm", -1);
  11685. // lm_head
  11686. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  11687. cb(cur, "result_output", -1);
  11688. ggml_build_forward_expand(gf, cur);
  11689. return gf;
  11690. }
  11691. struct ggml_cgraph * build_deepseek2() {
  11692. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  11693. // mutable variable, needed during the last layer of the computation to skip unused tokens
  11694. int32_t n_tokens = this->n_tokens;
  11695. bool is_lite = (hparams.n_layer == 27);
  11696. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  11697. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  11698. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  11699. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  11700. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  11701. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  11702. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  11703. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  11704. struct ggml_tensor * cur;
  11705. struct ggml_tensor * inpL;
  11706. // {n_embd, n_tokens}
  11707. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  11708. // inp_pos - contains the positions
  11709. struct ggml_tensor * inp_pos = build_inp_pos();
  11710. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  11711. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  11712. for (int il = 0; il < n_layer; ++il) {
  11713. struct ggml_tensor * inpSA = inpL;
  11714. // norm
  11715. cur = llm_build_norm(ctx0, inpL, hparams,
  11716. model.layers[il].attn_norm, NULL,
  11717. LLM_NORM_RMS, cb, il);
  11718. cb(cur, "attn_norm", il);
  11719. // self_attention
  11720. {
  11721. struct ggml_tensor * q = NULL;
  11722. if (!is_lite) {
  11723. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  11724. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  11725. cb(q, "q", il);
  11726. q = llm_build_norm(ctx0, q, hparams,
  11727. model.layers[il].attn_q_a_norm, NULL,
  11728. LLM_NORM_RMS, cb, il);
  11729. cb(q, "q", il);
  11730. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  11731. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  11732. cb(q, "q", il);
  11733. } else {
  11734. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  11735. cb(q, "q", il);
  11736. }
  11737. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  11738. struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  11739. ggml_row_size(q->type, hparams.n_embd_head_k),
  11740. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  11741. 0);
  11742. cb(q_nope, "q_nope", il);
  11743. // and {n_head * n_embd_head_qk_rope, n_tokens}
  11744. struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  11745. ggml_row_size(q->type, hparams.n_embd_head_k),
  11746. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  11747. ggml_row_size(q->type, n_embd_head_qk_nope));
  11748. cb(q_pe, "q_pe", il);
  11749. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  11750. struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  11751. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  11752. // split into {kv_lora_rank, n_tokens}
  11753. struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  11754. kv_pe_compresseed->nb[1],
  11755. 0);
  11756. cb(kv_compressed, "kv_compressed", il);
  11757. // and {n_embd_head_qk_rope, n_tokens}
  11758. struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  11759. kv_pe_compresseed->nb[1],
  11760. kv_pe_compresseed->nb[1],
  11761. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  11762. cb(k_pe, "k_pe", il);
  11763. kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
  11764. kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
  11765. model.layers[il].attn_kv_a_norm, NULL,
  11766. LLM_NORM_RMS, cb, il);
  11767. cb(kv_compressed, "kv_compressed", il);
  11768. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  11769. struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  11770. cb(kv, "kv", il);
  11771. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  11772. struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  11773. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  11774. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  11775. 0);
  11776. cb(k_nope, "k_nope", il);
  11777. // and {n_head * n_embd_head_v, n_tokens}
  11778. struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  11779. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  11780. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  11781. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  11782. cb(v_states, "v_states", il);
  11783. v_states = ggml_cont(ctx0, v_states);
  11784. cb(v_states, "v_states", il);
  11785. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  11786. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  11787. 0);
  11788. cb(v_states, "v_states", il);
  11789. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  11790. q_pe = ggml_rope_ext(
  11791. ctx0, q_pe, inp_pos, nullptr,
  11792. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11793. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  11794. );
  11795. cb(q_pe, "q_pe", il);
  11796. // shared RoPE key
  11797. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  11798. k_pe = ggml_rope_ext(
  11799. ctx0, k_pe, inp_pos, nullptr,
  11800. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11801. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  11802. );
  11803. cb(k_pe, "k_pe", il);
  11804. struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  11805. cb(q_states, "q_states", il);
  11806. struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  11807. cb(k_states, "k_states", il);
  11808. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  11809. model.layers[il].wo, NULL,
  11810. k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
  11811. }
  11812. if (il == n_layer - 1) {
  11813. // skip computing output for unused tokens
  11814. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  11815. n_tokens = n_outputs;
  11816. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11817. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11818. }
  11819. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  11820. cb(ffn_inp, "ffn_inp", il);
  11821. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  11822. model.layers[il].ffn_norm, NULL,
  11823. LLM_NORM_RMS, cb, il);
  11824. cb(cur, "ffn_norm", il);
  11825. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  11826. cur = llm_build_ffn(ctx0, lctx, cur,
  11827. model.layers[il].ffn_up, NULL, NULL,
  11828. model.layers[il].ffn_gate, NULL, NULL,
  11829. model.layers[il].ffn_down, NULL, NULL,
  11830. NULL,
  11831. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  11832. cb(cur, "ffn_out", il);
  11833. } else {
  11834. // MoE branch
  11835. ggml_tensor * moe_out =
  11836. llm_build_moe_ffn(ctx0, lctx, cur,
  11837. model.layers[il].ffn_gate_inp,
  11838. model.layers[il].ffn_up_exps,
  11839. model.layers[il].ffn_gate_exps,
  11840. model.layers[il].ffn_down_exps,
  11841. n_expert, n_expert_used,
  11842. LLM_FFN_SILU, false,
  11843. true, hparams.expert_weights_scale,
  11844. cb, il);
  11845. cb(moe_out, "ffn_moe_out", il);
  11846. // FFN shared expert
  11847. {
  11848. ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, lctx, cur,
  11849. model.layers[il].ffn_up_shexp, NULL, NULL,
  11850. model.layers[il].ffn_gate_shexp, NULL, NULL,
  11851. model.layers[il].ffn_down_shexp, NULL, NULL,
  11852. NULL,
  11853. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  11854. cb(ffn_shexp, "ffn_shexp", il);
  11855. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  11856. cb(cur, "ffn_out", il);
  11857. }
  11858. }
  11859. cur = ggml_add(ctx0, cur, ffn_inp);
  11860. cur = lctx.cvec.apply_to(ctx0, cur, il);
  11861. cb(cur, "l_out", il);
  11862. // input for next layer
  11863. inpL = cur;
  11864. }
  11865. cur = inpL;
  11866. cur = llm_build_norm(ctx0, cur, hparams,
  11867. model.output_norm, NULL,
  11868. LLM_NORM_RMS, cb, -1);
  11869. cb(cur, "result_norm", -1);
  11870. // lm_head
  11871. cur = ggml_mul_mat(ctx0, model.output, cur);
  11872. cb(cur, "result_output", -1);
  11873. ggml_build_forward_expand(gf, cur);
  11874. return gf;
  11875. }
  11876. struct ggml_cgraph * build_bitnet() {
  11877. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  11878. const int64_t n_embd_head = hparams.n_embd_head_v;
  11879. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11880. struct ggml_tensor * cur;
  11881. struct ggml_tensor * inpL;
  11882. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  11883. // inp_pos - contains the positions
  11884. struct ggml_tensor * inp_pos = build_inp_pos();
  11885. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  11886. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  11887. for (int il = 0; il < n_layer; ++il) {
  11888. struct ggml_tensor * inpSA = inpL;
  11889. cur = llm_build_norm(ctx0, inpL, hparams,
  11890. model.layers[il].attn_norm, NULL,
  11891. LLM_NORM_RMS, cb, il);
  11892. cb(cur, "attn_norm", il);
  11893. // self-attention
  11894. {
  11895. // compute Q and K and RoPE them
  11896. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  11897. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  11898. cb(Qcur, "Qcur", il);
  11899. if (model.layers[il].bq) {
  11900. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  11901. cb(Qcur, "Qcur", il);
  11902. }
  11903. // B1.K
  11904. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  11905. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  11906. cb(Kcur, "Kcur", il);
  11907. if (model.layers[il].bk) {
  11908. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  11909. cb(Kcur, "Kcur", il);
  11910. }
  11911. // B1.V
  11912. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  11913. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  11914. cb(Vcur, "Vcur", il);
  11915. if (model.layers[il].bv) {
  11916. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  11917. cb(Vcur, "Vcur", il);
  11918. }
  11919. Qcur = ggml_rope_ext(
  11920. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  11921. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11922. ext_factor, attn_factor, beta_fast, beta_slow
  11923. );
  11924. cb(Qcur, "Qcur", il);
  11925. Kcur = ggml_rope_ext(
  11926. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  11927. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11928. ext_factor, attn_factor, beta_fast, beta_slow
  11929. );
  11930. cb(Kcur, "Kcur", il);
  11931. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  11932. NULL, NULL,
  11933. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  11934. cur = llm_build_norm(ctx0, cur, hparams,
  11935. model.layers[il].attn_sub_norm, NULL,
  11936. LLM_NORM_RMS, cb, il);
  11937. cb(cur, "attn_sub_norm", il);
  11938. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
  11939. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  11940. if (model.layers[il].bo) {
  11941. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  11942. }
  11943. cb(cur, "attn_o_out", il);
  11944. }
  11945. if (il == n_layer - 1) {
  11946. // skip computing output for unused tokens
  11947. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  11948. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11949. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11950. }
  11951. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  11952. cb(ffn_inp, "ffn_inp", il);
  11953. // feed-forward forward
  11954. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  11955. model.layers[il].ffn_norm, NULL,
  11956. LLM_NORM_RMS, cb, il);
  11957. cb(cur, "ffn_norm", il);
  11958. cur = llm_build_ffn(ctx0, lctx, cur,
  11959. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  11960. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  11961. NULL, NULL, NULL,
  11962. NULL,
  11963. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  11964. cb(cur, "ffn_sub_out", il);
  11965. cur = llm_build_norm(ctx0, cur, hparams,
  11966. model.layers[il].ffn_sub_norm, NULL,
  11967. LLM_NORM_RMS, cb, il);
  11968. cb(cur, "ffn_sub_norm", il);
  11969. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_down, cur);
  11970. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  11971. cb(cur, "ffn_down", il);
  11972. cur = ggml_add(ctx0, cur, ffn_inp);
  11973. cb(cur, "l_out", il);
  11974. // input for next layer
  11975. inpL = cur;
  11976. }
  11977. cur = inpL;
  11978. cur = llm_build_norm(ctx0, cur, hparams,
  11979. model.output_norm, NULL,
  11980. LLM_NORM_RMS, cb, -1);
  11981. cb(cur, "result_norm", -1);
  11982. // lm_head
  11983. cur = llm_build_lora_mm(lctx, ctx0, model.tok_embd, cur);
  11984. cb(cur, "result_output", -1);
  11985. ggml_build_forward_expand(gf, cur);
  11986. return gf;
  11987. }
  11988. struct ggml_cgraph * build_t5_encoder() {
  11989. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  11990. // mutable variable, needed during the last layer of the computation to skip unused tokens
  11991. int32_t n_tokens = this->n_tokens;
  11992. const int64_t n_embd_head = hparams.n_embd_head_v;
  11993. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  11994. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11995. struct ggml_tensor * cur;
  11996. struct ggml_tensor * inpL;
  11997. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  11998. GGML_ASSERT(lctx.is_encoding);
  11999. struct ggml_tensor * pos_bucket_enc = llm_build_pos_bucket(false);
  12000. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  12001. struct ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false);
  12002. for (int il = 0; il < n_layer; ++il) {
  12003. struct ggml_tensor * inpSA = inpL;
  12004. // norm
  12005. cur = llm_build_norm(ctx0, inpL, hparams,
  12006. model.layers[il].attn_norm_enc, NULL,
  12007. LLM_NORM_RMS, cb, il);
  12008. cb(cur, "attn_norm", il);
  12009. // self-attention
  12010. {
  12011. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_enc, cur);
  12012. cb(Qcur, "Qcur", il);
  12013. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_enc, cur);
  12014. cb(Kcur, "Kcur", il);
  12015. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_enc, cur);
  12016. cb(Vcur, "Vcur", il);
  12017. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  12018. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  12019. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  12020. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  12021. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  12022. cb(kq, "kq", il);
  12023. struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  12024. struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_enc, attn_rel_b);
  12025. struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
  12026. cb(kq_b, "kq_b", il);
  12027. kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_enc, 1.0f, hparams.f_max_alibi_bias);
  12028. cb(kq, "kq_soft_max_ext", il);
  12029. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  12030. cb(v, "v", il);
  12031. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  12032. cb(kqv, "kqv", il);
  12033. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  12034. cb(kqv_merged, "kqv_merged", il);
  12035. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  12036. cb(cur, "kqv_merged_cont", il);
  12037. ggml_build_forward_expand(gf, cur);
  12038. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_enc, cur);
  12039. cb(cur, "kqv_out", il);
  12040. }
  12041. if (il == n_layer - 1) {
  12042. // skip computing output for unused tokens
  12043. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  12044. n_tokens = n_outputs;
  12045. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12046. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  12047. }
  12048. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  12049. cb(ffn_inp, "ffn_inp", il);
  12050. // feed-forward network
  12051. {
  12052. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  12053. model.layers[il].ffn_norm_enc, NULL,
  12054. LLM_NORM_RMS, cb, il);
  12055. cb(cur, "ffn_norm", il);
  12056. // T5 uses relu, flan-T5 uses gelu-gated
  12057. cur = llm_build_ffn(ctx0, lctx, cur,
  12058. model.layers[il].ffn_up_enc, NULL, NULL,
  12059. model.layers[il].ffn_gate_enc, NULL, NULL,
  12060. model.layers[il].ffn_down_enc, NULL, NULL,
  12061. NULL,
  12062. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  12063. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  12064. cb, il);
  12065. cb(cur, "ffn_out", il);
  12066. }
  12067. cur = ggml_add(ctx0, cur, ffn_inp);
  12068. cb(cur, "ffn_out", il);
  12069. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  12070. if (layer_dir != nullptr) {
  12071. cur = ggml_add(ctx0, cur, layer_dir);
  12072. }
  12073. cb(cur, "l_out", il);
  12074. // input for next layer
  12075. inpL = cur;
  12076. }
  12077. cur = inpL;
  12078. cb(cur, "result_embd", -1);
  12079. cur = llm_build_norm(ctx0, cur, hparams,
  12080. model.output_norm_enc, NULL,
  12081. LLM_NORM_RMS, cb, -1);
  12082. cb(cur, "result_norm", -1);
  12083. ggml_build_forward_expand(gf, cur);
  12084. return gf;
  12085. }
  12086. struct ggml_cgraph * build_t5_decoder() {
  12087. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  12088. // mutable variable, needed during the last layer of the computation to skip unused tokens
  12089. int32_t n_tokens = this->n_tokens;
  12090. const int64_t n_embd_head = hparams.n_embd_head_v;
  12091. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  12092. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  12093. struct ggml_tensor * cur;
  12094. struct ggml_tensor * inpL;
  12095. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  12096. GGML_ASSERT(!lctx.is_encoding);
  12097. GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first");
  12098. struct ggml_tensor * embd_enc = llm_build_inp_embd_enc();
  12099. struct ggml_tensor * pos_bucket_dec = llm_build_pos_bucket(true);
  12100. struct ggml_tensor * KQ_mask_dec = build_inp_KQ_mask();
  12101. struct ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross();
  12102. for (int il = 0; il < n_layer; ++il) {
  12103. struct ggml_tensor * inpSA = inpL;
  12104. // norm
  12105. cur = llm_build_norm(ctx0, inpL, hparams,
  12106. model.layers[il].attn_norm, NULL,
  12107. LLM_NORM_RMS, cb, il);
  12108. cb(cur, "attn_norm", il);
  12109. // self-attention
  12110. {
  12111. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  12112. cb(Qcur, "Qcur", il);
  12113. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  12114. cb(Kcur, "Kcur", il);
  12115. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  12116. cb(Vcur, "Vcur", il);
  12117. llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);
  12118. struct ggml_tensor * k =
  12119. ggml_view_3d(ctx0, kv_self.k_l[il],
  12120. n_embd_head_k, n_kv, n_head_kv,
  12121. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  12122. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  12123. 0);
  12124. cb(k, "k", il);
  12125. struct ggml_tensor * v =
  12126. ggml_view_3d(ctx0, kv_self.v_l[il],
  12127. n_kv, n_embd_head_v, n_head_kv,
  12128. ggml_element_size(kv_self.v_l[il])*n_ctx,
  12129. ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
  12130. 0);
  12131. cb(v, "v", il);
  12132. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  12133. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  12134. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  12135. cb(kq, "kq", il);
  12136. struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  12137. struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_dec, attn_rel_b);
  12138. struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
  12139. cb(kq_b, "kq_b", il);
  12140. kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias);
  12141. cb(kq, "kq_soft_max_ext", il);
  12142. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  12143. cb(kqv, "kqv", il);
  12144. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  12145. cb(kqv_merged, "kqv_merged", il);
  12146. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  12147. cb(cur, "kqv_merged_cont", il);
  12148. ggml_build_forward_expand(gf, cur);
  12149. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
  12150. cb(cur, "kqv_out", il);
  12151. }
  12152. cur = ggml_add(ctx0, cur, inpSA);
  12153. cb(cur, "cross_inp", il);
  12154. struct ggml_tensor * inpCA = cur;
  12155. // norm
  12156. cur = llm_build_norm(ctx0, cur, hparams,
  12157. model.layers[il].attn_norm_cross, NULL,
  12158. LLM_NORM_RMS, cb, il);
  12159. cb(cur, "attn_norm_cross", il);
  12160. // cross-attention
  12161. {
  12162. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_cross, cur);
  12163. cb(Qcur, "Qcur", il);
  12164. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_cross, embd_enc);
  12165. cb(Kcur, "Kcur", il);
  12166. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_cross, embd_enc);
  12167. cb(Vcur, "Vcur", il);
  12168. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  12169. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  12170. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  12171. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  12172. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  12173. cb(kq, "kq", il);
  12174. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  12175. cb(kq, "kq_soft_max_ext", il);
  12176. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  12177. cb(v, "v", il);
  12178. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  12179. cb(kqv, "kqv", il);
  12180. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  12181. cb(kqv_merged, "kqv_merged", il);
  12182. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  12183. cb(cur, "kqv_merged_cont", il);
  12184. ggml_build_forward_expand(gf, cur);
  12185. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_cross, cur);
  12186. cb(cur, "kqv_out", il);
  12187. }
  12188. if (il == n_layer - 1) {
  12189. // skip computing output for unused tokens
  12190. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  12191. n_tokens = n_outputs;
  12192. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12193. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  12194. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  12195. }
  12196. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  12197. cb(ffn_inp, "ffn_inp", il);
  12198. // feed-forward network
  12199. {
  12200. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  12201. model.layers[il].ffn_norm, NULL,
  12202. LLM_NORM_RMS, cb, il);
  12203. cb(cur, "ffn_norm", il);
  12204. // T5 uses relu, flan-T5 uses gelu-gated
  12205. cur = llm_build_ffn(ctx0, lctx, cur,
  12206. model.layers[il].ffn_up, NULL, NULL,
  12207. model.layers[il].ffn_gate, NULL, NULL,
  12208. model.layers[il].ffn_down, NULL, NULL,
  12209. NULL,
  12210. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  12211. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  12212. cb, il);
  12213. cb(cur, "ffn_out", il);
  12214. }
  12215. cur = ggml_add(ctx0, cur, ffn_inp);
  12216. cb(cur, "ffn_out", il);
  12217. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  12218. if (layer_dir != nullptr) {
  12219. cur = ggml_add(ctx0, cur, layer_dir);
  12220. }
  12221. cb(cur, "l_out", il);
  12222. // input for next layer
  12223. inpL = cur;
  12224. }
  12225. cur = inpL;
  12226. cb(cur, "result_embd", -1);
  12227. cur = llm_build_norm(ctx0, cur, hparams,
  12228. model.output_norm, NULL,
  12229. LLM_NORM_RMS, cb, -1);
  12230. cb(cur, "result_norm", -1);
  12231. // lm_head
  12232. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  12233. cb(cur, "result_output", -1);
  12234. ggml_build_forward_expand(gf, cur);
  12235. return gf;
  12236. }
  12237. struct ggml_cgraph * build_jais() {
  12238. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  12239. const int64_t n_embd_head = hparams.n_embd_head_v;
  12240. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  12241. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  12242. struct ggml_tensor * cur;
  12243. struct ggml_tensor * inpL;
  12244. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  12245. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  12246. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  12247. for (int il = 0; il < n_layer; ++il) {
  12248. cur = llm_build_norm(ctx0, inpL, hparams,
  12249. model.layers[il].attn_norm,
  12250. model.layers[il].attn_norm_b,
  12251. LLM_NORM, cb, il);
  12252. cb(cur, "attn_norm", il);
  12253. // self-attention
  12254. {
  12255. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  12256. cb(cur, "wqkv", il);
  12257. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  12258. cb(cur, "bqkv", il);
  12259. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
  12260. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
  12261. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
  12262. cb(Qcur, "Qcur", il);
  12263. cb(Kcur, "Kcur", il);
  12264. cb(Vcur, "Vcur", il);
  12265. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  12266. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  12267. model.layers[il].wo, model.layers[il].bo,
  12268. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/float(n_embd_head), cb, il);
  12269. }
  12270. if (il == n_layer - 1) {
  12271. // skip computing output for unused tokens
  12272. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  12273. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12274. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  12275. }
  12276. // add the input
  12277. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  12278. cb(ffn_inp, "ffn_inp", il);
  12279. // FF
  12280. {
  12281. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  12282. model.layers[il].ffn_norm,
  12283. model.layers[il].ffn_norm_b,
  12284. LLM_NORM, cb, il);
  12285. cb(cur, "ffn_norm", il);
  12286. cur = llm_build_ffn(ctx0, lctx, cur,
  12287. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  12288. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  12289. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  12290. NULL,
  12291. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  12292. cb(cur, "ffn_out", il);
  12293. }
  12294. inpL = ggml_add(ctx0, cur, ffn_inp);
  12295. cb(inpL, "l_out", il);
  12296. }
  12297. cur = llm_build_norm(ctx0, inpL, hparams,
  12298. model.output_norm,
  12299. model.output_norm_b,
  12300. LLM_NORM, cb, -1);
  12301. cb(cur, "result_norm", -1);
  12302. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  12303. cb(cur, "result_output", -1);
  12304. ggml_build_forward_expand(gf, cur);
  12305. return gf;
  12306. }
  12307. struct ggml_cgraph * build_chatglm() {
  12308. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  12309. const int64_t n_embd_head = hparams.n_embd_head_v;
