llama.go 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463
  1. package llama
  2. /*
  3. #cgo CFLAGS: -std=c11 -DNDEBUG -DLOG_DISABLE_LOGS
  4. #cgo CXXFLAGS: -std=c++11 -DNDEBUG -DLOG_DISABLE_LOGS
  5. #cgo darwin,arm64 CFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  6. #cgo darwin,arm64 CXXFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  7. #cgo darwin,arm64 LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework Accelerate
  8. #cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
  9. #cgo darwin,amd64 CXXFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
  10. #cgo darwin,amd64 LDFLAGS: -framework Foundation
  11. #cgo darwin,amd64 LDFLAGS: -L${SRCDIR}/build/Darwin/amd64
  12. #cgo darwin,amd64,avx2 CFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  13. #cgo darwin,amd64,avx2 CXXFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  14. #cgo darwin,amd64,avx2 LDFLAGS: -framework Accelerate
  15. #cgo linux CFLAGS: -D_GNU_SOURCE
  16. #cgo linux CXXFLAGS: -D_GNU_SOURCE
  17. #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/Linux/arm64
  18. #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
  19. #cgo windows CFLAGS: -Wno-discarded-qualifiers
  20. #cgo windows LDFLAGS: -lmsvcrt
  21. #cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/Windows/arm64
  22. #cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64
  23. #cgo avx CFLAGS: -mavx
  24. #cgo avx CXXFLAGS: -mavx
  25. #cgo avx2 CFLAGS: -mavx2 -mfma
  26. #cgo avx2 CXXFLAGS: -mavx2 -mfma
  27. #cgo cuda CFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  28. #cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  29. #cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  30. #cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  31. #cgo rocm LDFLAGS: -L${SRCDIR} -lggml_hipblas -lhipblas -lamdhip64 -lrocblas
  32. #cgo windows,cuda LDFLAGS: -lggml_cuda -lcuda -lcudart -lcublas -lcublasLt
  33. #cgo windows,rocm LDFLAGS: -lggml_hipblas -lhipblas -lamdhip64 -lrocblas
  34. #cgo linux,cuda LDFLAGS: -L/usr/local/cuda/lib64 -lggml_cuda -lcuda -lcudart -lcublas -lcublasLt -lpthread -ldl -lrt
  35. #cgo linux,rocm LDFLAGS: -L/opt/rocm/lib
  36. #include <stdlib.h>
  37. #include "llama.h"
  38. #include "clip.h"
  39. #include "llava.h"
  40. #include "sampling_ext.h"
  41. bool llamaProgressCallback(float progress, void *user_data);
  42. */
  43. import "C"
  44. import (
  45. _ "embed"
  46. "errors"
  47. "fmt"
  48. "runtime"
  49. "runtime/cgo"
  50. "strings"
  51. "unsafe"
  52. )
  53. func BackendInit() {
  54. C.llama_backend_init()
  55. }
  56. func PrintSystemInfo() string {
  57. return C.GoString(C.llama_print_system_info())
  58. }
  59. type ContextParams struct {
  60. c C.struct_llama_context_params
  61. }
  62. func NewContextParams(numCtx int, threads int, flashAttention bool) ContextParams {
  63. params := C.llama_context_default_params()
  64. params.n_ctx = C.uint(numCtx)
  65. params.n_threads = C.int(threads)
  66. params.n_threads_batch = params.n_threads
  67. params.embeddings = C.bool(true)
  68. params.flash_attn = C.bool(flashAttention)
  69. return ContextParams{c: params}
  70. }
  71. type Context struct {
  72. c *C.struct_llama_context
  73. }
  74. func (c *Context) KvCacheClear() {
  75. C.llama_kv_cache_clear(c.c)
  76. }
  77. func (c *Context) Decode(batch Batch) error {
  78. // Positive return values does not mean a fatal error, but rather a warning.