  12310. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  12311. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  12312. struct ggml_tensor * cur;
  12313. struct ggml_tensor * inpL;
  12314. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  12315. // inp_pos - contains the positions
  12316. struct ggml_tensor * inp_pos = build_inp_pos();
  12317. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  12318. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  12319. for (int il = 0; il < n_layer; ++il) {
  12320. struct ggml_tensor * inpSA = inpL;
  12321. cur = llm_build_norm(ctx0, inpL, hparams,
  12322. model.layers[il].attn_norm,
  12323. NULL,
  12324. LLM_NORM_RMS, cb, il);
  12325. cb(cur, "attn_norm", il);
  12326. // self-attention
  12327. {
  12328. struct ggml_tensor * Qcur = nullptr;
  12329. struct ggml_tensor * Kcur = nullptr;
  12330. struct ggml_tensor * Vcur = nullptr;
  12331. cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
  12332. cb(cur, "wqkv", il);
  12333. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  12334. cb(cur, "bqkv", il);
  12335. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  12336. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  12337. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  12338. cb(Qcur, "Qcur", il);
  12339. cb(Kcur, "Kcur", il);
  12340. cb(Vcur, "Vcur", il);
  12341. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  12342. Qcur = ggml_rope_ext(
  12343. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  12344. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  12345. ext_factor, attn_factor, beta_fast, beta_slow
  12346. );
  12347. cb(Qcur, "Qcur_rope", il);
  12348. Kcur = ggml_rope_ext(
  12349. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  12350. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  12351. ext_factor, attn_factor, beta_fast, beta_slow
  12352. );
  12353. cb(Kcur, "Kcur_rope", il);
  12354. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  12355. model.layers[il].wo, NULL,
  12356. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  12357. }
  12358. if (il == n_layer - 1) {
  12359. // skip computing output for unused tokens
  12360. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  12361. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12362. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  12363. }
  12364. // Add the input
  12365. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  12366. cb(ffn_inp, "ffn_inp", il);
  12367. // FF
  12368. {
  12369. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  12370. model.layers[il].ffn_norm,
  12371. NULL,
  12372. LLM_NORM_RMS, cb, il);
  12373. cb(cur, "ffn_norm", il);
  12374. cur = llm_build_ffn(ctx0, lctx, cur,
  12375. model.layers[il].ffn_up, NULL, NULL,
  12376. NULL, NULL, NULL,
  12377. model.layers[il].ffn_down, NULL, NULL,
  12378. NULL,
  12379. LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
  12380. cb(cur, "ffn_out", il);
  12381. }
  12382. inpL = ggml_add(ctx0, cur, ffn_inp);
  12383. cb(inpL, "l_out", il);
  12384. }
  12385. cur = llm_build_norm(ctx0, inpL, hparams,
  12386. model.output_norm,
  12387. NULL,
  12388. LLM_NORM_RMS, cb, -1);
  12389. cb(cur, "result_norm", -1);
  12390. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  12391. cb(cur, "result_output", -1);
  12392. ggml_build_forward_expand(gf, cur);
  12393. return gf;
  12394. }
  12395. struct ggml_cgraph * build_nemotron() {
  12396. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  12397. const int64_t n_embd_head = hparams.n_embd_head_v;
  12398. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  12399. //GGML_ASSERT(n_embd_head == hparams.n_rot);
  12400. struct ggml_tensor * cur;
  12401. struct ggml_tensor * inpL;
  12402. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  12403. // inp_pos - contains the positions
  12404. struct ggml_tensor * inp_pos = build_inp_pos();
  12405. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  12406. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  12407. for (int il = 0; il < n_layer; ++il) {
  12408. struct ggml_tensor * inpSA = inpL;
  12409. // norm
  12410. cur = llm_build_norm(ctx0, inpL, hparams,
  12411. model.layers[il].attn_norm,
  12412. model.layers[il].attn_norm_b,
  12413. LLM_NORM, cb, il);
  12414. cb(cur, "attn_norm", il);
  12415. // self-attention
  12416. {
  12417. // compute Q and K and RoPE them
  12418. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  12419. cb(Qcur, "Qcur", il);
  12420. if (model.layers[il].bq) {
  12421. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  12422. cb(Qcur, "Qcur", il);
  12423. }
  12424. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  12425. cb(Kcur, "Kcur", il);
  12426. if (model.layers[il].bk) {
  12427. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  12428. cb(Kcur, "Kcur", il);
  12429. }
  12430. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  12431. cb(Vcur, "Vcur", il);
  12432. if (model.layers[il].bv) {
  12433. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  12434. cb(Vcur, "Vcur", il);
  12435. }
  12436. Qcur = ggml_rope_ext(
  12437. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  12438. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  12439. ext_factor, attn_factor, beta_fast, beta_slow
  12440. );
  12441. cb(Qcur, "Qcur", il);
  12442. Kcur = ggml_rope_ext(
  12443. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  12444. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  12445. ext_factor, attn_factor, beta_fast, beta_slow
  12446. );
  12447. cb(Kcur, "Kcur", il);
  12448. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  12449. model.layers[il].wo, model.layers[il].bo,
  12450. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  12451. }
  12452. if (il == n_layer - 1) {
  12453. // skip computing output for unused tokens
  12454. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  12455. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12456. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  12457. }
  12458. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  12459. cb(ffn_inp, "ffn_inp", il);
  12460. // feed-forward network
  12461. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  12462. model.layers[il].ffn_norm,
  12463. model.layers[il].ffn_norm_b,
  12464. LLM_NORM, cb, il);
  12465. cb(cur, "ffn_norm", il);
  12466. cur = llm_build_ffn(ctx0, lctx, cur,
  12467. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  12468. NULL, NULL, NULL,
  12469. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  12470. NULL,
  12471. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  12472. cur = ggml_add(ctx0, cur, ffn_inp);
  12473. cb(cur, "ffn_out", il);
  12474. cur = lctx.cvec.apply_to(ctx0, cur, il);
  12475. cb(cur, "l_out", il);
  12476. // input for next layer
  12477. inpL = cur;
  12478. }
  12479. cur = inpL;
  12480. cur = llm_build_norm(ctx0, cur, hparams,
  12481. model.output_norm, model.output_norm_b,
  12482. LLM_NORM, cb, -1);
  12483. cb(cur, "result_norm", -1);
  12484. // lm_head
  12485. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  12486. cb(cur, "result_output", -1);
  12487. ggml_build_forward_expand(gf, cur);
  12488. return gf;
  12489. }
  12490. struct ggml_cgraph * build_exaone() {
  12491. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  12492. // mutable variable, needed during the last layer of the computation to skip unused tokens
  12493. int32_t n_tokens = this->n_tokens;
  12494. const int64_t n_embd_head = hparams.n_embd_head_v;
  12495. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  12496. GGML_ASSERT(n_embd_head == hparams.n_rot);
  12497. struct ggml_tensor * cur;
  12498. struct ggml_tensor * inpL;
  12499. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  12500. // inp_pos - contains the positions
  12501. struct ggml_tensor * inp_pos = build_inp_pos();
  12502. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  12503. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  12504. for (int il = 0; il < n_layer; ++il) {
  12505. struct ggml_tensor * inpSA = inpL;
  12506. // norm
  12507. cur = llm_build_norm(ctx0, inpL, hparams,
  12508. model.layers[il].attn_norm, NULL,
  12509. LLM_NORM_RMS, cb, il);
  12510. cb(cur, "attn_norm", il);
  12511. // self-attention
  12512. {
  12513. // rope freq factors for llama3; may return nullptr for llama2 and other models
  12514. struct ggml_tensor * rope_factors = build_rope_factors(il);
  12515. // compute Q and K and RoPE them
  12516. struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
  12517. cb(Qcur, "Qcur", il);
  12518. if (model.layers[il].bq) {
  12519. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  12520. cb(Qcur, "Qcur", il);
  12521. }
  12522. struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
  12523. cb(Kcur, "Kcur", il);
  12524. if (model.layers[il].bk) {
  12525. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  12526. cb(Kcur, "Kcur", il);
  12527. }
  12528. struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
  12529. cb(Vcur, "Vcur", il);
  12530. if (model.layers[il].bv) {
  12531. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  12532. cb(Vcur, "Vcur", il);
  12533. }
  12534. Qcur = ggml_rope_ext(
  12535. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
  12536. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  12537. ext_factor, attn_factor, beta_fast, beta_slow
  12538. );
  12539. cb(Qcur, "Qcur", il);
  12540. Kcur = ggml_rope_ext(
  12541. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
  12542. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  12543. ext_factor, attn_factor, beta_fast, beta_slow
  12544. );
  12545. cb(Kcur, "Kcur", il);
  12546. cur = llm_build_kv(ctx0, lctx, kv_self, gf,
  12547. model.layers[il].wo, model.layers[il].bo,
  12548. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  12549. }
  12550. if (il == n_layer - 1) {
  12551. // skip computing output for unused tokens
  12552. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  12553. n_tokens = n_outputs;
  12554. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12555. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  12556. }
  12557. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  12558. cb(ffn_inp, "ffn_inp", il);
  12559. // feed-forward network
  12560. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  12561. model.layers[il].ffn_norm, NULL,
  12562. LLM_NORM_RMS, cb, il);
  12563. cb(cur, "ffn_norm", il);
  12564. cur = llm_build_ffn(ctx0, lctx, cur,
  12565. model.layers[il].ffn_up, NULL, NULL,
  12566. model.layers[il].ffn_gate, NULL, NULL,
  12567. model.layers[il].ffn_down, NULL, NULL,
  12568. NULL,
  12569. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  12570. cb(cur, "ffn_out", il);
  12571. cur = ggml_add(ctx0, cur, ffn_inp);
  12572. cb(cur, "ffn_out", il);
  12573. cur = lctx.cvec.apply_to(ctx0, cur, il);
  12574. cb(cur, "l_out", il);
  12575. // input for next layer
  12576. inpL = cur;
  12577. }
  12578. cur = inpL;
  12579. cur = llm_build_norm(ctx0, cur, hparams,
  12580. model.output_norm, NULL,
  12581. LLM_NORM_RMS, cb, -1);
  12582. cb(cur, "result_norm", -1);
  12583. // lm_head
  12584. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  12585. cb(cur, "result_output", -1);
  12586. ggml_build_forward_expand(gf, cur);
  12587. return gf;
  12588. }
  12589. ggml_cgraph * build_rwkv6() {
  12590. ggml_cgraph *gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
  12591. // Token shift state dimensions should be 2 * n_emb
  12592. GGML_ASSERT(n_embd == hparams.n_embd_k_s() / 2);
  12593. const int64_t n_seqs = batch.n_seqs;
  12594. const int64_t n_seq_tokens = batch.n_seq_tokens;
  12595. const int64_t n_tokens = batch.n_tokens;
  12596. GGML_ASSERT(n_seqs != 0);
  12597. GGML_ASSERT(batch.equal_seqs);
  12598. GGML_ASSERT(n_tokens == n_seq_tokens * n_seqs);
  12599. struct ggml_tensor * cur;
  12600. struct ggml_tensor * inpL;
  12601. struct ggml_tensor * state_copy = build_inp_s_copy();
  12602. struct ggml_tensor * state_mask = build_inp_s_mask();
  12603. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  12604. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  12605. for (int il = 0; il < n_layer; ++il) {
  12606. const llama_layer * layer = &model.layers[il];
  12607. // (ab)using the KV cache to store the states
  12608. struct ggml_tensor * token_shift = llm_build_copy_mask_state(ctx0,
  12609. gf, kv_self.k_l[il], state_copy, state_mask,
  12610. hparams.n_embd_k_s(), kv_self.size, kv_head, n_kv, n_seqs);
  12611. struct ggml_tensor * wkv_states = llm_build_copy_mask_state(ctx0,
  12612. gf, kv_self.v_l[il], state_copy, state_mask,
  12613. hparams.n_embd_v_s(), kv_self.size, kv_head, n_kv, n_seqs);
  12614. cur = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  12615. token_shift = ggml_reshape_3d(ctx0, token_shift, n_embd, 2, n_seqs);
  12616. struct ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  12617. struct ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  12618. struct ggml_tensor * x_norm_att = llm_build_norm(ctx0, cur, hparams, layer->attn_norm, layer->attn_norm_b, LLM_NORM, cb, il);
  12619. struct ggml_tensor * x_prev = ggml_concat(
  12620. ctx0,
  12621. att_shift,
  12622. ggml_view_3d(ctx0, x_norm_att, n_embd, n_seq_tokens - 1, n_seqs, x_norm_att->nb[1], x_norm_att->nb[2], 0),
  12623. 1
  12624. );
  12625. cur = ggml_add(ctx0, cur, llm_build_rwkv6_time_mix(lctx, ctx0, layer, x_norm_att, x_prev, &wkv_states));
  12626. ggml_build_forward_expand(gf, cur);
  12627. ggml_build_forward_expand(
  12628. gf,
  12629. ggml_cpy(
  12630. ctx0,
  12631. wkv_states,
  12632. ggml_view_1d(
  12633. ctx0,
  12634. kv_self.v_l[il],
  12635. hparams.n_embd_v_s() * n_seqs,
  12636. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self.v_l[il])
  12637. )
  12638. )
  12639. );
  12640. struct ggml_tensor * x_norm_ffn = llm_build_norm(ctx0, cur, hparams, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, cb, il);
  12641. x_prev = ggml_concat(
  12642. ctx0,
  12643. ffn_shift,
  12644. ggml_view_3d(ctx0, x_norm_ffn, n_embd, n_seq_tokens - 1, n_seqs, x_norm_ffn->nb[1], x_norm_ffn->nb[2], 0),
  12645. 1
  12646. );
  12647. cur = ggml_add(ctx0, cur, llm_build_rwkv6_channel_mix(lctx, ctx0, layer, x_norm_ffn, x_prev));
  12648. ggml_build_forward_expand(gf, cur);
  12649. struct ggml_tensor * last_norm_att = ggml_view_3d(ctx0, x_norm_att, n_embd, 1, n_seqs, x_norm_att->nb[1], x_norm_att->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(x_norm_att));
  12650. struct ggml_tensor * last_norm_ffn = ggml_view_3d(ctx0, x_norm_ffn, n_embd, 1, n_seqs, x_norm_ffn->nb[1], x_norm_ffn->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(x_norm_ffn));
  12651. token_shift = ggml_concat(ctx0, last_norm_att, last_norm_ffn, 1);
  12652. ggml_build_forward_expand(
  12653. gf,
  12654. ggml_cpy(
  12655. ctx0,
  12656. ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * 2, 0),
  12657. ggml_view_1d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self.k_l[il]))
  12658. )
  12659. );
  12660. if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
  12661. cur = ggml_scale(ctx0, cur, 0.5F);
  12662. }
  12663. cur = lctx.cvec.apply_to(ctx0, cur, il);
  12664. cb(cur, "l_out", il);
  12665. // input for next layer
  12666. inpL = cur;
  12667. }
  12668. cur = inpL;
  12669. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  12670. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  12671. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12672. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1);
  12673. cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
  12674. cb(cur, "result_output", -1);
  12675. ggml_build_forward_expand(gf, cur);
  12676. return gf;
  12677. }
  12678. };
  12679. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  12680. llama_ubatch dummy = {};
  12681. dummy.equal_seqs = true;
  12682. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  12683. struct llm_build_context llm(lctx, dummy, cb, false);
  12684. llm.init();
  12685. struct ggml_cgraph * result = llm.build_defrag(ids);
  12686. llm.free();
  12687. return result;
  12688. }
  12689. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  12690. llama_ubatch dummy = {};
  12691. dummy.equal_seqs = true;
  12692. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  12693. struct llm_build_context llm(lctx, dummy, cb, false);
  12694. llm.init();
  12695. struct ggml_cgraph * result = llm.build_k_shift();
  12696. llm.free();
  12697. return result;
  12698. }
  12699. static struct ggml_cgraph * llama_build_graph(
  12700. llama_context & lctx,
  12701. const llama_ubatch & batch,
  12702. bool worst_case) {
  12703. const auto & model = lctx.model;
  12704. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  12705. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  12706. if (il >= 0) {
  12707. ggml_format_name(cur, "%s-%d", name, il);
  12708. } else {
  12709. ggml_set_name(cur, name);
  12710. }
  12711. if (!lctx.cparams.offload_kqv) {
  12712. if (strcmp(name, "kqv_merged_cont") == 0) {
  12713. // all nodes between the KV store and the attention output are run on the CPU
  12714. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  12715. }
  12716. }
  12717. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  12718. // FIXME: fix in ggml_backend_sched
  12719. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  12720. if (batch.n_tokens < 32 || full_offload) {
  12721. if (il != -1 && strcmp(name, "norm") == 0) {
  12722. for (auto * backend : lctx.backends) {
  12723. if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
  12724. (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
  12725. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  12726. break;
  12727. }
  12728. }
  12729. }
  12730. }
  12731. };
  12732. struct ggml_cgraph * result = NULL;
  12733. struct llm_build_context llm(lctx, batch, cb, worst_case);
  12734. llm.init();
  12735. switch (model.arch) {
  12736. case LLM_ARCH_LLAMA:
  12737. {
  12738. result = llm.build_llama();
  12739. } break;
  12740. case LLM_ARCH_BAICHUAN:
  12741. {
  12742. result = llm.build_baichuan();
  12743. } break;
  12744. case LLM_ARCH_FALCON:
  12745. {
  12746. result = llm.build_falcon();
  12747. } break;
  12748. case LLM_ARCH_GROK:
  12749. {
  12750. result = llm.build_grok();
  12751. } break;
  12752. case LLM_ARCH_STARCODER:
  12753. {
  12754. result = llm.build_starcoder();
  12755. } break;
  12756. case LLM_ARCH_REFACT:
  12757. {
  12758. result = llm.build_refact();
  12759. } break;
  12760. case LLM_ARCH_BERT:
  12761. case LLM_ARCH_JINA_BERT_V2:
  12762. case LLM_ARCH_NOMIC_BERT:
  12763. {
  12764. result = llm.build_bert();
  12765. } break;
  12766. case LLM_ARCH_BLOOM:
  12767. {
  12768. result = llm.build_bloom();
  12769. } break;
  12770. case LLM_ARCH_MPT:
  12771. {
  12772. result = llm.build_mpt();
  12773. } break;
  12774. case LLM_ARCH_STABLELM:
  12775. {
  12776. result = llm.build_stablelm();
  12777. } break;
  12778. case LLM_ARCH_QWEN:
  12779. {
  12780. result = llm.build_qwen();
  12781. } break;
  12782. case LLM_ARCH_QWEN2:
  12783. {
  12784. result = llm.build_qwen2();
  12785. } break;
  12786. case LLM_ARCH_QWEN2MOE:
  12787. {
  12788. result = llm.build_qwen2moe();
  12789. } break;
  12790. case LLM_ARCH_PHI2:
  12791. {
  12792. result = llm.build_phi2();
  12793. } break;
  12794. case LLM_ARCH_PHI3:
  12795. {
  12796. result = llm.build_phi3();
  12797. } break;
  12798. case LLM_ARCH_PLAMO:
  12799. {
  12800. result = llm.build_plamo();
  12801. } break;
  12802. case LLM_ARCH_GPT2:
  12803. {
  12804. result = llm.build_gpt2();
  12805. } break;
  12806. case LLM_ARCH_CODESHELL:
  12807. {
  12808. result = llm.build_codeshell();
  12809. } break;
  12810. case LLM_ARCH_ORION:
  12811. {
  12812. result = llm.build_orion();
  12813. } break;
  12814. case LLM_ARCH_INTERNLM2:
  12815. {
  12816. result = llm.build_internlm2();
  12817. } break;
  12818. case LLM_ARCH_MINICPM:
  12819. {
  12820. result = llm.build_minicpm();
  12821. } break;
  12822. case LLM_ARCH_GEMMA:
  12823. {
  12824. result = llm.build_gemma();
  12825. } break;
  12826. case LLM_ARCH_GEMMA2:
  12827. {
  12828. result = llm.build_gemma2();
  12829. } break;
  12830. case LLM_ARCH_STARCODER2:
  12831. {
  12832. result = llm.build_starcoder2();
  12833. } break;
  12834. case LLM_ARCH_MAMBA:
  12835. {
  12836. result = llm.build_mamba();
  12837. } break;
  12838. case LLM_ARCH_XVERSE:
  12839. {
  12840. result = llm.build_xverse();
  12841. } break;
  12842. case LLM_ARCH_COMMAND_R:
  12843. {
  12844. result = llm.build_command_r();
  12845. } break;
  12846. case LLM_ARCH_DBRX:
  12847. {
  12848. result = llm.build_dbrx();
  12849. } break;
  12850. case LLM_ARCH_OLMO:
  12851. {
  12852. result = llm.build_olmo();
  12853. } break;
  12854. case LLM_ARCH_OPENELM:
  12855. {
  12856. result = llm.build_openelm();
  12857. } break;
  12858. case LLM_ARCH_GPTNEOX:
  12859. {
  12860. result = llm.build_gptneox();
  12861. } break;
  12862. case LLM_ARCH_ARCTIC:
  12863. {
  12864. result = llm.build_arctic();
  12865. } break;
  12866. case LLM_ARCH_DEEPSEEK2:
  12867. {
  12868. result = llm.build_deepseek2();
  12869. } break;
  12870. case LLM_ARCH_CHATGLM:
  12871. {
  12872. result = llm.build_chatglm();
  12873. } break;
  12874. case LLM_ARCH_BITNET:
  12875. {
  12876. result = llm.build_bitnet();
  12877. } break;
  12878. case LLM_ARCH_T5:
  12879. {
  12880. if (lctx.is_encoding) {
  12881. result = llm.build_t5_encoder();
  12882. } else {
  12883. result = llm.build_t5_decoder();
  12884. }
  12885. } break;
  12886. case LLM_ARCH_T5ENCODER:
  12887. {
  12888. result = llm.build_t5_encoder();
  12889. } break;
  12890. case LLM_ARCH_JAIS:
  12891. {
  12892. result = llm.build_jais();
  12893. } break;
  12894. case LLM_ARCH_NEMOTRON:
  12895. {
  12896. result = llm.build_nemotron();
  12897. } break;
  12898. case LLM_ARCH_EXAONE:
  12899. {
  12900. result = llm.build_exaone();
  12901. } break;
  12902. case LLM_ARCH_RWKV6:
  12903. {
  12904. result = llm.build_rwkv6();
  12905. } break;
  12906. default:
  12907. GGML_ABORT("fatal error");
  12908. }
  12909. // add on pooling layer
  12910. if (lctx.cparams.embeddings) {
  12911. result = llm.append_pooling(result);
  12912. }
  12913. llm.free();
  12914. return result;
  12915. }
  12916. static void llama_set_k_shift(llama_context & lctx) {
  12917. const int64_t kv_size = lctx.kv_self.size;
  12918. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  12919. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  12920. for (int i = 0; i < kv_size; ++i) {
  12921. data[i] = lctx.kv_self.cells[i].delta;
  12922. }
  12923. }
  12924. static void llama_set_s_copy(llama_context & lctx) {
  12925. const int64_t kv_size = lctx.kv_self.size;
  12926. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  12927. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  12928. for (int i = 0; i < kv_size; ++i) {
  12929. data[i] = lctx.kv_self.cells[i].src;
  12930. }
  12931. }
  12932. static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
  12933. // TODO move to hparams if a T5 variant appears that uses a different value
  12934. const int64_t max_distance = 128;
  12935. if (bidirectional) {
  12936. n_buckets >>= 1;
  12937. }
  12938. const int64_t max_exact = n_buckets >> 1;
  12939. int32_t relative_position = x - y;
  12940. int32_t relative_bucket = 0;
  12941. if (bidirectional) {
  12942. relative_bucket += (relative_position > 0) * n_buckets;
  12943. relative_position = abs(relative_position);
  12944. } else {
  12945. relative_position = -std::min<int32_t>(relative_position, 0);
  12946. }
  12947. int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
  12948. relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
  12949. relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
  12950. return relative_bucket;
  12951. }
  12952. static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
  12953. //
  12954. // set input data
  12955. //
  12956. const auto & hparams = lctx.model.hparams;
  12957. const auto & cparams = lctx.cparams;
  12958. const auto & kv_self = lctx.kv_self;
  12959. if (batch.token) {
  12960. const int64_t n_tokens = batch.n_tokens;
  12961. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  12962. }
  12963. if (batch.embd) {
  12964. const int64_t n_embd = hparams.n_embd;
  12965. const int64_t n_tokens = batch.n_tokens;
  12966. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  12967. }
  12968. if (batch.pos && lctx.inp_pos) {
  12969. const int64_t n_tokens = batch.n_tokens;
  12970. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  12971. }
  12972. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  12973. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  12974. const int64_t n_tokens = batch.n_tokens;
  12975. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  12976. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  12977. if (lctx.n_outputs == n_tokens) {
  12978. for (int i = 0; i < n_tokens; ++i) {
  12979. data[i] = i;
  12980. }
  12981. } else if (batch.output) {
  12982. int32_t n_outputs = 0;
  12983. for (int i = 0; i < n_tokens; ++i) {
  12984. if (batch.output[i]) {
  12985. data[n_outputs++] = i;
  12986. }
  12987. }
  12988. // the graph needs to have been passed the correct number of outputs
  12989. GGML_ASSERT(lctx.n_outputs == n_outputs);
  12990. } else if (lctx.n_outputs == 1) {
  12991. // only keep last output
  12992. data[0] = n_tokens - 1;
  12993. } else {
  12994. GGML_ASSERT(lctx.n_outputs == 0);
  12995. }
  12996. }
  12997. GGML_ASSERT(
  12998. // (!a || b) is a logical implication (a -> b)
  12999. // !hparams.causal_attn -> !cparams.causal_attn
  13000. (hparams.causal_attn || !cparams.causal_attn) &&
  13001. "causal attention is not supported by this model"
  13002. );
  13003. if (lctx.inp_KQ_mask || lctx.inp_KQ_mask_swa) {
  13004. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  13005. if (cparams.causal_attn && !lctx.is_encoding) {
  13006. const int64_t n_kv = kv_self.n;
  13007. const int64_t n_tokens = batch.n_tokens;
  13008. const int64_t n_seq_tokens = batch.n_seq_tokens;
  13009. const int64_t n_seqs = batch.n_seqs;
  13010. float * data = nullptr;
  13011. float * data_swa = nullptr;
  13012. if (lctx.inp_KQ_mask) {
  13013. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  13014. data = (float *) lctx.inp_KQ_mask->data;
  13015. }
  13016. if (lctx.inp_KQ_mask_swa) {
  13017. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_swa->buffer));
  13018. data_swa = (float *) lctx.inp_KQ_mask_swa->data;
  13019. }
  13020. // For causal attention, use only the previous KV cells
  13021. // of the correct sequence for each token of the batch.