  79. // 0 - success
  80. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  81. // < 0 - error
  82. code := int(C.llama_decode(c.c, batch.c))
  83. if code < 0 {
  84. return fmt.Errorf("llama_decode failed with code %d", code)
  85. }
  86. if code > 0 {
  87. return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d", code)
  88. }
  89. return nil
  90. }
  91. func (c *Context) Model() *Model {
  92. return &Model{c: C.llama_get_model(c.c)}
  93. }
  94. func (c *Context) GetLogitsIth(i int) []float32 {
  95. return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_logits_ith(c.c, C.int(i)))), c.Model().NumVocab())
  96. }
  97. func (c *Context) SampleTokenGreedy(logits []float32) int {
  98. candidates := (*C.struct_llama_token_data)(C.malloc(C.size_t(len(logits)) * C.size_t(unsafe.Sizeof(C.struct_llama_token_data{}))))
  99. defer C.free(unsafe.Pointer(candidates))
  100. for i, logit := range logits {
  101. ptr := (*C.struct_llama_token_data)(unsafe.Pointer(uintptr(unsafe.Pointer(candidates)) + uintptr(i)*unsafe.Sizeof(C.struct_llama_token_data{})))
  102. ptr.id = C.int(i)
  103. ptr.logit = C.float(logit)
  104. ptr.p = 0.0
  105. }
  106. return int(C.llama_sample_token_greedy(c.c, &C.llama_token_data_array{
  107. data: candidates,
  108. size: C.size_t(len(logits)),
  109. sorted: C.bool(false),
  110. }))
  111. }
  112. func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
  113. C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
  114. }
  115. func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
  116. return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
  117. }
  118. // Get the embeddings for a sequence id
  119. func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
  120. embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
  121. if embeddings == nil {
  122. return nil
  123. }
  124. return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
  125. }
  126. func (c *Context) GetEmbeddingsIth(i int) []float32 {
  127. return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))), c.Model().NEmbd())
  128. }
  129. type ModelParams struct {
  130. NumGpuLayers int
  131. MainGpu int
  132. UseMmap bool
  133. UseMlock bool
  134. TensorSplit []float32
  135. Progress func(float32)
  136. }
  137. //export llamaProgressCallback
  138. func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
  139. handle := *(*cgo.Handle)(userData)
  140. callback := handle.Value().(func(float32))
  141. callback(float32(progress))
  142. return true
  143. }
  144. func LoadModelFromFile(modelPath string, params ModelParams) *Model {
  145. cparams := C.llama_model_default_params()
  146. cparams.n_gpu_layers = C.int(params.NumGpuLayers)
  147. cparams.main_gpu = C.int32_t(params.MainGpu)
  148. cparams.use_mmap = C.bool(params.UseMmap)
  149. cparams.use_mlock = C.bool(params.UseMlock)
  150. if len(params.TensorSplit) > 0 {
  151. tensorSplitData := &params.TensorSplit[0]
  152. var tensorSplitPin runtime.Pinner
  153. tensorSplitPin.Pin(tensorSplitData)
  154. defer tensorSplitPin.Unpin()
  155. cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
  156. }
  157. if params.Progress != nil {
  158. handle := cgo.NewHandle(params.Progress)
  159. defer handle.Delete()
  160. var handlePin runtime.Pinner
  161. handlePin.Pin(&handle)
  162. defer handlePin.Unpin()
  163. cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
  164. cparams.progress_callback_user_data = unsafe.Pointer(&handle)
  165. }
  166. return &Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
  167. }
  168. func NewContextWithModel(model *Model, params ContextParams) *Context {
  169. return &Context{c: C.llama_new_context_with_model(model.c, params.c)}
  170. }
  171. func (m *Model) NumVocab() int {
  172. return int(C.llama_n_vocab(m.c))
  173. }
  174. func (m *Model) TokenIsEog(token int) bool {
  175. return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
  176. }
  177. func (m *Model) AddBOSToken() bool {
  178. return bool(C.llama_add_bos_token(m.c))
  179. }
  180. func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
  181. cLoraPath := C.CString(loraPath)
  182. defer C.free(unsafe.Pointer(cLoraPath))
  183. loraAdapter := C.llama_lora_adapter_init(m.c, cLoraPath)
  184. err := -1
  185. if loraAdapter != nil {
  186. err = int(C.llama_lora_adapter_set(context.c, loraAdapter, C.float(scale)))
  187. }
  188. if err != 0 {
  189. return errors.New("error applying lora from file")
  190. }
  191. return nil
  192. }
  193. type Batch struct {
  194. c C.struct_llama_batch
  195. batchSize int
  196. }
  197. func NewBatch(nTokens int, embd int, maxSeq int) Batch {
  198. return Batch{
  199. c: C.llama_batch_init(C.int(nTokens), C.int(embd), C.int(maxSeq)),
  200. batchSize: nTokens,
  201. }
  202. }
  203. func (b *Batch) NumTokens() int {
  204. return int(b.c.n_tokens)
  205. }
  206. // Add adds a token to the batch with the given position for the given
  207. // sequence ids, and optionally instructs to include logits.