  13022. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  13023. for (int h = 0; h < 1; ++h) {
  13024. for (int s = 0; s < n_seqs; ++s) {
  13025. const llama_seq_id seq_id = batch.seq_id[s][0];
  13026. for (int j = 0; j < n_seq_tokens; ++j) {
  13027. const llama_pos pos = batch.pos[s*n_seq_tokens + j];
  13028. for (int i = 0; i < n_kv; ++i) {
  13029. float f;
  13030. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  13031. f = -INFINITY;
  13032. } else {
  13033. if (hparams.use_alibi) {
  13034. f = -std::abs(kv_self.cells[i].pos - pos);
  13035. } else {
  13036. f = 0.0f;
  13037. }
  13038. }
  13039. if (data) {
  13040. data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
  13041. }
  13042. // may need to cut off old tokens for sliding window
  13043. if (data_swa) {
  13044. if (pos - kv_self.cells[i].pos >= (int32_t)hparams.n_swa) {
  13045. f = -INFINITY;
  13046. }
  13047. data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
  13048. }
  13049. }
  13050. }
  13051. }
  13052. if (data) {
  13053. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  13054. for (int j = 0; j < n_kv; ++j) {
  13055. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  13056. }
  13057. }
  13058. }
  13059. if (data_swa) {
  13060. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  13061. for (int j = 0; j < n_kv; ++j) {
  13062. data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  13063. }
  13064. }
  13065. }
  13066. }
  13067. } else {
  13068. const int64_t n_tokens = batch.n_tokens;
  13069. const int64_t n_seq_tokens = batch.n_seq_tokens;
  13070. const int64_t n_seqs = batch.n_seqs;
  13071. // when using kv cache, the mask needs to match the kv cache size
  13072. const int64_t n_stride = hparams.causal_attn && !lctx.is_encoding ? kv_self.n : n_tokens;
  13073. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  13074. float * data = (float *) lctx.inp_KQ_mask->data;
  13075. for (int h = 0; h < 1; ++h) {
  13076. for (int s1 = 0; s1 < n_seqs; ++s1) {
  13077. const llama_seq_id seq_id = batch.seq_id[s1][0];
  13078. for (int j = 0; j < n_seq_tokens; ++j) {
  13079. const int32_t tj = s1*n_seq_tokens + j;
  13080. for (int s0 = 0; s0 < n_seqs; ++s0) {
  13081. for (int i = 0; i < n_seq_tokens; ++i) {
  13082. const int32_t ti = s0*n_seq_tokens + i;
  13083. float f = -INFINITY;
  13084. for (int s = 0; s < batch.n_seq_id[s0]; ++s) {
  13085. if (batch.seq_id[s0][s] == seq_id) {
  13086. if (hparams.use_alibi) {
  13087. f = -std::abs(batch.pos[ti] - batch.pos[tj]);
  13088. } else {
  13089. f = 0.0f;
  13090. }
  13091. break;
  13092. }
  13093. }
  13094. data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
  13095. }
  13096. }
  13097. for (int i = n_tokens; i < n_stride; ++i) {
  13098. data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
  13099. }
  13100. }
  13101. }
  13102. }
  13103. }
  13104. }
  13105. if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  13106. const int64_t n_tokens = batch.n_tokens;
  13107. const int64_t n_seq_tokens = batch.n_seq_tokens;
  13108. const int64_t n_seqs = batch.n_seqs;
  13109. GGML_ASSERT(lctx.inp_mean);
  13110. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  13111. float * data = (float *) lctx.inp_mean->data;
  13112. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  13113. std::vector<uint64_t> sum(n_tokens, 0);
  13114. for (int s = 0; s < n_seqs; ++s) {
  13115. const llama_seq_id seq_id = batch.seq_id[s][0];
  13116. // TODO: adapt limits to n_seqs when batch.equal_seqs is true
  13117. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  13118. sum[seq_id] += batch.n_seq_tokens;
  13119. }
  13120. std::vector<float> div(n_tokens, 0.0f);
  13121. for (int i = 0; i < n_tokens; ++i) {
  13122. const uint64_t s = sum[i];
  13123. if (s > 0) {
  13124. div[i] = 1.0f/float(s);
  13125. }
  13126. }
  13127. for (int s = 0; s < n_seqs; ++s) {
  13128. const llama_seq_id seq_id = batch.seq_id[s][0];
  13129. for (int i = 0; i < n_seq_tokens; ++i) {
  13130. data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
  13131. }
  13132. }
  13133. }
  13134. if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  13135. const int64_t n_tokens = batch.n_tokens;
  13136. const int64_t n_seq_tokens = batch.n_seq_tokens;
  13137. const int64_t n_seqs = batch.n_seqs;
  13138. GGML_ASSERT(lctx.inp_cls);
  13139. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  13140. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  13141. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  13142. for (int s = 0; s < n_seqs; ++s) {
  13143. const llama_seq_id seq_id = batch.seq_id[s][0];
  13144. // TODO: adapt limits to n_seqs when batch.equal_seqs is true
  13145. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  13146. for (int i = 0; i < n_seq_tokens; ++i) {
  13147. const llama_pos pos = batch.pos[s*n_seq_tokens + i];
  13148. if (pos == 0) {
  13149. data[seq_id] = s*n_seq_tokens + i;
  13150. }
  13151. }
  13152. }
  13153. }
  13154. if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
  13155. const int64_t n_tokens = batch.n_tokens;
  13156. const int64_t n_seq_tokens = batch.n_seq_tokens;
  13157. const int64_t n_seqs = batch.n_seqs;
  13158. GGML_ASSERT(lctx.inp_cls);
  13159. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  13160. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  13161. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  13162. std::vector<int> last_pos(n_tokens, -1);
  13163. std::vector<int> last_row(n_tokens, -1);
  13164. for (int s = 0; s < n_seqs; ++s) {
  13165. const llama_seq_id seq_id = batch.seq_id[s][0];
  13166. // TODO: adapt limits to n_seqs when batch.equal_seqs is true
  13167. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
  13168. for (int i = 0; i < n_seq_tokens; ++i) {
  13169. const llama_pos pos = batch.pos[s*n_seq_tokens + i];
  13170. if (pos >= last_pos[seq_id]) {
  13171. last_pos[seq_id] = pos;
  13172. last_row[seq_id] = s*n_seq_tokens + i;
  13173. }
  13174. }
  13175. }
  13176. for (int i = 0; i < n_tokens; ++i) {
  13177. if (last_row[i] >= 0) {
  13178. data[i] = last_row[i];
  13179. }
  13180. }
  13181. }
  13182. if (kv_self.recurrent) {
  13183. const int64_t n_kv = kv_self.n;
  13184. if (lctx.inp_s_mask) {
  13185. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  13186. float * data = (float *) lctx.inp_s_mask->data;
  13187. // clear unused states
  13188. for (int i = 0; i < n_kv; ++i) {
  13189. uint32_t cell_id = i + kv_self.head;
  13190. llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id];
  13191. data[i] = (float) (kv_cell.src >= 0);
  13192. // only clear once
  13193. if (kv_cell.src < 0) {
  13194. kv_cell.src = cell_id;
  13195. }
  13196. }
  13197. }
  13198. if (lctx.inp_s_copy) {
  13199. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  13200. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  13201. // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
  13202. for (uint32_t i = 0; i < n_kv; ++i) {
  13203. const uint32_t cell_id = i + kv_self.head;
  13204. llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id];
  13205. // prevent out-of-bound sources
  13206. if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self.size) {
  13207. kv_cell.src = cell_id;
  13208. }
  13209. data[i] = kv_cell.src;
  13210. // ensure copy only happens once
  13211. if (kv_cell.src != (int32_t) cell_id) {
  13212. kv_cell.src = cell_id;
  13213. }
  13214. }
  13215. }
  13216. }
  13217. if (lctx.inp_pos_bucket) {
  13218. const int64_t n_tokens = batch.n_tokens;
  13219. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_pos_bucket->buffer));
  13220. GGML_ASSERT(!batch.equal_seqs); // TODO: use batch.n_seqs instead of failing
  13221. int32_t * data = (int32_t *) lctx.inp_pos_bucket->data;
  13222. if (!lctx.is_encoding) {
  13223. const int64_t n_kv = kv_self.n;
  13224. for (int h = 0; h < 1; ++h) {
  13225. for (int j = 0; j < n_tokens; ++j) {
  13226. for (int i = 0; i < n_kv; ++i) {
  13227. data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(lctx.kv_self.cells[i].pos, batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
  13228. }
  13229. }
  13230. }
  13231. } else {
  13232. for (int h = 0; h < 1; ++h) {
  13233. for (int j = 0; j < n_tokens; ++j) {
  13234. for (int i = 0; i < n_tokens; ++i) {
  13235. data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(batch.pos[i], batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
  13236. }
  13237. }
  13238. }
  13239. }
  13240. }
  13241. if (!lctx.is_encoding && lctx.inp_embd_enc) {
  13242. assert(lctx.inp_embd_enc->type == GGML_TYPE_F32);
  13243. assert((size_t) ggml_nelements(lctx.inp_embd_enc) == lctx.embd_enc.size());
  13244. ggml_backend_tensor_set(lctx.inp_embd_enc, lctx.embd_enc.data(), 0, ggml_nbytes(lctx.inp_embd_enc));
  13245. }
  13246. if (!lctx.is_encoding && lctx.inp_KQ_mask_cross) {
  13247. const int64_t n_output_enc = lctx.embd_enc.size() / hparams.n_embd;
  13248. const int64_t n_tokens = batch.n_tokens;
  13249. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_cross->buffer));
  13250. GGML_ASSERT(!batch.equal_seqs); // TODO: use batch.n_seqs instead of failing
  13251. float * data = (float *) lctx.inp_KQ_mask_cross->data;
  13252. for (int h = 0; h < 1; ++h) {
  13253. for (int j = 0; j < n_tokens; ++j) {
  13254. for (int i = 0; i < n_output_enc; ++i) {
  13255. float f = -INFINITY;
  13256. for (int s = 0; s < batch.n_seq_id[j]; ++s) {
  13257. const llama_seq_id seq_id = batch.seq_id[j][s];
  13258. if (lctx.seq_ids_enc[i].find(seq_id) != lctx.seq_ids_enc[i].end()) {
  13259. f = 0.0f;
  13260. }
  13261. }
  13262. data[h*(n_output_enc*n_tokens) + j*n_output_enc + i] = f;
  13263. }
  13264. }
  13265. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  13266. for (int j = 0; j < n_output_enc; ++j) {
  13267. data[h*(n_output_enc*n_tokens) + i*n_output_enc + j] = -INFINITY;
  13268. }
  13269. }
  13270. }
  13271. }
  13272. }
  13273. // Make sure enough space is available for outputs.
  13274. // Returns max number of outputs for which space was reserved.
  13275. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  13276. const auto & cparams = lctx.cparams;
  13277. const auto & hparams = lctx.model.hparams;
  13278. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  13279. const auto n_batch = cparams.n_batch;
  13280. const auto n_vocab = hparams.n_vocab;
  13281. const auto n_embd = hparams.n_embd;
  13282. // TODO: use a per-batch flag for logits presence instead
  13283. const bool has_logits = cparams.causal_attn;
  13284. const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  13285. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  13286. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  13287. if (lctx.output_ids.empty()) {
  13288. // init, never resized afterwards
  13289. lctx.output_ids.resize(n_batch);
  13290. }
  13291. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  13292. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  13293. // alloc only when more than the current capacity is required
  13294. // TODO: also consider shrinking the buffer
  13295. if (!lctx.buf_output || prev_size < new_size) {
  13296. if (lctx.buf_output) {
  13297. #ifndef NDEBUG
  13298. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  13299. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  13300. #endif
  13301. ggml_backend_buffer_free(lctx.buf_output);
  13302. lctx.buf_output = nullptr;
  13303. lctx.logits = nullptr;
  13304. lctx.embd = nullptr;
  13305. }
  13306. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  13307. if (lctx.buf_output == nullptr) {
  13308. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  13309. return 0;
  13310. }
  13311. }
  13312. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  13313. lctx.logits = has_logits ? output_base : nullptr;
  13314. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  13315. lctx.output_size = n_outputs_max;
  13316. lctx.logits_size = logits_size;
  13317. lctx.embd_size = embd_size;
  13318. // set all ids as invalid (negative)
  13319. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  13320. ggml_backend_buffer_clear(lctx.buf_output, 0);
  13321. lctx.n_outputs = 0;
  13322. return n_outputs_max;
  13323. }
  13324. // make the outputs have the same order they had in the user-provided batch
  13325. static void llama_output_reorder(struct llama_context * ctx) {
  13326. std::vector<size_t> & out_ids = ctx->sbatch.out_ids;
  13327. if (!out_ids.empty()) {
  13328. uint32_t n_vocab = ctx->model.hparams.n_vocab;
  13329. uint32_t n_embd = ctx->model.hparams.n_embd;
  13330. int32_t n_outputs = ctx->n_outputs;
  13331. GGML_ASSERT((size_t) n_outputs == out_ids.size());
  13332. // TODO: is there something more efficient which also minimizes swaps?
  13333. // selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
  13334. for (int32_t i = 0; i < n_outputs - 1; ++i) {
  13335. int32_t j_min = i;
  13336. for (int32_t j = i + 1; j < n_outputs; ++j) {
  13337. if (out_ids[j] < out_ids[j_min]) {
  13338. j_min = j;
  13339. }
  13340. }
  13341. if (j_min == i) { continue; }
  13342. std::swap(out_ids[i], out_ids[j_min]);
  13343. if (ctx->logits_size > 0) {
  13344. for (uint32_t k = 0; k < n_vocab; k++) {
  13345. std::swap(ctx->logits[i*n_vocab + k], ctx->logits[j_min*n_vocab + k]);
  13346. }
  13347. }
  13348. if (ctx->embd_size > 0) {
  13349. for (uint32_t k = 0; k < n_embd; k++) {
  13350. std::swap(ctx->embd[i*n_embd + k], ctx->embd[j_min*n_embd + k]);
  13351. }
  13352. }
  13353. }
  13354. std::fill(ctx->output_ids.begin(), ctx->output_ids.end(), -1);
  13355. for (int32_t i = 0; i < n_outputs; ++i) {
  13356. ctx->output_ids[out_ids[i]] = i;
  13357. }
  13358. out_ids.clear();
  13359. }
  13360. }
  13361. static void llama_graph_compute(
  13362. llama_context & lctx,
  13363. ggml_cgraph * gf,
  13364. int n_threads,
  13365. ggml_threadpool * threadpool) {
  13366. #ifdef GGML_USE_METAL
  13367. if (ggml_backend_is_metal(lctx.backend_metal)) {
  13368. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  13369. }
  13370. #endif
  13371. if (lctx.backend_cpu != nullptr) {
  13372. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  13373. ggml_backend_cpu_set_threadpool(lctx.backend_cpu, threadpool);
  13374. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  13375. }
  13376. #ifdef GGML_USE_BLAS
  13377. if (lctx.backend_blas != nullptr) {
  13378. ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
  13379. }
  13380. #endif
  13381. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  13382. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  13383. }
  13384. // decode a batch of tokens by evaluating the transformer
  13385. //
  13386. // - lctx: llama context
  13387. // - batch: batch to evaluate
  13388. //
  13389. // return 0 on success
  13390. // return positive int on warning
  13391. // return negative int on error
  13392. //
  13393. static int llama_decode_internal(
  13394. llama_context & lctx,
  13395. llama_batch batch_all) { // TODO: rename back to batch
  13396. lctx.is_encoding = false;
  13397. const uint32_t n_tokens_all = batch_all.n_tokens;
  13398. if (n_tokens_all == 0) {
  13399. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  13400. return -1;
  13401. }
  13402. const auto & model = lctx.model;
  13403. const auto & hparams = model.hparams;
  13404. const auto & cparams = lctx.cparams;
  13405. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  13406. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  13407. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  13408. if (lctx.t_compute_start_us == 0) {
  13409. lctx.t_compute_start_us = ggml_time_us();
  13410. }
  13411. lctx.n_queued_tokens += n_tokens_all;
  13412. auto & kv_self = lctx.kv_self;
  13413. const int64_t n_embd = hparams.n_embd;
  13414. const int64_t n_vocab = hparams.n_vocab;
  13415. uint32_t n_outputs = 0;
  13416. uint32_t n_outputs_prev = 0;
  13417. const auto n_ubatch = cparams.n_ubatch;
  13418. // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
  13419. const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
  13420. lctx.embd_seq.clear();
  13421. // count outputs
  13422. if (batch_all.logits && !embd_pooled) {
  13423. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  13424. n_outputs += batch_all.logits[i] != 0;
  13425. }
  13426. } else if (lctx.logits_all || embd_pooled) {
  13427. n_outputs = n_tokens_all;
  13428. } else {
  13429. // keep last output only
  13430. n_outputs = 1;
  13431. }
  13432. lctx.sbatch.from_batch(batch_all, n_embd,
  13433. /* simple_split */ !kv_self.recurrent,
  13434. /* logits_all */ n_outputs == n_tokens_all);
  13435. // reserve output buffer
  13436. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  13437. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  13438. return -2;
  13439. };
  13440. while (lctx.sbatch.n_tokens > 0) {
  13441. llama_ubatch ubatch;
  13442. if (kv_self.recurrent) {
  13443. if (embd_pooled) {
  13444. // Pooled embeddings cannot be split across ubatches (yet)
  13445. ubatch = lctx.sbatch.split_seq(n_ubatch);
  13446. } else {
  13447. // recurrent model architectures are easier to implement
  13448. // with equal-length sequences
  13449. ubatch = lctx.sbatch.split_equal(n_ubatch);
  13450. }
  13451. } else {
  13452. ubatch = lctx.sbatch.split_simple(n_ubatch);
  13453. }
  13454. const uint32_t n_tokens = ubatch.n_tokens;
  13455. // count the outputs in this u_batch
  13456. {
  13457. int32_t n_outputs_new = 0;
  13458. if (n_outputs == n_tokens_all) {
  13459. n_outputs_new = n_tokens;
  13460. } else {
  13461. GGML_ASSERT(ubatch.output);
  13462. for (uint32_t i = 0; i < n_tokens; i++) {
  13463. n_outputs_new += (int32_t) (ubatch.output[i] != 0);
  13464. }
  13465. }
  13466. // needs to happen before the graph is built
  13467. lctx.n_outputs = n_outputs_new;
  13468. }
  13469. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  13470. ggml_threadpool_t threadpool = n_tokens == 1 ? lctx.threadpool : lctx.threadpool_batch;
  13471. GGML_ASSERT(n_threads > 0);
  13472. // non-causal masks do not use the KV cache
  13473. if (hparams.causal_attn) {
  13474. llama_kv_cache_update(&lctx);
  13475. // if we have enough unused cells before the current head ->
  13476. // better to start searching from the beginning of the cache, hoping to fill it
  13477. if (kv_self.head > kv_self.used + 2*n_tokens) {
  13478. kv_self.head = 0;
  13479. }
  13480. if (!llama_kv_cache_find_slot(kv_self, ubatch)) {
  13481. return 1;
  13482. }
  13483. if (!kv_self.recurrent) {
  13484. // a heuristic, to avoid attending the full cache if it is not yet utilized
  13485. // after enough generations, the benefit from this heuristic disappears
  13486. // if we start defragmenting the cache, the benefit from this will be more important
  13487. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  13488. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  13489. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  13490. }
  13491. }
  13492. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  13493. ggml_backend_sched_reset(lctx.sched);
  13494. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  13495. ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false);
  13496. // the output is always the last tensor in the graph
  13497. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  13498. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  13499. if (lctx.n_outputs == 0) {
  13500. // no output
  13501. res = nullptr;
  13502. embd = nullptr;
  13503. }
  13504. if (cparams.embeddings) {
  13505. for (int i = gf->n_nodes - 1; i >= 0; --i) {
  13506. embd = gf->nodes[i];
  13507. if (strcmp(embd->name, "result_embd_pooled") == 0) {
  13508. break;
  13509. }
  13510. }
  13511. } else {
  13512. embd = nullptr; // do not extract embeddings when not needed
  13513. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  13514. }
  13515. if (!cparams.causal_attn) {
  13516. res = nullptr; // do not extract logits when not needed
  13517. }
  13518. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  13519. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  13520. llama_set_inputs(lctx, ubatch);
  13521. llama_graph_compute(lctx, gf, n_threads, threadpool);
  13522. // update the kv ring buffer
  13523. {
  13524. kv_self.head += n_tokens;
  13525. // Ensure kv cache head points to a valid index.
  13526. if (kv_self.head >= kv_self.size) {
  13527. kv_self.head = 0;
  13528. }
  13529. }
  13530. // plot the computation graph in dot format (for debugging purposes)
  13531. //if (n_past%100 == 0) {
  13532. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  13533. //}
  13534. // extract logits
  13535. if (res) {
  13536. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  13537. GGML_ASSERT(backend_res != nullptr);
  13538. GGML_ASSERT(lctx.logits != nullptr);
  13539. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  13540. const int32_t n_outputs_new = lctx.n_outputs;
  13541. if (n_outputs_new) {
  13542. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  13543. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  13544. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  13545. }
  13546. }
  13547. // extract embeddings
  13548. if (embd) {
  13549. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  13550. GGML_ASSERT(backend_embd != nullptr);
  13551. switch (cparams.pooling_type) {
  13552. case LLAMA_POOLING_TYPE_NONE:
  13553. {
  13554. // extract token embeddings
  13555. GGML_ASSERT(lctx.embd != nullptr);
  13556. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  13557. const int32_t n_outputs_new = lctx.n_outputs;
  13558. if (n_outputs_new) {
  13559. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  13560. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  13561. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  13562. }
  13563. } break;
  13564. case LLAMA_POOLING_TYPE_MEAN:
  13565. case LLAMA_POOLING_TYPE_CLS:
  13566. case LLAMA_POOLING_TYPE_LAST:
  13567. {
  13568. // extract sequence embeddings (cleared before processing each batch)
  13569. auto & embd_seq_out = lctx.embd_seq;
  13570. for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
  13571. const llama_seq_id seq_id = ubatch.seq_id[s][0];
  13572. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  13573. continue;
  13574. }
  13575. embd_seq_out[seq_id].resize(n_embd);
  13576. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  13577. }
  13578. } break;
  13579. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  13580. {
  13581. GGML_ABORT("unknown pooling type");
  13582. }
  13583. }
  13584. }
  13585. n_outputs_prev += lctx.n_outputs;
  13586. }
  13587. // set output mappings
  13588. {
  13589. bool sorted_output = true;
  13590. GGML_ASSERT(lctx.sbatch.out_ids.size() == n_outputs);
  13591. for (size_t i = 0; i < n_outputs; ++i) {
  13592. size_t out_id = lctx.sbatch.out_ids[i];
  13593. lctx.output_ids[out_id] = i;
  13594. if (out_id != i) {
  13595. sorted_output = false;
  13596. }
  13597. }
  13598. if (sorted_output) {
  13599. lctx.sbatch.out_ids.clear();
  13600. }
  13601. }
  13602. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  13603. lctx.n_outputs = n_outputs;
  13604. // wait for the computation to finish (automatically done when obtaining the model output)
  13605. //llama_synchronize(&lctx);
  13606. // decide if we need to defrag the kv cache
  13607. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  13608. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  13609. // queue defragmentation for next llama_kv_cache_update
  13610. if (fragmentation > cparams.defrag_thold) {
  13611. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  13612. llama_kv_cache_defrag(kv_self);
  13613. }
  13614. }
  13615. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  13616. // overlap with device computation.
  13617. ggml_backend_sched_reset(lctx.sched);
  13618. return 0;
  13619. }
  13620. // encode a batch of tokens by evaluating the encoder part of the transformer
  13621. //
  13622. // - lctx: llama context
  13623. // - batch: batch to evaluate
  13624. //
  13625. // return 0 on success
  13626. // return positive int on warning
  13627. // return negative int on error
  13628. //
  13629. static int llama_encode_internal(
  13630. llama_context & lctx,
  13631. llama_batch batch) {
  13632. lctx.is_encoding = true;
  13633. const uint32_t n_tokens = batch.n_tokens;
  13634. if (n_tokens == 0) {
  13635. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  13636. return -1;
  13637. }
  13638. const auto & model = lctx.model;
  13639. const auto & hparams = model.hparams;
  13640. const auto & cparams = lctx.cparams;
  13641. GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
  13642. // micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
  13643. GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");
  13644. if (lctx.t_compute_start_us == 0) {
  13645. lctx.t_compute_start_us = ggml_time_us();
  13646. }
  13647. lctx.n_queued_tokens += n_tokens;
  13648. const int64_t n_embd = hparams.n_embd;
  13649. lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
  13650. const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
  13651. // reserve output buffer
  13652. if (llama_output_reserve(lctx, n_tokens) < n_tokens) {
  13653. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens);
  13654. return -2;
  13655. };
  13656. for (uint32_t i = 0; i < n_tokens; ++i) {
  13657. lctx.output_ids[i] = i;
  13658. }
  13659. lctx.inp_embd_enc = NULL;
  13660. lctx.n_outputs = n_tokens;
  13661. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  13662. ggml_threadpool_t threadpool = n_tokens == 1 ? lctx.threadpool : lctx.threadpool_batch;
  13663. GGML_ASSERT(n_threads > 0);
  13664. ggml_backend_sched_reset(lctx.sched);
  13665. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  13666. ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false);
  13667. // the output embeddings after the final encoder normalization
  13668. struct ggml_tensor * embd = nullptr;
  13669. // there are two cases here
  13670. if (llama_model_has_decoder(&lctx.model)) {
  13671. // first case is an encoder-decoder T5 model where embeddings are passed to decoder
  13672. embd = gf->nodes[gf->n_nodes - 1];
  13673. GGML_ASSERT(strcmp(embd->name, "result_norm") == 0 && "missing result_output tensor");
  13674. } else {
  13675. // second case is an encoder-only T5 model
  13676. if (cparams.embeddings) {
  13677. // only output embeddings if required
  13678. embd = gf->nodes[gf->n_nodes - 1];
  13679. if (strcmp(embd->name, "result_embd_pooled") != 0) {
  13680. embd = gf->nodes[gf->n_nodes - 2];
  13681. }
  13682. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
  13683. }
  13684. }
  13685. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  13686. llama_set_inputs(lctx, ubatch);
  13687. llama_graph_compute(lctx, gf, n_threads, threadpool);
  13688. // extract embeddings
  13689. if (embd) {
  13690. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  13691. GGML_ASSERT(backend_embd != nullptr);
  13692. if (llama_model_has_decoder(&lctx.model)) {
  13693. lctx.embd_enc.resize(n_tokens*n_embd);
  13694. float * embd_out = lctx.embd_enc.data();
  13695. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
  13696. GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits
  13697. // remember the sequence ids used during the encoding - needed for cross attention later
  13698. lctx.seq_ids_enc.resize(n_tokens);
  13699. for (uint32_t i = 0; i < n_tokens; i++) {
  13700. for (int s = 0; s < ubatch.n_seq_id[i]; s++) {
  13701. llama_seq_id seq_id = ubatch.seq_id[i][s];
  13702. lctx.seq_ids_enc[i].insert(seq_id);
  13703. }
  13704. }
  13705. } else {
  13706. GGML_ASSERT(lctx.embd != nullptr);
  13707. switch (cparams.pooling_type) {
  13708. case LLAMA_POOLING_TYPE_NONE:
  13709. {
  13710. // extract token embeddings
  13711. GGML_ASSERT(lctx.embd != nullptr);
  13712. float * embd_out = lctx.embd;
  13713. GGML_ASSERT(n_tokens*n_embd <= (int64_t) lctx.embd_size);
  13714. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
  13715. } break;
  13716. case LLAMA_POOLING_TYPE_MEAN:
  13717. case LLAMA_POOLING_TYPE_CLS:
  13718. case LLAMA_POOLING_TYPE_LAST:
  13719. {
  13720. // extract sequence embeddings
  13721. auto & embd_seq_out = lctx.embd_seq;
  13722. embd_seq_out.clear();
  13723. GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits
  13724. for (uint32_t i = 0; i < n_tokens; i++) {
  13725. const llama_seq_id seq_id = ubatch.seq_id[i][0];
  13726. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  13727. continue;
  13728. }
  13729. embd_seq_out[seq_id].resize(n_embd);
  13730. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  13731. }
  13732. } break;
  13733. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  13734. {
  13735. GGML_ABORT("unknown pooling type");
  13736. }
  13737. }
  13738. }
  13739. }
  13740. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  13741. // overlap with device computation.
  13742. ggml_backend_sched_reset(lctx.sched);
  13743. return 0;
  13744. }
  13745. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  13746. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  13747. auto & kv_self = lctx.kv_self;
  13748. const auto & hparams = lctx.model.hparams;
  13749. const uint32_t n_layer = hparams.n_layer;
  13750. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  13751. const uint32_t n_used = kv_self.used;
  13752. assert(n_used <= n_kv);
  13753. //const int64_t t_start = ggml_time_us();
  13754. // number of cells moved
  13755. uint32_t n_moves = 0;
  13756. // each move requires 6*n_layer tensors (see build_defrag)
  13757. // - source view, destination view, copy operation
  13758. // - x2 for keys and values
  13759. //const uint32_t max_moves = llama_model_max_nodes(model)/(6*n_layer);
  13760. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  13761. const uint32_t max_moves = (llama_model_max_nodes(lctx.model) - 2*n_layer)/(6*n_layer);
  13762. // determine which KV cells to move where
  13763. //
  13764. // cell i moves to ids[i]
  13765. //
  13766. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  13767. //
  13768. std::vector<uint32_t> ids(n_kv, n_kv);
  13769. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  13770. const auto & cell0 = kv_self.cells[i0];
  13771. if (!cell0.is_empty()) {
  13772. ids[i0] = i0;
  13773. continue;
  13774. }
  13775. // found a hole - fill it with data from the end of the cache
  13776. uint32_t nh = 1;
  13777. // determine the size of the hole
  13778. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  13779. nh++;
  13780. }
  13781. uint32_t nf = 0;
  13782. uint32_t is = n_kv - 1;
  13783. // starting from the end, find nh non-empty cells
  13784. for (; is > i0; --is) {
  13785. const auto & cell1 = kv_self.cells[is];
  13786. if (cell1.is_empty() || ids[is] != n_kv) {
  13787. continue;
  13788. }
  13789. // non-empty cell which is not yet moved
  13790. nf++;
  13791. if (nf == nh) {
  13792. break;
  13793. }
  13794. }
  13795. // this can only happen if `n_used` is not accurate, which would be a bug
  13796. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  13797. nf = 0;
  13798. uint32_t i1 = is;
  13799. // are we moving a continuous block of memory?
  13800. bool cont = false;
  13801. // should we stop searching for the next move?
  13802. bool stop = false;
  13803. // go back and move the nf cells to the hole
  13804. for (; i1 < n_kv; ++i1) {
  13805. auto & cell1 = kv_self.cells[i1];
  13806. if (cell1.is_empty() || ids[i1] != n_kv) {
  13807. if (n_moves == max_moves) {
  13808. stop = true;
  13809. break;
  13810. }
  13811. cont = false;
  13812. continue;
  13813. }
  13814. // this cell goes to (i0 + nf)
  13815. ids[i1] = i0 + nf;
  13816. // move the cell meta data
  13817. kv_self.cells[i0 + nf] = cell1;
  13818. // clear the old cell and move the head there
  13819. cell1 = llama_kv_cell();
  13820. kv_self.head = n_used;
  13821. if (!cont) {
  13822. n_moves++;
  13823. cont = true;
  13824. }
  13825. nf++;
  13826. if (nf == nh) {
  13827. break;
  13828. }
  13829. }
  13830. if (stop || n_moves == max_moves) {
  13831. break;
  13832. }
  13833. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  13834. i0 += nh - 1;
  13835. }
  13836. if (n_moves == 0) {
  13837. return;
  13838. }
  13839. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  13840. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  13841. #if 0
  13842. // CPU defrag
  13843. //
  13844. // TODO: optimizations are possible:
  13845. // - multiple threads
  13846. // - avoid copying to the host memory when already there
  13847. //
  13848. // likely not worth the effort, as we have ggml_graph based defrag
  13849. //
  13850. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  13851. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  13852. const uint32_t kv_size = kv_self.size;
  13853. std::vector<uint8_t> buf_k;
  13854. std::vector<uint8_t> buf_v;
  13855. for (uint32_t il = 0; il < n_layer; ++il) {
  13856. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13857. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  13858. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13859. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  13860. buf_k.resize(k_size);
  13861. buf_v.resize(v_size);
  13862. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  13863. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  13864. // batch move [i, i+nm) to [id, id+nm)
  13865. // note: cells can move only to a lower index
  13866. for (uint32_t i = 0; i < n_kv; ++i) {
  13867. const uint32_t id = ids[i];
  13868. if (i == id || id == n_kv) {
  13869. continue;
  13870. }
  13871. uint32_t nm = 1;
  13872. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  13873. nm++;
  13874. }
  13875. // move keys
  13876. {
  13877. const int64_t os = i*k_size_row;
  13878. const int64_t od = id*k_size_row;
  13879. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  13880. }
  13881. // move values (note: they are transposed)
  13882. {
  13883. const int64_t os = i;
  13884. const int64_t od = id;
  13885. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  13886. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  13887. }
  13888. }
  13889. i += nm - 1;
  13890. }
  13891. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  13892. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  13893. }
  13894. #else
  13895. // ggml_graph defrag
  13896. ggml_backend_sched_reset(lctx.sched);
  13897. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  13898. llama_graph_compute(lctx, gf, lctx.cparams.n_threads, lctx.threadpool);
  13899. #endif
  13900. //const int64_t t_end = ggml_time_us();
  13901. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  13902. }
  13903. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  13904. bool need_reserve = false;
  13905. // apply K-shift if needed
  13906. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  13907. if (lctx.model.arch == LLM_ARCH_DEEPSEEK2) { // not supported due to MLA
  13908. GGML_ABORT("Deepseek2 does not support K-shift");
  13909. }
  13910. {
  13911. ggml_backend_sched_reset(lctx.sched);
  13912. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  13913. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  13914. llama_set_k_shift(lctx);
  13915. llama_graph_compute(lctx, gf, lctx.cparams.n_threads, lctx.threadpool);
  13916. need_reserve = true;
  13917. }
  13918. {
  13919. auto & kv_self = lctx.kv_self;
  13920. kv_self.has_shift = false;
  13921. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13922. kv_self.cells[i].delta = 0;
  13923. }
  13924. }
  13925. }
  13926. // defragment the KV cache if needed
  13927. if (lctx.kv_self.do_defrag) {
  13928. llama_kv_cache_defrag_internal(lctx);
  13929. need_reserve = true;
  13930. lctx.kv_self.do_defrag = false;
  13931. }
  13932. // reserve a worst case graph again
  13933. if (need_reserve) {
  13934. // TODO: extract to a function
  13935. // build worst-case graph
  13936. uint32_t n_seqs = 1; // TODO: worst-case number of sequences
  13937. uint32_t n_tokens = std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  13938. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13939. llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
  13940. ggml_cgraph * gf = llama_build_graph(lctx, ubatch, true);
  13941. // initialize scheduler with the worst-case graph
  13942. ggml_backend_sched_reset(lctx.sched);
  13943. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  13944. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13945. }
  13946. }
  13947. }
  13948. //
  13949. // quantization
  13950. //
  13951. struct quantize_state_internal {
  13952. const llama_model & model;
  13953. const llama_model_quantize_params * params;
  13954. int n_attention_wv = 0;
  13955. int n_ffn_down = 0;
  13956. int n_ffn_gate = 0;
  13957. int n_ffn_up = 0;
  13958. int i_attention_wv = 0;
  13959. int i_ffn_down = 0;
  13960. int i_ffn_gate = 0;
  13961. int i_ffn_up = 0;
  13962. int n_k_quantized = 0;
  13963. int n_fallback = 0;
  13964. bool has_imatrix = false;
  13965. // used to figure out if a model shares tok_embd with the output weight
  13966. bool has_output = false;
  13967. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  13968. : model(model)
  13969. , params(params)
  13970. {}
  13971. };
  13972. static void llama_tensor_dequantize_internal(
  13973. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  13974. const size_t nelements, const int nthread
  13975. ) {
  13976. if (output.size() < nelements) {
  13977. output.resize(nelements);
  13978. }
  13979. float * f32_output = (float *) output.data();
  13980. ggml_type_traits_t qtype;
  13981. if (ggml_is_quantized(tensor->type)) {
  13982. qtype = ggml_internal_get_type_traits(tensor->type);
  13983. if (qtype.to_float == NULL) {
  13984. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  13985. }
  13986. } else if (tensor->type != GGML_TYPE_F16 &&
  13987. tensor->type != GGML_TYPE_BF16) {
  13988. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  13989. }
  13990. if (nthread < 2) {
  13991. if (tensor->type == GGML_TYPE_F16) {
  13992. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  13993. } else if (tensor->type == GGML_TYPE_BF16) {
  13994. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  13995. } else if (ggml_is_quantized(tensor->type)) {
  13996. qtype.to_float(tensor->data, f32_output, nelements);
  13997. } else {
  13998. GGML_ABORT("fatal error"); // unreachable
  13999. }
  14000. return;
  14001. }
  14002. size_t block_size;
  14003. if (tensor->type == GGML_TYPE_F16 ||
  14004. tensor->type == GGML_TYPE_BF16) {
  14005. block_size = 1;
  14006. } else {
  14007. block_size = (size_t)ggml_blck_size(tensor->type);
  14008. }
  14009. size_t block_size_bytes = ggml_type_size(tensor->type);
  14010. GGML_ASSERT(nelements % block_size == 0);
  14011. size_t nblocks = nelements / block_size;
  14012. size_t blocks_per_thread = nblocks / nthread;
  14013. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  14014. size_t in_buff_offs = 0;
  14015. size_t out_buff_offs = 0;
  14016. for (int tnum = 0; tnum < nthread; tnum++) {
  14017. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  14018. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  14019. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  14020. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  14021. if (typ == GGML_TYPE_F16) {
  14022. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  14023. } else if (typ == GGML_TYPE_BF16) {
  14024. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  14025. } else {
  14026. qtype.to_float(inbuf, outbuf, nels);
  14027. }
  14028. };
  14029. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  14030. in_buff_offs += thr_block_bytes;
  14031. out_buff_offs += thr_elems;
  14032. }
  14033. for (auto & w : workers) { w.join(); }
  14034. workers.clear();
  14035. }
  14036. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  14037. const std::string name = ggml_get_name(tensor);
  14038. // TODO: avoid hardcoded tensor names - use the TN_* constants
  14039. const llm_arch arch = qs.model.arch;
  14040. const auto tn = LLM_TN(arch);
  14041. auto use_more_bits = [](int i_layer, int n_layers) -> bool {
  14042. return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
  14043. };
  14044. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  14045. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  14046. if (n_expert > 1) {
  14047. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly
  14048. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  14049. // for getting the current layer as I initially thought, and we need to resort to parsing the
  14050. // tensor name.
  14051. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  14052. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  14053. }
  14054. if (i_layer < 0 || i_layer >= n_layer) {
  14055. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  14056. }
  14057. }
  14058. return std::make_pair(i_layer, n_layer);
  14059. };
  14060. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  14061. // with the quantization of the output tensor
  14062. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  14063. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  14064. new_type = qs.params->output_tensor_type;
  14065. } else {
  14066. int nx = tensor->ne[0];
  14067. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  14068. new_type = GGML_TYPE_Q8_0;
  14069. }
  14070. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  14071. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  14072. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  14073. new_type = GGML_TYPE_Q5_K;
  14074. }
  14075. else if (new_type != GGML_TYPE_Q8_0) {
  14076. new_type = GGML_TYPE_Q6_K;
  14077. }
  14078. }
  14079. } else if (name == "token_embd.weight") {
  14080. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  14081. new_type = qs.params->token_embedding_type;
  14082. } else {
  14083. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  14084. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  14085. new_type = GGML_TYPE_Q2_K;
  14086. }
  14087. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  14088. new_type = GGML_TYPE_IQ3_S;
  14089. }
  14090. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  14091. new_type = GGML_TYPE_IQ3_S;
  14092. }
  14093. else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 ||
  14094. new_type == GGML_TYPE_Q4_0_8_8) {
  14095. new_type = GGML_TYPE_Q4_0;
  14096. }
  14097. }
  14098. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  14099. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  14100. if (name.find("attn_v.weight") != std::string::npos) {
  14101. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  14102. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  14103. ++qs.i_attention_wv;
  14104. }
  14105. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  14106. new_type = GGML_TYPE_Q4_K;
  14107. }
  14108. else if (name.find("ffn_down") != std::string::npos) {
  14109. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  14110. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  14111. }
  14112. ++qs.i_ffn_down;
  14113. }
  14114. else if (name.find("attn_output.weight") != std::string::npos) {
  14115. if (qs.model.hparams.n_expert == 8) {
  14116. new_type = GGML_TYPE_Q5_K;
  14117. } else {
  14118. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  14119. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  14120. }
  14121. }
  14122. } else if (name.find("attn_v.weight") != std::string::npos) {
  14123. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  14124. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  14125. }
  14126. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  14127. new_type = GGML_TYPE_Q4_K;
  14128. }
  14129. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  14130. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  14131. }
  14132. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  14133. new_type = GGML_TYPE_Q4_K;
  14134. }
  14135. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  14136. new_type = GGML_TYPE_Q4_K;
  14137. }
  14138. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  14139. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  14140. }
  14141. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  14142. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  14143. new_type = GGML_TYPE_Q5_K;
  14144. }
  14145. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  14146. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  14147. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  14148. if (qs.model.type == MODEL_70B) {
  14149. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  14150. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  14151. // nearly negligible increase in model size by quantizing this tensor with more bits:
  14152. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  14153. }
  14154. if (qs.model.hparams.n_expert == 8) {
  14155. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  14156. // TODO: explore better strategies
  14157. new_type = GGML_TYPE_Q8_0;
  14158. }
  14159. ++qs.i_attention_wv;
  14160. } else if (name.find("attn_k.weight") != std::string::npos) {
  14161. if (qs.model.hparams.n_expert == 8) {
  14162. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  14163. // TODO: explore better strategies
  14164. new_type = GGML_TYPE_Q8_0;
  14165. }
  14166. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  14167. new_type = GGML_TYPE_IQ3_XXS;
  14168. }
  14169. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  14170. new_type = GGML_TYPE_IQ2_S;
  14171. }
  14172. } else if (name.find("attn_q.weight") != std::string::npos) {
  14173. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  14174. new_type = GGML_TYPE_IQ3_XXS;
  14175. }
  14176. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  14177. new_type = GGML_TYPE_IQ2_S;
  14178. }
  14179. } else if (name.find("ffn_down") != std::string::npos) {
  14180. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  14181. int i_layer = info.first, n_layer = info.second;
  14182. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  14183. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  14184. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  14185. }
  14186. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  14187. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  14188. }
  14189. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  14190. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  14191. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  14192. : GGML_TYPE_Q3_K;
  14193. }
  14194. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  14195. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  14196. new_type = GGML_TYPE_Q4_K;
  14197. }
  14198. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  14199. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  14200. }
  14201. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  14202. if (arch == LLM_ARCH_FALCON) {
  14203. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  14204. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  14205. } else {
  14206. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  14207. }
  14208. }
  14209. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  14210. new_type = GGML_TYPE_Q5_K;
  14211. }
  14212. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  14213. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  14214. new_type = GGML_TYPE_Q5_K;
  14215. }
  14216. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  14217. && qs.has_imatrix && i_layer < n_layer/8) {
  14218. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  14219. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  14220. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  14221. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  14222. }
  14223. ++qs.i_ffn_down;
  14224. } else if (name.find("attn_output.weight") != std::string::npos) {
  14225. if (arch != LLM_ARCH_FALCON) {
  14226. if (qs.model.hparams.n_expert == 8) {
  14227. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  14228. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  14229. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  14230. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  14231. new_type = GGML_TYPE_Q5_K;
  14232. }
  14233. } else {
  14234. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  14235. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  14236. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  14237. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  14238. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  14239. }
  14240. } else {
  14241. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  14242. }
  14243. }
  14244. else if (name.find("attn_qkv.weight") != std::string::npos) {
  14245. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  14246. new_type = GGML_TYPE_Q4_K;
  14247. }
  14248. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  14249. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  14250. }
  14251. else if (name.find("ffn_gate") != std::string::npos) {
  14252. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  14253. int i_layer = info.first, n_layer = info.second;
  14254. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  14255. new_type = GGML_TYPE_IQ3_XXS;
  14256. }
  14257. ++qs.i_ffn_gate;
  14258. }
  14259. else if (name.find("ffn_up") != std::string::npos) {
  14260. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  14261. int i_layer = info.first, n_layer = info.second;
  14262. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  14263. new_type = GGML_TYPE_IQ3_XXS;
  14264. }
  14265. ++qs.i_ffn_up;
  14266. }
  14267. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  14268. //}
  14269. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  14270. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  14271. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  14272. //}
  14273. // This can be used to reduce the size of the Q5_K_S model.
  14274. // The associated PPL increase is fully in line with the size reduction
  14275. //else {
  14276. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  14277. //}
  14278. bool convert_incompatible_tensor = false;
  14279. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  14280. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  14281. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  14282. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  14283. new_type == GGML_TYPE_IQ1_M) {
  14284. int nx = tensor->ne[0];
  14285. int ny = tensor->ne[1];
  14286. if (nx % QK_K != 0) {
  14287. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  14288. convert_incompatible_tensor = true;
  14289. } else {
  14290. ++qs.n_k_quantized;
  14291. }
  14292. }
  14293. if (convert_incompatible_tensor) {
  14294. switch (new_type) {
  14295. case GGML_TYPE_IQ2_XXS:
  14296. case GGML_TYPE_IQ2_XS:
  14297. case GGML_TYPE_IQ2_S:
  14298. case GGML_TYPE_IQ3_XXS:
  14299. case GGML_TYPE_IQ3_S:
  14300. case GGML_TYPE_IQ1_S:
  14301. case GGML_TYPE_IQ1_M:
  14302. case GGML_TYPE_Q2_K:
  14303. case GGML_TYPE_Q3_K:
  14304. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  14305. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  14306. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  14307. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  14308. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  14309. }
  14310. if (tensor->ne[0] % ggml_blck_size(new_type) != 0) {
  14311. new_type = GGML_TYPE_F16;
  14312. }
  14313. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  14314. ++qs.n_fallback;
  14315. }
  14316. return new_type;
  14317. }
  14318. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  14319. if (nthread < 2) {
  14320. // single-thread
  14321. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  14322. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  14323. throw std::runtime_error("quantized data validation failed");
  14324. }
  14325. return new_size;
  14326. }
  14327. std::mutex mutex;
  14328. int64_t counter = 0;
  14329. size_t new_size = 0;
  14330. bool valid = true;
  14331. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  14332. nrows, n_per_row, imatrix]() {
  14333. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  14334. size_t local_size = 0;
  14335. while (true) {
  14336. std::unique_lock<std::mutex> lock(mutex);
  14337. int64_t first_row = counter; counter += nrows_per_chunk;
  14338. if (first_row >= nrows) {
  14339. if (local_size > 0) {
  14340. new_size += local_size;
  14341. }
  14342. break;
  14343. }
  14344. lock.unlock();
  14345. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  14346. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  14347. local_size += this_size;
  14348. // validate the quantized data
  14349. const size_t row_size = ggml_row_size(new_type, n_per_row);
  14350. void * this_data = (char *) new_data + first_row * row_size;
  14351. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  14352. std::unique_lock<std::mutex> lock(mutex);
  14353. valid = false;
  14354. break;
  14355. }
  14356. }
  14357. };
  14358. for (int it = 0; it < nthread - 1; ++it) {
  14359. workers.emplace_back(compute);
  14360. }
  14361. compute();
  14362. for (auto & w : workers) { w.join(); }
  14363. workers.clear();
  14364. if (!valid) {
  14365. throw std::runtime_error("quantized data validation failed");
  14366. }
  14367. return new_size;
  14368. }
  14369. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  14370. ggml_type default_type;
  14371. llama_ftype ftype = params->ftype;
  14372. switch (params->ftype) {
  14373. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  14374. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  14375. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  14376. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  14377. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  14378. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  14379. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  14380. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  14381. // K-quants
  14382. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  14383. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  14384. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  14385. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  14386. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  14387. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  14388. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  14389. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  14390. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  14391. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  14392. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  14393. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  14394. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  14395. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  14396. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  14397. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  14398. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  14399. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  14400. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  14401. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  14402. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  14403. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  14404. case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: default_type = GGML_TYPE_Q4_0_4_4; break;
  14405. case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: default_type = GGML_TYPE_Q4_0_4_8; break;
  14406. case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: default_type = GGML_TYPE_Q4_0_8_8; break;
  14407. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  14408. }
  14409. int nthread = params->nthread;
  14410. if (nthread <= 0) {
  14411. nthread = std::thread::hardware_concurrency();
  14412. }
  14413. // mmap consistently increases speed Linux, and also increases speed on Windows with
  14414. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  14415. #if defined(__linux__) || defined(_WIN32)
  14416. constexpr bool use_mmap = true;
  14417. #else
  14418. constexpr bool use_mmap = false;
  14419. #endif
  14420. llama_model_kv_override * kv_overrides = nullptr;
  14421. if (params->kv_overrides) {
  14422. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  14423. kv_overrides = v->data();
  14424. }
  14425. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  14426. ml.init_mappings(false); // no prefetching
  14427. llama_model model;
  14428. llm_load_arch(ml, model);
  14429. llm_load_hparams(ml, model);
  14430. struct quantize_state_internal qs(model, params);
  14431. if (params->only_copy) {
  14432. ftype = model.ftype;
  14433. }
  14434. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  14435. if (params->imatrix) {
  14436. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  14437. if (imatrix_data) {
  14438. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  14439. qs.has_imatrix = true;
  14440. // check imatrix for nans or infs
  14441. for (const auto & kv : *imatrix_data) {
  14442. for (float f : kv.second) {
  14443. if (!std::isfinite(f)) {
  14444. throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
  14445. }
  14446. }
  14447. }
  14448. }
  14449. }
  14450. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  14451. struct gguf_context * ctx_out = gguf_init_empty();
  14452. // copy the KV pairs from the input file
  14453. gguf_set_kv (ctx_out, ml.meta);
  14454. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
  14455. gguf_set_val_u32(ctx_out, "general.file_type", ftype); // TODO: use LLM_KV
  14456. // Remove split metadata
  14457. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  14458. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  14459. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  14460. if (params->kv_overrides) {
  14461. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  14462. for (auto & o : overrides) {
  14463. if (o.key[0] == 0) break;
  14464. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  14465. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  14466. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  14467. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  14468. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  14469. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  14470. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  14471. gguf_set_val_str(ctx_out, o.key, o.val_str);
  14472. } else {
  14473. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  14474. }
  14475. }
  14476. }
  14477. for (int i = 0; i < ml.n_tensors; ++i) {
  14478. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  14479. const std::string name = ggml_get_name(meta);
  14480. // TODO: avoid hardcoded tensor names - use the TN_* constants
  14481. if (name.find("attn_v.weight") != std::string::npos ||
  14482. name.find("attn_qkv.weight") != std::string::npos ||
  14483. name.find("attn_kv_b.weight")!= std::string::npos) {
  14484. ++qs.n_attention_wv;
  14485. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  14486. qs.has_output = true;
  14487. }
  14488. }
  14489. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  14490. // sanity checks
  14491. {
  14492. const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
  14493. // attention layers have a non-zero number of kv heads
  14494. int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0);
  14495. if (llama_model_has_encoder(&model)) {
  14496. n_attn_layer *= 3;
  14497. }
  14498. GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
  14499. }
  14500. size_t total_size_org = 0;
  14501. size_t total_size_new = 0;
  14502. std::vector<std::thread> workers;
  14503. workers.reserve(nthread);
  14504. int idx = 0;
  14505. std::vector<no_init<uint8_t>> read_data;
  14506. std::vector<no_init<uint8_t>> work;
  14507. std::vector<no_init<float>> f32_conv_buf;
  14508. uint16_t n_split = 1;
  14509. // Assume split index is continuous
  14510. if (params->keep_split) {
  14511. for (int i = 0; i < ml.n_tensors; ++i) {
  14512. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  14513. }
  14514. }
  14515. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  14516. ctx_outs[0] = ctx_out;
  14517. // populate the original tensors so we get an initial meta data
  14518. for (int i = 0; i < ml.n_tensors; ++i) {
  14519. auto weight = ml.get_weight(i);
  14520. uint16_t i_split = params->keep_split ? weight->idx : 0;
  14521. struct ggml_tensor * tensor = weight->tensor;
  14522. if (ctx_outs[i_split] == NULL) {
  14523. ctx_outs[i_split] = gguf_init_empty();
  14524. }
  14525. gguf_add_tensor(ctx_outs[i_split], tensor);
  14526. }
  14527. // Set split info if needed
  14528. if (n_split > 1) {
  14529. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  14530. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  14531. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  14532. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  14533. }
  14534. }
  14535. int cur_split = -1;
  14536. std::ofstream fout;
  14537. auto close_ofstream = [&]() {
  14538. // Write metadata and close file handler
  14539. if (fout.is_open()) {
  14540. fout.seekp(0);
  14541. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  14542. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  14543. fout.write((const char *) data.data(), data.size());
  14544. fout.close();
  14545. }
  14546. };
  14547. auto new_ofstream = [&](int index) {
  14548. cur_split = index;
  14549. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  14550. std::string fname = fname_out;
  14551. if (params->keep_split) {
  14552. char split_path[PATH_MAX] = {0};
  14553. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  14554. fname = std::string(split_path);
  14555. }
  14556. fout = std::ofstream(fname, std::ios::binary);
  14557. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  14558. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  14559. // placeholder for the meta data
  14560. ::zeros(fout, meta_size);
  14561. };
  14562. const auto tn = LLM_TN(model.arch);
  14563. new_ofstream(0);
  14564. for (int i = 0; i < ml.n_tensors; ++i) {
  14565. auto weight = ml.get_weight(i);
  14566. struct ggml_tensor * tensor = weight->tensor;
  14567. if (weight->idx != cur_split && params->keep_split) {
  14568. close_ofstream();
  14569. new_ofstream(weight->idx);
  14570. }
  14571. const std::string name = ggml_get_name(tensor);
  14572. if (!ml.use_mmap) {
  14573. if (read_data.size() < ggml_nbytes(tensor)) {
  14574. read_data.resize(ggml_nbytes(tensor));
  14575. }
  14576. tensor->data = read_data.data();
  14577. }
  14578. ml.load_data_for(tensor);
  14579. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  14580. ++idx, ml.n_tensors,
  14581. ggml_get_name(tensor),
  14582. llama_format_tensor_shape(tensor).c_str(),
  14583. ggml_type_name(tensor->type));
  14584. // This used to be a regex, but <regex> has an extreme cost to compile times.