  208. func (b *Batch) Add(token int, pos int, seqIds []int, logits bool) {
  209. unsafe.Slice(b.c.token, b.batchSize)[b.c.n_tokens] = C.llama_token(token)
  210. unsafe.Slice(b.c.pos, b.batchSize)[b.c.n_tokens] = C.llama_pos(pos)
  211. unsafe.Slice(b.c.n_seq_id, b.batchSize)[b.c.n_tokens] = C.int(len(seqIds))
  212. for i, s := range seqIds {
  213. unsafe.Slice((unsafe.Slice(b.c.seq_id, b.batchSize)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
  214. }
  215. if logits {
  216. unsafe.Slice(b.c.logits, b.batchSize)[b.c.n_tokens] = 1
  217. }
  218. b.c.n_tokens += 1
  219. }
  220. func (b *Batch) Clear() {
  221. b.c.n_tokens = 0
  222. }
  223. func (b *Batch) Free() {
  224. b.batchSize = 0
  225. C.llama_batch_free(b.c)
  226. }
  227. func BatchGetOne(tokens []int, pos0 int, seqId int) Batch {
  228. return Batch{c: C.llama_batch_get_one((*C.int)(unsafe.Pointer(&tokens[0])), C.int32_t(len(tokens)), C.int(pos0), C.int(seqId))}
  229. }
  230. type Model struct {
  231. c *C.struct_llama_model
  232. }
  233. func (m *Model) TokenToPiece(token int) string {
  234. tokenLen := 12
  235. buf := make([]byte, tokenLen)
  236. tokenLen = int(C.llama_token_to_piece(
  237. m.c,
  238. C.int32_t(token),
  239. (*C.char)(unsafe.Pointer(&buf[0])),
  240. C.int32_t(tokenLen),
  241. C.int32_t(0),
  242. C.bool(true),
  243. ))
  244. if tokenLen < 0 {
  245. tokenLen = -tokenLen
  246. buf = make([]byte, tokenLen)
  247. C.llama_token_to_piece(
  248. m.c,
  249. C.int32_t(token),
  250. (*C.char)(unsafe.Pointer(&buf[0])),
  251. C.int32_t(tokenLen),
  252. C.int32_t(0),
  253. C.bool(true),
  254. )
  255. }
  256. return strings.TrimRight(string(buf), "\x00")
  257. }
  258. func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
  259. maxTokens := len(text) + 2
  260. cTokens := make([]C.llama_token, maxTokens)
  261. cText := C.CString(text)
  262. defer C.free(unsafe.Pointer(cText))
  263. result := C.llama_tokenize(
  264. m.c,
  265. cText,
  266. C.int32_t(len(text)),
  267. &cTokens[0],
  268. C.int32_t(maxTokens),
  269. C.bool(addSpecial),
  270. C.bool(parseSpecial),
  271. )
  272. if result < 0 {
  273. return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
  274. }
  275. tokens := make([]int, result)
  276. for i := range result {
  277. tokens[i] = int(cTokens[i])
  278. }
  279. return tokens, nil
  280. }
  281. func (m *Model) NEmbd() int {
  282. return int(C.llama_n_embd(m.c))
  283. }
  284. func Quantize(infile, outfile string, ftype uint32) error {
  285. cinfile := C.CString(infile)
  286. defer C.free(unsafe.Pointer(cinfile))
  287. coutfile := C.CString(outfile)
  288. defer C.free(unsafe.Pointer(coutfile))
  289. params := C.llama_model_quantize_default_params()
  290. params.nthread = -1
  291. params.ftype = ftype
  292. if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
  293. return fmt.Errorf("llama_model_quantize: %d", rc)
  294. }
  295. return nil
  296. }
  297. // llava
  298. type ClipContext struct {
  299. c *C.struct_clip_ctx
  300. }
  301. func NewClipContext(modelPath string) *ClipContext {
  302. mp := C.CString(modelPath)
  303. defer C.free(unsafe.Pointer(mp))