  14585. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  14586. // quantize only 2D and 3D tensors (experts)
  14587. quantize &= (ggml_n_dims(tensor) >= 2);
  14588. // do not quantize norm tensors
  14589. quantize &= name.find("_norm.weight") == std::string::npos;
  14590. quantize &= params->quantize_output_tensor || name != "output.weight";
  14591. quantize &= !params->only_copy;
  14592. // do not quantize expert gating tensors
  14593. // NOTE: can't use LLM_TN here because the layer number is not known
  14594. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  14595. // do not quantize positional embeddings and token types (BERT)
  14596. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  14597. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  14598. // do not quantize Mamba's small yet 2D weights
  14599. // NOTE: can't use LLM_TN here because the layer number is not known
  14600. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  14601. // do not quantize RWKV's time_mix_first tensors
  14602. quantize &= name.find("time_mix_first.weight") == std::string::npos;
  14603. quantize &= name.find("time_mix_w1.weight") == std::string::npos;
  14604. quantize &= name.find("time_mix_w2.weight") == std::string::npos;
  14605. // do not quantize relative position bias (T5)
  14606. quantize &= name.find("attn_rel_b.weight") == std::string::npos;
  14607. enum ggml_type new_type;
  14608. void * new_data;
  14609. size_t new_size;
  14610. if (quantize) {
  14611. new_type = default_type;
  14612. // get more optimal quantization type based on the tensor shape, layer, etc.
  14613. if (!params->pure && ggml_is_quantized(default_type)) {
  14614. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  14615. }
  14616. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  14617. new_type = params->token_embedding_type;
  14618. }
  14619. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  14620. new_type = params->output_tensor_type;
  14621. }
  14622. // If we've decided to quantize to the same type the tensor is already
  14623. // in then there's nothing to do.
  14624. quantize = tensor->type != new_type;
  14625. }
  14626. if (!quantize) {
  14627. new_type = tensor->type;
  14628. new_data = tensor->data;
  14629. new_size = ggml_nbytes(tensor);
  14630. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  14631. } else {
  14632. const int64_t nelements = ggml_nelements(tensor);
  14633. const float * imatrix = nullptr;
  14634. if (imatrix_data) {
  14635. auto it = imatrix_data->find(tensor->name);
  14636. if (it == imatrix_data->end()) {
  14637. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  14638. } else {
  14639. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  14640. imatrix = it->second.data();
  14641. } else {
  14642. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  14643. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  14644. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  14645. // this is a significant error and it may be good idea to abort the process if this happens,
  14646. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  14647. // tok_embd should be ignored in this case, since it always causes this warning
  14648. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  14649. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  14650. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  14651. }
  14652. }
  14653. }
  14654. }
  14655. if ((new_type == GGML_TYPE_IQ2_XXS ||
  14656. new_type == GGML_TYPE_IQ2_XS ||
  14657. new_type == GGML_TYPE_IQ2_S ||
  14658. new_type == GGML_TYPE_IQ1_S ||
  14659. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  14660. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  14661. LLAMA_LOG_ERROR("\n\n============================================================\n");
  14662. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  14663. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  14664. LLAMA_LOG_ERROR("============================================================\n\n");
  14665. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  14666. }
  14667. float * f32_data;
  14668. if (tensor->type == GGML_TYPE_F32) {
  14669. f32_data = (float *) tensor->data;
  14670. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  14671. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  14672. } else {
  14673. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  14674. f32_data = (float *) f32_conv_buf.data();
  14675. }
  14676. int chunk_size_multiplier = 1;
  14677. if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 || new_type == GGML_TYPE_Q4_0_8_8) {
  14678. if ((new_type == GGML_TYPE_Q4_0_8_8) && (tensor->ne[1] % 8 != 0)) new_type = GGML_TYPE_Q4_0;
  14679. else if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q4_0;
  14680. if (new_type == GGML_TYPE_Q4_0_8_8) chunk_size_multiplier = 8;
  14681. else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8) chunk_size_multiplier = 4;
  14682. }
  14683. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  14684. fflush(stdout);
  14685. if (work.size() < (size_t)nelements * 4) {
  14686. work.resize(nelements * 4); // upper bound on size
  14687. }
  14688. new_data = work.data();
  14689. const int64_t n_per_row = tensor->ne[0];
  14690. const int64_t nrows = tensor->ne[1];
  14691. static const int64_t min_chunk_size = 32 * 512;
  14692. const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row)) *
  14693. chunk_size_multiplier;
  14694. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  14695. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  14696. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  14697. // quantize each expert separately since they have different importance matrices
  14698. new_size = 0;
  14699. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  14700. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  14701. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  14702. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  14703. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  14704. }
  14705. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  14706. }
  14707. total_size_org += ggml_nbytes(tensor);
  14708. total_size_new += new_size;
  14709. // update the gguf meta data as we go
  14710. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  14711. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  14712. // write tensor data + padding
  14713. fout.write((const char *) new_data, new_size);
  14714. zeros(fout, GGML_PAD(new_size, align) - new_size);
  14715. }
  14716. close_ofstream();
  14717. for (auto & c:ctx_outs) {
  14718. gguf_free(c);
  14719. }
  14720. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  14721. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  14722. if (qs.n_fallback > 0) {
  14723. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  14724. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  14725. }
  14726. }
  14727. static void llama_lora_adapter_init_internal(struct llama_model * model, const char * path_lora, struct llama_lora_adapter & adapter) {
  14728. LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
  14729. ggml_context * ctx = nullptr;
  14730. struct gguf_init_params meta_gguf_params = {
  14731. /* .no_alloc = */ true,
  14732. /* .ctx = */ &ctx,
  14733. };
  14734. struct gguf_context * ctx_gguf = gguf_init_from_file(path_lora, meta_gguf_params);
  14735. if (!ctx_gguf) {
  14736. throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
  14737. }
  14738. // check metadata
  14739. {
  14740. auto get_kv_str = [&](const std::string & key) -> std::string {
  14741. int id = gguf_find_key(ctx_gguf, key.c_str());
  14742. return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
  14743. };
  14744. auto get_kv_f32 = [&](const std::string & key) -> float {
  14745. int id = gguf_find_key(ctx_gguf, key.c_str());
  14746. return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id);
  14747. };
  14748. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  14749. auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
  14750. if (general_type != "adapter") {
  14751. gguf_free(ctx_gguf);
  14752. throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
  14753. }
  14754. auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
  14755. auto general_arch = llm_arch_from_string(general_arch_str);
  14756. if (general_arch != model->arch) {
  14757. gguf_free(ctx_gguf);
  14758. throw std::runtime_error("model arch and LoRA arch mismatch");
  14759. }
  14760. auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
  14761. if (adapter_type != "lora") {
  14762. gguf_free(ctx_gguf);
  14763. throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
  14764. }
  14765. adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
  14766. }
  14767. int n_tensors = gguf_get_n_tensors(ctx_gguf);
  14768. // contexts for each buffer type
  14769. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  14770. auto get_ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  14771. auto it = ctx_map.find(buft);
  14772. if (it == ctx_map.end()) {
  14773. // add a new context
  14774. struct ggml_init_params params = {
  14775. /*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
  14776. /*.mem_buffer =*/ NULL,
  14777. /*.no_alloc =*/ true,
  14778. };
  14779. ggml_context * buft_ctx = ggml_init(params);
  14780. ctx_map[buft] = buft_ctx;
  14781. return buft_ctx;
  14782. };
  14783. return it->second;
  14784. };
  14785. // bundle lora_a and lora_b into pairs
  14786. std::map<std::string, llama_lora_weight> ab_map;
  14787. auto str_endswith = [](const std::string & str, const std::string & suffix) {
  14788. return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
  14789. };
  14790. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  14791. std::string name(cur->name);
  14792. if (str_endswith(name, ".lora_a")) {
  14793. replace_all(name, ".lora_a", "");
  14794. if (ab_map.find(name) == ab_map.end()) {
  14795. ab_map[name] = llama_lora_weight(cur, nullptr);
  14796. } else {
  14797. ab_map[name].a = cur;
  14798. }
  14799. } else if (str_endswith(name, ".lora_b")) {
  14800. replace_all(name, ".lora_b", "");
  14801. if (ab_map.find(name) == ab_map.end()) {
  14802. ab_map[name] = llama_lora_weight(nullptr, cur);
  14803. } else {
  14804. ab_map[name].b = cur;
  14805. }
  14806. } else {
  14807. gguf_free(ctx_gguf);
  14808. ggml_free(ctx);
  14809. throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
  14810. }
  14811. }
  14812. // add tensors
  14813. for (auto & it : ab_map) {
  14814. const std::string & name = it.first;
  14815. llama_lora_weight & w = it.second;
  14816. if (!w.a || !w.b) {
  14817. gguf_free(ctx_gguf);
  14818. ggml_free(ctx);
  14819. throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
  14820. }
  14821. // device buft and device ctx
  14822. auto * model_tensor = llama_get_model_tensor(model, name.c_str());
  14823. if (!model_tensor) {
  14824. gguf_free(ctx_gguf);
  14825. ggml_free(ctx);
  14826. throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
  14827. }
  14828. struct ggml_context * dev_ctx = get_ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
  14829. // validate tensor shape
  14830. if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
  14831. gguf_free(ctx_gguf);
  14832. ggml_free(ctx);
  14833. throw std::runtime_error("tensor '" + name + "' has incorrect shape");
  14834. }
  14835. if (w.a->ne[1] != w.b->ne[0]) {
  14836. gguf_free(ctx_gguf);
  14837. ggml_free(ctx);
  14838. throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
  14839. }
  14840. // save tensor to adapter
  14841. struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
  14842. struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
  14843. ggml_set_name(tensor_a, w.a->name);
  14844. ggml_set_name(tensor_b, w.b->name);
  14845. adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
  14846. }
  14847. // allocate tensors / buffers and zero
  14848. {
  14849. adapter.ctxs.reserve(ctx_map.size());
  14850. adapter.bufs.reserve(ctx_map.size());
  14851. for (auto it : ctx_map) {
  14852. ggml_backend_buffer_type_t buft = it.first;
  14853. ggml_context * ctx_dev = it.second;
  14854. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft);
  14855. if (!buf) {
  14856. gguf_free(ctx_gguf);
  14857. ggml_free(ctx);
  14858. throw std::runtime_error("failed to allocate buffer for lora adapter\n");
  14859. }
  14860. LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  14861. adapter.ctxs.push_back(ctx_dev);
  14862. adapter.bufs.push_back(buf);
  14863. }
  14864. }
  14865. // set tensor data
  14866. {
  14867. llama_file gguf_file(path_lora, "rb");
  14868. std::vector<uint8_t> read_buf;
  14869. auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
  14870. size_t offs = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, gguf_find_tensor(ctx_gguf, orig->name));
  14871. size_t size = ggml_nbytes(orig);
  14872. read_buf.resize(size);
  14873. gguf_file.seek(offs, SEEK_SET);
  14874. gguf_file.read_raw(read_buf.data(), size);
  14875. ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
  14876. };
  14877. for (auto & it : adapter.ab_map) {
  14878. auto orig = ab_map[it.first];
  14879. auto dev = it.second;
  14880. set_tensor(orig.a, dev.a);
  14881. set_tensor(orig.b, dev.b);
  14882. }
  14883. }
  14884. LLAMA_LOG_INFO("%s: loaded %ld tensors from lora file\n", __func__, adapter.ab_map.size()*2);
  14885. // free ctx for reading gguf
  14886. gguf_free(ctx_gguf);
  14887. ggml_free(ctx);
  14888. }
  14889. int32_t llama_lora_adapter_set(
  14890. struct llama_context * ctx,
  14891. struct llama_lora_adapter * adapter,
  14892. float scale) {
  14893. if (ctx->cparams.flash_attn) {
  14894. LLAMA_LOG_ERROR("%s: flash_attn is not compatible with LoRA\n", __func__);
  14895. return -1;
  14896. }
  14897. ctx->lora_adapters[adapter] = scale;
  14898. return 0;
  14899. }
  14900. int32_t llama_lora_adapter_remove(
  14901. struct llama_context * ctx,
  14902. struct llama_lora_adapter * adapter) {
  14903. auto pos = ctx->lora_adapters.find(adapter);
  14904. if (pos != ctx->lora_adapters.end()) {
  14905. ctx->lora_adapters.erase(pos);
  14906. return 0;
  14907. }
  14908. return -1;
  14909. }
  14910. void llama_lora_adapter_clear(struct llama_context * ctx) {
  14911. ctx->lora_adapters.clear();
  14912. }
  14913. void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
  14914. delete adapter;
  14915. }
  14916. //
  14917. // interface implementation
  14918. //
  14919. struct llama_model_params llama_model_default_params() {
  14920. struct llama_model_params result = {
  14921. /*.n_gpu_layers =*/ 0,
  14922. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  14923. /*.main_gpu =*/ 0,
  14924. /*.tensor_split =*/ nullptr,
  14925. /*.rpc_servers =*/ nullptr,
  14926. /*.progress_callback =*/ nullptr,
  14927. /*.progress_callback_user_data =*/ nullptr,
  14928. /*.kv_overrides =*/ nullptr,
  14929. /*.vocab_only =*/ false,
  14930. /*.use_mmap =*/ true,
  14931. /*.use_mlock =*/ false,
  14932. /*.check_tensors =*/ false,
  14933. };
  14934. #ifdef GGML_USE_METAL
  14935. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  14936. result.n_gpu_layers = 999;
  14937. #endif
  14938. return result;
  14939. }
  14940. struct llama_context_params llama_context_default_params() {
  14941. struct llama_context_params result = {
  14942. /*.seed =*/ LLAMA_DEFAULT_SEED,
  14943. /*.n_ctx =*/ 512,
  14944. /*.n_batch =*/ 2048,
  14945. /*.n_ubatch =*/ 512,
  14946. /*.n_seq_max =*/ 1,
  14947. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  14948. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  14949. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  14950. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  14951. /*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
  14952. /*.rope_freq_base =*/ 0.0f,
  14953. /*.rope_freq_scale =*/ 0.0f,
  14954. /*.yarn_ext_factor =*/ -1.0f,
  14955. /*.yarn_attn_factor =*/ 1.0f,
  14956. /*.yarn_beta_fast =*/ 32.0f,
  14957. /*.yarn_beta_slow =*/ 1.0f,
  14958. /*.yarn_orig_ctx =*/ 0,
  14959. /*.defrag_thold =*/ -1.0f,
  14960. /*.cb_eval =*/ nullptr,
  14961. /*.cb_eval_user_data =*/ nullptr,
  14962. /*.type_k =*/ GGML_TYPE_F16,
  14963. /*.type_v =*/ GGML_TYPE_F16,
  14964. /*.logits_all =*/ false,
  14965. /*.embeddings =*/ false,
  14966. /*.offload_kqv =*/ true,
  14967. /*.flash_attn =*/ false,
  14968. /*.abort_callback =*/ nullptr,
  14969. /*.abort_callback_data =*/ nullptr,
  14970. };
  14971. return result;
  14972. }
  14973. struct llama_model_quantize_params llama_model_quantize_default_params() {
  14974. struct llama_model_quantize_params result = {
  14975. /*.nthread =*/ 0,
  14976. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  14977. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  14978. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  14979. /*.allow_requantize =*/ false,
  14980. /*.quantize_output_tensor =*/ true,
  14981. /*.only_copy =*/ false,
  14982. /*.pure =*/ false,
  14983. /*.keep_split =*/ false,
  14984. /*.imatrix =*/ nullptr,
  14985. /*.kv_overrides =*/ nullptr,
  14986. };
  14987. return result;
  14988. }
  14989. size_t llama_max_devices(void) {
  14990. #if defined(GGML_USE_RPC)
  14991. return GGML_RPC_MAX_SERVERS;
  14992. #elif defined(GGML_USE_METAL)
  14993. return 1;
  14994. #elif defined(GGML_USE_CUDA)
  14995. return GGML_CUDA_MAX_DEVICES;
  14996. #elif defined(GGML_USE_SYCL)
  14997. return GGML_SYCL_MAX_DEVICES;
  14998. #elif defined(GGML_USE_VULKAN)
  14999. return GGML_VK_MAX_DEVICES;
  15000. #elif defined(GGML_USE_CANN)
  15001. return GGML_CANN_MAX_DEVICES;
  15002. #else
  15003. return 1;
  15004. #endif
  15005. }
  15006. bool llama_supports_mmap(void) {
  15007. return llama_mmap::SUPPORTED;
  15008. }
  15009. bool llama_supports_mlock(void) {
  15010. return llama_mlock::SUPPORTED;
  15011. }
  15012. bool llama_supports_gpu_offload(void) {
  15013. #if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  15014. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  15015. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  15016. return true;
  15017. #else
  15018. return false;
  15019. #endif
  15020. }
  15021. void llama_backend_init(void) {
  15022. ggml_time_init();
  15023. // needed to initialize f16 tables
  15024. {
  15025. struct ggml_init_params params = { 0, NULL, false };
  15026. struct ggml_context * ctx = ggml_init(params);
  15027. ggml_free(ctx);
  15028. }
  15029. }
  15030. void llama_numa_init(enum ggml_numa_strategy numa) {
  15031. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  15032. ggml_numa_init(numa);
  15033. }
  15034. }
  15035. void llama_attach_threadpool(
  15036. struct llama_context * ctx,
  15037. ggml_threadpool_t threadpool,
  15038. ggml_threadpool_t threadpool_batch) {
  15039. ctx->threadpool = threadpool;
  15040. ctx->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool;
  15041. }
  15042. void llama_detach_threadpool(struct llama_context * ctx) {
  15043. ctx->threadpool = nullptr;
  15044. ctx->threadpool_batch = nullptr;
  15045. }
  15046. void llama_backend_free(void) {
  15047. ggml_quantize_free();
  15048. }
  15049. int64_t llama_time_us(void) {
  15050. return ggml_time_us();
  15051. }
  15052. struct llama_model * llama_load_model_from_file(
  15053. const char * path_model,
  15054. struct llama_model_params params) {
  15055. ggml_time_init();
  15056. llama_model * model = new llama_model;
  15057. unsigned cur_percentage = 0;
  15058. if (params.progress_callback == NULL) {
  15059. params.progress_callback_user_data = &cur_percentage;
  15060. params.progress_callback = [](float progress, void * ctx) {
  15061. unsigned * cur_percentage_p = (unsigned *) ctx;
  15062. unsigned percentage = (unsigned) (100 * progress);
  15063. while (percentage > *cur_percentage_p) {
  15064. *cur_percentage_p = percentage;
  15065. LLAMA_LOG_INFO(".");
  15066. if (percentage >= 100) {
  15067. LLAMA_LOG_INFO("\n");
  15068. }
  15069. }
  15070. return true;
  15071. };
  15072. }
  15073. if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
  15074. // split the servers set them into model->rpc_servers
  15075. std::string servers(params.rpc_servers);
  15076. size_t pos = 0;
  15077. while ((pos = servers.find(",")) != std::string::npos) {
  15078. std::string server = servers.substr(0, pos);
  15079. model->rpc_servers.push_back(server);
  15080. servers.erase(0, pos + 1);
  15081. }
  15082. model->rpc_servers.push_back(servers);
  15083. }
  15084. int status = llama_model_load(path_model, *model, params);
  15085. GGML_ASSERT(status <= 0);
  15086. if (status < 0) {
  15087. if (status == -1) {
  15088. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  15089. } else if (status == -2) {
  15090. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  15091. }
  15092. delete model;
  15093. return nullptr;
  15094. }
  15095. return model;
  15096. }
  15097. void llama_free_model(struct llama_model * model) {
  15098. delete model;
  15099. }
  15100. struct llama_context * llama_new_context_with_model(
  15101. struct llama_model * model,
  15102. struct llama_context_params params) {
  15103. if (!model) {
  15104. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  15105. return nullptr;
  15106. }
  15107. if (params.n_batch == 0 && params.n_ubatch == 0) {
  15108. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  15109. return nullptr;
  15110. }
  15111. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  15112. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  15113. return nullptr;
  15114. }
  15115. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  15116. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  15117. params.flash_attn = false;
  15118. }
  15119. if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
  15120. LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
  15121. params.flash_attn = false;
  15122. }
  15123. if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
  15124. LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
  15125. return nullptr;
  15126. }
  15127. llama_context * ctx = new llama_context(*model);
  15128. const auto & hparams = model->hparams;
  15129. auto & cparams = ctx->cparams;
  15130. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  15131. cparams.n_threads = params.n_threads;
  15132. cparams.n_threads_batch = params.n_threads_batch;
  15133. cparams.yarn_ext_factor = params.yarn_ext_factor;
  15134. cparams.yarn_attn_factor = params.yarn_attn_factor;
  15135. cparams.yarn_beta_fast = params.yarn_beta_fast;
  15136. cparams.yarn_beta_slow = params.yarn_beta_slow;
  15137. cparams.defrag_thold = params.defrag_thold;
  15138. cparams.embeddings = params.embeddings;
  15139. cparams.offload_kqv = params.offload_kqv;
  15140. cparams.flash_attn = params.flash_attn;
  15141. cparams.pooling_type = params.pooling_type;
  15142. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  15143. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  15144. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  15145. // this is necessary due to kv_self.n being padded later during inference
  15146. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  15147. // with causal attention, the batch size is limited by the context size
  15148. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  15149. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  15150. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  15151. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  15152. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  15153. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  15154. cparams.n_batch = GGML_KQ_MASK_PAD;
  15155. }
  15156. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  15157. cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  15158. hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
  15159. hparams.n_ctx_train;
  15160. cparams.cb_eval = params.cb_eval;
  15161. cparams.cb_eval_user_data = params.cb_eval_user_data;
  15162. auto rope_scaling_type = params.rope_scaling_type;
  15163. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  15164. rope_scaling_type = hparams.rope_scaling_type_train;
  15165. }
  15166. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  15167. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  15168. }
  15169. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  15170. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  15171. }
  15172. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  15173. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  15174. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  15175. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  15176. } else {
  15177. cparams.pooling_type = hparams.pooling_type;
  15178. }
  15179. }
  15180. if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) {
  15181. cparams.causal_attn = hparams.causal_attn;
  15182. } else {
  15183. cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
  15184. }
  15185. if (params.seed == LLAMA_DEFAULT_SEED) {
  15186. params.seed = time(NULL);
  15187. }
  15188. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  15189. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  15190. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  15191. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  15192. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  15193. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  15194. ctx->abort_callback = params.abort_callback;
  15195. ctx->abort_callback_data = params.abort_callback_data;
  15196. ctx->sampling.rng = std::mt19937(params.seed);
  15197. ctx->logits_all = params.logits_all;
  15198. // build worst-case graph for encoder if a model contains encoder
  15199. ctx->is_encoding = llama_model_has_encoder(model);
  15200. uint32_t kv_size = cparams.n_ctx;
  15201. ggml_type type_k = params.type_k;
  15202. ggml_type type_v = params.type_v;
  15203. // Mamba only needs a constant number of KV cache cells per sequence
  15204. if (llama_model_is_recurrent(model)) {
  15205. // Mamba needs at least as many KV cells as there are sequences kept at any time
  15206. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  15207. // it's probably best to keep as much precision as possible for the states
  15208. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  15209. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  15210. }
  15211. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  15212. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  15213. if (!hparams.vocab_only) {
  15214. // initialize backends
  15215. #if defined(GGML_USE_METAL)
  15216. if (model->n_gpu_layers > 0) {
  15217. ctx->backend_metal = ggml_backend_metal_init();
  15218. if (ctx->backend_metal == nullptr) {
  15219. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  15220. llama_free(ctx);
  15221. return nullptr;
  15222. }
  15223. ctx->backends.push_back(ctx->backend_metal);
  15224. }
  15225. #elif defined(GGML_USE_CUDA)
  15226. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  15227. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  15228. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  15229. if (backend == nullptr) {
  15230. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  15231. llama_free(ctx);
  15232. return nullptr;
  15233. }
  15234. ctx->backends.push_back(backend);
  15235. } else {
  15236. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  15237. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  15238. ggml_backend_t backend = ggml_backend_cuda_init(device);
  15239. if (backend == nullptr) {
  15240. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  15241. llama_free(ctx);
  15242. return nullptr;
  15243. }
  15244. ctx->backends.push_back(backend);
  15245. }
  15246. }
  15247. #elif defined(GGML_USE_VULKAN)
  15248. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  15249. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  15250. llama_free(ctx);
  15251. return nullptr;
  15252. }
  15253. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  15254. ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
  15255. if (backend == nullptr) {
  15256. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  15257. llama_free(ctx);
  15258. return nullptr;
  15259. }
  15260. ctx->backends.push_back(backend);
  15261. } else {
  15262. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  15263. ggml_backend_t backend = ggml_backend_vk_init(device);
  15264. if (backend == nullptr) {
  15265. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  15266. llama_free(ctx);
  15267. return nullptr;
  15268. }
  15269. ctx->backends.push_back(backend);
  15270. }
  15271. }
  15272. #elif defined(GGML_USE_SYCL)
  15273. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  15274. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  15275. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  15276. if (backend == nullptr) {
  15277. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
  15278. llama_free(ctx);
  15279. return nullptr;
  15280. }
  15281. ctx->backends.push_back(backend);
  15282. } else {
  15283. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  15284. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  15285. ggml_backend_t backend = ggml_backend_sycl_init(i);
  15286. if (backend == nullptr) {
  15287. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d for No.%d backend\n", __func__, i, i);
  15288. llama_free(ctx);
  15289. return nullptr;
  15290. }
  15291. ctx->backends.push_back(backend);
  15292. }
  15293. }
  15294. #elif defined(GGML_USE_KOMPUTE)
  15295. if (model->n_gpu_layers > 0) {
  15296. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  15297. if (backend == nullptr) {
  15298. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  15299. llama_free(ctx);
  15300. return nullptr;
  15301. }
  15302. ctx->backends.push_back(backend);
  15303. }
  15304. #elif defined(GGML_USE_CANN)
  15305. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  15306. // TODO: ggml_backend_cann is not support split tensor now, just leave code here.
  15307. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  15308. ggml_backend_t backend = ggml_backend_cann_init(model->main_gpu);
  15309. if (backend == nullptr) {
  15310. LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, model->main_gpu);
  15311. llama_free(ctx);
  15312. return nullptr;
  15313. }
  15314. ctx->backends.push_back(backend);
  15315. } else {
  15316. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  15317. // TODO: currently, CANN can't use multi-gpus, just leave code here for further cann version.