  304. cc := C.clip_model_load(mp, 1)
  305. return &ClipContext{c: cc}
  306. }
  307. type LlavaContext struct {
  308. c *C.struct_llava_context
  309. }
  310. type LlavaImageEmbed struct {
  311. c *C.struct_llava_image_embed
  312. }
  313. func NewLlavaImageEmbed(clipContext *ClipContext, data []byte) *LlavaImageEmbed {
  314. return &LlavaImageEmbed{c: C.llava_image_embed_make_with_bytes(clipContext.c, C.int(runtime.NumCPU()), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))}
  315. }
  316. func LlavaEvalImageEmbed(llamaContext *Context, embed *LlavaImageEmbed, nBatch int, nPast *int) {
  317. C.llava_eval_image_embed(llamaContext.c, embed.c, C.int(nBatch), (*C.int)(unsafe.Pointer(nPast)))
  318. }
  319. // sampling
  320. // TODO: this is a temporary wrapper to allow calling C++ code from CGo
  321. type SamplingContext struct {
  322. c *C.struct_llama_sampling_context
  323. }
  324. type SamplingParams struct {
  325. TopK int
  326. TopP float32
  327. MinP float32
  328. TfsZ float32
  329. TypicalP float32
  330. Temp float32
  331. RepeatLastN int
  332. PenaltyRepeat float32
  333. PenaltyFreq float32
  334. PenaltyPresent float32
  335. Mirostat int
  336. MirostatTau float32
  337. MirostatEta float32
  338. PenalizeNl bool
  339. Seed uint32
  340. Grammar string
  341. }
  342. func NewSamplingContext(params SamplingParams) *SamplingContext {
  343. var cparams C.struct_llama_sampling_cparams
  344. cparams.top_k = C.int32_t(params.TopK)
  345. cparams.top_p = C.float(params.TopP)
  346. cparams.min_p = C.float(params.MinP)
  347. cparams.tfs_z = C.float(params.TfsZ)
  348. cparams.typical_p = C.float(params.TypicalP)
  349. cparams.temp = C.float(params.Temp)
  350. cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
  351. cparams.penalty_repeat = C.float(params.PenaltyRepeat)
  352. cparams.penalty_freq = C.float(params.PenaltyFreq)
  353. cparams.penalty_present = C.float(params.PenaltyFreq)
  354. cparams.mirostat = C.int32_t(params.Mirostat)
  355. cparams.mirostat_tau = C.float(params.MirostatTau)
  356. cparams.mirostat_eta = C.float(params.MirostatEta)
  357. cparams.penalize_nl = C.bool(params.PenalizeNl)
  358. cparams.seed = C.uint32_t(params.Seed)
  359. grammar := C.CString(params.Grammar)
  360. defer C.free(unsafe.Pointer(grammar))
  361. cparams.grammar = grammar
  362. return &SamplingContext{c: C.llama_sampling_cinit(&cparams)}
  363. }
  364. func (s *SamplingContext) Free() {
  365. if s != nil {
  366. C.llama_sampling_cfree(s.c)
  367. }
  368. }
  369. func (s *SamplingContext) Reset() {
  370. C.llama_sampling_creset(s.c)
  371. }
  372. func (s *SamplingContext) Sample(ctxMain *Context, ctxConfig *Context, idx int) int {
  373. // TODO (jmorganca): handle nil for all args
  374. if ctxConfig == nil {
  375. return int(C.llama_sampling_csample(s.c, ctxMain.c, nil, C.int(idx)))
  376. }
  377. return int(C.llama_sampling_csample(s.c, ctxMain.c, ctxConfig.c, C.int(idx)))
  378. }
  379. func (s *SamplingContext) Accept(ctxMain *Context, id int, applyGrammar bool) {
  380. C.llama_sampling_caccept(s.c, ctxMain.c, C.llama_token(id), C.bool(applyGrammar))
  381. }