  15318. for (int32_t device = 0; device < ggml_backend_cann_get_device_count(); ++device) {
  15319. ggml_backend_t backend = ggml_backend_cann_init(device);
  15320. if (backend == nullptr) {
  15321. LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, device);
  15322. llama_free(ctx);
  15323. return nullptr;
  15324. }
  15325. ctx->backends.push_back(backend);
  15326. }
  15327. }
  15328. #endif
  15329. #ifdef GGML_USE_BLAS
  15330. ctx->backend_blas = ggml_backend_blas_init();
  15331. if (ctx->backend_blas == nullptr) {
  15332. LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
  15333. } else {
  15334. ctx->backends.push_back(ctx->backend_blas);
  15335. }
  15336. #endif
  15337. #if defined(GGML_USE_RPC)
  15338. if (model->n_gpu_layers > 0) {
  15339. for (const auto & endpoint : model->rpc_servers) {
  15340. ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
  15341. if (backend == nullptr) {
  15342. LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
  15343. llama_free(ctx);
  15344. return nullptr;
  15345. }
  15346. ctx->backends.push_back(backend);
  15347. }
  15348. }
  15349. #endif
  15350. ctx->backend_cpu = ggml_backend_cpu_init();
  15351. if (ctx->backend_cpu == nullptr) {
  15352. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  15353. llama_free(ctx);
  15354. return nullptr;
  15355. }
  15356. ctx->backends.push_back(ctx->backend_cpu);
  15357. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  15358. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  15359. llama_free(ctx);
  15360. return nullptr;
  15361. }
  15362. {
  15363. size_t memory_size_k = 0;
  15364. size_t memory_size_v = 0;
  15365. for (auto & k : ctx->kv_self.k_l) {
  15366. memory_size_k += ggml_nbytes(k);
  15367. }
  15368. for (auto & v : ctx->kv_self.v_l) {
  15369. memory_size_v += ggml_nbytes(v);
  15370. }
  15371. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  15372. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  15373. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  15374. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  15375. }
  15376. // graph outputs buffer
  15377. {
  15378. // resized during inference when a batch uses more outputs
  15379. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  15380. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  15381. llama_free(ctx);
  15382. return nullptr;
  15383. }
  15384. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  15385. ggml_backend_buffer_name(ctx->buf_output),
  15386. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  15387. }
  15388. // scheduler and compute buffers
  15389. {
  15390. // buffer types used for the compute buffer of each backend
  15391. std::vector<ggml_backend_buffer_type_t> backend_buft;
  15392. for (auto * backend : ctx->backends) {
  15393. if (ggml_backend_is_cpu(backend)) {
  15394. // use host buffers for the CPU backend compute buffer
  15395. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  15396. } else {
  15397. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  15398. }
  15399. }
  15400. const size_t max_nodes = llama_model_max_nodes(*model);
  15401. // buffer used to store the computation graph and the tensor meta data
  15402. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
  15403. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  15404. bool pipeline_parallel =
  15405. llama_get_device_count(*model) > 1 &&
  15406. model->n_gpu_layers > (int)model->hparams.n_layer &&
  15407. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  15408. params.offload_kqv;
  15409. #ifndef GGML_USE_CUDA
  15410. // pipeline parallelism requires support for async compute and events
  15411. // currently this is only implemented in the CUDA backend
  15412. pipeline_parallel = false;
  15413. #endif
  15414. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), max_nodes, pipeline_parallel);
  15415. if (pipeline_parallel) {
  15416. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  15417. }
  15418. // build worst-case graph
  15419. uint32_t n_seqs = 1; // TODO: worst-case number of sequences
  15420. uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
  15421. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  15422. llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
  15423. ggml_cgraph * gf = llama_build_graph(*ctx, ubatch, true);
  15424. // initialize scheduler with the worst-case graph
  15425. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  15426. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  15427. llama_free(ctx);
  15428. return nullptr;
  15429. }
  15430. for (size_t i = 0; i < ctx->backends.size(); i++) {
  15431. ggml_backend_t backend = ctx->backends[i];
  15432. ggml_backend_buffer_type_t buft = backend_buft[i];
  15433. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  15434. if (size > 1) {
  15435. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  15436. ggml_backend_buft_name(buft),
  15437. size / 1024.0 / 1024.0);
  15438. }
  15439. }
  15440. // note: the number of splits during measure is higher than during inference due to the kv shift
  15441. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  15442. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  15443. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  15444. }
  15445. }
  15446. return ctx;
  15447. }
  15448. void llama_free(struct llama_context * ctx) {
  15449. delete ctx;
  15450. }
  15451. const struct llama_model * llama_get_model(const struct llama_context * ctx) {
  15452. return &ctx->model;
  15453. }
  15454. const struct llama_vocab * llama_get_vocab(const struct llama_context * ctx) {
  15455. return &ctx->model.vocab;
  15456. }
  15457. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  15458. return ctx->cparams.n_ctx;
  15459. }
  15460. uint32_t llama_n_batch(const struct llama_context * ctx) {
  15461. return ctx->cparams.n_batch;
  15462. }
  15463. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  15464. return ctx->cparams.n_ubatch;
  15465. }
  15466. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  15467. return ctx->kv_self.size;
  15468. }
  15469. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  15470. return model->vocab.type;
  15471. }
  15472. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  15473. switch (model->arch) {
  15474. // these models do not use RoPE
  15475. case LLM_ARCH_GPT2:
  15476. case LLM_ARCH_GPTJ:
  15477. case LLM_ARCH_MPT:
  15478. case LLM_ARCH_REFACT:
  15479. case LLM_ARCH_BLOOM:
  15480. case LLM_ARCH_MAMBA:
  15481. case LLM_ARCH_JINA_BERT_V2:
  15482. case LLM_ARCH_T5:
  15483. case LLM_ARCH_T5ENCODER:
  15484. case LLM_ARCH_JAIS:
  15485. case LLM_ARCH_RWKV6:
  15486. return LLAMA_ROPE_TYPE_NONE;
  15487. // use what we call a normal RoPE, operating on pairs of consecutive head values
  15488. case LLM_ARCH_LLAMA:
  15489. case LLM_ARCH_BAICHUAN:
  15490. case LLM_ARCH_STARCODER:
  15491. case LLM_ARCH_PLAMO:
  15492. case LLM_ARCH_ORION:
  15493. case LLM_ARCH_INTERNLM2:
  15494. case LLM_ARCH_MINICPM:
  15495. case LLM_ARCH_XVERSE:
  15496. case LLM_ARCH_COMMAND_R:
  15497. case LLM_ARCH_OLMO:
  15498. case LLM_ARCH_ARCTIC:
  15499. case LLM_ARCH_DEEPSEEK2:
  15500. case LLM_ARCH_CHATGLM:
  15501. return LLAMA_ROPE_TYPE_NORM;
  15502. // the pairs of head values are offset by n_rot/2
  15503. case LLM_ARCH_FALCON:
  15504. case LLM_ARCH_GROK:
  15505. case LLM_ARCH_DBRX:
  15506. case LLM_ARCH_BERT:
  15507. case LLM_ARCH_NOMIC_BERT:
  15508. case LLM_ARCH_STABLELM:
  15509. case LLM_ARCH_BITNET:
  15510. case LLM_ARCH_QWEN:
  15511. case LLM_ARCH_QWEN2:
  15512. case LLM_ARCH_QWEN2MOE:
  15513. case LLM_ARCH_PHI2:
  15514. case LLM_ARCH_PHI3:
  15515. case LLM_ARCH_GEMMA:
  15516. case LLM_ARCH_GEMMA2:
  15517. case LLM_ARCH_STARCODER2:
  15518. case LLM_ARCH_OPENELM:
  15519. case LLM_ARCH_GPTNEOX:
  15520. case LLM_ARCH_CODESHELL:
  15521. case LLM_ARCH_NEMOTRON:
  15522. case LLM_ARCH_EXAONE:
  15523. return LLAMA_ROPE_TYPE_NEOX;
  15524. // all model arches should be listed explicitly here
  15525. case LLM_ARCH_UNKNOWN:
  15526. GGML_ABORT("unknown architecture");
  15527. }
  15528. return LLAMA_ROPE_TYPE_NONE;
  15529. }
  15530. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  15531. return ctx->cparams.pooling_type;
  15532. }
  15533. int32_t llama_n_vocab(const struct llama_model * model) {
  15534. return model->hparams.n_vocab;
  15535. }
  15536. int32_t llama_n_ctx_train(const struct llama_model * model) {
  15537. return model->hparams.n_ctx_train;
  15538. }
  15539. int32_t llama_n_embd(const struct llama_model * model) {
  15540. return model->hparams.n_embd;
  15541. }
  15542. int32_t llama_n_layer(const struct llama_model * model) {
  15543. return model->hparams.n_layer;
  15544. }
  15545. float llama_rope_freq_scale_train(const struct llama_model * model) {
  15546. return model->hparams.rope_freq_scale_train;
  15547. }
  15548. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  15549. const auto & it = model->gguf_kv.find(key);
  15550. if (it == model->gguf_kv.end()) {
  15551. if (buf_size > 0) {
  15552. buf[0] = '\0';
  15553. }
  15554. return -1;
  15555. }
  15556. return snprintf(buf, buf_size, "%s", it->second.c_str());
  15557. }
  15558. int32_t llama_model_meta_count(const struct llama_model * model) {
  15559. return (int)model->gguf_kv.size();
  15560. }
  15561. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  15562. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  15563. if (buf_size > 0) {
  15564. buf[0] = '\0';
  15565. }
  15566. return -1;
  15567. }
  15568. auto it = model->gguf_kv.begin();
  15569. std::advance(it, i);
  15570. return snprintf(buf, buf_size, "%s", it->first.c_str());
  15571. }
  15572. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  15573. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  15574. if (buf_size > 0) {
  15575. buf[0] = '\0';
  15576. }
  15577. return -1;
  15578. }
  15579. auto it = model->gguf_kv.begin();
  15580. std::advance(it, i);
  15581. return snprintf(buf, buf_size, "%s", it->second.c_str());
  15582. }
  15583. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  15584. return snprintf(buf, buf_size, "%s %s %s",
  15585. llama_model_arch_name(model->arch),
  15586. llama_model_type_name(model->type),
  15587. llama_model_ftype_name(model->ftype).c_str());
  15588. }
  15589. uint64_t llama_model_size(const struct llama_model * model) {
  15590. uint64_t size = 0;
  15591. for (const auto & it : model->tensors_by_name) {
  15592. size += ggml_nbytes(it.second);
  15593. }
  15594. return size;
  15595. }
  15596. uint64_t llama_model_n_params(const struct llama_model * model) {
  15597. uint64_t nparams = 0;
  15598. for (const auto & it : model->tensors_by_name) {
  15599. nparams += ggml_nelements(it.second);
  15600. }
  15601. return nparams;
  15602. }
  15603. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  15604. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  15605. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  15606. return it.first == name;
  15607. });
  15608. if (it == model->tensors_by_name.end()) {
  15609. return nullptr;
  15610. }
  15611. return it->second;
  15612. }
  15613. bool llama_model_has_encoder(const struct llama_model * model) {
  15614. switch (model->arch) {
  15615. case LLM_ARCH_T5: return true;
  15616. case LLM_ARCH_T5ENCODER: return true;
  15617. default: return false;
  15618. }
  15619. }
  15620. bool llama_model_has_decoder(const struct llama_model * model) {
  15621. switch (model->arch) {
  15622. case LLM_ARCH_T5ENCODER: return false;
  15623. default: return true;
  15624. }
  15625. }
  15626. llama_token llama_model_decoder_start_token(const struct llama_model * model) {
  15627. return model->hparams.dec_start_token_id;
  15628. }
  15629. bool llama_model_is_recurrent(const struct llama_model * model) {
  15630. switch (model->arch) {
  15631. case LLM_ARCH_MAMBA: return true;
  15632. case LLM_ARCH_RWKV6: return true;
  15633. default: return false;
  15634. }
  15635. }
  15636. uint32_t llama_model_quantize(
  15637. const char * fname_inp,
  15638. const char * fname_out,
  15639. const llama_model_quantize_params * params) {
  15640. try {
  15641. llama_model_quantize_internal(fname_inp, fname_out, params);
  15642. return 0;
  15643. } catch (const std::exception & err) {
  15644. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  15645. return 1;
  15646. }
  15647. }
  15648. struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
  15649. try {
  15650. struct llama_lora_adapter * adapter = new llama_lora_adapter(model);
  15651. llama_lora_adapter_init_internal(model, path_lora, *adapter);
  15652. return adapter;
  15653. } catch (const std::exception & err) {
  15654. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  15655. return nullptr;
  15656. }
  15657. }
  15658. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  15659. GGML_ASSERT(cvec.tensors.empty());
  15660. GGML_ASSERT(cvec.ctxs.empty());
  15661. GGML_ASSERT(cvec.bufs.empty());
  15662. // count layer buffer types
  15663. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  15664. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  15665. buft_layer_count[model.buft_layer[i].buft]++;
  15666. }
  15667. // allocate contexts
  15668. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  15669. for (auto & it : buft_layer_count) {
  15670. int n_layers = it.second;
  15671. struct ggml_init_params params = {
  15672. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  15673. /*.mem_buffer =*/ NULL,
  15674. /*.no_alloc =*/ true,
  15675. };
  15676. ggml_context * ctx = ggml_init(params);
  15677. if (!ctx) {
  15678. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  15679. return 1;
  15680. }
  15681. ctx_map[it.first] = ctx;
  15682. }
  15683. // make tensors
  15684. cvec.tensors.reserve(model.hparams.n_layer);
  15685. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  15686. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  15687. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  15688. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  15689. cvec.tensors.push_back(tensor);
  15690. }
  15691. // allocate tensors / buffers and zero
  15692. cvec.ctxs.reserve(ctx_map.size());
  15693. cvec.bufs.reserve(ctx_map.size());
  15694. for (auto it : ctx_map) {
  15695. ggml_backend_buffer_type_t buft = it.first;
  15696. ggml_context * ctx = it.second;
  15697. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  15698. if (!buf) {
  15699. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  15700. return false;
  15701. }
  15702. ggml_backend_buffer_clear(buf, 0);
  15703. cvec.ctxs.push_back(ctx);
  15704. cvec.bufs.push_back(buf);
  15705. }
  15706. return true;
  15707. }
  15708. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  15709. const llama_model & model = lctx->model;
  15710. llama_control_vector & cvec = lctx->cvec;
  15711. if (data == nullptr) {
  15712. // disable the current control vector (but leave allocated for later)
  15713. cvec.layer_start = -1;
  15714. cvec.layer_end = -1;
  15715. return 0;
  15716. }
  15717. if (n_embd != (int) model.hparams.n_embd) {
  15718. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  15719. return 1;
  15720. }
  15721. if (cvec.tensors.empty()) {
  15722. if (!llama_control_vector_init(cvec, model)) {
  15723. return 1;
  15724. }
  15725. }
  15726. cvec.layer_start = il_start;
  15727. cvec.layer_end = il_end;
  15728. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  15729. assert(cvec.tensors[il] != nullptr);
  15730. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  15731. if (off + n_embd <= len) {
  15732. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  15733. }
  15734. }
  15735. return 0;
  15736. }
  15737. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  15738. struct llama_kv_cache_view result = {
  15739. /*.n_cells = */ 0,
  15740. /*.n_seq_max = */ n_seq_max,
  15741. /*.token_count = */ 0,
  15742. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  15743. /*.max_contiguous = */ 0,
  15744. /*.max_contiguous_idx = */ -1,
  15745. /*.cells = */ nullptr,
  15746. /*.cells_sequences = */ nullptr,
  15747. };
  15748. return result;
  15749. }
  15750. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  15751. if (view->cells != nullptr) {
  15752. free(view->cells);
  15753. view->cells = nullptr;
  15754. }
  15755. if (view->cells_sequences != nullptr) {
  15756. free(view->cells_sequences);
  15757. view->cells_sequences = nullptr;
  15758. }
  15759. }
  15760. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  15761. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  15762. view->n_cells = int32_t(ctx->kv_self.size);
  15763. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  15764. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  15765. view->cells = (struct llama_kv_cache_view_cell *)p;
  15766. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  15767. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  15768. view->cells_sequences = (llama_seq_id *)p;
  15769. }
  15770. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  15771. llama_kv_cache_view_cell * c_curr = view->cells;
  15772. llama_seq_id * cs_curr = view->cells_sequences;
  15773. int32_t used_cells = 0;
  15774. int32_t token_count = 0;
  15775. int32_t curr_contig_idx = -1;
  15776. uint32_t max_contig = 0;
  15777. int32_t max_contig_idx = -1;
  15778. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  15779. const size_t curr_size = kv_cells[i].seq_id.size();
  15780. token_count += curr_size;
  15781. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  15782. if (curr_size > 0) {
  15783. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  15784. max_contig = i - curr_contig_idx;
  15785. max_contig_idx = curr_contig_idx;
  15786. }
  15787. curr_contig_idx = -1;
  15788. } else if (curr_contig_idx < 0) {
  15789. curr_contig_idx = i;
  15790. }
  15791. int seq_idx = 0;
  15792. for (const llama_seq_id it : kv_cells[i].seq_id) {
  15793. if (seq_idx >= view->n_seq_max) {
  15794. break;
  15795. }
  15796. cs_curr[seq_idx] = it;
  15797. seq_idx++;
  15798. }
  15799. if (seq_idx != 0) {
  15800. used_cells++;
  15801. }
  15802. for (; seq_idx < view->n_seq_max; seq_idx++) {
  15803. cs_curr[seq_idx] = -1;
  15804. }
  15805. }
  15806. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  15807. max_contig_idx = curr_contig_idx;
  15808. max_contig = kv_cells.size() - curr_contig_idx;
  15809. }
  15810. view->max_contiguous = max_contig;
  15811. view->max_contiguous_idx = max_contig_idx;
  15812. view->token_count = token_count;
  15813. view->used_cells = used_cells;
  15814. if (uint32_t(used_cells) != ctx->kv_self.used) {
  15815. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  15816. __func__, ctx->kv_self.used, used_cells);
  15817. }
  15818. }
  15819. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  15820. int result = 0;
  15821. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  15822. result += ctx->kv_self.cells[i].seq_id.size();
  15823. }
  15824. return result;
  15825. }
  15826. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  15827. return ctx->kv_self.used;
  15828. }
  15829. void llama_kv_cache_clear(struct llama_context * ctx) {
  15830. llama_kv_cache_clear(ctx->kv_self);
  15831. }
  15832. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  15833. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  15834. }
  15835. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  15836. if (seq_id_src == seq_id_dst) {
  15837. return;
  15838. }
  15839. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  15840. }
  15841. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  15842. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  15843. }
  15844. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  15845. if (delta == 0) {
  15846. return;
  15847. }
  15848. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  15849. }
  15850. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  15851. if (d == 1) {
  15852. return;
  15853. }
  15854. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  15855. }
  15856. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  15857. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  15858. }
  15859. void llama_kv_cache_defrag(struct llama_context * ctx) {
  15860. llama_kv_cache_defrag(ctx->kv_self);
  15861. }
  15862. void llama_kv_cache_update(struct llama_context * ctx) {
  15863. llama_kv_cache_update_internal(*ctx);
  15864. }
  15865. // deprecated
  15866. size_t llama_get_state_size(struct llama_context * ctx) {
  15867. return llama_state_get_size(ctx);
  15868. }
  15869. // deprecated
  15870. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  15871. return llama_state_get_data(ctx, dst, -1);
  15872. }
  15873. // deprecated
  15874. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  15875. return llama_state_set_data(ctx, src, -1);
  15876. }
  15877. // deprecated
  15878. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  15879. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  15880. }
  15881. // deprecated
  15882. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  15883. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  15884. }
  15885. // TODO: replace all non-fatal assertions with returned errors or exceptions
  15886. struct llama_data_write {
  15887. virtual void write(const void * src, size_t size) = 0;
  15888. virtual void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) = 0;
  15889. virtual size_t get_size_written() = 0;
  15890. virtual ~llama_data_write() = default;
  15891. void write_string(const std::string & str) {
  15892. uint32_t str_size = str.size();
  15893. write(&str_size, sizeof(str_size));
  15894. write(str.data(), str_size);
  15895. }
  15896. void write_model_info(const struct llama_context * ctx) {
  15897. std::string arch_str = LLM_ARCH_NAMES.at(ctx->model.arch);
  15898. write_string(arch_str);
  15899. // TODO: add more model-specific info which should prevent loading the session file if not identical
  15900. }
  15901. void write_rng(const std::mt19937 & rng) {
  15902. std::ostringstream rng_ss;
  15903. rng_ss << rng;
  15904. const std::string & rng_str = rng_ss.str();
  15905. write_string(rng_str);
  15906. }
  15907. void write_output_ids(struct llama_context * ctx) {
  15908. llama_output_reorder(ctx);
  15909. const uint32_t n_outputs = ctx->n_outputs;
  15910. std::vector<int32_t> output_pos;
  15911. const size_t n_batch = ctx->cparams.n_batch;
  15912. const auto & output_ids = ctx->output_ids;
  15913. GGML_ASSERT(n_outputs <= ctx->output_size);
  15914. output_pos.resize(n_outputs);
  15915. // build a more compact representation of the output ids
  15916. for (size_t i = 0; i < n_batch; ++i) {
  15917. // map an output id to a position in the batch
  15918. int32_t pos = output_ids[i];
  15919. if (pos >= 0) {
  15920. GGML_ASSERT((uint32_t) pos < n_outputs);
  15921. output_pos[pos] = i;
  15922. }
  15923. }
  15924. write(&n_outputs, sizeof(n_outputs));
  15925. if (n_outputs) {
  15926. write(output_pos.data(), n_outputs * sizeof(int32_t));
  15927. }
  15928. }
  15929. void write_logits(const struct llama_context * ctx) {
  15930. const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_vocab);
  15931. write(&logits_size, sizeof(logits_size));
  15932. if (logits_size) {
  15933. write(ctx->logits, logits_size * sizeof(float));
  15934. }
  15935. }
  15936. void write_embeddings(const struct llama_context * ctx) {
  15937. const uint64_t embeddings_size = std::min((uint64_t) ctx->embd_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_embd);
  15938. write(&embeddings_size, sizeof(embeddings_size));
  15939. if (embeddings_size) {
  15940. write(ctx->embd, embeddings_size * sizeof(float));
  15941. }
  15942. }
  15943. void write_kv_cache_meta(const llama_kv_cache & kv_self, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) {
  15944. for (const auto & range : cell_ranges) {
  15945. for (uint32_t i = range.first; i < range.second; ++i) {
  15946. const auto & cell = kv_self.cells[i];
  15947. const llama_pos pos = cell.pos;
  15948. const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
  15949. write(&pos, sizeof(pos));
  15950. write(&n_seq_id, sizeof(n_seq_id));
  15951. if (n_seq_id) {
  15952. for (auto seq_id : cell.seq_id) {
  15953. write(&seq_id, sizeof(seq_id));
  15954. }
  15955. }
  15956. }
  15957. }
  15958. }
  15959. void write_kv_cache_data(const struct llama_context * ctx, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) {
  15960. const struct llama_kv_cache & kv_self = ctx->kv_self;
  15961. const struct llama_hparams & hparams = ctx->model.hparams;
  15962. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  15963. const uint32_t n_layer = hparams.n_layer;
  15964. write(&v_trans, sizeof(v_trans));
  15965. write(&n_layer, sizeof(n_layer));
  15966. std::vector<uint8_t> tmp_buf;
  15967. // Iterate and write all the keys first, each row is a cell
  15968. // Get whole range at a time
  15969. for (uint32_t il = 0; il < n_layer; ++il) {
  15970. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
  15971. // Write key type
  15972. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  15973. write(&k_type_i, sizeof(k_type_i));
  15974. // Write row size of key
  15975. const uint64_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  15976. write(&k_size_row, sizeof(k_size_row));
  15977. // Read each range of cells of k_size length each into tmp_buf and write out
  15978. for (const auto & range : cell_ranges) {
  15979. const size_t range_size = range.second - range.first;
  15980. const size_t buf_size = range_size * k_size_row;
  15981. write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size);
  15982. }
  15983. }
  15984. if (!kv_self.v_trans) {
  15985. for (uint32_t il = 0; il < n_layer; ++il) {
  15986. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
  15987. // Write value type
  15988. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  15989. write(&v_type_i, sizeof(v_type_i));
  15990. // Write row size of value
  15991. const uint64_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  15992. write(&v_size_row, sizeof(v_size_row));
  15993. // Read each range of cells of v_size length each into tmp_buf and write out
  15994. for (const auto & range : cell_ranges) {
  15995. const size_t range_size = range.second - range.first;
  15996. const size_t buf_size = range_size * v_size_row;
  15997. write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size);
  15998. }
  15999. }
  16000. } else {
  16001. // When v is transposed, we also need the element size and get the element ranges from each row
  16002. const uint32_t kv_size = kv_self.size;
  16003. for (uint32_t il = 0; il < n_layer; ++il) {
  16004. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
  16005. // Write value type
  16006. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  16007. write(&v_type_i, sizeof(v_type_i));
  16008. // Write element size
  16009. const uint32_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  16010. write(&v_size_el, sizeof(v_size_el));
  16011. // Write GQA embedding size
  16012. write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  16013. // For each row, we get the element values of each cell
  16014. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  16015. // Read each range of cells of v_size_el length each into tmp_buf and write out
  16016. for (const auto & range : cell_ranges) {
  16017. const size_t range_size = range.second - range.first;
  16018. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  16019. const size_t buf_size = range_size * v_size_el;
  16020. write_tensor_data(kv_self.v_l[il], src_offset, buf_size);
  16021. }
  16022. }
  16023. }
  16024. }
  16025. }
  16026. void write_kv_cache(const struct llama_context * ctx, llama_seq_id seq_id = -1) {
  16027. const struct llama_kv_cache & kv_self = ctx->kv_self;
  16028. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  16029. uint32_t cell_count = 0;
  16030. // Count the number of cells with the specified seq_id
  16031. // Find all the ranges of cells with this seq id (or all, when -1)
  16032. uint32_t cell_range_begin = kv_self.size;
  16033. for (uint32_t i = 0; i < kv_self.size; ++i) {
  16034. const auto & cell = kv_self.cells[i];
  16035. if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
  16036. ++cell_count;
  16037. if (cell_range_begin == kv_self.size) {
  16038. cell_range_begin = i;
  16039. }
  16040. } else {
  16041. if (cell_range_begin != kv_self.size) {
  16042. cell_ranges.emplace_back(cell_range_begin, i);
  16043. cell_range_begin = kv_self.size;
  16044. }
  16045. }
  16046. }
  16047. if (cell_range_begin != kv_self.size) {
  16048. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  16049. }
  16050. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  16051. uint32_t cell_count_check = 0;
  16052. for (const auto & range : cell_ranges) {
  16053. cell_count_check += range.second - range.first;
  16054. }
  16055. GGML_ASSERT(cell_count == cell_count_check);
  16056. write(&cell_count, sizeof(cell_count));
  16057. write_kv_cache_meta(kv_self, cell_ranges, seq_id);
  16058. write_kv_cache_data(ctx, cell_ranges);
  16059. }
  16060. };
  16061. struct llama_data_read {
  16062. virtual const uint8_t * read(size_t size) = 0;
  16063. virtual void read_to(void * dst, size_t size) = 0;
  16064. virtual size_t get_size_read() = 0;
  16065. virtual ~llama_data_read() = default;
  16066. void read_string(std::string & str) {
  16067. uint32_t str_size;
  16068. read_to(&str_size, sizeof(str_size));
  16069. str.assign((const char *) read(str_size), str_size);
  16070. }
  16071. // validate model information
  16072. void read_model_info(const struct llama_context * ctx) {
  16073. std::string cur_arch_str = LLM_ARCH_NAMES.at(ctx->model.arch);
  16074. std::string arch_str;
  16075. read_string(arch_str);
  16076. if (cur_arch_str != arch_str) {
  16077. throw std::runtime_error(format("wrong model arch: '%s' instead of '%s'", arch_str.c_str(), cur_arch_str.c_str()));
  16078. }
  16079. // TODO: add more info which needs to be identical but which is not verified otherwise
  16080. }
  16081. void read_rng(std::mt19937 & rng) {
  16082. std::string rng_str;
  16083. read_string(rng_str);
  16084. std::istringstream rng_ss(rng_str);
  16085. rng_ss >> rng;
  16086. if (rng_ss.fail()) {
  16087. throw std::runtime_error("failed to load RNG state");
  16088. }
  16089. }
  16090. void read_output_ids(struct llama_context * ctx) {
  16091. std::vector<int32_t> output_pos;
  16092. uint32_t n_outputs;
  16093. read_to(&n_outputs, sizeof(n_outputs));
  16094. if (n_outputs > llama_output_reserve(*ctx, n_outputs)) {
  16095. throw std::runtime_error("could not reserve outputs");
  16096. }
  16097. if (n_outputs) {
  16098. output_pos.resize(n_outputs);
  16099. read_to(output_pos.data(), n_outputs * sizeof(int32_t));
  16100. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  16101. int32_t id = output_pos[i];
  16102. if ((uint32_t) id >= ctx->cparams.n_batch) {
  16103. throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, ctx->cparams.n_batch));
  16104. }
  16105. ctx->output_ids[id] = i;
  16106. }
  16107. ctx->n_outputs = n_outputs;
  16108. }
  16109. }
  16110. void read_logits(struct llama_context * ctx) {
  16111. uint64_t logits_size;
  16112. read_to(&logits_size, sizeof(logits_size));
  16113. if (ctx->logits_size < logits_size) {
  16114. throw std::runtime_error("logits buffer too small");
  16115. }
  16116. if (logits_size) {
  16117. read_to(ctx->logits, logits_size * sizeof(float));
  16118. }
  16119. }
  16120. void read_embeddings(struct llama_context * ctx) {
  16121. uint64_t embeddings_size;
  16122. read_to(&embeddings_size, sizeof(embeddings_size));
  16123. if (ctx->embd_size < embeddings_size) {
  16124. throw std::runtime_error("embeddings buffer too small");
  16125. }
  16126. if (embeddings_size) {
  16127. read_to(ctx->embd, embeddings_size * sizeof(float));
  16128. }
  16129. }
  16130. bool read_kv_cache_meta(struct llama_context * ctx, uint32_t cell_count, llama_seq_id dest_seq_id = -1) {
  16131. struct llama_kv_cache & kv_self = ctx->kv_self;
  16132. if (dest_seq_id != -1) {
  16133. // single sequence
  16134. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  16135. llama_ubatch batch = ctx->sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
  16136. batch.n_tokens = cell_count;
  16137. batch.n_seq_tokens = cell_count;
  16138. batch.n_seqs = 1;
  16139. for (uint32_t i = 0; i < cell_count; ++i) {
  16140. llama_pos pos;
  16141. uint32_t n_seq_id;
  16142. read_to(&pos, sizeof(pos));
  16143. read_to(&n_seq_id, sizeof(n_seq_id));
  16144. if (n_seq_id != 0) {
  16145. LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
  16146. return false;
  16147. }
  16148. batch.pos[i] = pos;
  16149. }
  16150. batch.n_seq_id[0] = 1;
  16151. batch.seq_id[0] = &dest_seq_id;
  16152. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  16153. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  16154. return false;
  16155. }
  16156. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  16157. // Assume that this is one contiguous block of cells
  16158. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  16159. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  16160. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  16161. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  16162. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  16163. } else {
  16164. // whole KV cache restore
  16165. if (cell_count > kv_self.size) {
  16166. LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
  16167. return false;
  16168. }
  16169. llama_kv_cache_clear(kv_self);
  16170. for (uint32_t i = 0; i < cell_count; ++i) {
  16171. llama_kv_cell & cell = kv_self.cells[i];
  16172. llama_pos pos;
  16173. uint32_t n_seq_id;
  16174. read_to(&pos, sizeof(pos));
  16175. read_to(&n_seq_id, sizeof(n_seq_id));
  16176. cell.pos = pos;
  16177. for (uint32_t j = 0; j < n_seq_id; ++j) {
  16178. llama_seq_id seq_id;
  16179. read_to(&seq_id, sizeof(seq_id));
  16180. if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
  16181. LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
  16182. return false;
  16183. }
  16184. cell.seq_id.insert(seq_id);
  16185. if (kv_self.recurrent) {
  16186. int32_t & tail = kv_self.cells[seq_id].tail;
  16187. if (tail != -1) {
  16188. LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
  16189. return false;
  16190. }
  16191. tail = i;
  16192. }
  16193. }
  16194. }
  16195. kv_self.head = 0;
  16196. kv_self.used = cell_count;
  16197. }
  16198. if (kv_self.recurrent) {
  16199. for (uint32_t i = 0; i < cell_count; ++i) {
  16200. uint32_t cell_id = kv_self.head + i;
  16201. // make sure the recurrent states will keep their restored state
  16202. kv_self.cells[cell_id].src = cell_id;
  16203. }
  16204. }
  16205. return true;
  16206. }
  16207. bool read_kv_cache_data(struct llama_context * ctx, uint32_t cell_count) {
  16208. const struct llama_hparams & hparams = ctx->model.hparams;
  16209. struct llama_kv_cache & kv_self = ctx->kv_self;
  16210. uint32_t v_trans;
  16211. uint32_t n_layer;
  16212. read_to(&v_trans, sizeof(v_trans));
  16213. read_to(&n_layer, sizeof(n_layer));
  16214. if (n_layer != hparams.n_layer) {
  16215. LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
  16216. return false;
  16217. }
  16218. if (cell_count > kv_self.size) {
  16219. LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, kv_self.size);
  16220. return false;
  16221. }
  16222. if (kv_self.v_trans != (bool) v_trans) {
  16223. LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
  16224. return false;
  16225. }
  16226. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
  16227. for (uint32_t il = 0; il < n_layer; ++il) {
  16228. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
  16229. // Read type of key
  16230. int32_t k_type_i_ref;
  16231. read_to(&k_type_i_ref, sizeof(k_type_i_ref));
  16232. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  16233. if (k_type_i != k_type_i_ref) {
  16234. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  16235. return false;
  16236. }
  16237. // Read row size of key
  16238. uint64_t k_size_row_ref;
  16239. read_to(&k_size_row_ref, sizeof(k_size_row_ref));
  16240. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  16241. if (k_size_row != k_size_row_ref) {
  16242. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
  16243. return false;
  16244. }
  16245. if (cell_count) {
  16246. // Read and set the keys for the whole cell range
  16247. ggml_backend_tensor_set(kv_self.k_l[il], read(cell_count * k_size_row), kv_self.head * k_size_row, cell_count * k_size_row);
  16248. }
  16249. }
  16250. if (!kv_self.v_trans) {
  16251. for (uint32_t il = 0; il < n_layer; ++il) {
  16252. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
  16253. // Read type of value
  16254. int32_t v_type_i_ref;
  16255. read_to(&v_type_i_ref, sizeof(v_type_i_ref));
  16256. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  16257. if (v_type_i != v_type_i_ref) {
  16258. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  16259. return false;
  16260. }
  16261. // Read row size of value
  16262. uint64_t v_size_row_ref;
  16263. read_to(&v_size_row_ref, sizeof(v_size_row_ref));
  16264. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  16265. if (v_size_row != v_size_row_ref) {
  16266. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
  16267. return false;
  16268. }
  16269. if (cell_count) {
  16270. // Read and set the values for the whole cell range
  16271. ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_row), kv_self.head * v_size_row, cell_count * v_size_row);
  16272. }
  16273. }
  16274. } else {
  16275. // For each layer, read the values for each cell (transposed)
  16276. for (uint32_t il = 0; il < n_layer; ++il) {
  16277. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
  16278. // Read type of value
  16279. int32_t v_type_i_ref;
  16280. read_to(&v_type_i_ref, sizeof(v_type_i_ref));
  16281. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  16282. if (v_type_i != v_type_i_ref) {
  16283. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  16284. return false;
  16285. }
  16286. // Read element size of value
  16287. uint32_t v_size_el_ref;
  16288. read_to(&v_size_el_ref, sizeof(v_size_el_ref));
  16289. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  16290. if (v_size_el != v_size_el_ref) {
  16291. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
  16292. return false;
  16293. }
  16294. // Read GQA embedding size
  16295. uint32_t n_embd_v_gqa_ref;
  16296. read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
  16297. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  16298. LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
  16299. return false;
  16300. }
  16301. if (cell_count) {
  16302. // For each row in the transposed matrix, read the values for the whole cell range
  16303. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  16304. const size_t dst_offset = (kv_self.head + j * kv_self.size) * v_size_el;
  16305. ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
  16306. }
  16307. }
  16308. }
  16309. }
  16310. return true;
  16311. }
  16312. void read_kv_cache(struct llama_context * ctx, llama_seq_id seq_id = -1) {
  16313. uint32_t cell_count;
  16314. read_to(&cell_count, sizeof(cell_count));
  16315. bool res = read_kv_cache_meta(ctx, cell_count, seq_id) && read_kv_cache_data(ctx, cell_count);
  16316. if (!res) {
  16317. if (seq_id == -1) {
  16318. llama_kv_cache_clear(ctx);
  16319. } else {
  16320. llama_kv_cache_seq_rm(ctx, seq_id, -1, -1);
  16321. }
  16322. throw std::runtime_error("failed to restore kv cache");
  16323. }
  16324. }
  16325. };
  16326. struct llama_data_write_dummy : llama_data_write {
  16327. size_t size_written = 0;
  16328. llama_data_write_dummy() {}
  16329. void write(const void * /* src */, size_t size) override {
  16330. size_written += size;
  16331. }
  16332. void write_tensor_data(const struct ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override {
  16333. size_written += size;
  16334. }
  16335. size_t get_size_written() override {
  16336. return size_written;
  16337. }
  16338. };
  16339. struct llama_data_write_buffer : llama_data_write {
  16340. uint8_t * ptr;
  16341. size_t buf_size = 0;
  16342. size_t size_written = 0;
  16343. llama_data_write_buffer(uint8_t * p, size_t len) : ptr(p), buf_size(len) {}
  16344. void write(const void * src, size_t size) override {
  16345. if (size > buf_size) {
  16346. throw std::runtime_error("unexpectedly reached end of buffer");
  16347. }
  16348. memcpy(ptr, src, size);
  16349. ptr += size;
  16350. size_written += size;
  16351. buf_size -= size;
  16352. }
  16353. void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override {
  16354. if (size > buf_size) {
  16355. throw std::runtime_error("unexpectedly reached end of buffer");
  16356. }
  16357. ggml_backend_tensor_get(tensor, ptr, offset, size);
  16358. ptr += size;
  16359. size_written += size;
  16360. buf_size -= size;
  16361. }
  16362. size_t get_size_written() override {
  16363. return size_written;
  16364. }
  16365. };
  16366. struct llama_data_read_buffer : llama_data_read {
  16367. const uint8_t * ptr;
  16368. size_t buf_size = 0;
  16369. size_t size_read = 0;
  16370. llama_data_read_buffer(const uint8_t * p, size_t len) : ptr(p), buf_size(len) {}
  16371. const uint8_t * read(size_t size) override {
  16372. const uint8_t * base_ptr = ptr;
  16373. if (size > buf_size) {
  16374. throw std::runtime_error("unexpectedly reached end of buffer");
  16375. }
  16376. ptr += size;
  16377. size_read += size;
  16378. buf_size -= size;
  16379. return base_ptr;
  16380. }
  16381. void read_to(void * dst, size_t size) override {
  16382. memcpy(dst, read(size), size);
  16383. }
  16384. size_t get_size_read() override {
  16385. return size_read;
  16386. }
  16387. };
  16388. struct llama_data_write_file : llama_data_write {
  16389. llama_file * file;
  16390. size_t size_written = 0;
  16391. std::vector<uint8_t> temp_buffer;
  16392. llama_data_write_file(llama_file * f) : file(f) {}
  16393. void write(const void * src, size_t size) override {
  16394. file->write_raw(src, size);
  16395. size_written += size;
  16396. }
  16397. void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override {
  16398. temp_buffer.resize(size);
  16399. ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size);
  16400. write(temp_buffer.data(), temp_buffer.size());
  16401. }
  16402. size_t get_size_written() override {
  16403. return size_written;
  16404. }
  16405. };
  16406. struct llama_data_read_file : llama_data_read {
  16407. llama_file * file;
  16408. size_t size_read = 0;
  16409. std::vector<uint8_t> temp_buffer;
  16410. llama_data_read_file(llama_file * f) : file(f) {}
  16411. void read_to(void * dst, size_t size) override {
  16412. file->read_raw(dst, size);
  16413. size_read += size;
  16414. }
  16415. const uint8_t * read(size_t size) override {
  16416. temp_buffer.resize(size);
  16417. read_to(temp_buffer.data(), size);
  16418. return temp_buffer.data();
  16419. }
  16420. size_t get_size_read() override {
  16421. return size_read;
  16422. }
  16423. };
  16424. /** copy state data into either a buffer or file depending on the passed in context
  16425. *
  16426. * file context:
  16427. * llama_file file("/path", "wb");
  16428. * llama_data_write_file data_ctx(&file);
  16429. * llama_state_get_data_internal(ctx, data_ctx);
  16430. *
  16431. * buffer context:
  16432. * std::vector<uint8_t> buf(max_size, 0);
  16433. * llama_data_write_buffer data_ctx(buf.data(), max_size);
  16434. * llama_state_get_data_internal(ctx, data_ctx);
  16435. *
  16436. */
  16437. static size_t llama_state_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx) {
  16438. llama_synchronize(ctx);
  16439. data_ctx.write_model_info(ctx);
  16440. data_ctx.write_rng(ctx->sampling.rng);
  16441. // copy outputs
  16442. data_ctx.write_output_ids(ctx);
  16443. data_ctx.write_logits(ctx);
  16444. data_ctx.write_embeddings(ctx);
  16445. data_ctx.write_kv_cache(ctx);
  16446. return data_ctx.get_size_written();
  16447. }
  16448. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst, size_t size) {
  16449. llama_data_write_buffer data_ctx(dst, size);
  16450. try {
  16451. return llama_state_get_data_internal(ctx, data_ctx);
  16452. } catch (const std::exception & err) {
  16453. LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what());
  16454. return 0;
  16455. }
  16456. }
  16457. // Returns the *actual* size of the state.
  16458. // Intended to be used when saving to state to a buffer.
  16459. size_t llama_state_get_size(struct llama_context * ctx) {
  16460. llama_data_write_dummy data_ctx;
  16461. try {
  16462. return llama_state_get_data_internal(ctx, data_ctx);
  16463. } catch (const std::exception & err) {
  16464. LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what());
  16465. return 0;
  16466. }
  16467. }
  16468. static size_t llama_state_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx) {
  16469. llama_synchronize(ctx);
  16470. data_ctx.read_model_info(ctx);
  16471. // set rng
  16472. data_ctx.read_rng(ctx->sampling.rng);
  16473. // set outputs
  16474. data_ctx.read_output_ids(ctx);
  16475. data_ctx.read_logits(ctx);
  16476. data_ctx.read_embeddings(ctx);
  16477. data_ctx.read_kv_cache(ctx);
  16478. return data_ctx.get_size_read();
  16479. }
  16480. // Sets the state reading from the specified source address
  16481. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src, size_t size) {
  16482. llama_data_read_buffer data_ctx(src, size);
  16483. try {
  16484. return llama_state_set_data_internal(ctx, data_ctx);
  16485. } catch (const std::exception & err) {
  16486. LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what());
  16487. return 0;
  16488. }
  16489. }
  16490. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  16491. llama_file file(path_session, "rb");
  16492. // sanity checks
  16493. {
  16494. const uint32_t magic = file.read_u32();
  16495. const uint32_t version = file.read_u32();
  16496. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  16497. LLAMA_LOG_ERROR("%s: unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  16498. return false;
  16499. }
  16500. }
  16501. // load the prompt
  16502. {
  16503. const uint32_t n_token_count = file.read_u32();
  16504. if (n_token_count > n_token_capacity) {
  16505. LLAMA_LOG_ERROR("%s: token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  16506. return false;
  16507. }
  16508. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  16509. *n_token_count_out = n_token_count;
  16510. }
  16511. // restore the context state
  16512. {
  16513. const size_t n_state_size_cur = file.size - file.tell();
  16514. llama_data_read_file data_ctx(&file);
  16515. const size_t n_read = llama_state_set_data_internal(ctx, data_ctx);
  16516. if (n_read != n_state_size_cur) {
  16517. LLAMA_LOG_ERROR("%s: did not read all of the session file data! size %zu, got %zu\n", __func__, n_state_size_cur, n_read);
  16518. return false;
  16519. }
  16520. }
  16521. return true;
  16522. }
  16523. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  16524. try {
  16525. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  16526. } catch (const std::exception & err) {
  16527. LLAMA_LOG_ERROR("%s: error loading session file: %s\n", __func__, err.what());
  16528. return false;
  16529. }
  16530. }
  16531. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  16532. llama_file file(path_session, "wb");
  16533. file.write_u32(LLAMA_SESSION_MAGIC);
  16534. file.write_u32(LLAMA_SESSION_VERSION);
  16535. // save the prompt
  16536. file.write_u32((uint32_t) n_token_count);
  16537. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  16538. // save the context state using stream saving
  16539. llama_data_write_file data_ctx(&file);
  16540. llama_state_get_data_internal(ctx, data_ctx);
  16541. return true;
  16542. }
  16543. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  16544. try {
  16545. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  16546. } catch (const std::exception & err) {
  16547. LLAMA_LOG_ERROR("%s: error saving session file: %s\n", __func__, err.what());
  16548. return false;
  16549. }
  16550. }
  16551. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx, llama_seq_id seq_id) {
  16552. llama_synchronize(ctx);
  16553. data_ctx.write_kv_cache(ctx, seq_id);
  16554. return data_ctx.get_size_written();
  16555. }
  16556. size_t llama_state_seq_get_size(struct llama_context * ctx, llama_seq_id seq_id) {
  16557. llama_data_write_dummy data_ctx;
  16558. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  16559. }
  16560. size_t llama_state_seq_get_data(struct llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) {
  16561. llama_data_write_buffer data_ctx(dst, size);
  16562. try {
  16563. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  16564. } catch (const std::exception & err) {
  16565. LLAMA_LOG_ERROR("%s: error saving sequence state: %s\n", __func__, err.what());
  16566. return 0;
  16567. }
  16568. }
  16569. static size_t llama_state_seq_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx, llama_seq_id dest_seq_id) {
  16570. llama_synchronize(ctx);
  16571. data_ctx.read_kv_cache(ctx, dest_seq_id);
  16572. return data_ctx.get_size_read();
  16573. }
  16574. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, size_t size, llama_seq_id dest_seq_id) {
  16575. llama_data_read_buffer data_ctx(src, size);
  16576. try {
  16577. return llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id);
  16578. } catch (const std::exception & err) {
  16579. LLAMA_LOG_ERROR("%s: error loading sequence state: %s\n", __func__, err.what());
  16580. return 0;
  16581. }
  16582. }
  16583. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  16584. llama_file file(filepath, "wb");
  16585. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  16586. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  16587. // save the prompt
  16588. file.write_u32((uint32_t) n_token_count);
  16589. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  16590. // save the context state using stream saving
  16591. llama_data_write_file data_ctx(&file);
  16592. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  16593. const size_t res = file.tell();
  16594. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  16595. return res;
  16596. }
  16597. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  16598. llama_file file(filepath, "rb");
  16599. // version checks
  16600. {
  16601. const uint32_t magic = file.read_u32();
  16602. const uint32_t version = file.read_u32();
  16603. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  16604. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  16605. return 0;
  16606. }
  16607. }
  16608. // load the prompt
  16609. {
  16610. const uint32_t n_token_count = file.read_u32();
  16611. if (n_token_count > n_token_capacity) {
  16612. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  16613. return 0;
  16614. }
  16615. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  16616. *n_token_count_out = n_token_count;
  16617. }
  16618. // restore the context state
  16619. {
  16620. const size_t state_size = file.size - file.tell();
  16621. llama_data_read_file data_ctx(&file);
  16622. const size_t nread = llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id);
  16623. if (!nread) {
  16624. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  16625. return 0;
  16626. }
  16627. GGML_ASSERT(nread <= state_size);
  16628. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  16629. }
  16630. return file.tell();
  16631. }
  16632. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  16633. try {
  16634. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  16635. } catch (const std::exception & err) {
  16636. LLAMA_LOG_ERROR("%s: error saving sequence state file: %s\n", __func__, err.what());
  16637. return 0;
  16638. }
  16639. }
  16640. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  16641. try {
  16642. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  16643. } catch (const std::exception & err) {
  16644. LLAMA_LOG_ERROR("%s: error loading sequence state file: %s\n", __func__, err.what());
  16645. return 0;
  16646. }
  16647. }
  16648. void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch) {
  16649. ctx->cparams.n_threads = n_threads;
  16650. ctx->cparams.n_threads_batch = n_threads_batch;
  16651. }
  16652. int32_t llama_n_threads(struct llama_context * ctx) {
  16653. return ctx->cparams.n_threads;
  16654. }
  16655. int32_t llama_n_threads_batch(struct llama_context * ctx) {
  16656. return ctx->cparams.n_threads_batch;
  16657. }
  16658. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  16659. ctx->abort_callback = abort_callback;
  16660. ctx->abort_callback_data = abort_callback_data;
  16661. }
  16662. void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
  16663. ctx->cparams.embeddings = embeddings;
  16664. }
  16665. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  16666. ctx->cparams.causal_attn = causal_attn;
  16667. }
  16668. struct llama_batch llama_batch_get_one(
  16669. llama_token * tokens,
  16670. int32_t n_tokens,
  16671. llama_pos pos_0,
  16672. llama_seq_id seq_id) {
  16673. return {
  16674. /*n_tokens =*/ n_tokens,
  16675. /*tokens =*/ tokens,
  16676. /*embd =*/ nullptr,
  16677. /*pos =*/ nullptr,
  16678. /*n_seq_id =*/ nullptr,
  16679. /*seq_id =*/ nullptr,
  16680. /*logits =*/ nullptr,
  16681. /*all_pos_0 =*/ pos_0,
  16682. /*all_pos_1 =*/ 1,
  16683. /*all_seq_id =*/ seq_id,
  16684. };
  16685. }
  16686. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  16687. llama_batch batch = {
  16688. /*n_tokens =*/ 0,
  16689. /*tokens =*/ nullptr,
  16690. /*embd =*/ nullptr,
  16691. /*pos =*/ nullptr,
  16692. /*n_seq_id =*/ nullptr,
  16693. /*seq_id =*/ nullptr,
  16694. /*logits =*/ nullptr,
  16695. /*all_pos_0 =*/ 0,
  16696. /*all_pos_1 =*/ 0,
  16697. /*all_seq_id =*/ 0,
  16698. };
  16699. if (embd) {
  16700. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  16701. } else {
  16702. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  16703. }
  16704. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  16705. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  16706. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  16707. for (int i = 0; i < n_tokens_alloc; ++i) {
  16708. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  16709. }
  16710. batch.seq_id[n_tokens_alloc] = nullptr;
  16711. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  16712. return batch;
  16713. }
  16714. void llama_batch_free(struct llama_batch batch) {
  16715. if (batch.token) free(batch.token);
  16716. if (batch.embd) free(batch.embd);
  16717. if (batch.pos) free(batch.pos);
  16718. if (batch.n_seq_id) free(batch.n_seq_id);
  16719. if (batch.seq_id) {
  16720. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  16721. free(batch.seq_id[i]);
  16722. }
  16723. free(batch.seq_id);
  16724. }
  16725. if (batch.logits) free(batch.logits);
  16726. }
  16727. int32_t llama_encode(
  16728. struct llama_context * ctx,
  16729. struct llama_batch batch) {
  16730. const int ret = llama_encode_internal(*ctx, batch);
  16731. if (ret < 0) {
  16732. LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret);
  16733. }
  16734. return ret;
  16735. }
  16736. int32_t llama_decode(
  16737. struct llama_context * ctx,
  16738. struct llama_batch batch) {
  16739. const int ret = llama_decode_internal(*ctx, batch);
  16740. if (ret < 0) {
  16741. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  16742. }
  16743. return ret;
  16744. }
  16745. void llama_synchronize(struct llama_context * ctx) {
  16746. ggml_backend_sched_synchronize(ctx->sched);
  16747. // FIXME: if multiple single tokens are evaluated without a synchronization,
  16748. // the stats will be added to the prompt evaluation stats
  16749. // this should only happen when using batch size 1 to evaluate a batch
  16750. // add the evaluation to the stats
  16751. if (ctx->n_queued_tokens == 1) {
  16752. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  16753. ctx->n_eval++;
  16754. } else if (ctx->n_queued_tokens > 1) {
  16755. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  16756. ctx->n_p_eval += ctx->n_queued_tokens;
  16757. }
  16758. // get a more accurate load time, upon first eval
  16759. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  16760. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  16761. ctx->has_evaluated_once = true;
  16762. }
  16763. ctx->n_queued_tokens = 0;
  16764. ctx->t_compute_start_us = 0;
  16765. }
  16766. float * llama_get_logits(struct llama_context * ctx) {
  16767. llama_synchronize(ctx);
  16768. // reorder logits for backward compatibility
  16769. // TODO: maybe deprecate this
  16770. llama_output_reorder(ctx);
  16771. return ctx->logits;
  16772. }
  16773. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  16774. int32_t j = -1;
  16775. llama_synchronize(ctx);
  16776. try {
  16777. if (ctx->logits == nullptr) {
  16778. throw std::runtime_error("no logits");
  16779. }
  16780. if (i < 0) {
  16781. j = ctx->n_outputs + i;
  16782. if (j < 0) {
  16783. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  16784. }
  16785. } else if ((size_t) i >= ctx->output_ids.size()) {
  16786. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  16787. } else {
  16788. j = ctx->output_ids[i];
  16789. }
  16790. if (j < 0) {
  16791. throw std::runtime_error(format("batch.logits[%d] != true", i));
  16792. }
  16793. if (j >= ctx->n_outputs) {
  16794. // This should not happen
  16795. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  16796. }
  16797. return ctx->logits + j*ctx->model.hparams.n_vocab;
  16798. } catch (const std::exception & err) {
  16799. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  16800. #ifndef NDEBUG
  16801. GGML_ABORT("fatal error");
  16802. #endif
  16803. return nullptr;
  16804. }
  16805. }
  16806. float * llama_get_embeddings(struct llama_context * ctx) {
  16807. llama_synchronize(ctx);
  16808. // reorder embeddings for backward compatibility
  16809. // TODO: maybe deprecate this
  16810. llama_output_reorder(ctx);
  16811. return ctx->embd;
  16812. }
  16813. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  16814. int32_t j = -1;
  16815. llama_synchronize(ctx);
  16816. try {
  16817. if (ctx->embd == nullptr) {
  16818. throw std::runtime_error("no embeddings");
  16819. }
  16820. if (i < 0) {
  16821. j = ctx->n_outputs + i;
  16822. if (j < 0) {
  16823. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  16824. }
  16825. } else if ((size_t) i >= ctx->output_ids.size()) {
  16826. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  16827. } else {
  16828. j = ctx->output_ids[i];
  16829. }
  16830. if (j < 0) {
  16831. throw std::runtime_error(format("batch.logits[%d] != true", i));
  16832. }
  16833. if (j >= ctx->n_outputs) {
  16834. // This should not happen
  16835. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  16836. }
  16837. return ctx->embd + j*ctx->model.hparams.n_embd;
  16838. } catch (const std::exception & err) {
  16839. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  16840. #ifndef NDEBUG
  16841. GGML_ABORT("fatal error");
  16842. #endif
  16843. return nullptr;
  16844. }
  16845. }
  16846. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  16847. llama_synchronize(ctx);
  16848. auto it = ctx->embd_seq.find(seq_id);
  16849. if (it == ctx->embd_seq.end()) {
  16850. return nullptr;
  16851. }
  16852. return it->second.data();
  16853. }
  16854. //
  16855. // vocab
  16856. //
  16857. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  16858. return llama_token_get_text_impl(model->vocab, token);
  16859. }
  16860. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  16861. return llama_token_get_score_impl(model->vocab, token);
  16862. }
  16863. enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
  16864. return llama_token_get_attr_impl(model->vocab, token);
  16865. }
  16866. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  16867. return llama_token_is_eog_impl(model->vocab, token);
  16868. }
  16869. bool llama_token_is_control(const struct llama_model * model, llama_token token) {
  16870. return llama_token_is_control_impl(model->vocab, token);
  16871. }
  16872. llama_token llama_token_bos(const struct llama_model * model) {
  16873. return llama_token_bos_impl(model->vocab);
  16874. }
  16875. llama_token llama_token_eos(const struct llama_model * model) {
  16876. return llama_token_eos_impl(model->vocab);
  16877. }
  16878. llama_token llama_token_cls(const struct llama_model * model) {
  16879. return llama_token_cls_impl(model->vocab);
  16880. }
  16881. llama_token llama_token_sep(const struct llama_model * model) {
  16882. return llama_token_sep_impl(model->vocab);
  16883. }
  16884. llama_token llama_token_nl (const struct llama_model * model) {
  16885. return llama_token_nl_impl(model->vocab);
  16886. }
  16887. llama_token llama_token_pad(const struct llama_model * model) {
  16888. return llama_token_pad_impl(model->vocab);
  16889. }
  16890. bool llama_add_bos_token(const struct llama_model * model) {
  16891. return llama_add_bos_token_impl(model->vocab);
  16892. }
  16893. bool llama_add_eos_token(const struct llama_model * model) {
  16894. return llama_add_eos_token_impl(model->vocab);
  16895. }
  16896. llama_token llama_token_prefix(const struct llama_model * model) {
  16897. return llama_token_prefix_impl(model->vocab);
  16898. }
  16899. llama_token llama_token_middle(const struct llama_model * model) {
  16900. return llama_token_middle_impl(model->vocab);
  16901. }
  16902. llama_token llama_token_suffix(const struct llama_model * model) {
  16903. return llama_token_suffix_impl(model->vocab);
  16904. }
  16905. llama_token llama_token_eot(const struct llama_model * model) {
  16906. return llama_token_eot_impl(model->vocab);
  16907. }
  16908. //
  16909. // tokenization
  16910. //
  16911. int32_t llama_tokenize(
  16912. const struct llama_model * model,
  16913. const char * text,
  16914. int32_t text_len,
  16915. llama_token * tokens,
  16916. int32_t n_tokens_max,
  16917. bool add_special,
  16918. bool parse_special) {
  16919. return llama_tokenize_impl(model->vocab, text, text_len, tokens, n_tokens_max, add_special, parse_special);
  16920. }
  16921. int32_t llama_token_to_piece(
  16922. const struct llama_model * model,
  16923. llama_token token,
  16924. char * buf,
  16925. int32_t length,
  16926. int32_t lstrip,
  16927. bool special) {
  16928. return llama_token_to_piece_impl(model->vocab, token, buf, length, lstrip, special);
  16929. }
  16930. int32_t llama_detokenize(
  16931. const struct llama_model * model,
  16932. const llama_token * tokens,
  16933. int32_t n_tokens,
  16934. char * text,
  16935. int32_t text_len_max,
  16936. bool remove_special,
  16937. bool unparse_special) {
  16938. return llama_detokenize_impl(model->vocab, tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
  16939. }
  16940. //
  16941. // chat templates
  16942. //
  16943. // Simple version of "llama_apply_chat_template" that only works with strings
  16944. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  16945. static int32_t llama_chat_apply_template_internal(
  16946. const std::string & tmpl,
  16947. const std::vector<const llama_chat_message *> & chat,
  16948. std::string & dest, bool add_ass) {
  16949. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  16950. std::stringstream ss;
  16951. auto tmpl_contains = [&tmpl](std::string haystack) -> bool {
  16952. return tmpl.find(haystack) != std::string::npos;
  16953. };
  16954. if (tmpl == "chatml" || tmpl_contains("<|im_start|>")) {
  16955. // chatml template
  16956. for (auto message : chat) {
  16957. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  16958. }
  16959. if (add_ass) {
  16960. ss << "<|im_start|>assistant\n";
  16961. }
  16962. } else if (tmpl == "llama2" || tmpl == "mistral" || tmpl_contains("[INST]")) {
  16963. // llama2 template and its variants
  16964. // [variant] support system message
  16965. bool support_system_message = tmpl_contains("<<SYS>>") || tmpl == "mistral";
  16966. // [variant] space before + after response
  16967. bool space_around_response = tmpl_contains("' ' + eos_token");
  16968. // [variant] add BOS inside history
  16969. bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
  16970. // [variant] trim spaces from the input message
  16971. bool strip_message = tmpl_contains("content.strip()");
  16972. // construct the prompt
  16973. bool is_inside_turn = true; // skip BOS at the beginning
  16974. ss << "[INST] ";
  16975. for (auto message : chat) {
  16976. std::string content = strip_message ? trim(message->content) : message->content;
  16977. std::string role(message->role);
  16978. if (!is_inside_turn) {
  16979. is_inside_turn = true;
  16980. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  16981. }
  16982. if (role == "system") {
  16983. if (support_system_message) {
  16984. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  16985. } else {
  16986. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  16987. ss << content << "\n";
  16988. }
  16989. } else if (role == "user") {
  16990. ss << content << " [/INST]";
  16991. } else {
  16992. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  16993. is_inside_turn = false;
  16994. }
  16995. }
  16996. // llama2 templates seem to not care about "add_generation_prompt"
  16997. } else if (tmpl == "phi3" || (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>"))) {
  16998. // Phi 3
  16999. for (auto message : chat) {
  17000. std::string role(message->role);
  17001. ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
  17002. }
  17003. if (add_ass) {
  17004. ss << "<|assistant|>\n";
  17005. }
  17006. } else if (tmpl == "zephyr" || tmpl_contains("<|user|>")) {
  17007. // zephyr template
  17008. for (auto message : chat) {
  17009. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  17010. }
  17011. if (add_ass) {
  17012. ss << "<|assistant|>\n";
  17013. }
  17014. } else if (tmpl == "monarch" || tmpl_contains("bos_token + message['role']")) {
  17015. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  17016. for (auto message : chat) {
  17017. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  17018. ss << bos << message->role << "\n" << message->content << "</s>\n";
  17019. }
  17020. if (add_ass) {
  17021. ss << "<s>assistant\n";
  17022. }
  17023. } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl_contains("<start_of_turn>")) {
  17024. // google/gemma-7b-it
  17025. std::string system_prompt = "";
  17026. for (auto message : chat) {
  17027. std::string role(message->role);
  17028. if (role == "system") {
  17029. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  17030. system_prompt = trim(message->content);
  17031. continue;
  17032. }
  17033. // in gemma, "assistant" is "model"
  17034. role = role == "assistant" ? "model" : message->role;
  17035. ss << "<start_of_turn>" << role << "\n";
  17036. if (!system_prompt.empty() && role != "model") {
  17037. ss << system_prompt << "\n\n";
  17038. system_prompt = "";
  17039. }
  17040. ss << trim(message->content) << "<end_of_turn>\n";
  17041. }
  17042. if (add_ass) {
  17043. ss << "<start_of_turn>model\n";
  17044. }
  17045. } else if (tmpl == "orion" || tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
  17046. // OrionStarAI/Orion-14B-Chat
  17047. std::string system_prompt = "";
  17048. for (auto message : chat) {
  17049. std::string role(message->role);
  17050. if (role == "system") {
  17051. // there is no system message support, we will merge it with user prompt
  17052. system_prompt = message->content;
  17053. continue;
  17054. } else if (role == "user") {
  17055. ss << "Human: ";
  17056. if (!system_prompt.empty()) {
  17057. ss << system_prompt << "\n\n";
  17058. system_prompt = "";
  17059. }
  17060. ss << message->content << "\n\nAssistant: </s>";
  17061. } else {
  17062. ss << message->content << "</s>";
  17063. }
  17064. }
  17065. } else if (tmpl == "openchat" || tmpl_contains("GPT4 Correct ")) {
  17066. // openchat/openchat-3.5-0106,
  17067. for (auto message : chat) {
  17068. std::string role(message->role);
  17069. if (role == "system") {
  17070. ss << message->content << "<|end_of_turn|>";
  17071. } else {
  17072. role[0] = toupper(role[0]);
  17073. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  17074. }
  17075. }
  17076. if (add_ass) {
  17077. ss << "GPT4 Correct Assistant:";
  17078. }
  17079. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: "))) {
  17080. // eachadea/vicuna-13b-1.1 (and Orca variant)
  17081. for (auto message : chat) {
  17082. std::string role(message->role);
  17083. if (role == "system") {
  17084. // Orca-Vicuna variant uses a system prefix
  17085. if (tmpl == "vicuna-orca" || tmpl_contains("SYSTEM: ")) {
  17086. ss << "SYSTEM: " << message->content << "\n";
  17087. } else {
  17088. ss << message->content << "\n\n";
  17089. }
  17090. } else if (role == "user") {
  17091. ss << "USER: " << message->content << "\n";
  17092. } else if (role == "assistant") {
  17093. ss << "ASSISTANT: " << message->content << "</s>\n";
  17094. }
  17095. }
  17096. if (add_ass) {
  17097. ss << "ASSISTANT:";
  17098. }
  17099. } else if (tmpl == "deepseek" || (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>"))) {
  17100. // deepseek-ai/deepseek-coder-33b-instruct
  17101. for (auto message : chat) {
  17102. std::string role(message->role);
  17103. if (role == "system") {
  17104. ss << message->content;
  17105. } else if (role == "user") {
  17106. ss << "### Instruction:\n" << message->content << "\n";
  17107. } else if (role == "assistant") {
  17108. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  17109. }
  17110. }
  17111. if (add_ass) {
  17112. ss << "### Response:\n";
  17113. }
  17114. } else if (tmpl == "command-r" || (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>"))) {
  17115. // CohereForAI/c4ai-command-r-plus
  17116. for (auto message : chat) {
  17117. std::string role(message->role);
  17118. if (role == "system") {
  17119. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  17120. } else if (role == "user") {
  17121. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  17122. } else if (role == "assistant") {
  17123. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  17124. }
  17125. }
  17126. if (add_ass) {
  17127. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  17128. }
  17129. } else if (tmpl == "llama3" || (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>"))) {
  17130. // Llama 3
  17131. for (auto message : chat) {
  17132. std::string role(message->role);
  17133. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  17134. }
  17135. if (add_ass) {
  17136. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  17137. }
  17138. } else if (tmpl == "chatglm3" || tmpl_contains("[gMASK]sop")) {
  17139. // chatglm3-6b
  17140. ss << "[gMASK]" << "sop";
  17141. for (auto message : chat) {
  17142. std::string role(message->role);
  17143. ss << "<|" << role << "|>" << "\n " << message->content;
  17144. }
  17145. if (add_ass) {
  17146. ss << "<|assistant|>";
  17147. }
  17148. } else if (tmpl == "chatglm4" || tmpl_contains("[gMASK]<sop>")) {
  17149. ss << "[gMASK]" << "<sop>";
  17150. for (auto message : chat) {
  17151. std::string role(message->role);
  17152. ss << "<|" << role << "|>" << "\n" << message->content;
  17153. }
  17154. if (add_ass) {
  17155. ss << "<|assistant|>";
  17156. }
  17157. } else if (tmpl == "minicpm" || tmpl_contains(LU8("<用户>"))) {
  17158. // MiniCPM-3B-OpenHermes-2.5-v2-GGUF
  17159. for (auto message : chat) {
  17160. std::string role(message->role);
  17161. if (role == "user") {
  17162. ss << LU8("<用户>");
  17163. ss << trim(message->content);
  17164. ss << "<AI>";
  17165. } else {
  17166. ss << trim(message->content);
  17167. }
  17168. }
  17169. } else if (tmpl == "deepseek2" || tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
  17170. // DeepSeek-V2
  17171. for (auto message : chat) {
  17172. std::string role(message->role);
  17173. if (role == "system") {
  17174. ss << message->content << "\n\n";
  17175. } else if (role == "user") {
  17176. ss << "User: " << message->content << "\n\n";
  17177. } else if (role == "assistant") {
  17178. ss << "Assistant: " << message->content << LU8("<|end▁of▁sentence|>");
  17179. }
  17180. }
  17181. if (add_ass) {
  17182. ss << "Assistant:";
  17183. }
  17184. } else if (tmpl == "exaone3" || (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]"))) {
  17185. // ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
  17186. // EXAONE-3.0-7.8B-Instruct
  17187. for (auto message : chat) {
  17188. std::string role(message->role);
  17189. if (role == "system") {
  17190. ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
  17191. } else if (role == "user") {
  17192. ss << "[|user|]" << trim(message->content) << "\n";
  17193. } else if (role == "assistant") {
  17194. ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
  17195. }
  17196. }
  17197. if (add_ass) {
  17198. ss << "[|assistant|]";
  17199. }
  17200. } else {
  17201. // template not supported
  17202. return -1;
  17203. }
  17204. dest = ss.str();
  17205. return dest.size();
  17206. }
  17207. int32_t llama_chat_apply_template(
  17208. const struct llama_model * model,
  17209. const char * tmpl,
  17210. const struct llama_chat_message * chat,
  17211. size_t n_msg,
  17212. bool add_ass,
  17213. char * buf,
  17214. int32_t length) {
  17215. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  17216. if (tmpl == nullptr) {
  17217. GGML_ASSERT(model != nullptr);
  17218. // load template from model
  17219. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  17220. std::string template_key = "tokenizer.chat_template";
  17221. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  17222. if (res < 0) {
  17223. // worst case: there is no information about template, we will use chatml by default
  17224. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  17225. } else {
  17226. curr_tmpl = std::string(model_template.data(), model_template.size());
  17227. }
  17228. }
  17229. // format the chat to string
  17230. std::vector<const llama_chat_message *> chat_vec;
  17231. chat_vec.resize(n_msg);
  17232. for (size_t i = 0; i < n_msg; i++) {
  17233. chat_vec[i] = &chat[i];
  17234. }
  17235. std::string formatted_chat;
  17236. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  17237. if (res < 0) {
  17238. return res;
  17239. }
  17240. if (buf && length > 0) {
  17241. strncpy(buf, formatted_chat.c_str(), length);
  17242. }
  17243. return res;
  17244. }
  17245. //
  17246. // grammar
  17247. //
  17248. struct llama_grammar * llama_grammar_init(
  17249. const llama_grammar_element ** rules,
  17250. size_t n_rules,
  17251. size_t start_rule_index) {
  17252. return llama_grammar_init_impl(rules, n_rules, start_rule_index);
  17253. }
  17254. void llama_grammar_free(struct llama_grammar * grammar) {
  17255. llama_grammar_free_impl(grammar);
  17256. }
  17257. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  17258. return llama_grammar_copy_impl(grammar);
  17259. }
  17260. void llama_grammar_sample(
  17261. const struct llama_grammar * grammar,
  17262. const struct llama_context * ctx,
  17263. llama_token_data_array * candidates) {
  17264. llama_grammar_sample_impl(grammar, &ctx->model.vocab, &ctx->sampling, candidates);
  17265. }
  17266. void llama_sample_grammar(
  17267. struct llama_context * ctx,
  17268. llama_token_data_array * candidates,
  17269. const struct llama_grammar * grammar) {
  17270. llama_grammar_sample(grammar, ctx, candidates);
  17271. }
  17272. void llama_grammar_accept_token(
  17273. struct llama_grammar * grammar,
  17274. struct llama_context * ctx,
  17275. llama_token token) {
  17276. llama_grammar_accept_token_impl(grammar, &ctx->model.vocab, &ctx->sampling, token);
  17277. }
  17278. //
  17279. // sampling
  17280. //
  17281. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  17282. llama_set_rng_seed_impl(&ctx->sampling, seed);
  17283. }
  17284. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  17285. llama_sample_softmax_impl(ctx ? &ctx->sampling : nullptr, candidates);
  17286. }
  17287. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  17288. llama_sample_top_k_impl(ctx ? &ctx->sampling : nullptr, candidates, k, min_keep);
  17289. }
  17290. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  17291. llama_sample_top_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
  17292. }
  17293. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  17294. llama_sample_min_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
  17295. }
  17296. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  17297. llama_sample_tail_free_impl(ctx ? &ctx->sampling : nullptr, candidates, z, min_keep);
  17298. }
  17299. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  17300. llama_sample_typical_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
  17301. }
  17302. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  17303. llama_sample_entropy_impl(ctx ? &ctx->sampling : nullptr, candidates_p, min_temp, max_temp, exponent_val);
  17304. }
  17305. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  17306. llama_sample_temp_impl(ctx ? &ctx->sampling : nullptr, candidates_p, temp);
  17307. }
  17308. void llama_sample_repetition_penalties(
  17309. struct llama_context * ctx,
  17310. llama_token_data_array * candidates,
  17311. const llama_token * last_tokens,
  17312. size_t penalty_last_n,
  17313. float penalty_repeat,
  17314. float penalty_freq,
  17315. float penalty_present) {
  17316. llama_sample_repetition_penalties_impl(ctx ? &ctx->sampling : nullptr, candidates, last_tokens, penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
  17317. }
  17318. void llama_sample_apply_guidance(
  17319. struct llama_context * ctx,
  17320. float * logits,
  17321. float * logits_guidance,
  17322. float scale) {
  17323. llama_sample_apply_guidance_impl(&ctx->sampling, logits, logits_guidance, scale);
  17324. }
  17325. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  17326. return llama_sample_token_mirostat_impl(&ctx->sampling, candidates, tau, eta, m, mu);
  17327. }
  17328. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  17329. return llama_sample_token_mirostat_v2_impl(ctx ? &ctx->sampling : nullptr, candidates, tau, eta, mu);
  17330. }
  17331. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  17332. return llama_sample_token_greedy_impl(ctx ? &ctx->sampling : nullptr, candidates);
  17333. }
  17334. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  17335. return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, rng);
  17336. }
  17337. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  17338. return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, ctx->sampling.rng);
  17339. }
  17340. int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  17341. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  17342. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  17343. return strlen(split_path);
  17344. }
  17345. return 0;
  17346. }
  17347. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  17348. std::string str_split_path(split_path);
  17349. char postfix[32];
  17350. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  17351. std::string str_postfix(postfix);
  17352. // check if dest ends with postfix
  17353. int size_prefix = str_split_path.size() - str_postfix.size();
  17354. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  17355. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  17356. return size_prefix;
  17357. }
  17358. return 0;
  17359. }
  17360. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  17361. struct llama_timings result = {
  17362. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  17363. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  17364. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  17365. /*.t_sample_ms =*/ 1e-3 * ctx->sampling.t_sample_us,
  17366. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  17367. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  17368. /*.n_sample =*/ std::max(1, ctx->sampling.n_sample),
  17369. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  17370. /*.n_eval =*/ std::max(1, ctx->n_eval),
  17371. };
  17372. return result;
  17373. }
  17374. void llama_print_timings(struct llama_context * ctx) {
  17375. const llama_timings timings = llama_get_timings(ctx);
  17376. LLAMA_LOG_INFO("\n");
  17377. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  17378. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  17379. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  17380. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  17381. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  17382. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  17383. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  17384. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  17385. }
  17386. void llama_reset_timings(struct llama_context * ctx) {
  17387. ctx->t_start_us = ggml_time_us();
  17388. ctx->t_eval_us = ctx->n_eval = 0;
  17389. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  17390. ctx->sampling.reset_timings();
  17391. }
  17392. const char * llama_print_system_info(void) {
  17393. static std::string s;
  17394. s = "";
  17395. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  17396. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  17397. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  17398. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  17399. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  17400. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  17401. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  17402. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  17403. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  17404. s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
  17405. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  17406. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  17407. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  17408. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  17409. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  17410. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  17411. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  17412. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  17413. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  17414. s += "LLAMAFILE = " + std::to_string(ggml_cpu_has_llamafile()) + " | ";
  17415. return s.c_str();
  17416. }
  17417. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  17418. fprintf(stream, "\n");
  17419. fprintf(stream, "###########\n");
  17420. fprintf(stream, "# Timings #\n");
  17421. fprintf(stream, "###########\n");
  17422. fprintf(stream, "\n");
  17423. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  17424. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  17425. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  17426. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  17427. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  17428. 1.0e-3 * ctx->sampling.t_sample_us / ctx->sampling.n_sample);
  17429. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  17430. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  17431. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->sampling.n_sample);
  17432. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  17433. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  17434. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  17435. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->sampling.t_sample_us);
  17436. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  17437. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  17438. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  17439. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  17440. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  17441. 1.0e6 * ctx->sampling.n_sample / ctx->sampling.t_sample_us);
  17442. }
  17443. // For internal test use
  17444. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  17445. struct llama_context * ctx
  17446. ) {
  17447. return ctx->model.tensors_by_name;
  17448. }
  17449. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  17450. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  17451. g_state.log_callback_user_data = user_data;
  17452. #ifdef GGML_USE_METAL
  17453. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  17454. #elif defined(GGML_USE_CUDA)
  17455. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  17456. #elif defined(GGML_USE_CANN)
  17457. ggml_backend_cann_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  17458. #endif
  17459. }
  17460. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  17461. va_list args_copy;
  17462. va_copy(args_copy, args);
  17463. char buffer[128];
  17464. int len = vsnprintf(buffer, 128, format, args);
  17465. if (len < 128) {
  17466. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  17467. } else {
  17468. char* buffer2 = new char[len+1];
  17469. vsnprintf(buffer2, len+1, format, args_copy);
  17470. buffer2[len] = 0;
  17471. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  17472. delete[] buffer2;
  17473. }
  17474. va_end(args_copy);
  17475. }
  17476. void llama_log_internal(ggml_log_level level, const char * format, ...) {
  17477. va_list args;
  17478. va_start(args, format);
  17479. llama_log_internal_v(level, format, args);
  17480. va_end(args);
  17481. }
  17482. void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  17483. (void) level;
  17484. (void) user_data;
  17485. fputs(text, stderr);
  17486. fflush(stderr);
  17487. }